
Research Article

International Journal of Distributed
Sensor Networks
2018, Vol. 14(3)
� The Author(s) 2018
DOI: 10.1177/1550147718766452
journals.sagepub.com/home/dsn

Hybrid approach for alignment of a
pre-processed three-dimensional point
cloud, video, and CAD model using
partial point cloud in retrofitting
applications
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Abstract
Acquiring the three-dimensional point cloud data of a scene using a laser scanner and the alignment of the point cloud
data within a real-time video environment view of a camera is a very new concept and is an efficient method for con-
structing, monitoring, and retrofitting complex engineering models in heavy industrial plants. This article presents a novel
prototype framework for virtual retrofitting applications. The workflow includes an efficient 4-in-1 alignment, beginning
with the coordination of pre-processed three-dimensional point cloud data using a partial point cloud from LiDAR and
alignment of the pre-processed point cloud within the video scene using a frame-by-frame registering method. Finally,
the proposed approach can be utilized in pre-retrofitting applications by pre-generated three-dimensional computer-
aided design models virtually retrofitted with the help of a synchronized point cloud, and a video scene is efficiently
visualized using a wearable virtual reality device. The prototype method is demonstrated in a real-world setting, using
the partial point cloud from LiDAR, pre-processed point cloud data, and video from a two-dimensional camera.
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Introduction

In the past decades, three-dimensional (3D) scene
acquiring and reconstruction has been a significant
issue for various applications such as virtual reality
(VR), digital industries, augmented reality, reverse
engineering, inspection, and retrofitting.1–4 Generally,
for the process of 3D scene acquisition and recon-
struction, sensor technology is required, such as tradi-
tional digital photography depth sensors5 (e.g. RGB-
depth sensors) and laser range sensors6 (e.g. LiDAR).
The depth sensor methods are beneficial for those
applications requiring a robust, reliable, and low-cost
acquisition system. However, laser range sensors are

beneficial for a much higher precision and resolution.
Moreover, the data from each single laser range sen-
sor from the commercially available scanner can cover
a field of view (FOV) up to 360� 3 270� (e.g. Leica
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ScanStation C10) within a small moment. Therefore,
the laser range sensor technology supports a convin-
cing and impressive method of acquiring accurate geo-
metric architectures of complicated surfaces in the
physical world.

This work was motivated by industries that con-
struct, design, maintain, and retrofit complex engineer-
ing objects in plants or manufacturing industries.7

When working in industrial plants, such as thermal,
petrochemical, and nuclear power stations, the route
plans for transporting pipes, equipment, and other
objects into the plant area are typically challenging.
Therefore, workers involved in maintenance, recon-
struction, and upgradation tasks experience risks
because of the defects rooted in unidentified complex
objects in the plants. However, with the availability of
3D models, there is the possibility of mismatch between
reality and the model using the traditional method. By
adopting current laser scanning technology, object sur-
faces in reality can be acquired with detailed informa-
tion. In such a manner, the 3D models of industrial
objects can be created by a manual modeling process,
but it is a tedious and time-consuming process for the
maintenance and upgradation of the plant facilities.
For a complicated engineering object in thermal or
nuclear plants, 3D model construction from point
clouds may require several days. Therefore, there is a
demand for an automated modeling of computer-aided
design (CAD) for diverse tasks in architecture and
design, such as construction planning, visualization,
retrofitting, facility management, navigation, simula-
tion, speeding up, and renovation help, to help accom-
plish complex projects.

In this research, a novel prototype framework for a
retrofitting application that is aimed at virtual modifi-
cation and upgradation of existing industrial plant
facilities is proposed with a 4-in-1 alignment approach
as shown in Figure 1. The coordinate alignment of pre-
processed point cloud data with respect to the physical
environment using partial point clouds from the
LiDAR data and computer-generated CAD model are
virtually included in the environment. The whole pro-
cess is efficiently visualized in the VR device. This study
emphasizes the need for pre-retrofit model construction
in order to understand and manage existing industrial
plant information for further physical retrofitting work
done on the actual site.

The rest of this article is organized into the following
sections. In the next section, a literature review of the
research relevant to point cloud registration algorithms
and point cloud alignment in video methods is pre-
sented. The experimental analysis is presented in the
results validation section, and finally, conclusions for
the proposed method and outlines of future work are
discussed.

Literature review

There is not much work that has been done regarding
the virtual retrofitting in building information modeling
(BIM) in the past decades. Most retrofitting work is
done manually by a professional with the help of some
commercial software,8 which provides only point cloud
data for their constructed model and allow retrofitting
to be done in a two-dimensional (2D) workstation. In
the proposed novel virtual retrofitting approach, the

Figure 1. Overview of proposed method for retrofitting application.
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pre-retrofitting can be done by virtually interacting in
the physical world, which includes point cloud, real-
time video, and CAD models. Our proposed method
provides a precise insertion or deletion of CAD mod-
ules responsible for updating existing industrial installa-
tion in the virtual system. For the alignment of point
cloud and real-time video, in the proposed method, we
utilized the Generalized-Iterative Closest Point (GICP)
registration algorithm.9 Over the last three to four
decades, many efficient registration algorithms10 have
been introduced, and among them, Iterative Closest
Point (ICP) and its variant algorithms are superior in
terms of accuracy, performance, and robustness.11 In
this literature review, we discuss some of the ICP var-
iants for point cloud alignment research as well as point
cloud alignment in the video.

While some architecture in the literature combine
2D and 3D information to perform registration, none
of them uses data from the current scene to decide how
to best process them for smooth registration.
Registration algorithms are used in different areas and
applications, such as 3D mapping, 3D localization, 3D
object scanning, and human body detection. Most of
these state-of-the-art applications employ the ICP algo-
rithm, which was developed by Besl and McKay12 to
register 3D range images accurately. This algorithm
aligns two-point clouds by iteratively computing the
rigid transformation between them. Since all ICP var-
iants might get stuck in a local minimum, they are basi-
cally only effective if the distances between the point
data are smaller than at the starting step. This incom-
petence is often managed by estimating an initial trans-
formation with some algorithms or other methods that
converge to the global minimum but with reduced
precision.

Since the introduction of low-priced depth sensors
such as the RGB-D Microsoft Kinect camera, intense
progress has been made in the robotics field toward
simultaneous localization and mapping (SLAM).13 The
reconstructed real-world scene is represented by a set of
multi-view point clouds which are aligned using regis-
tration and can be used for obstacle avoidance and site
exploration.14

Chen and Medioni15 introduced the point-to-plane
variant of ICP because most of the range measurements
are commonly sampled from a locally planar surface.
Similarly, Alshawa16 proposed a line-based matching
ICP variant called iterative closest line (ICL). In ICL
line, features are obtained from the range scans that are
aligned to achieve the rigid body transformation.

In the proposed method, for the alignment of pre-
processed point cloud data, we initially utilized the
standard ICP algorithm.12 ICP is one of the most domi-
nant registration methods which tries to find the

optimal transformation between two datasets by itera-
tively minimizing a distance error metric. ICP considers
pairs of nearest points in the source and target point
cloud datasets as correspondences and treats every
point as having a corresponding point.

A main disadvantage of the traditional standard ICP
algorithm is that it assumes that the source cloud is
acquired from a known geometric scene instead of
being acquired through noisy measurements. However,
due to discretization errors, it is generally impractical to
get a perfect point-to-point algorithm17 alignment result
even after complete merging of the algorithm. In order
to cope with the discretization differences, the point-to-
surface ICP algorithm18 modifies this constraint by per-
mitting points to aggregate along the surface. However,
this method still assumes that the source point cloud
represents a discretized sample set of a known geo-
metric scene model since the points along the surface
are only permitted in the target cloud.

To overcome these issues, Segal et al.9 proposed the
GICP algorithm which performs plane-to-plane match-
ing and introduced a probabilistic interpretation of the
minimization process such that structural information
from both the source cloud and the target cloud can be
incorporated easily in the optimization algorithm.
GICP improves ICP by using the underlying surface
structure of the point cloud to reject poorly corre-
sponding points. The use of GICP requires the compu-
tation of surface normal information, which is easy to
perform accurately with a less noise in an unstructured
geometrical point cloud data such as those generated
from pipeline industries and buildings.

Several studies have been proposed recently for mod-
eling indoor physical environments with an RGB-D
camera, representing the real-world scene geometry as
point clouds. Du et al.19 presented a prototype mobile
system for 3D mapping and modeling. In this, the user
can freely move an RGB-D camera through an indoor
space and track the 3D mapping process, recover from
registration failures, and achieve complete coverage
through visual inspection. Interactive loop closure is
also adapted to remove the global inconsistency in
frame-by-frame registration. Vidal et al.20 proposed a
method to integrate information from video sequences
into reference 3D point clouds. The videos are used to
generate several local, denser 3D models. Bruder et al.21

used head-mounted device (HMD) for visualization of
3D point clouds acquired from culture heritage using
an Intelligent Robot for Mapping Applications in 3D
(Irma3D). Burwell et al.22 demonstrated that the usage
of HMD for 3D point clouds visualization in immersive
virtual environment and interacting in real-time are
considered advantageous for viewing the structure of
the object from the point clouds.
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Proposed retrofitting method

The primary goal of this research is to develop a frame-
work of virtual retrofit application that provides an
affordable upgradation of complex engineering models
in heavy industrial plants to support and help with
decision making for retrofit projects. Existing plant
upgrades are typically high-risk projects. Traditional
retrofit projects require engineers to make multiple site
trips to take field measurements for design. The pro-
posed virtual retrofit application has potential for
reducing errors and interferences that can result in
onsite construction work.

The novel framework proposed for the retrofitting
application using 4-in-1 alignment approach mainly
aims at virtual modification and upgradation of exist-
ing industrial plant facilities. The proposed retrofitting
framework process includes estimation of the position
and orientation of pre-processed point cloud data with
respect to the physical environment using partial point
cloud data in real time. Furthermore, alignment of the
coordinated pre-processed point cloud data in the real-
time camera view uses frame-to-frame registration and
immersive visualization provided by the VR HMD, as
shown in Figure 1.

3D point cloud acquisition and point cloud
pre-processing

The 3D scanning has been widely used for many years
for reverse engineering and part inspection.23 The scan-
ning process involves acquiring the shape of the 3D
model with detailed geometry information. There are a
variety of techniques, with a wide range of hardware
devices available for acquiring the 3D model. Using
laser scanning technology, the 3D data of real objects
can be acquired more efficiently and accurately com-
pared to other optical sensing technologies. Most of
the research and real-time applications widely use these
laser scanners instead of the vision-based sensor,
because of its ability to collect the data with high speed
and accurate geometric information.

Generally, depending on the range and FOV, laser
scanners are subdivided into three main groups: close-
range scanners (2–3 m), medium-range scanners (500–
1000 m), and long-range scanners (up to several kilo-
meters). Based on the application requirements, appro-
priate scanners are selected. The laser scanner can
digitize all the 3D information within the specified
FOV of scanner concerned with a real-world object
such as buildings, trees, and terrain down to millimeter
detail. These scanners have been high-priced in the past,
but are becoming more reasonable as usage increasing
into more extensive.

Furthermore, the application area of laser scanners
includes both in indoor and outdoor environments.

Data acquired from the laser scanner are more useful
in the reconstruction and modeling of geometric objects
as well as for the navigation and obstacle detection
application.

The acquired point cloud usually contains a massive
number of measurement errors. Most of these errors
are directly dependent on the measurement system and
the scanned object’s surface. Therefore, these error
measurements need to be identified and filtered from
the point cloud in order to get a noiseless model that
can be used as accurate measuring data. Also, recon-
structing models from the laser scanner–generated
point cloud data is often necessary to minimize the size
of the point cloud while minimizing the loss of infor-
mation. In the proposed method, the statistical outlier
removal method24 was used to generate a noiseless
data.

As shown in Figure 2, the left side of Figure 2(a) pre-
sents the measurements from the LiDAR sensor in a
single view with noisy and spurious measurements. The
right side of Figure 2(b) shows the point cloud after the
noise removal processing of unwanted measurements.

In this work, we have used Velodyne PUCK VLP 16
sensor for the acquisition of the point cloud. The scan-
ner generated the array of depth values, which can be
converted to 3D positions in the scanner coordinate
systems,25 using the predefined position and orientation
of the scanner. In order to acquire the complete point
cloud model of the pipeline shown in Figure 3(c), the
scanner setup has been placed in four different prede-
fined positions. The orientation of the scanning plat-
form in predefined positions was obtained through an
inertial measurement unit (IMU) sensor (orientation
estimation from IMU sensor is explained in section
3.1.1 by Kumar et al.25) attached to the Velodyne
LiDAR. The IMU sensor is calibrated with the
Velodyne LiDAR sensor according to the center of
LiDAR.

Each set of the point cloud has its own coordinate
system. At this stage, the registration process was per-
formed to align all the point clouds to one common
coordinate system. This action registers and merges

Figure 2. (a) Measurement errors from LiDAR sensor and (b)
noise removed with pre-processing step.
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several scans into one complete model. A sample envi-
ronmental setup is established in Figure 3(a), with four
views of partial point cloud data shown in Figure 3(b)
and multiple views of partial point cloud data merged
using the mapping method proposed in Zhang and
Singh;26 the results of the pre-processed point cloud
data are shown in Figure 3(c).

Coordinating pre-processed point cloud

The pre-processed point cloud data of the physical
world scene are displaced during the data acquisition
from the LiDAR sensor and are pre-processed, as
described in the previous section (i.e. point cloud pre-
processing). It is necessary to align the pre-processed
point cloud data to a physical world scene. The align-
ment with the physical world increases the accuracy of

the virtual retrofitting process. For the alignment of
the pre-processed point cloud with the physical envi-
ronment in the proposed method, we adopted variants
of the ICP registration algorithm. Consistently aligning
multiple 3D point cloud data views into a complete
model is referred to as registration.27 However, the goal
of our approach is to align the pre-processed point
cloud data with respect to the relative position and
orientation of a physical model in a global coordinate
framework using partial point cloud from LiDAR, as
shown in Figure 4.

The key element of the GICP9 algorithm is outlined
below, and it is utilized in the alignment of pre-
processed point clouds with partial point clouds.

First, it is assumed that the nearest neighbor corre-
spondences are estimated, and pre-processed point
cloud data (CP) and real-time partial point cloud data

Figure 3. (a) Sample environment, (b) different views of partial point cloud acquisition from LiDAR, and (c) pre-processed point
cloud.

Figure 4. Coarse alignment of pre-processed point cloud from a partial point cloud using the GICP algorithm.
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(CR) are indexed to corresponding points with similar
index values, while non-corresponding points are
erased. Using the probabilistic model, it is assumed
that the point clouds CP and CR are generated from a
fundamental set of distributions, and by considering

perfect correspondences and correct transformations,
the standard ICP transformation T equation can be
simplified to the following form

T =argminT

X
i

di(CRi
+ TCPi

TT )dT
i ) ð1Þ

where di = ai � Tbi (ai and bi are point clouds corre-
spond to CP and CR, respectively).

This formulation can be used as a special case of the
standard forms of ICP, including point-to-point stan-
dard ICP and point-to-plane ICP. The GICP uses a
plane-to-plane model that assumes that point clouds
are sampled from geometric surfaces that are basically
planar. In this model, the covariance of a point is con-
sidered to be small around the oriented normal at that
point and greater in all other orientation. We propose
using the covariance matrix

e 0 0

0 1 0

0 0 1

0
@

1
A ð2Þ

for a point with the surface normal e1 = (1, 0, 0)T,
where e is a small constant representing the covariance

along the normal. In general, this covariance matrix
must be rotated for every point depending on its surface
normal. To find the optimal rotation and translation
between data CP and CR, a homogeneous transforma-
tion matrix H is multiplied to the pre-processed point
cloud CP to obtain the aligned point cloud CA

H =

cosfcosu cosfsincsin u� coscsinf sinfsinc� cosfsincsin u Tx

sinfcosu cosfcosc+sinfsincsin u coscsinfsin u� cosfsinc Ty

�sinu sinccos u cosccos u Tz

0 0 0 1

2
664

3
775 ð3Þ

where c, f, and u represent the three rotations of roll,
yaw, and pitch, respectively

CA =H � CP ð4Þ

here, H is the homogeneous transformation matrix
which is multiplied to the pre-processed point cloud CP

to obtain the point cloud CA.
The alignment of the pre-processed point cloud in

our proposed method is achieved by using the GICP
algorithm28 with some requirement modification for
our proposed method. The results of the pre-processed
point cloud coarse alignment with respect to the rela-
tive position and orientation of a physical model in the
global coordinate framework using partial point cloud
from LiDAR are shown in Figure 5.

3D point cloud alignment in video

3D point clouds generated from the LiDAR scanner
are aligned in the 2D video frames automatically using
the frame-to-frame registering method as proposed by
Du et al.19 Before frame-to-frame registering of the
point clouds in the image plane (as shown in Figure 6),

Figure 5. Results of coarse alignment of the pre-processed point cloud.
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the position and orientation of the object in the image
plane were estimated using equation (4).

As shown in Figure 7, before capturing the RGB
image of the pre-processed point cloud using the virtual
camera in the point cloud visualizer, it is necessary to
ensure that the real-world camera parameters are set
appropriately for accurate alignment of the point cloud
image with the video frame. Hence, the real-time cam-
era viewing parameters of the real environment scene
and point cloud visualizer camera viewing parameters

are synchronized using the following parameters: the
focal length fl, width W, and height H, as shown in
Figure 7.

Since alignment of the point cloud in the 2D image
plane is a time-consuming process, only a few frames
are selected to register point cloud image by selecting
frames periodically in-between from video frames to
visualize the smooth rendering of alignment. Thus, it is
possible to align the point clouds in the video without
any issues.

After coordinating the pre-processed point cloud
with respect to the real-time camera view using partial
clouds as described in Figure 6, the snap of the coordi-
nated pre-processed point cloud was captured from the
point cloud visualizer using real-time camera para-
meters, as shown in Figure 8.

In order to align the captured point cloud image on
to the camera frame accurately, the point cloud image
and camera frame should have the same resolution (i.e.
854p 3 480p) as shown in Figure 8 and dots per inch
(DPI). Finally, the point cloud image is parsed to iden-
tify the specific intensity value used to render the point
cloud, and a particular pixel in the camera frame was
highlighted by the point cloud intensity found in the
image. The intensity graph of the camera frame before
and after editing the intensity values and a graph of the
point cloud image are shown in Figure 9, where the

Figure 6. Overview of the pre-processed point cloud in a video.

Figure 7. RGB image capturing using the camera parameters.
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x-axis represents the RGB value and the y-axis is the
number of pixels.

The intensity value in the point cloud image is updated
to the camera frame using the following equation

If
Xi=w

i= 0

Xj= h

j= 0

CI (i, j)½r, g, b�= I ½r : 0, g : 0, b : 255� ð5Þ

here, w and h represent the width and height of the
image, respectively.

Then, replace the intensity of the FI (i, j)th, the pixel
with the corresponding intensity of the CI (i, j)th pixel,
as shown in the equation below. Here, FI andCI are the
camera video frame and point cloud image, respectively

FI ½r, g, b�=CI ½r, g, b� ð6Þ

The result of the pre-processed point cloud align-
ment in video is shown in Figure 10.

Virtual retrofit model and efficient visualization

Laser scanned 3D point clouds via BIM technology are
continuously gaining popularity, particularly in the
construction and architecture industries. There is a
need for virtual retrofitting applications that can ana-
lyze and optimize retrofit decisions, thus cutting down
time needed for typically lengthy projects. With an
accurate pre-retrofit model of an existing pipeline plant
in heavy industries, it is possible to visualize, analyze,
and ensure that the proposed retrofit results meet the
requirements and provide the best value. The proposed
virtual retrofit system prototype allows the decision
maker to visualize and analyze the pre-retrofit by inter-
acting with a virtual environment.

The synchronized pre-processed point cloud and
video scene from the previous step are visualized in a
wearable HMD and can be interacted with using spa-
tial sensors. The immersive visualization setup uses an
Oculus Rift DK2 (developer edition), and for the pre-
retrofit process, a Polhemus G4 sensor is used. The sen-
sor includes two space wands which are used for inter-
acting with the virtual environment.29 The two wand
sensors were utilized for spatial positioning in the phys-
ical world to construct transformations (i.e. rotate,
scale, and translate) of the proposed CAD model to the
existing 3D pre-processed point cloud model. A user
interaction in physical world with spatial sensor and

Figure 8. Pre-processed point cloud alignment in a video.

Figure 9. Intensity graph of the camera frame before and after
editing, and intensity graph for the point cloud image.
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wearable HMD is shown in Figure 11(a). Immersive
visualization of the synchronized pre-processed point
cloud, video, and CAD model interaction are provided
by the wearable HMD, as shown in Figure 11(b), and
Figure 11(c) shows the upgradation of the pipeline
mode by adding elbow CAD model using the proposed
prototype 4-in-1 approach in a virtual environment.

Results’ validation

Overview of hardware system

The 3D point cloud acquisition, pre-processing system,
video alignment, and immersive visualization involve
both hardware and software setups. In our setup, the
pre-processed point cloud data are acquired using a
Velodyne PUCK (VLP-16) sensor30 (Figure 12(a))
model with 16 lasers having an FOV of 360� (H) 3 30�
(V). The sensor is a multi-beam 3D LiDAR that scans
the environment in 3D at very high speeds (up to 20
Hz) and generates around 300,000 points per second.
To obtain videos of the physical environment, a GoPro
Hero5 black camera31 (Figure 12(b)) was used. The
Hero5 is a high-definition camera that is popular for
recording high-action scenes. This camera has major
advantages, with resolutions up to 4K (3840 3 2160)
video (MP4), 12 MP photo (JPG or RAW), a frame

rate of up to 120 fps in 1080K resolution, and stereo
audio.

After the LiDAR point cloud and camera video are
aligned with respect to the physical world, a virtual
environment can be visualized and interacted with using
an immersive HMD and spatial position input devices,
respectively. The Oculus Rift DK2 HMD32 (Figure
12(c)) is used for immersive visualization. The Oculus
Rift is a low-cost HMD. In particular, the Rift DK2
offers 960 3 1080 pixels on a 3.3-in screen per eye, and
the Rift is also packaged with a development kit that
allows researchers to rapidly implement displays that
can be synchronized with head movements. Finally,
interaction in the virtual world is accomplished by uti-
lizing a Polhemus G433 (Figure 12(d)) electromagnetic
tracking system, which consists of a source station,
receiver sensors, a hub, and a radiofrequency dongle.
The system functions via electromagnetic fields detected
by the sensors, and it is possible to know the position
and orientation of the sensors in the spatial world. In
the proposed method, two sensors were used for inter-
acting with the virtual models.

Performance evaluation

In general, all ICP variants can be analyzed and vali-
dated using various parameters, such as overall

Figure 10. Result of the pre-processed point cloud alignment in a video.
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accuracy, stability, speed, tolerance to noise or outliers,
and maximal misalignment. Since in our proposed
method we are dealing with real LiDAR datasets that
are aligned in real time, we will not consider the noise
or outlier tolerance. ICP variant effectiveness will be
determined by the speed and alignment accuracy. In
order to validate the alignment of the pre-processed
point cloud using the GICP algorithm for the above
four different views shown in Figure 5, the accuracy
evaluation is summarized in Table 1 by considering the
transformations (translations and rotations) of the pre-
processed point cloud data with respect to the physical
world coordinate system. The proposed method is
implemented in a C++ environment and tested on a

computer with a 4.20 GHz Intel Core i7 processor with
16 GB of RAM.

For validation, the standard ICP and GICP are com-
pared, since as mentioned in the ‘‘Literature review’’
section, standard ICP was used for alignment of the
pre-processed point cloud. The time efficiency and
accuracy of GICP are better than those for standard
ICP for our proposed method, and alignment of the
pre-processed point cloud is achieved with less itera-
tions when using GICP (on average 80% fewer itera-
tions). Only two iterations per view (i.e. View 1, View 2,
View 3, and View 4) are shown (i.e. first iteration (Ob)
and the final optimized iteration (Oa) values) in Table 1
out of the total number of iterations (#Itr) achieved for
final alignment of the pre-processed point cloud. The
pre-processed point cloud rotation alignment consists
of three rotations (Rroll, Ryaw, and Rpitch) around each
coordinate axis. The pre-processed point cloud was
assumed to be initially aligned as IA =CP � CR with
respect to the rotation Ryaw degree since the number of
iterations is decreased for the final alignment. The
alignment was achieved in each view with optimal rota-
tions Rroll and Rpitch \ 2� and Ryaw \ 5�. Similarly, for
the translations (Tx, Ty, and Tz) for all views, an aver-
age displaced distance of 0.2 mm from the initial posi-
tion of the pre-processed point cloud was found for the
final alignment position.

In Table 2, we evaluate the run time efficiency of the
GICP compared with standard ICP. It can be noted
that an increased density of CR (i.e. View 1 has more
points) decreases the run time of the algorithm
decreased, and a decreased density of CR (i.e. View 3
has fewer points) increases the run time. The number
of iterations (i.e. #Itr in Table 1) is also affected by the
density of point clouds.

In Table 3, the running times of the ICP algorithm
as well as the frame and image alignment processes
with respect to the four different test cases (View 1,
View 2, View 3, and View 4) are presented. Since each
view has a different partial cloud data set, the number
of iterations required to find the optimal transforma-
tion matrix between the two sets of clouds will vary
accordingly.

The complexity of GICP directly depends on the
number of iterations required to achieve an optimal
transformation matrix, whereas the frame-by-frame
registration of a 2D point cloud image with the real-
time camera view process does not include any complex
mathematical computations and thus requires much
less time to complete the alignment process. As shown
in Table 3, an average of only 0.022 s is enough for
updating a single frame within the point cloud image.
In order to synchronize the GICP process with the real-
time frame-to-frame registration process, the speed of
the video is limited to 20 fps.

Figure 11. A conceptive immersive visualization and
interaction: (a) a user interaction using Polhemus G4 motion
tracking device and visualization in HMD in virtual environment.
(b) The synchronized pre-processed point cloud and video
frame with a pre-generated CAD model are rendered in the
Oculus virtual environment. (c) Result of virtual retrofitting of
CAD model in the Oculus virtual environment.
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Conclusion

This article presents a preliminary framework proto-
type for performing virtual pre-retrofitting of industrial
pipeline plants using an efficient 4-in-1 alignment.
Retrofitting existing pipelines in plants is challenging
due to critical defects in unidentified complex objects,
which are risk factors for on-field working operators.
By utilizing 4-in-1 alignment, a pre-retrofitting model
can be generated in VR that efficiently helps with

modification and upgradation of existing facilities.
Alignment of the pre-processed point cloud data from
LiDAR’s partial point clouds can provide an accurate
position in the global coordinate system by synchroniz-
ing video scenes with the physical world, which also
helps in the precise 3D CAD model retrofitting process.
Finally, with the wearable virtual head device, a pre-
retrofitting of the physical world can be efficiently
visualized in VR before onsite implementation.

Figure 12. Hardware setup used in proposed method: (a) Velodyne PUCK (VLP-16), (b) GoPro Hero5 black camera, (c) Oculus
Rift DK2 HMD, and (d) Polhemus G4.

Table 1. Accuracy evaluation of the pre-processed point cloud alignment.

Views IA (�) Method #Itr Result type Alignment transformation

Translation (mm) Rotation (�)

Tx Ty Tz Rroll Rpitch Ryaw

View 1 6 ICP 15 Ob 20.010 0.110 0.041 1.353 1.080 0.140
Oa 20.069 0.300 0.114 1.146 1.815 1.103

GICP 8 Ob 20.022 0.234 0.138 2.459 2.315 2.718
Oa 20.115 0.279 0.363 1.721 2.688 1.958

View 2 9 ICP 19 Ob 20.017 20.017 20.061 21.017 0.037 0.077
Oa 20.400 20.470 20.129 21.630 1.044 20.393

GICP 13 Ob 20.091 20.151 20.155 21.513 0.308 0.477
Oa 20.230 20.270 20.504 21.276 2.398 20.589

View 3 7 ICP 21 Ob 0.039 20.079 20.046 20.043 20.062 21.638
Oa 0.079 20.275 20.115 0.075 1.107 22.126

GICP 15 Ob 0.174 20.224 20.155 20.535 20.128 22.638
Oa 0.318 20.174 20.612 0.130 2.093 21.062

View 4 9 ICP 18 Ob 0.010 0.034 20.046 1.138 0.021 20.078
Oa 0.190 0.211 20.144 1.087 1.268 20.002

GICP 11 Ob 0.061 0.105 20.079 2.483 0.115 20.628
Oa 0.169 0.242 20.138 1.919 2.698 0.705

IA: initial alignment; #Itr: no. of iterations; ICP: standard ICP; GICP: generalized-ICP; Ob: before optimization; Oa: after optimization; ICP: Iterative

Closest Point.

Patil et al. 11



The validated translation and rotation results show
that the GICP is useful for aligning the point clouds
accurately with reduced displacement between the point
clouds, whereas the iterative process scheme is often
computationally expensive for real-time applications.
Future work includes improving the speed of real-time
alignment of the pre-processed point cloud data so that
it can be synchronized with a real-time video frame,
and we also wish to eliminate the limiting speed of the
video. And future work will also extend more investiga-
tion and implementation of immersive visualization of
stereo video in VR HMD as well as interaction meth-
ods as considered in the proposed approach.
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