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The vision of the Internet of Things (IoT) is coming closer to reality as a large number of embedded devices are introduced to
our everyday environments. For many commercial IoT devices, ubiquitously connected mobile platforms can provide global
connectivity and enable various applications. Nevertheless, the types of IoT resource-utilizing applications are still limited due
to the traditional stovepipe software architecture, where the vendors provide supporting software on an end-to-end basis. This
paper tries to address this issue by introducing the Sensor Virtualization Module (SVM), which provides a software abstraction for
external IoT objects and allows applications to easily utilize various IoT resources through open APIs. We implement the SVM on
both Android and iOS and show that the SVM architecture can lead to easy development of applications. We envision that this
simplification in application development will catalyze the development of various IoT services.

1. Introduction

Low-power embedded sensor networking platforms will
soon be deployed for various application purposes in our
everyday environments. On large scale, applications such as
smart power-grids [1–3], smart city management [4], home
and building automation [5, 6], wireless sensor networks
[7, 8], and the newly proposed concept of Industry-4.0 [9, 10]
will quickly increase the number of embedded computing
platforms dramatically. Embedded computing platforms for
these applications will be deployed in a way such that the
nodes or networks that consist of these systems will have
a way to interconnect themselves with the larger Internet
architecture [11, 12].With such advances in embedded devices
and networks, increase of computational power, and the
ability to interconnect with other devices, the concept of
Internet of Things (IoT) has emerged. These IoT devices
will mostly utilize standard protocols and mechanisms to
communicate with the Internet and transport their data to
consumers and services in the cloud [13]. To access these

IoT devices, a service providing component on the cloud
will advertise the resources of these devices for applications
to discover and utilize. The ability to connect, communicate
with, and remotelymanagemillions of networked, automated
devices via the Internet has opened the potentials for the
development of various applications that impact our everyday
lives.

Nevertheless, the concept of IoT means more than just
devices connecting to the global Internet. There will be
another class of IoT devices with some radio connectivity that
can connect to nearby devices for local communication but
not to the global Internet by itself. Not only will miniature
sized IoT devices be deployed as network-scale services but
we will also enjoy many personalized IoT services which
involve only a small number of devices with such limited
connectivity. As numerous interconnected devices that can
sense and control are embedded closely to our living envi-
ronments, we envision that there will be a larger number of
these “connection-limited” devices that allowmore local and
personalized applications to be designed. Examples of such
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Figure 1: Example applications where IoT platforms are interacting with mobile computing platforms.

include IoT devices for personal health exercise management
and home monitoring and control.

Due to their size, scale, and resource constraints, devices
manufactured for these services are unlikely to provide global
connectivity by themselves. Luckily we can easily find many
ubiquitously connected mobile computing platforms (e.g.,
smartphones, tablets) [14]. Furthermore, many of the low-
resource IoT devices are designed so that they interact with
and through these mobile platforms. Recent work by Park
et al. shows that the computational power of current-day
smartphones is capable of supporting an even more diverse
set of wireless standards using cognitive or software radios
[15]; thus, we will soon be seeing such mobile platforms
interact heavily with sensing systems using various wire-
less standards. By connecting IoT devices to these mobile
computing platforms, we can quickly realize various mobile
platform-based IoT applications. And with the mobile com-
puting platforms’ global connectivity, we can easily expose
IoT resources globally to allow remote platforms and services
to utilize local IoT devices. Figure 1 illustrates examples
of such application scenarios where individual IoT devices
are connected to user-controlled mobile devices and an
associated cloud service takes the role of exposing the IoT
resources for other services to reuse.These IoTdevices exploit
the ubiquitous connectivity of a mobile platform to gain the
always-on connectivity required to reach other destinations
on the Internet.

While being an attractive scenario, however, many of
these IoT devices interacting with mobile devices today
can only interface with a software stack that is designed
by the manufacturer because the software architecture of
these devices mostly takes a “stovepipe” approach, where

the vendor of the IoT device provides a complete stack
of (closed) software implementation to fully exploit their
functionalities [16]. In such a software design, it is difficult
for various third-party applications to fully utilize the IoT
devices since vendor-provided APIs are usually limited.
Furthermore, this restricts resource sharing among different
applications, not only for applications internal to a single
mobile platform, but also for external applications running in
the cloud or on remote smartphones. By breaking down the
bricks of the software “stovepipe” and by gaining the ability
to handle such information in a more uniform manner, we
can allow the same set of IoT devices to be shared, used,
and managed in a more flexible way. This will increase their
usability in various scenarios, and a more diverse set of
applications can be developed and distributed.

This paper introduces the Sensor Virtualization Module
(SVM), designed to provide an abstraction for accessing,
managing, and sharing the data and resources provided
by embedded IoT devices. The proposed SVM not only
provides global connectivity and service exposure to the
Internet for IoT devices but also provides a set of open
APIs for mobile applications to utilize and provides ways
to design an application server on the cloud for mobile
computing platforms or Internet-based services to access
remote IoT resources. Furthermore, the SVM also allows
conflict resolution between different IoT resource requests to
allow efficient sharing of IoT resources across multiple IoT
applications and also provides a feature that allows creating
virtual IoT devices using sensor data mash-up. Finally, SVM
includes software reprogramming capability that supports
software update of both the IoT device and also the mobile
computing platform towhich local IoTdevices are connected.
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Using a prototype SVM implementation, this paper also
introduces a number of applications that can benefit from the
resource sharing functionality that the SVM provides.

The remainder of this paper is structured as follows.
In Section 2 we describe the SVM architecture and explain
the two important features of SVM: creating virtual IoT
device for sensor datamash-up and software reprogramming.
Then in Section 3, we present two application case studies
that make use of and benefit from the SVM architecture:
sensor data management application and the home appliance
management application. Finally, we summarize our work
and discuss future research directions in Section 5.

2. Architecture

To address the aforementioned challenges, this section intro-
duces the architecture of the Sensor Virtualization Module
(SVM), which is designed to provide individual external
IoT devices with the connectivity, exposure, and manage-
ment features required to be effectively utilized over various
applications. By external IoT devices, we mean embedded
devices such as sensor, actuators, and home appliances with
some form of networking and computation capabilities to
interconnect and communicate with other local devices, but
without direct global connectivity to the Internet and not
internal to a mobile device with global connectivity.

2.1. Sensor Virtualization Module. Even in the market today,
we see a variety of IoTdevices that report their data to services
on the Internet using the connectivity of a mobile computing
platform. With the proliferation of user-friendly mobile and
web applications, this trend will increase. In scenarios where
a mobile device takes a significant role for IoT platforms, it
is important that the mobile device manages its “reachable”
resources efficiently so that the resources provided by IoT
devices can be easily accessed, controlled, and shared by
various applications.

To address this issue, we design SVM, which takes
on the role of providing an abstraction for IoT resources
that a mobile computing platform can access in its local
network. Specifically, SVM provides support for applications
to access the external IoT resources by first abstracting the
network interfaces. For this, upon request from upper-layer
applications, the SVM engine starts a device discovery phase
in which it activates all possible network interfaces to search
profiles of IoT devices within reach. Based on the result
of this device discovery, the SVM engine formulates device
object handlers for each identified IoT device.These handlers
include information on the name of the device, networking
interface, network address, and other device specific profiles.
The object handlers are then advertised to the applications,
allowing them to select the devices they wish to connect with.
As a result of this process, applications can access external
IoT devices without knowing how the devices are physically
connected. We illustrate the software architecture of our
proposed SVM in Figure 2(a).

SVM simplifies application development by providing
an abstraction of the IoT devices that are present in the

local field. In other words, SVM makes it look as if the
external devices are on-board sensor components such as
accelerometer, gyro, GPS, or camera. When applications
interconnect with the SVM layer, a set of open APIs are
provided, as exemplified in Figure 2(b), to the applications
for them to interact with the SVM layer and to easily access
these resources. For example, launchSensorDiscovery()
API searches for all the external physical sensors that can
be connected to the smart device via any of the network
access interfaces (e.g., Bluetooth, WiFi, and ZigBee) on
the smart device and provides a list of those sensors.
connectDevice(string)API takes the identifier (e.g.,MAC
address) as an argument and connects to the external sensor
and creates an object within the memory of the smart device.
Also, getDeviceData(string,long):List<bundle> API
takes the sensor identifier and the maximum number of
data readings to take as the arguments, reads the sensor
data from the external sensors as a list of data items, and
inserts them into the internal memory within the sensor data
object at the smart devices. (Full API documentation list
can be found in the ETRI internal technical report and can
be given upon request.) While we expect the application to
already understand the format of the incoming data from the
external IoT device, an additional data translating module
in SVM can be used to convert device specific data format
to a common XML format. In other words, this allows the
users to freely design and utilize their own application layer
protocol, such as CoAP. The focus on the SVM design was
to minimize restrictions to the application system developers
while freeing them from the fuss of dealing with low-level
communication and networking details in designing an IoT
application system. Overall, the use of the SVM makes the
development process of smart device applications that utilize
external IoT devices easier.

Although this process allows easy access to external
IoT devices via mobile platform from various applications,
the increase in the number of interacting applications can
result in conflicts among resource requests. For example,
applications 𝐴 and 𝐵 can each ask for data from the
same IoT device but ask for it to be retrieved at different
time intervals or may potentially request the device to be
actuated in different ways. However, since such applica-
tion level algorithms are not enforced by any standardiza-
tion body, we cannot assure that these conflicts will be
properly processed at the end-device level. As a result,
besides managing the connectivity, another major role of
the SVM engine is to resolve such conflicts caused by
multiple requests from different applications. When multiple
applications make conflicting requests, SVM runs its rule-
engine within the Sensor Object Managementmodule to
select the best option to satisfymost of the incoming requests.
The conflict manager of the Sensor Object Management
operates based on a policy which an administrator user can
input at runtime. For example, application 𝐴 may ask for
sensor readings every 10 minutes, and a different application
𝐵 may ask for sensor readings every 5 minutes, both from
the same external IoT device. In this case, the external sensor
can read out sensor samples every 5 minutes but send it to
application 𝐴 only for every other reading while sending
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Figure 2: SVM software architecture and summary of SVM’s open APIs.

all readings to application 𝐵. In this case, the rule-engine is
given a policy to take the greatest common factor for meeting
the schedule of multiple applications. Also similarly, when
multiple applications request different duty-cycle operations
on an IoT device for energy management, given the goal of
providing a satisfactory QoS for all connected applications,
the larger operation duty-cycle which may consume more
energy but assure performance level QoS on all applications
is used.

We point out that the SVM operates as a background
process onAndroid and operates onlywith an explicit request
from the application process in iOS. While managing both
on-board and external sensors, the SVM does not operate
until an application sends a request so that it canminimize the
additional power draw that a hardware controlling module
introduces. The size of the SVM software on a smartphone
is ∼1.20MB on Android and ∼2.30MB on iOS and requires
∼50 kB of memory while running with an additional ∼20 kB
of extra memory per each external sensor connected to the
smart device.The SVMoperates on Android version 4.3 (API
Level 18) and iOS 5 or higher to support BLE connections.

As a way to open these local IoT resources to even
more applications beyond a device’s internal applications,
the APIs provided by SVM and the data resources from
the SVM application framework are shared using a
Google App Engine-based service. As an identifier for
each mobile computing platform, we use a tuple ID of
[GPS-location,mobile-platform-ID], where the asso-
ciated phone number of the mobile platform or the MAC
address is used as the mobile-platform-ID. This tuple ID
is associated with the APIs that the mobile platform provides
(Figure 2(b)) and allows other mobile platforms to access

a remotemobile platform’s local IoT resources when properly
authenticated.

Finally, Figure 3 shows the overall architecture and usage
scenario that we envision; the SVM on a mobile device
manages its local IoT devices and exposes them to the cloud
via the SVM application server. These IoT devices as well as
virtual IoT devices (which we explain below) can be accessed
not only by multiple applications running on that mobile
device but also by remote applications running on various
Internet-connected platforms.

2.2. Creating Virtual IoT Device: Sensor Data Mash-Up. The
capability to easily access data from various external IoT
devices, both locally and remotely, opens the possibilities
to generate new information from the original data. For
example, the capability to access temperature and humidity
levels from two different sensors allows the generation of a
new data type called “comfort level.” Although it is possible
to implement a dedicated application on a smartphone to
read individual local sensors and calculate this comfort level,
SVM takes a different approach where a virtual IoT device
with “comfort level” sensor is created. The advantage of
this approach is that any application running on a mobile
device or on the Internet can access this shared information
without dedicated connections to the physical sensors or
individual knowledge of how they are retrieved or how the
new information is calculated. Our SVM’s open APIs allow
the generation of such new types of information sources by
providing an addDevice() function. Using this function-
ality, as Figure 4 shows, data from different IoT devices can
be “mashed up” to generate new custom data using a user
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defined fusion function. Furthermore, as we illustrate in
Figure 5, this new data resource can also be exposed as a
separate customized virtual IoT device using the open APIs
for various remote applications to access. For example, if a
mobile or web application wishes to access environmental
information from a specific location, it can access a virtual
environment sensor instead of trying to connect to several
physical sensors individually and reimplement the fusion
function.

2.3. Software Reprogramming. The management of IoT
devices from mobile platforms offers opportunity for any
software updates required by the IoT devices to be achieved
through the mobile platform. Furthermore, when a mobile
device first enters a field of IoT devices, a new installation
of software may be required on the mobile device to fully

manage or utilize the features of the IoT devices required
by the target application. For this purpose, SVM provides
support for updating software on a target IoT device and also
for installing required software on the mobile platform to
utilize the IoT devices that are connected to themselves.

(i) IoT Device Software Update. SVM supports reprogram-
ming of the external IoT devices as follows. First step, which
occurs during the application development and packaging
phase, is to combine the executable binaries generated for the
IoT devices into a single smartphone application installation
package. Fortunately, both Android and iOS development
environments provide directories where raw files can be
packaged as a single application installation file. Specifically,
these designated folders are the res/raw/ folder within
Android IDE and the documents/ directory for iOS. Once
the IoT devices’ binaries and the smartphone installation
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binaries are packaged and sent to the SVM (via URL), SVM
extracts the binaries for the IoT devices and distributes them
to the individual devices. At this step, we expect the IoT
devices to incorporate some form of over-the-air bootloading
and reprogramming method to allow the proper update of
software. A well-known example of this is the iOS update
process on iPhones. Furthermore for security reasons the
mobile device that is reprogramming the IoT devices is
authenticated and authorized by an application server before
the binaries are distributed and installed.

(ii) Automatic Software Installation on Mobile Computing
Platforms. Software update can also move in opposite direc-
tion where IoT devices push the required software to the
mobile device that it is connected to.When a SVM-compliant
IoT device with such reprogramming capability discovers
and connects to a new mobile device, it simply pushes a
predefined URL to the mobile device. Using this URL, the
mobile platform retrieves the proper software that the IoT
device requested and installs it while making the required
configurations to interoperate with the SVM. Unless this
software is installed on the mobile device, mobile device has
limited access to the information and features provided by the
IoT device.

3. Application Case Studies

Using the SVM environment, we now present two application
case studies, implementation of two sample applications that
benefit from the use of the SVM architecture.

3.1. Sensor Data Management and Mash-Up. The first appli-
cation we designed with SVM is a sensor data management
application. The goal of this application was to validate
the effectiveness of using SVM for IoT device interaction
and experimentally evaluate the functionality of IoT device
resource management and the data mash-up functionality.
Using the SVM’s open APIs as the development core, we were
able to easily interconnect multiple external IoT platforms
from the Android OS. As Figure 6 shows, our application
interacts with nine different sensing modalities on three
physically different IoT devices. We were able to access these
devices using both Bluetooth and ZigBee communication
modules attached to the smartphone’s USB connector.

Furthermore, for testing the data mash-up functionality,
we computed the comfort level of the current environment
using the humidity and temperature data collected locally
and an air clarity measurement of the area, which was
accessible through GPS measurements and a web-based
query to the meteorological services’ server. Using a user
defined algorithm to combine these measurements, we were
able to create a new customized virtual IoT resource (comfort
level) within the SVM. Based on the updates of each value,
the value of this customized virtual IoT sensor was updated
automatically on a periodic basis. Furthermore, this sensor
was accessible not only from the smartphone that the physical
IoT devices were connected to but also from a cloud-based
application server from which other applications can retrieve
data.

3.2. Home Appliance Management. Managing and control-
ling smart home appliances (e.g., air conditioner, smart
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Figure 6: Screenshot of sensor data management application.

lighting, and thermostat) are an attractive IoT application.
While some appliances may include WiFi radios to achieve
global connectivity through preinstalled WiFi APs, such
an infrastructure may not be available in all households.
However, we noticed that some products had Bluetooth
connectivity which allows pairing with a mobile device
for appliance management. But using them as they are
suggests that a mobile device (or any controller device)
needs to be within Bluetooth communication range of the
appliance to control it. With SVM, smart appliances in a
home can be exposed to the cloud as IoT resources and the
SVM open APIs would allow users to control these devices
remotely, either on the web or also from another mobile
device.

To exemplify this idea, with the help from our industrial
collaborators, we have used a robot cleaner and an air purifier
with Bluetooth connectivity and installed our SVM on an
Internet-connectedBluetooth-enabled smart TVwhich acted
as a gateway to support global connectivity for various
smart appliances. The reason for using a smart TV was
to showcase a scenario where a device residing at home
provides connectivity, and your mobile phone is used to
control those devices remotely when you are not at home.
The APIs to control the appliances were exposed through
our SVM cloud service that we implemented, which shows
a list of accessible controls that are authorized for each
SVM-compliant device. Figure 7 shows the screenshot of our
cloud service designed to access the SVM’s global open APIs
through the Internet. Using the cloud-based open APIs, we
were able to design a home appliance controlling application
that could start and stop home cleaning and air purifying
remotely before reaching home to manually control the
devices.

4. Related Work

As sensor-equipped smartphones become more prevalent,
many new and interesting applications have emerged that
make use of the sensors on a smartphone. For example, PEIR
[17] is a personal environmental impact report platform for
participatory sensing systems research, and Nericell [18] is
a monitoring system for road and traffic conditions using
mobile smartphones. Eriksson et al. proposed amobile sensor
network for road surface monitoring [19], and SoundSense
[20] is a scalable sound sensing system for people-centric
applications on mobile phones. Furthermore, Krieger et al.
use smartphone sensors for urban tomography in social sci-
ence research [21]. Abstractions and functionalities provided
by our proposed SVM can be used to ease and expedite the
development of such applications.

There are several prior works that aim to connect wireless
sensors to the Internet by utilizing various Internet standards
centered at IP/IPv6. For example, IEEE 802.15.4-based proto-
cols are designed specifically to support interoperability with
other already existing IP-based devices (e.g., IETF 6LoWPAN
[22] and RPL [23–25]) and communicate with the larger
Internet architecture to transport their data to consumers and
services in the cloud [13]. Dunkels et al. also evaluated the
performance of low-power IPv6 for IoT using the Contiki OS
[11].

Another line of related work is programming framework
(and APIs) for mobile devices that allow backend users to
easily program and task mobile devices on the Internet for
collecting sensor data. Medusa [26] proposes a programming
system for crown-sensing, which provides a programming
language with high-level abstraction for crowd-sensing tasks,
and supports specifying various forms of humanmediation in
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the sensingworkflow. It partitions the tasks between the cloud
and smartphones and also supports incentives and user spec-
ified controls on smartphone resource usage. Another work
by Ravindranath et al. [27] also explores tasking smartphones
and provides complex data processing primitives and profile-
based compile time partitioning. Furthermore, AnonySense
[28] is a privacy-aware tasking system for sensor data col-
lection and in-network processing, PRISM [29] proposes a
procedural programming language for collecting sensor data
from a large number of mobile phones, and [7] is a tasking

abstraction for tiered sensor network. However, their focus
is on the programming language abstractions on mobile
smartphones and does not support virtualization of external
sensors or sensor data mash-up or sensor reprogramming
capability.

5. Summary and Future Research Directions

The Sensor Virtualization Module proposed in this
work provides applications with a common virtualized
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environment where external IoT devices can be easily
accessed from and via mobile computing platforms. We
achieve this by abstracting the networking aspect of IoT
devices through user-held mobile devices as a gateway and
providing a set of open APIs and device reprogramming
functionality, which simplifies the access to various IoT
resources. We believe that this work is one of the first
attempts to step away from the traditional “stovepipe”
software model where only a dedicated software, service, or
a limited set of APIs provided by the IoT device vendors are
available to third-party application developers. By allowing
developers to easily access resources from various IoT
devices, we envision that a diverse set of applications can
be developed and many users will easily experience the
effectiveness of IoT systems in shorter time.

An important next step that we foresee is well defining
a protocol for data exchange between the smartphone and
external sensors. While various standards can allow the
devices to communicate, depending on the physical sensors’
initial configurations (e.g., offering push or pull based ser-
vices or a predefined wireless channel configuration), the
quality and stability of data gathering can vary. We argue that
an application level standard should address this issue (e.g.,
defining the format of physical sensor profiles). Furthermore,
by providingmodular environment for designing new virtual
sensors, we believe that applications can maximize the usage
of physical wireless sensors for designing various personal-
ized services.
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