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Abstract: In a millimeter wave (mmWave) communication system with transmit/receive 

(Tx/Rx) beamforming antennas, small variation in device behavior or an environmental 

change can destroy beam alignment, resulting in power loss in the received signal. In this 

situation, the beam-tracking technique purely based on the received signal is not effective 

because both behavioral changes (rotation, displacement) and environmental changes 

(blockage) result in power loss in the received signal. In this paper, a motion sensor based 

on microelectromechanical systems (MEMS) as well as an electrical signal is used for beam 

tracking to identify the cause of beam error, and an efficient beam-tracking technique is 

proposed. The motion sensors such as accelerometers, gyroscopes, and geo-magnetic sensor are 

composed of an attitude heading reference system (AHRS) and a zero-velocity detector (ZVD). 

The AHRS estimates the rotation angle and the ZVD detects whether the device moves. The 

proposed technique tracks a beam by handling the specific situation depending on the cause of 

beam error, minimizing the tracking overhead. The performance of the proposed beam-tracking 

technique is evaluated by simulations in three typical scenarios. 

Keywords: motion sensor; accelerometer; gyroscope; geo-magnetic sensor; MEMS; 

rotation; displacement; mmWave; beam-tracking; blockage 
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1. Introduction 

In recent years, the millimeter wave (mmWave) band has attracted great interest for next-generation 

mobile communication systems that may require up to 1000 times over 4G cellular systems. It has been 

speculated that multi-gigabit-per-second data transmission is possible by the use of a large spectrum 

allocation in the mmWave frequency band and steerable beamforming antennas [1]. Highly directional 

beamforming antennas are necessary at both the base station (BS) and mobile station (MS) to compensate 

for the high attenuation in the mm-wave frequency band and to extend the transmission range [2]. With 

the small wavelength in mmWave frequencies, antenna arrays can be easily installed in the MS. The 

transmit/receive (Tx/Rx) beamforming technique using the 60 GHz unlicensed spectrum has already 

been standardized in IEEE 802.11ad to provide a multi-gigabit-per-second data rate [3]. 

Currently, an analog beamforming design is considered over digital beamforming at both the BS and 

MS in mmWave communication systems because multiple analog chains at mmWave frequencies are 

costly, and sampling an analog signal at the GHz rate consumes a substantial amount of power [4]. In 

practice, switched beamforming techniques with a set of pre-defined angles are being used for Tx-Rx 

beamforming in mmWave communication systems [5,6]. In switched beamforming systems, the maximum 

array gain can be obtained when Tx and Rx beams are perfectly aligned. A small misalignment between 

Tx and Rx beams may cause a significant loss in the received power, especially for systems with narrow 

beams. Therefore, beam-training in an mmWave communication system is necessary to find the  

best beam pair among all possible beam pairs for maximum beamforming efficiency. However, the  

beam-training protocol requires a large amount of training time and network resources, which are 

proportional to the product of the number of beams on the transmitter and receiver sides [7,8]. 

The beam alignment can be easily destroyed by even small variation in device behaviors such as 

rotation and displacement. Environmental changes such as link blockage by a foreign object may result 

in a significant drop in the signal power level [9,10]. Beam-tracking techniques have been investigated 

to track the best beam pair with a minimum overhead. However, the beam-tracking technique using the 

received signal power has a limitation because both behavioral changes and environmental changes 

result in power loss in the received signal. It is difficult to identify the cause of power loss using 

information purely based on the received signal [11]. In [12], a linear dynamical system (LDS) model is 

proposed to investigate the dynamics of signal power drops due to the errors. By using the model, it was 

shown that it is difficult to estimate the errors purely based on the observable quantities provided.  

Two active probing protocols (one-beam test and neighbor-beam test) are proposed to reveal the system 

state in [12]. Although the beam-training protocol can resolve such problems, it will consume significant 

network resources if beam-training is performed whenever the received signal experiences power loss. 

Techniques handling a specific type of error, such as switching to the secondary path when blockage 

occurs, have been proposed [13]. However, it will be more effective if we can identify the cause of power 

loss and handle the specific situation depending on the cause of beam error. 

In this paper, an efficient beam-tracking technique for an MS in mmWave communication  

systems is proposed by utilizing both mechanical and electrical signals. A motion sensor based on 

microelectromechanical (MEMS) is employed to identify the cause of a situation change such as a 

rotation, displacement, or blockage. The MEMS-based motion sensor is composed of an attitude heading 

reference system (AHRS) [14,15], which estimates the rotation angle using a gyroscope, three-axis 
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accelerometer, three-axis geo-magnetic sensor, and zero-velocity detector (ZVD) [16,17], which detects 

whether the MS moves using information from the accelerometer. The MEMS-based motion sensors are 

embedded in smart phones and are used in many useful applications such as games, motion detection, and 

navigation [18–20]. Although the uses of motion sensors, fabricated in a very small chip via MEMS 

technology, are increasing because of the relatively low price, no prior literature has discussed the 

application of motion sensors to beam-tracking in mmWave communications, to the best of our knowledge. 

The proposed beam-tracking technique enables us to detect the cause of the situation change and handle 

the specific situation depending on the cause of beam error, minimizing the tracking overhead. 

The paper is organized as follows. In Section 2, we briefly investigate the required beam-tracking 

operation in the MS when behavioral or environmental changes occur. In Section 3, a MEMS-based 

motion-sensing technique including AHRS and ZVD is described. The proposed beam-tracking 

technique using a MEMS-based motion sensor and received electrical signal is described in Section 4. 

The performance of the proposed beam-tracking technique is evaluated in Section 5. Conclusions are 

made in Section 6. 

2. Required Beam-Tracking Operation 

In switched beamforming systems, the received signal power may decrease when an MS rotates or 

moves. The primary reason for the decrease in signal power is a change in the angle of arrival (AoA) 

and/or angle of departure (AoD) caused by a behavioral change in the MS. Figure 1 illustrates AoD 

and/or AoA changes in the cases of rotation and displacement. Rx0 represents the initial position of the 
antenna array of the MS, where a Tx beam with the AoD (θT ) is aligned with an Rx beam with the AoA 

(θR ). If the MS rotates, only the value of the AoA at Rx1 changes to α, with the value of AoD being 

unchanged. If the MS moves, the values of AoD at Tx and AoA at Rx 2 may change to β  and χ , 

respectively. The values of the AoD and AoA will not be changed when a blockage occurs. Whenever a 

behavioral change occurs, a beam-tracking operation needs to be performed by switching the Tx and/or 

Rx beams so as to maintain the Tx/Rx beam alignment. Different types of beam-tracking techniques 

should be implemented depending on the cause of the power reduction. Table 1 shows the changes in 

the AoD and AoA when a behavioral or environmental change occurs. In the case of rotation, only an 

Rx beam-tracking operation is required because only the value of the AoA at the MS changes. In the 

case of displacement, the required beam-tracking operation will be different depending on the type of 

displacement. If the MS stays in the same Tx beam, only an Rx beam-tracking operation is needed. If 

the MS does not stay in the current Tx beam, both Tx and Rx beam-tracking operations are required. If 

the MS is blocked by a foreign object, the beam-tracking operation over neighboring beams will not be 

helpful because beam misalignment is not the cause of the power reduction. It is desirable to 

communicate over the secondary Tx/Rx paths in such a situation if the channel experiences multipath 

fading [13]. The secondary path can be readily obtained from the beam-training protocol at the 

initialization stage. 
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Figure 1. Variation in angle of departure (AoD) and angle of arrival (AoA) due to behavioral 

change in a mobile station (MS). 

 

Table 1. Required beam-tracking operation when a behavioral or environmental change occurs. 

Item Beam-Tracking Rotation Displacement Blocking 

Characteristics of change 
θT (Tx AoD) No change Change No change 
θR (Rx AoA) Change Change No change 

Required beam-tracking 

Rx beam-tracking Necessary Necessary Not necessary 

Tx beam-tracking Not necessary Necessary Not necessary 

Secondary beam Not necessary Not necessary Necessary 

3. A MEMS-Based Motion Sensing Techniques for Beam-Tracking 

This section describes a MEMS-based motion sensing technique required for beam-tracking in 

mmWave communication systems. 

3.1. Coordinate Transformation 

Euler angles are frequently used to specify the angular orientation of one coordinate system relative 

to another. A series of three ordered right-handed rotations is necessary in the sequence of yaw, pitch, 

and roll. Euler angles are defined in the north-east-down (NED) navigation frame, where the x-axis 

indicates the north direction, the y-axis indicates the east direction, and the z-axis indicates the downward 

direction perpendicular to the horizon. The navigation frame is used to define the attitude (roll, pitch, yaw) 

of a vehicle or a device. Figure 2 shows coordinates systems of a BS and an MS for beam-tracking. The 
line-of-sight (LoS) vector, 1 , from the MS to BS, and the attitude of the MS need to be known to find 

the optimal beam pair between the BS and MS. The LoS vector 1
e  denoting the optimal beam direction 

expressed in the Earth-Centered Earth-Fixed (ECEF) frame is transformed to the LOS vector 1
e  in the 

body frame as in Equation (1), where vector 1
e  can be calculated from Equation (2). The ECEF frame 

has its origin at the center of the Earth and rotates with the same angular rate of the Earth. The body 

frame has its origin at the center of gravity of the MS with the x-axis in the forward direction and the  

z-axis in the downward direction. 

: AoD at Tx
AoA at Rx 

Tx

Rx2

Rx1

Rx0
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b b l e

l eC C=   (1)

[ ]1

Te
MS BS MS BS MS BSx x y y z z= − − −  (2)

where ( , , )MS MS MSx y z  and ( , , )BS BS BSx y z  denote the position vectors of the MS and BS, respectively, 

expressed in the ECEF frame. 

Figure 2. Coordinate frames of base station (BS) and MS for finding an optimal beam direction. 

 

The direction cosine matrix from the ECEF frame to the NED navigation frame ( l ), ( )Tl e
e lC C= , is 

expressed with the position of the BS, latitude φ , and longitude λ , as in Equation (3). The direction 

cosine matrix from the NED navigation frame to the body frame, ( )Tb l
l bC C= , is expressed with the attitude 

of the BS, roll (φ ), pitch (θ ), and yaw (ψ ), as in Equation (4) [21]. 

sin λ sinφcosλ cosφcosλ

cosλ sinφsin λ cosφsin λ

0 cosφ sinφ

e
lC

− − 
 = − 
  

 (3)

cosθcosψ cos sinψ sin sinθcosψ sin sinψ cos sinθcosψ

cosθsinψ cos cosψ sin sinθsinψ sin cosψ cos sinθsinψ

sinθ sin cosθ cos cosθ

l
bC

φ φ φ φ
φ φ φ φ

φ φ

− + + 
 = + − + 
 − 

 (4)

To find the LoS vector 1
e , positions of the BS and MS should be known in advance. If the position 

information of the BS is available at the MS, and there always exists an LoS vector, the optimal beam 

direction can be found by Equation (1). However, when the position information of the BS is not 

available at the MS or only a non-line-of-sight (NLoS) channel exists, Equation (1) cannot be used.  

In a NLoS (multipath) channel environment, the signal transmitted from the BS is reflected by an object 

(building) and received by the MS. In this situation, the optimal beam direction for the MS will be the 
vector between the object and MS. Because the initial vector 1

b  can be obtained through the initial  

beam-training protocol in this situation, the beam direction in the next frame can be obtained iteratively 

as shown in Equation (5). 

( 1) ( 1) ( )
1 ( ) 1 ,     0,1,2,b k b k b k

b kC k+ += =    (5)

where ( 1)
( )

b k
b kC +  is the coordinate transformation matrix from the k-th body frame to (k + 1)-th body frame 

as in Equation (6). 
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where 1k k kφ φ φ+Δ = − , 1θ θ θk k k+Δ = − , and 1ψ ψ ψk k k+Δ = −  denote the differences in Euler angles 

between the k-th and (k+1)-th time sequences. 

Two types of behavioral change, rotation and displacement, are considered. In order to distinguish 

different types of device behavior, the following information should be obtained. Firstly, the information 

regarding roll, pitch, and yaw should be obtained. Secondly, whether the MS has moved needs to be 

checked. We use an AHRS, which provides the roll, pitch, and yaw of the MS using MEMS devices  

(a geo-magnetic sensor, three-axis gyroscope, and accelerometer), and a ZVD, which discerns whether 

the MS has moved using information only from the accelerometer. Figure 3 shows a block diagram of a 

motion sensor composed of an AHRS and ZVD. The following two sub-sections describe the AHRS and 

ZVD in detail. 

Figure 3. A block diagram of a motion sensor for beam-tracking. 

 

3.2. Attitude Heading Reference System (AHRS) 

Two different types of methods can be considered in obtaining attitude information. Firstly, an 

accelerometer and a geo-magnetic sensor embedded in the MS can be used. The gravity output from the 

accelerometer provides roll and pitch information, and the geo-magnetic sensor provides yaw 

information. This method maintains a certain degree of accuracy regardless of the duration of the 

measurement period. However, each sensor individually provides rather inaccurate attitude information, 

particularly in the case of movement. Secondly, a MEMS gyroscope can also be used to obtain attitude 

information. The accuracy of attitude information is relatively high for a short period of time in this 

method, but errors are accumulated as time increases because the attitude information is obtained by 

integrating the angular rate, which is the output of the gyroscope. 

An AHRS algorithm, which combines the two methods above, can estimate the attitude information 

with significantly higher accuracy. The AHRS algorithm uses a Kalman filter after transforming the 

attitude information of the roll, pitch, and yaw to quaternions [14,15]. The Kalman filter provides optimal 

estimation performance for linear models. While the dynamic equation of the roll, pitch, and yaw is 

highly nonlinear, the dynamic equation of quaternions is a linear differential equation, as shown in 
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Equation (10), given the initial condition and the forcing functions of p , q , and r . The quaternion 

defined by the rotation vector between the body frame and the navigation frame has four components, 

as in Equation (7). 

[ ]Tqqqqq 3210=  (7)

The quaternion q


 can be expressed with the attitude information, φ , θ , and ψ , as in Equation (8). 

0
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The attitude information, φ , θ , and ψ , can be obtained from the quaternion q


 as in Equation (9). 
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The operation of the AHRS can be summarized as follows. First, the differential equations of 
quaternions are formed as in Equation (10), where quaternion Gq


 is obtained by Euler angles calculated 

from the three-axis gyroscopes outputs. 

1
 

2G Gq q w= Ω + 
 

(10)

where w  is the process noise and Ω  is the matrix consisting of three-axis gyroscope outputs, p , q  and r . 
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Next, the yaw angle is calculated from the output of the geo-magnetic sensor, and the roll and pitch 
angles are calculated from the output of the three-axis gyroscope. The quaternion Rq


 is formed by the 

information (roll, pitch, and yaw) obtained from Equation (8). Then, the measurement equation of the 

Kalman filter is formed as in Equation (12). 

R Gz q q= − 
 (12)

The strength of the earth’s magnetic field is as weak as 0.4 Gauss, and thus it easily receives 

interference from ambient magnetic fields. For most applications, the motion of character 8 is used to 
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remove the ambient interference. To do this, it is necessary to initially employ a detection scheme to 

check whether the interference is present. In the AHRS algorithm used in this paper, we detect the 

ambient interference signal using the magnitude of the azimuth residual in the fusion Kalman filter.  

If the magnitude of the azimuth residual increases abruptly in a short time, then interference of the 

magnetic field is considered to have occurred, and the compensation message is sent to the users. 

In general, there are two methods of compensating for the bias of inertial sensors. One method is to 

use the averaged value of measurements for compensation. The other method is to use a high-pass filter 

to remove the bias. Those two methods have strengths and weaknesses depending on the characteristics 

of the dynamic environment. We use the first method in this paper because it is appropriate for a case 

with a small dynamic range. 

3.3. Zero-Velocity Detector (ZVD) 

A ZVD provides a criterion regarding whether an inertial measuring unit (IMU) moves. Four different 

methods such as acceleration moving variance (MV) detector, acceleration magnitude (MAG) detector, 

angular rate energy (ARE) detector, and stance hypothesis optimal detection (SHOE) detector, are 

proposed in [16,17]. In these methods, the outputs of inertial sensors, gyroscopes and accelerometers, 
are used for ZVD. The measurements with the accelerometer and gyroscope, { } 1−+

=≡ Wn

nk
a
k

a
n yz  and 

{ } 1ω ω n W

n k k n
z y

+ −

=
≡ , are used to detect the movement of the IMU. Here, W denotes the size of the 

measurement. In addition, 3Ry a
k ∈  and ω 3 ,ky R k N∈ ∈ , are the k-th measurement vectors of the 

specific force and angular velocity, respectively. The superscripts, a  and ω , denote the acceleration and 

angular velocity, respectively. The detection algorithm has a decision rule similar to binary hypothesis 

testing, as in Equation (13). 
ω( , ) γa

n nT z z <  (13)

where ω( , )a
n nT z z  is the test statistic of the detector and γ  is the detection threshold. Gyroscopes are used 

for ARE and SHOE detectors. One drawback of using gyroscopes for ZVD is that the MS may be 

considered to be moving even though it stays still, particularly when there is a large attitude change. 

Meanwhile, with the MV and MAG detectors using an accelerometer, the MS is always detected as 

stationary when it stays still, even with a large attitude change. 

We use the MAG detector, which provides similar performance to the MV detector with less 

computational complexity. The MAG detector detects whether the IMU is stationary depending on the 
closeness of the measured specific force to gravity g , and uses the test statistic in Equation (14) [16]. 

( )
21

ω
2

1
( , )

σ

n W
a a
n n k

k na

T z z y g
W

+ −

=

= −  (14)

where 2σa R∈ , the variance of the measurement noise of the accelerometer, adjusts the range of the test 

statistic without affecting the performance of the MAG detector. Here, W and γ  are the only tuning 

parameters of the MAG detector. 
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4. Proposed Beam-tracking Technique Using Motion Sensor 

The proposed beam-tracking technique minimizes the beam-tracking overhead (network resources and 

processing time) by precisely estimating the cause of a beam error in the MS. In the proposed  

beam-tracking technique, the electrical signal, initial beam index, and motion sensor output are used as 

inputs. When the MS rotates, the rotation angle is estimated by the AHRS. The angle of the initial Rx 

beam and the angle estimated by the AHRS are inputted into an angle variation calculator,  

which estimates the angle difference and derives the Rx beam index to be updated. The ZVD detects 

whether the MS moves. The received electrical signal power, angle variation calculator output, and ZVD 

output are inputted into a situation detector, where the cause of the beam error is detected.  

Beam-tracking operation corresponding to the specific situation (rotation, displacement, and blockage) is 

performed accordingly. 

Figure 4 shows a flowchart of the proposed beam-tracking technique. In this figure, the block with a 

dotted line is performed with an electrical signal, whereas the block with a solid line is performed with 

a signal from the motion sensor. The error handling procedures for rotation and displacement are provided 

on the right-hand side, and the procedure for blockage is provided on the left-hand side in this figure. It is 

assumed that the initial synchronization, cell searching, and beam-training protocol have been completed. 
A beam-tracking procedure begins when the power of the received signal is below ehTh  (threshold for error 

handling). If the power is lower than ehTh  but higher than blkTh  (threshold for blocking), the procedure 

checks whether the MS is rotated. The possibility of rotation is examined first because rotation occurs 

most frequently and can be resolved rapidly only by the Rx tracking operation. Angle variation, i.e., 

deviation in the AoA of an Rx beam, is measured by the motion sensor. If the value of the angle variation 
is greater than rotationTh  (threshold for rotation), the Rx beam tracking operation in Equation (6) is 

performed with the updated beam index obtained by the angle variation calculator. Once the power 
becomes greater than ehTh  after the Rx beam-tracking operation, it returns to the initial stage. If the power 

is still lower than ehTh  after Rx beam-tracking, the test of displacement will be carried out. If the output of 

the ZVD indicates that the MS is moving, the Rx beam-tracking operation is performed first for the case 
where the MS stays in the same Tx beam. If the power is still lower than ehTh  after the Rx beam-tracking, 

Tx beam-tracking is performed over neighboring Tx beams. 
If the power of the received signal is lower than blkTh  at the initial stage, the procedure checks whether 

blockage has occurred. The block on the left-hand side checks whether the power drop is caused by a 

behavioral change or environmental change. If no behavioral change (rotation, displacement) is detected, 

it will be assumed that the power drop is caused by an environmental change (blockage). In the presence 

of a multipath channel, the blockage error handling procedure switches the beam to the secondary Tx/Rx 

paths, which can be made available through the initial beam-training process. If no secondary path is 

available, the beam-tracking procedure is terminated. If the power of the received signal is lower than 

blkTh  and a behavioral change is detected by the AHRS or ZVD, there is a high probability of malfunction 

in the motion sensor. In this case, the state of malfunction in the motion sensor is communicated by 

sending the alarm message “error in motion sensor”, after finishing beam-training protocol with only an 

electrical signal. 
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Figure 4. A flowchart of the proposed beam-tracking technique. 
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5. Performance Analysis of the Proposed Beam-Tracking Technique 

In this section, computer simulations are performed to evaluate the performance of the proposed  

beam-tracking technique. Three scenarios are considered. For 4 s, it is assumed that rotation (Scenario 1), 

displacement (Scenario 2), and blockage (Scenario 3) take place in sequence. In order to evaluate the 

performance of the proposed approach for each case, it is assumed that these changes (behavioral or 

environmental) do not occur at the same time. In all scenarios, it is assumed that the person is holding 

the device (MS). In Scenario 1, the MS rotates clockwise during the first 0.45 s, stands still for the next 

0.1 s, and rotates counterclockwise during the last 0.45 s. It is assumed that the MS rotates only in the 

angular direction of yaw. It is also assumed that the person holding the device does not block the main 

beam direction. In Scenario 2, the MS moves for 2 s in total: To the north for the first second, and to the 

south for next second. It is assumed that the BS is located to the west of the MS, and the distance between 
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the BS and MS is 50 m. In Scenario 3, it is assumed that blockage occurs because of the person or another 

pedestrian and the secondary path is available. The mean and RMS values of the power drop due the 

blockage are assumed to be −17 dB and 2 dB, respectively [10]. The mean drop time in the blockage is 

assumed to be 93 ms. Major parameters for sensor errors are provided in Table 2. It is assumed that the 

measurement rate of the accelerometer and gyroscope is 1 KHz, and the measurement rate of the  

geo-magnetic sensor is 100 Hz. The power of the received electrical signal is measured every 1 ms. The 
following parameters are used for beam tracking. An AWGN channel with 0/bE N  of 20 dB is used. 

The numbers of antennas and beams are 16 and 32, respectively. The values of ehTh  and bkTh  are −2 dB 

and −17 dB, respectively. rotationTh  is set to 5.625°. The error handling delay is assumed to be 0.3 ms.  

A uniform linear array (ULA) is used at the BS, and a uniform circular array (UCA) is used at the MS. 

Table 2. Major parameters for sensor errors. 

Item Accelerometer Gyroscope Geo-Magnetic Sensor 

Bias 125 mg 100 deg/hr 1,250,000 ppm 
Scale factor error 50,000 ppm 60,000 ppm 250,000 ppm 

Noise 5 mg 1 deg/hr 10,000 ppm 

(g: Gravity acceleration). 

Figure 5 shows the performance of the AHRS. The yaw angle estimated by the AHRS in Scenario 1 

is shown in Figure 5a. From this figure, one can observe that the estimated angle is close to the true value 

(estimation error is approximately 1.5°–2.0°). Note that an accurate estimate is possible even when the 

rotational speed of the MS is high. In this simulation, the rotational speed is 800 °/s. Figure 5b shows the 

performance of the MAG-based ZVD. The probability of correct detection in the MAG-based ZVD is 
evaluated in terms of the window size W  and threshold value γ . The range of window sizes is  

1050–1200, and the range of the threshold value γ  is 39,650–39,820. The range of window and 

detection threshold values are determined as follows: For the scenarios used in this paper, MEMS-level 

IMU sensor data are generated using the MATLAB INS Toolbox, and the threshold is determined using 

a Monte Carlo simulation with the generated data. Monte Carlo simulations are performed for various 

combinations of window size and threshold for given scenarios. The optimal window size and threshold 

value are determined based on correct alarm probability. 

From the simulation results, one can observe that the probability of correct detection is the highest 

when 1050W = . The widest span of the threshold value at 39,660–39,785 is obtained at 1100W =  while 

maintaining the probability of correct detection of 0.94. Meanwhile, in the case of W  at 1150 and 1200, 

the probability of correct detection is relatively low, and the performance is good only for narrow range 

of threshold values. Figure 5c shows the performance of the MAG-based ZVD with a window size of 

1100 and a threshold value of 39,750 for Scenarios 1–3. The MAG-based ZVD shows good performance 

with the probability of correct detection close to 0.95. It is noted that false alarms occur during the period 

of 0.85 s–1.0 s and 3.0 s–3.15 s when the MS moves after stopping and stops after moving, respectively. 

The reason for the false alarm is that two different types of signals, a signal received while moving and 

a signal received while stationary, are mixed together when 1100 samples are used to calculate the test 
statistic, ω( , )a

n nT z z . 
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Figure 5. Performance of AHRS (a) Yaw angle estimated by AHRS in Scenario 1;  

(b) Probability of correct detection for the MAG-based ZVD (c) Performance of the  

MAG-based ZVD for three different scenarios. 

(a) (b) 

 
(c) 

Figures 6–8 show the performance of the proposed beam-tracking technique in Scenarios 1–3, 

respectively. Figure 6a shows the signal power after error handling when the MS rotates. Figure 6b and c 

shows the error at Rx and history of beam index (Tx beam and Rx beam), respectively. In Figure 6a, the 
instants when the beam-tracking operation is performed (< ehTh ) are marked as “o”. In addition, the 

instants when the Rx beam is switched are marked as “*” in Figure 6c. From Figure 6b, one can observe 

that the angular error drops after the Rx beam is switched to a new beam corresponding to the output of 

the angle variation calculator. The index of the Tx beam in Figure 6c is not changed in Scenario 1. 

Figure 7a shows the signal power after error handling when the MS moves. Figure 7b and c shows 

angular errors in the AoD and AoA, respectively. The error in AoD increases while the error in AoA 

decreases as the MS moves north. The angular error drops after the Tx or Rx beam is switched to a new 

Tx or Rx beam. The index of the Tx beam in Figure 7d starts with #8 and switches to #10 during the 

first second. The index reverts back to #8 during the last second. Figure 8a shows the signal power after 

error handling when a blockage occurs. Signal attenuation due to human blockage is shown in Figure 8b 
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when no blockage error handling procedure is used. No action is taken until the signal power reaches the 
value of blkTh  as can be observed in Figure 8a and c. During this period, no beam tracking operation is 

performed because the situation (blockage) can be detected by using the information (ZVD, AHRS, and 
received signal power). Once the received signal power becomes lower than blkTh , the Tx and Rx beams 

are switched to the secondary path (#20 and #15) as can be seen from Figure 8c. 

Figure 6. Performance of the proposed beam-tracking technique in Scenario 1. 

(a) 

(b) 

(c) 

Next, the proposed beam-tracking technique is compared with a “conventional technique” purely 

based on the electrical signal in terms of the number of beam switches, which is directly related with the 

processing time and power consumption required for beam-tracking. Table 3 shows the number of beam 
switches required for rotation, displacement, and blockage. Here, b

RxN , b
TxN , and nb

TxN  denote the number 

of Rx beams, number of Tx beams, and number of neighboring beams for Tx beam-tracking, respectively. 

In the case of rotation, an Rx beam is directly switched to the position of the best beam with the aid of 

AHRS in the proposed technique, whereas the Rx beam sweep is needed in the conventional technique. In 

the case of displacement, the same number of beam switches is required for both techniques. In the case 

of blockage, unnecessary beam-tracking can be avoided in the proposed technique because blockage can 

be easily detected with the aid of ZVD. However, in the conventional technique, the beam-tracking 
procedure should be repeated until the received power becomes lower than blkTh . Table 4 shows the 

number of beam switches required for three different scenarios. The numbers of error handlings that 
occurred in Scenarios 1–3 were 70, 6, and 410, respectively. It is assumed that 32b

RxN = , 32b
TxN =  and 

4nb
TxN = . The numbers of Tx and Rx beam switches required for the proposed technique are significantly 

reduced to 10.4% and 1.4% of the numbers for the conventional technique, respectively. 
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Figure 7. Performance of the proposed beam-tracking technique in Scenario 2. 

(a) 

(b) 

(c) 

(d) 

Figure 8. Performance of the proposed beam-tracking technique in Scenario 3. 

(a) 

(b) 
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Table 3. Number of beam switches required for beam-tracking. 

  Rotation Displacement Blockage 

Conventional technique 
Tx 0 nb

TxN nb
TxN  

Rx b
RxN ( 1)b nb

Rx TxN N + ( 1)b nb
Rx TxN N +

Proposed technique 
Tx 0 nb

TxN 0 
Rx 0 ( 1)b nb

Rx TxN N + 0 

Table 4. Number of beam switches required for beam-tracking in three different scenarios. 

  Scenario 1 Scenario 2 Scenario 3 Total 

Conventional technique 
Tx 0 192 1,640 1,832 
Rx 2,240 960 65,600 68,800 

Proposed technique 
Tx 0 192 0 192 
Rx 0 960 0 960 

6. Conclusions 

In this paper, an efficient beam-tracking technique for an MS in mmWave communication systems is 

proposed using MEMS-based motion sensors. It was shown by simulation that the angle of device 

rotation can be accurately estimated by the AHRS consisting of accelerometer, gyroscope, and  

geo-magnetic sensor, and the device movement can be detected by the MAG-based ZVD with 

appropriate parameters. In the case of rotation, the proposed technique was shown to track the beam 

efficiently by switching directly to the position of the best Rx beam with the aid of AHRS, resulting in 

a significant reduction in the length of the beam search. In the case of displacement, the proposed 

technique was shown to track the Rx beam and/or Tx beam using the received electrical signal. In the 

case of blockage, the proposed technique was shown to avoid unnecessary beam-tracking by detecting 

the blocking status with the aid of the MAG-based ZVD. Overall, the proposed technique was shown to 

track the beam efficiently by detecting the cause of the situation change and handling the specific 

situation depending on the cause of beam error, minimizing the beam-tracking overhead. 
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