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Positive cross talk between FOXL2
and antimullerian hormone regulates
ovarian reserve
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Objective: To demonstrate interregulation between FOXL2 and antimiillerian hormone (AMH) in ovarian folliculogenesis.

Design: Cell culture and animal study.

Setting: University research laboratory.

Animal(s): Five-week-old B6C3F1 mice.

Interventions(s): Molecular analysis and in vivo mouse experiment were performed to demonstrate that AMH is a target gene of
FOXL2 in the ovary.

Main Outcome Measure(s): To determine whether FOXL2 transactivates AMH, luciferase reporter assay, electrophoretic mobility shift
assay, and chromatin immuniprecipitation were conducted. Using an in vivo nucleic acid delivery system, the expression of AMH and/
or FOXL2 was modulated in the mouse, and the ovaries were histologically analyzed.

Result(s): AMH is an endogenous target gene of FOXL2. In contrast, mutated FOXL2s found in premature ovarian failure patients were
defective in their ability to activate AMH transcription in human granulosa cells. In vivo mouse gene delivery experiments revealed that

Amh-knockdown accelerated follicle growth; however, the acceleration was prevented by

ectopic expression of FOXL2.

Conclusion(s): AMH and FOXL2 collaboratively work to reserve ovarian follicles. (Fertil Steril®

2014;102:847-55. ©2014 by American Society for Reproductive Medicine.)
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head transcription factor family,

whose members share a forkhead
DNA binding domain (1). Mutations
in FOXL2 cause blepharophimosis-
ptosis-epicanthus inversus syndrome
(BPES; OMIM #110100), an autosomal
dominant familiar disease manifested
by malformations of the eyelid and/or
premature ovarian failure (POF) (2).
Although the etiology of POF is largely
unknown, failure to acquire a sufficient

F 0XL2 is a member of the fork-

follicle pool or early exhaustion of the
follicle pool can result in premature
depletion of the ovarian follicles (3).
Ovarian folliculogenesis is a complex
process involving follicular matura-
tion, from the primordial to the Graa-
fian follicles, in preparation for
ovulation. FOXL2 is highly expressed
in oocyte-nurturing granulosa -cells,
especially in small ovarian follicles
(4). FOXL2 deletion reprograms adult
ovarian follicles into testicular cells,
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suggesting that FOXL2 is required to
maintain  ovarian properties  (5).
Furthermore, FoxL2'“““ homozygous
mutant female mice are infertile owing
to early ovarian follicle depletion (6, 7).
These reports indicate that FOXL2 is an
essential molecule in the regulation of
folliculogenesis.

Antimullerian hormone (AMH),
also known as Millerian inhibiting
substance (MIS), is a member of the
transforming growth factor-8 (TGF-B)
signaling family. AMH was initially
identified as an embryonic testicular
growth factor involved in the regres-
sion of Miillerian ducts in male sex dif-
ferentiation (8, 9). AMH is produced by
granulosa cells in the ovary and Sertoli
cells in the testis (10-13). In the ovary,
AMH is expressed in the cuboidal
granulosa cells of the primary follicles
as soon as primordial follicles are
recruited from the dormant pool, and
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AMH expression increases until the large preantral and small
antral follicular stages are reached (14, 15). AMH knockout
mice show enhanced initial and cyclic recruitment, followed
by early depletion of primordial follicles (16, 17). Recently,
AMH has been identified as a promising biomarker that
accurately reflects ovarian reserve (15). The serum AMH
levels in normal cycling women have been shown to
decrease with age, eventually becoming undetectable in
women undergoing menopause (18). In addition, changes in
serum AMH levels occur early, as a result of events
associated with ovarian aging (19), and serum AMH levels
in patients with POF are extremely low or undetectable (20,
21). These studies indicate that proper expression of ovarian
AMH is critical for normal folliculogenesis. However, the
regulatory network controlling AMH production in the
ovary is poorly understood.

Since the defects of both FOXL2 and AMH are associated
with POF, we hypothesized that FOXL2 transactivates AMH
to prevent early follicle recruitment. Here we identify a posi-
tive regulatory network, involving FOXL2 and AMH, which
controls ovarian follicular reserve.

MATERIALS AND METHODS
Chemicals

Chemicals used were purchased from Sigma-Aldrich unless
otherwise indicated.

Plasmids

Primers were purchased from Bioneer. The nucleotide se-
quences of all primers used are shown in Supplemental
Table 1. The human AMH and FOXL2 promoter were poly-
merase chain reaction (PCR) amplified using KGN genomic
DNA as a template. The PCR product was digested with
Mlul and Xhol (Takara Bio) and ligated into pGL3 (Clontech).
Constructs driving the expression of myc-tagged mutated
FOXL2s were generated by PCR. The resultant PCR products
were digested with EcoRI and Xhol (Takara Bio) and ligated
into the pCMV-Myc vector (Clontech). For recombinant pro-
tein purification, AMH and FOXL2 were amplified by PCR.
The PCR products were digested with Ncol/Notl and BamHI/
Xhol (Takara Bio), respectively, and ligated into the
pET28a(+) (Millipore).

Small Interfering RNAs

The target sequences of short interfering RNAs (Bioneer) used
are as follow: siFOXL2, 5'-GCUCCUGUCGCUCCUCUUU. The
sense and antisense oligonucleotides were annealed in the
presence of annealing buffer (Bioneer). For short-hairpin
RNA (shRNA)-mediated knockdown of mouse Amh, a ShRNA
plasmid was generated. RNA-interference oligos were pur-
chased from Bioneer, with the following sequences: 5-GA
TCCCCCTAGTCCTACATCTGGCTGTTCAAGAGACAGCCAGAT
GTAGGACTAGTTTITA and 5-AGCTTAAAAACTAGTCCTA
CATCTGGCTGTCTCTTGAACAGCCAGATGTAGGACTAGGGG.
The pSUPER vector system (OligoEngine), designed for the
expression of short interfering RNA, was then used to
generate the ShRNA plasmid.

Human Granulosa Cell Culture and Transfection

Human granulosa cell tumor-derived KGN cells (Yoshihiro Nishi
and Toshihiko Yanase) were cultured in Dulbecco’s modified
Eagle medium/F12 medium (Caisson). Medium contained 10%
fetal bovine serum (Caisson) and 1% penicillin-streptomycin
(Caisson). KGN cells (4 x 10°) were resuspended in resuspension
R Buffer (Invitrogen), electroporated with 170 ng of pCMV
B-galactosidase plasmid DNA (Clontech), 300 ng of a luciferase
reporter plasmid, and plasmids encoding either FOXL2 WT or a
mutant version thereof using a Neon system (Invitrogen) and
incubated on plates containing fresh media.

Luciferase Assay

Luciferase assay was performed as described by Kim et al. (22).
Absorbances were measured with a FlexStation3 Microplate
Reader (Molecular Devices).

Recombinant Protein Purification

His-tagged human FOXL2 and AMH proteins were purified
based on our previous study (23).

Electrophoretic Mobility Shift Assay (EMSA)

EMSA was performed as we reported elsewhere (23). Double-
stranded oligonucleotides with the following human AMH
sequences: 5'-CCTGCACAAACACCCC or 5-GGGGTGT TTG
TGCAGG, and 5'-ACGGCATGTTGACACATC or 5'-GATGTGT
CAACATGCCGT, were used.

Chromatin Immunoprecipitation-quantitative
Polymerase Chain Reaction (ChIP-gPCR) Analysis

KGN cells (2 x 107) were electroporated with plasmids using a
Neon system and then incubated in 100-mm dishes for
24 hours. ChIP assays were performed as described elsewhere
(23). DNA was amplified using primer sets flanking the puta-
tive FOXL2 binding motifs in the AMH promoter: FBE1, 5'-
AGCGCTGTCTAGTTTGGTTGC and 5-TCTCCCTCCCCAGTG
ATAGAG; FBE2, 5'-AAAGGGCTCTTTGAGAAGGCC and 5'-
GCCTTAAGTGAGCCGAGTGGA. PCR products were analyzed
by qPCR.

In Vivo Intraovarian Injection and Animals

Five-week-old B6C3F 1 mice (a hybrid between C57BL6/N and
C3H/HeN) were obtained from SLC Inc. The animal room was
maintained at 30%-40% humidity, and a temperature of 22 4+
1°C. Lighting in the room followed a 12 hour light/dark cycle.
All animals were treated humanely, with every attempt made
to ease suffering. Additionally, the experimental protocol was
approved by the Chung-Ang University Institutional Animal
Care and Use Committee. Injections were performed on post-
natal day 35. For injection of the shAmh (1 ug) and FOXL2
(1 ug) plasmids, nucleic acid was slowly injected with a mi-
crosyringe (Hamilton). In vivo electroporation was performed
immediately after nucleic acid injection with an Electrosquare
Porator ECM830 electroporator (Harvard Apparatus). Mouse
ovaries were held in tweezer-type electrodes, and square
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electric pulses were applied 8 times at 50 V, each pulse with a
constant duration of 50 ms. Mice were divided into the
following four groups: [1] control group, scramble RNA and
vehicle DNA injection; [2] FOXL2 group, scramble RNA and
FOXL2 DNA injection; [3] shAmh group, shAmh and vehicle
DNA injection; [4] shAmh and FOXL2 group, shAmh and
FOXL2 DNA injection. After 3 days, mice were euthanized
to examine the short-term effect of gene modulation. Ovaries
were collected and stored either in a deep freezer or in 10%
formaldehyde until further analysis.

Preparation of Ovarian Tissue Sections

Ovarian tissue sections were prepared according to our previ-
ous report (24). Briefly, ovarian tissue samples stored in 10%
formaldehyde were sequentially transferred into 70%, 80%,
909%, 95%, and 100% ethanol (Merck) for 1 hour each. Dehy-
drated tissues were then transferred to a xylene (Duksan) tank
for clearing. Tissues were embedded in paraffin, cut into 6
um-slices using a FINESSEE microtome (Thermo Scientific),
and placed onto slides.

Immunoblot Analysis

After homogenization, lysates were prepared from ovaries
using PRO-PREP solution (Intron). Equal amounts of total pro-
tein were resolved by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis and transferred to membranes. Membranes
were immunoblotted with anti-AMH antibodies (Abgent) or
anti-FOXL2 antibodies (23), and the same membranes were
incubated with anti-B-actin antibodies (Santa Cruz Biotech-
nology). After washing, membranes were incubated at room
temperature for 2 hours with horseradish peroxidase-conju-
gated anti-rabbit IgG secondary antibodies (Santa Cruz
Biotechnology) at a 1:5,000 dilution. Immunoreactive bands
were visualized with enhanced chemiluminescence solution
(Animal Genetics) and detected using a ChemiDoc XRS+ Sys-
tem Imager (Bio-Rad Laboratories).

Counting of Ovarian Follicles

Ovarian slides were deparaffinized and stained with hema-
toxylin and eosin. After washing in distilled water, slides
were dehydrated and mounted for microscopic observation
(Olympus). The numbers of follicles were counted from four
ovaries per group. The number of total follicles in five sections
from every sixth section of a distance of approximately 30 um
was counted. Follicle classification and counting were
performed according to Pedersen and Peters (25).

PCNA (Proliferation Cell Nuclear Antigen) Staining

Immunohistochemical staining was performed as described
elsewhere (24). Slides were incubated with mouse monoclonal
anti-PCNA antibodies (DAKO) for 22 hours at 4°C at a 1:400
dilution.

Statistical Analysis

Data analysis was performed using SAS version 9.2 (SAS
Institute). Statistically significant differences were identified
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with either the Student-Newman-Keuls multiple range test
or Fisher’s least significant difference test, at the 5% level
of significance.

RESULTS
Identification of AMH as a Target Gene of FOXL2

To examine the relationship between two critical ovarian fac-
tors, FOXL2 and AMH, the human AMH promoter was cloned
and tested for transcriptional activation by FOXL2. Ectopic
expression of FOXL2 significantly activated the AMH pro-
moter, and the basal level of AMH transactivation was
decreased in FOXL2-knockdown KGN cells accompanying
reduced endogenous AMH protein level (Fig. 1A). Based on
a previous report (26), we predicted two putative binding ele-
ments for FOXL2 in the human AMH promoter sequence, at
-206 to -200 (TGTTGAC) and -55 to -49 (ACAAACA), which
we designated forkhead binding element (FBE) -1 and -2,
respectively (Fig. 1B). We generated two mutant versions of
the AMH promoter, harboring a mutation at either FBE1 or
-2 and performed reporter assays to examine their transcrip-
tional activation. As shown in Figure 1C, FOXL2 failed to
fully transactivate versions of the AMH promoter with muta-
tions in either the FBE1 or FBE2 sequence, compared with the
wild-type (WT) AMH promoter (Fig. 1C). EMSAs performed
with recombinant human FOXL2 confirmed that the regions
from -206 to -200 and -55 to -49 in the AMH promoter are
FOXL2-binding elements (Fig. 1D).

Defective Transcriptional Regulation of AMH by
FOXL2 Mutants

Various versions of FOXL2 found in patients with BPES type |
and POF, including versions harboring 180T, 184S, 1-94, and
Q219X point mutations, were generated to determine their
transcriptional activities on AMH (Fig. 2A). In contrast to
WT FOXL2, all mutants failed to activate the AMH promoter
(Fig. 2A). EMSAs performed using nuclear extracts of KGN
cells transfected with either WT FOXL2 or mutant versions
thereof demonstrated that the versions of FOXL2 found in
patients with BPES type I (I80T and Q219X) exhibited no
detectable binding to the AMH probe (Fig. 2B). In agreement
with these data, ChIP-qPCR experiments showed that WT
FOXL2 protein recruited significant amounts of the AMH pro-
moter when it contained either FBE1 or -2 sequences; howev-
er, no enrichment of AMH by the mutant FOXL2 proteins was
observed (Fig. 2C).

FOXL2 Expression Rescues the Accelerated Follicle
Recruitment Induced by AMH Knockdown

To investigate the physiological significance of the FOXL2-
AMH regulatory network in the ovary, we performed
in vivo mouse experiments employing gene delivery of
FOXL2 and silencing of Amh. An shRNA vector specific for
mouse Amh and/or plasmid DNA encoding human FOXL2
were delivered to female mice by intraovarian injection
(Fig. 3A). Three days after transfection, ovaries were removed
and examined. Efficient knockdown of Amh and overexpres-
sion of FOXL2 were confirmed by immunoblot analysis of
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Transcriptional activation of AMH by FOXL2. (A) Promoter activation of human AMH by FOXL2 was determined by the luciferase reporter assay after
transfection of increasing amounts of a FOXL2-encoding plasmid (100 and 150 ng) into KGN cells. Reduced transcriptional activity of AMH in
FOXL2-knockdown KGN cells is also presented. Western blot analyses of FOXL2 and AMH are shown. Data (means + SEM) from all promoter
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Park. FOXL2 and AMH regulate folliculogenesis. Fertil Steril 2014.

ovarian extracts (Fig. 3B). Interestingly, ectopic FOXL2
expression significantly upregulated the level of endogenous
Ambh, thus providing in vivo evidence that supports Amh be-
ing an endogenous downstream target of FOXL2 (Fig. 3B, left
graph). In addition, the level of FOXL2 was moderately
decreased in Amh-knockdown ovaries (Fig. 3B, right graph).

Histological examination of ovary sections from each
group showed altered folliculogenesis, especially in Amh-
knockdown ovaries, in which increased numbers of small
growing follicles were present (Fig. 3C, III). Interestingly,
the follicular changes induced by shRNA-mediated Amh
knockdown were no longer observed when a FOXL2-

expressing plasmid was coinjected (Fig. 3C, IV). Ectopic
expression of FOXL2 itself did not induce any dramatic
changes in the ovaries compared with in the control ovaries
(Fig. 3C, I vs. Il). To quantitatively analyze ovarian changes,
follicles were counted. Compared with the control ovaries,
Amh-knockdown ovaries exhibited decreased primordial fol-
licle counts, whereas the numbers of primary and preantral
follicles were increased by more than 200% (Fig. 3D). These
observations indicate that Amh depletion leads to accelerated
follicle recruitment. Surprisingly, the changes in follicular
development induced by Amh knockdown were prevented
when ovaries were cotransfected with a FOXL2-encoding
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plasmid (Fig. 3D), which was consistently observed by anal-
ysis of absolute follicle counts (data not shown). These results
suggest that forced FOXL2 expression can rescue the follic-
ular defects resulting from Amh depletion. As a complemen-
tary technique, immunohistochemical analysis of PCNA, a
biomarker of growing ovarian follicles (27), was performed.
PCNA-positive granulosa cells were significantly increased
in Amh-knockdown ovaries, especially in small (primary
and preantral) follicles, indicating increased numbers of
proliferating early-stage follicles (Fig. 3E). In contrast, this in-
crease was greatly diminished by ectopic expression of FOXL2
in Amh-deficient ovaries (Fig. 3E), indicating that FOXL2 pre-
vents the small follicle growth induced by Amh silencing.

Positive Feedback Regulation between AMH and
FOXL2

Based on the observation that FOXL2 expression was decreased
in Amh-knockdown ovaries (Fig. 3B, right graph), we investi-
gated whether AMH plays any role in the regulation of
FOXL2 expression. Incubation of KGN cells with recombinant
AMH enhanced FOXL2 promoter activation (Fig. 4A); further-
more, AMH-induced FOXL2 activation was also observed in
primary mouse granulosa cells (Fig. 4B). Moreover, AMH-
induced upregulation of FOXL2 was also confirmed on the pro-
tein level by immunoblot analysis (Fig. 4C), indicating that
AMH positively regulates FOXL2 expression.
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FOXL2-mediated inhibition of accelerated follicle growth resulting from Amh-depletion in the mouse ovary. (A) Scheme of in vivo mouse
intraovarian plasmid delivery is shown. (B) Mouse ovaries were electroporated to deliver shRNA specific for mouse Amh, and/or plasmid DNA
encoding human FOXL2 was administered in vivo by intraovarian injection. The resultant changes in Amh and/or FoxI2 protein levels were
examined by immunoblot analysis of ovarian extracts. Three or four ovaries, each from a different mouse, were used for each group. Expression
levels were normalized to g-actin, and the quantified values of Amh (left graph) and FoxI2 (right graph) expression are also presented. (C)
Representative hematoxylin and eosin-stained ovarian sections prepared from each group are shown: |, control; Il, FOXL2; lll, shAmh; IV, shAmh
and FOXL2. Arrowheads indicate primary follicles, and asterisks denote preantral follicles. (D) Relative ratios of ovarian follicles at different
developmental phases after modulation of Amh and/or FOXL2 expression levels are presented. CL = corpus luteum. Values (means + SEM)
represent the numbers of follicles at the indicated phase, expressed as percentages of the total number of follicles, from at least three ovaries
in each group. Each ovary was isolated from a different mouse. Significantly different values between groups are indicated with different letters
(P<.05). (E) Immunohistochemical analysis of PCNA expression, performed using ovarian tissue from each group, is shown. Representative
tissue from each group is presented.
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FIGURE 3 Continued
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DISCUSSION

Folliculogenesis is a highly coordinated developmental pro-
cess, which generates competent oocytes in addition to
nurturing granulosa cells and theca cells. Several millions
of primordial follicles are endowed in the fetal ovary; the ma-
jority of these follicles remain degenerate, whereas some are
recruited for growth (28, 29). Although the signaling
network governing follicular development has remained
elusive, proteins in the TGF-( family are considered to be
prime intraovarian candidates for regulating these events
(30). AMH, a dimeric glycoprotein member of the TGF-3
superfamily, is produced by granulosa cells in the
primordial, primary, preantral, and small antral follicles.

Furthermore, the serum level of AMH has been shown to be
proportional to the number of developing follicles (31-33).
Accumulating evidence indicates that AMH plays a crucial
role in regulating the number of follicles for initial follicle
recruitment from the primordial pool and preantal follicle
development (20). Factors including steroidogenic factor-1,
S0X-9, DAX, WT1, and GATA-4 are known to be involved
in AMH regulation (34-36). However, the mechanisms by
which AMH regulates ovarian follicular development are
unknown. Here we presented data indicating that FOXL2 is
the critical transcriptional activator of AMH, thus
restricting early follicular growth. In vivo mouse gene
delivery experiments revealed that Amh-knockdown
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after incubation. The representative immunoblot result (left panel) and quantified immunoblot results from four independent experiments
performed (right panel) are shown. Significantly different values between groups are indicated with different letters (P<.05).

Park. FOXL2 and AMH regulate folliculogenesis. Fertil Steril 2014.

accelerated follicle growth; however, the acceleration was
prevented by ectopic expression of FOXL2, indicating that
Amh and FOXL2 collaboratively work to reserve ovarian fol-
licles. In addition, we described an in vivo intraovarian
plasmid transfection protocol and demonstrated that this pro-
tocol can be a useful methodology for investigating in vivo
the regulatory relationships between ovarian factors of
interest.

FOXL2 is a protein expressed in granulosa cells that is
critical for proper folliculogenesis. The importance of
FOXL2 is demonstrated by the findings that humans with mu-
tations in FOXL2, or FOXL2 knockout mice, exhibit POF asso-
ciated with early depletion of ovarian follicles (6, 37). FOXL2
regulates expression of genes involved in steroidogenesis,
proliferation, apoptosis, differentiation, and the stress
response. These genes include StAR, aromatase, p21, FAS,
TNF-R1, Caspase 8, and SIRT1 (22, 38-40). In this study,
we identified AMH as a direct ovarian target gene that is

regulated by FOXL2 (Fig. 1). Of particular note, mutant
versions of FOXL2 found in patients with BPES type I and
exhibiting POF failed to activate AMH transcription
(Fig. 2A). In agreement with the findings presented here, the
serum AMH level of a patient with POF carrying a mutation
of FOXL2 was shown to be considerably lower than the
normal level (41); moreover, infertile Foxl2'*? homozygous
mutant ovaries have been shown to exhibit significantly
decreased Amh expression (6). Cumulatively, these
observations indicate that regulation of AMH by FOXL2 is a
pathophysiologically relevant event and imply that
defective AMH regulation by FOXL2 mutants may be
involved in the pathogenesis of POF.

Moreover, we discovered positive cross talk between
FOXL2 and AMH, in which FOXL2-regulated AMH positively
stimulates FOXL2 transcription (Fig. 4). This observation indi-
cates that these two critical ovarian factors are regulated by a
positive feedback loop. Therefore, the work described here
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presents a novel regulatory circuit capable of controlling
ovarian follicle reserve by FOXL2 and AMH. In addition,
this study opens the possibility of using FOXL2 and AMH in
preventive intervention against POF.
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SUPPLEMENTAL TABLE 1

Nucleotide sequences of primers.
Genes

Promoters
hAMH

hAMH FBE1 mutant
hAMH FBE2 mutant
hFOXL2

Protein coding constructs
hFOXL2 wild-type

hFOXL2 180T mutant
hFOXL2 184S mutant
hFOXL2 1-94 mutant
hFOXL2 Q219X mutant

Recombinant protein constructs
hAMH

hFOXL2

Park. FOXL2 and AMH regulate folliculogenesis. Fertil Steril 2014.

Sequences (5 — 3')

F) ACGACGCGTGGGCAAGTTCTGGACACACTG
R) CTACTCGAGGTCCCTGGCAGCCTATCTCCC
F) ACGGCACCCCCCTACATAGGCCC
R) TGTTGGGGGGTGCCGTCCTTGAGG
F) TGCCCCCCCTCCCCACCTTCCA

R) AAGGTGGGGAGGGGGGGCAGGACAGA

F) ACGACGCGTGACTTGGAGATGAACTCGCCCGTGC
R) CTACTCGAGACAGAGAGGGGCTCCGGCCTCGCC

) CTAGAATTCAAATGATGGCCAGCTACCCC
) CATTCGCGCCTCGATCTCTGACTCGAGTAG
) GGTGCCGGACAGCGTGAGCCT

) CTGTCCGGCACCTACCAGT

) ATGCTGTACTGGTAGAT

) CCAGTACAGCATCACGAA

) CCGGTCTCGGGCCAAGCAG

) GAGACCGGTCGCACA

) AGCAGGAGGCATAGGGCA

) CCTCCTGCTAGATGGCGGCAG

) CTTCCATGGAAATGCGGGACCTGCCTCTC

) CTTGCGGCCGCCCGGCAGCCACACTCGGT
) CTAGGATCCATGATGGCCAGCTACCCCGAG
) TAGCTCGAGTCAGAGATCGAGGCGCGAATG
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