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We revisit a single field inflationary model based on Coleman–Weinberg potentials. We show that in
small field Coleman–Weinberg inflation, the observed amplitude of perturbations needs an extremely
small quartic coupling of the inflaton, which might be a signature of radiative origin. However, the
spectral index obtained in a standard cosmological scenario turns out to be outside the 2σ region of the
Planck data. When a non-standard cosmological framework is invoked, such as brane-world cosmology
in the Randall–Sundrum model, the spectral index can be made consistent with Planck data within 1σ ,
courtesy of the modification in the evolution of the Hubble parameter in such a scheme. We also show
that the required inflaton quartic coupling as well as a phenomenologically viable B − L symmetry
breaking together with a natural electroweak symmetry breaking can arise dynamically in a generalized
B − L extension of the Standard Model where the full potential is assumed to vanish at a high scale.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded
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1. Introduction

The Hot Big-Bang Model and General Relativity successfully
explain the thermal history of our Universe since its very first
nanoseconds of existence up to now. However they left unex-
plained crucial issues such as the horizon, flatness, and monopole
problems. Inflation is the most elegant and simple explanation to
address them and therefore no modern cosmological model lacks
a prudential stage of inflation. Inflation basically assumes the exis-
tence of a period of exponential growth of the scale factor which
essentially wipes out any trace of curvature, dilutes unwanted
relics and leaves the Universe in a highly symmetric state.

The simplest scenario where this picture can be realized is
based on a single scalar field (called inflaton) with a nearly flat
potential. The quantum fluctuations of the inflaton would be then
responsible for the tiny temperature anisotropies observed in the
Cosmic Microwave Background (CMB). Basically an inflationary
theory must fulfill two requirements to agree with experimental
observations: (i) it has to provide sufficient inflation, i.e., the in-
flationary potential must drive an increase on the scale factor of
50–60 e-folds (the precise number depends on details of the par-
ticular inflaton model) in order to describe the thermal equilibrium
observed in the CMB at least for the scales of interest; (ii) the size
of the quantum fluctuations of the inflaton leading to the power
spectrum of primordial curvature perturbations, As , should be at
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the appropriate level while the spectral index ns must agree with
observations. Because of these “mild” requirements most simple
inflation models were given a death blow once the Planck mission
released its high-precision data [1]. The Planck result, combined
with the WMAP large-angle polarization measurements, requires
the two observables ns and As of curvature perturbations to be

ns = 0.9603 ± 0.0073, As = 2.196+0.051
−0.060 × 10−9 (1)

at a scale k∗ = 0.05 Mpc−1 which rules out exact scale-invariance
at more than 5σ . Analogously, the tensor-to-scalar ratio r is
bounded to be r < 0.11 at 95% CL, for the same scale k∗ . These
constraints are already powerful enough to rule out or strongly
disfavor the most popular and simple inflationary potentials.

Consequently, simple and well motivated inflationary potentials
are distinctively welcomed. Among these, a special place should be
given to Coleman–Weinberg (CW) type of potentials [2] as they not
only arise naturally but are unavoidable when loop corrections are
taken into account. Inflation with a CW potential has been sug-
gested at an early stage of the inflation theory formulation, and
studied extensively, in particular, in association with grand unifi-
cation theories [3].

In this Letter, we revisit the CW inflation accounting for cosmo-
logical observations in a scheme where the inflaton potential has
a dynamical origin, naturally arising from quantum corrections. As
we will see later, the quartic coupling of the CW potential is pro-
portional to the amplitude of primordial perturbations and thus
has to be extremely small (∼ 10−14) which might point towards
 Funded by SCOAP3.
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a radiative origin. An attempt to generate a phenomenologically
viable scalar potential starting from a vanishing initial condition
of the full scalar potential at a cutoff scale has been worked out
in the context of the SU(3)c × SU(2)L × U (1)Y × U (1)X model
where U (1)X is a generalized B − L gauge symmetry [4]. It has
been shown that a Standard Model (SM) Higgs potential consistent
with recent LHC data [5] can be generated radiatively once the
B − L symmetry is broken appropriately by the usual CW mech-
anism. One of the distinctive features of this scheme is that the
quartic coupling of the B − L scalar arises due to its coupling to
right-handed neutrinos in a similar way as the SM scalar quartic
coupling arises due to the top Yukawa coupling.

We find that in a general CW inflation model, the number of e-
folding required for solving the horizon problem cannot be made
consistent with the observed spectral index. That is, the spectral
index resulting from getting enough number of e-folds to take care
of the horizon problem, can only fit within the 3σ range of the
Planck data for a symmetry breaking scale larger than 1015 GeV.
In particular, when using a value of the symmetry breaking scale
favored for providing natural electroweak symmetry breaking in
a generalized B − L extension of the SM, the resulting spectral
index is well outside the 5σ range of the Planck data. This mo-
tivates us to consider the CW inflation in a non-standard cosmo-
logical scenario, a typical example of which is brane cosmology in
a higher dimensional space such as the Randall–Sundrum model
[6,7]. In this case, the extra dimension does not evolve in time
while the evolution of 4-dimensional spacetime is described by a
modified Friedman equation, where H2 ∝ ρ2 in the large energy
density limit. Thus, the effective inflaton energy increases by a fac-
tor, V 0/Λ, with V 0 being the original inflaton energy and Λ being
the brane tension, which makes the CW inflation fully compatible
with the observations for an appropriate choice of the brane ten-
sion. A remarkable feature of the CW inflation on the brane is that
the correlations between the observables are kept the same as in
the standard CW inflation.

The Letter is organized as follows. We begin by revisiting CW
inflation in standard cosmology in Section 2. In Section 3 the setup
is extended to brane cosmology and the inflationary observables
are calculated for the modified Friedman equation. We show in
Section 4 how the required quartic coupling and symmetry break-
ing scale for the CW inflaton potential can be generated in the
context of the B − L extension of the SM which is motivated by
the explanation of the neutrino masses and mixing. Finally, con-
clusions are drawn in Section 5.

2. CW inflation in standard cosmology

A general CW potential evaluated at the renormalization scale
Q = 〈φ〉 = vφ takes a rather simple form:

V (φ) = Aφ4
(

log

(
φ

vφ

)
− 1

4

)
+ A

4
v4

φ (2)

which satisfies V ′(vφ) = 0 and V (vφ) = 0. Here A = A(vφ) is de-
termined by the beta function for the scalar quartic coupling de-
fined at Q = vφ , which is a function of gauge, Yukawa and other
scalar couplings of the inflaton field φ. A detailed form of the beta
function and the CW potential applied to the B − L gauge symme-
try will be discussed later. Depending on the values of A and vφ ,
the inflaton can have small or large values compared to the Planck
scale during observable inflation. In the latter case inflation mimics
chaotic inflation. We will be interested in the scenario where the
inflaton starts its journey from small values of the field, φ/vφ < 1,
in the flat region of the CW potential as drawn in Fig. 1. There is a
Fig. 1. The CW potential realizing a small field inflation.

recent overview on various inflation models including the CW type
inflation [8].

During inflation, the inflaton rolls down towards the minimum
of its potential, evolving according to

φ̈ + 3Hφ̇ + ∂V /∂φ = 0 (3)

where the Hubble rate H is given by

H2 = 1

3M2
P

[
φ̇2

2
+ V (φ)

]
. (4)

Here M P ≈ 2.44×1018 GeV is the reduced Planck mass. If the field
is moving along a region where the potential is so flat that the
evolution of the field is friction dominated (what goes in the liter-
ature under the name of slow-roll approximation), the equation of
motion is basically given by

3Hφ̇ + ∂V /∂φ ≈ 0. (5)

Within this approximation, the number of e-folds of inflation gen-
erated since the modes that are entering the observable Universe
now left the horizon (at φ∗) till the end of inflation (at φ f ) is given
by

N(φ∗) = − 1

M2
P

φ f∫
φ∗

V (φ)

V ′(φ)
dφ (6)

where V ′(φ) = ∂V /∂φ and φ f is the value of the field at which
inflation stops. This happens when

ε(φ f ) ≡ M2
P

2

[
V ′(φ f )

V (φ f )

]2

= 1. (7)

At this time, quantum fluctuations on the scale observed today
were produced too and its size is given by

PR(k∗) = 1

24π2

V (φ∗)
M4

P ε(φ∗)
(8)

while the spectral index of these density perturbations and its de-
pendence on the scale read

ns − 1 = −6ε(φ∗) + 2η(φ∗), (9)

dns = 16ε(φ∗)η(φ∗) − 24ε(φ∗)2 − 2ξ2(φ∗). (10)

d ln k
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Fig. 2. The spectral index ns and its running as a function of vφ in the standard CW inflation. Two horizontal lines in the left panel show 2σ and 3σ lower bounds measured
by Planck, respectively.
Here, η and ξ2 are the second and third slow-roll parameters that
can be expressed in terms of the inflaton potential as

η = M2
P

V ′′

V
and ξ2 = M4

P
V ′′′V ′

V 2
. (11)

Besides the observed density (scalar) perturbations, the inflaton
generates the yet unobserved gravitational waves or tensor per-
turbations. Normally, the tensor amplitude is expressed in terms
of the tensor/scalar ratio as

r ≡ PT
PR

= 16ε(φ∗). (12)

Expressed in terms of the parameters of the CW potential (2),
the above inflation quantities are given explicitly by

ε = 8

(
4M P

vφ

)2(
φ

vφ

)6

ln2
(

φ

vφ

)
, (13)

η =
(

4M P

vφ

)2(
φ

vφ

)2(
3 ln

(
φ

vφ

)
+ 1

)
, (14)

ξ2 =
(

4M P

vφ

)4(
φ

vφ

)4

ln

(
φ

vφ

)(
6 ln

(
φ

vφ

)
+ 5

)
, (15)

N =
(

vφ

4M P

)2(
Ei

[
−2 ln

(
φ

vφ

)]
− Ei

[
−2 ln

(
φ f

vφ

)])
, (16)

PR(k) = A

3π2

(
vφ

4M P

)6( vφ

φ

)6 1

ln2(
φ
vφ

)
, (17)

where Ei stands for the exponential integral.
From the equations above, one can see that for slow-roll infla-

tion to take place, a field value φ∗ at horizon exit can be always
found for any choice of vφ and it lays in the region of φ∗/vφ 
 1
as the slow-roll parameters have a large factor of (4M P /vφ)2. This

leads to |ε| 
 |η| ≈ √
3|ξ2|/2. As a consequence, small field CW

inflation predicts remarkable correlations:

N ≈ 3

1 − ns
, (18)

dns

d ln k
≈ −1

3
(1 − ns)

2, (19)

independently of the precise values of vφ and φ/vφ . Similarly, the
power spectrum of perturbation is

PR(k) ≈ A
72

2

|ln(φ/vφ)|
3

, (20)

π (1 − ns)
which is insensitive to φ/vφ . Considering the central value of ns =
0.96 and PR ≈ 2.2 × 10−9 measured by the Planck mission at the
pivot scale k∗ = 0.05 Mpc−1 [1], one gets N ≈ 75, and A ∼ 10−14

mildly depending on φ∗ . The tensor-to-scalar ratio given by

r ≈ 16

27

(
vφ

4M P

)4
(1 − ns)

3

|ln(φ/vφ)| (21)

is severely suppressed by a factor of (vφ/M P )4 while being insen-
sitive to φ.

Such large N and tiny A do not fit well with the number of
e-folding required to solve the horizon problem for scales that
have just entered/are entering the current horizon. The condition
for such a thing to happen is

1 = (aH)∗
(aH)0

= a∗
aend

· aend

areh
· areh

a0
· H∗

H0
, (22)

which translates into

N∗ = 1

3
ln

(
ρreh

ρend

)
+ 1

4
ln

(
ρ0r

ρreh

)
+ 1

2
ln

(
ρ∗
ρ0

)

� 61 − ln

(
1016 GeV

V 1/4∗

)
+ ln

(
V 1/4∗
V 1/4

end

)
− 1

3
ln

(
V 1/4

end

ρ
1/4
reh

)
(23)

where ρ0(r) , ρreh, ρend are (radiation) energy densities at present,
the end of reheating and the end of inflation, respectively, and ρ∗ ,
V∗ are energy density and inflaton potential evaluated at horizon
exit for the pivot scale k∗ = 0.05 Mpc−1. Note that one can take
V∗ � V (0) � V end as a good approximation in most cases. For the
CW picture of inflation to work, the number of e-folds N|φ∗ (16)
derived from the CW potential should be able to reproduce the
number N∗ (23). This condition together with the COBE normaliza-
tion, PR � 2.2 × 10−9, and the CW inflation property, ns � 1 + 2η,
uniquely fixes the values of the three parameters, A, vφ and φ/vφ

of the CW potential.
The obtained spectral index ns for a given symmetry break-

ing scale vφ is shown in Fig. 2. The largest possible value that
ns can take is about 0.945 for vφ close to M P which is below
the 2σ range favored by the Planck data. Only a 3σ compatibil-
ity can be achieved for vφ � 1015 GeV, disfavoring CW inflation at
the 2σ level. The running of the spectral index is presented in the
right panel of Fig. 2 which shows a strong correlation between the
spectral index and its running as discussed before. The obtained
running has to be compared with Planck’s result

dns = −0.013 ± 0.009 (24)

d ln k
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Fig. 3. The correlations of A and φ/vφ with vφ for the CW inflation in the standard cosmology.
at 68% CL. It is clear that the results have no definite impact on
this class of models, but they are bounded to test them in the near
future as the precision on both measurements, the spectral index
and its running will be significantly improved.

In Fig. 3, we present the values of A and φ/vφ for given vφ

showing a correlation between A and φ/vφ . One finds that smaller
vφ require smaller A and φ/vφ , but one gets A ∼ 10−14 which is
rather insensitive to vφ . As mentioned earlier, we find φ/vφ 
 1
for all the region of vφ < M P .

The strong tension of the CW inflationary setup with Planck
data arises due to the fact that V∗ cannot be made large enough
to enhance N∗ as a tiny quartic coupling A is also required by the
size of perturbations, and even though one can have vφ as large
as M P it is not enough to overcome the strong A suppression. The
tension is aggravated even further if one wants to have lower sym-
metry breaking scales in the CW mechanism. This problem may be
avoided in a non-standard cosmological scenario where the rela-
tion (23) is altered in a radical way. Most of the modifications we
can get within the standard framework, like an earlier period of
matter domination, work in the opposite direction, i.e. they lower
the number of e-folding needed to solve the horizon problem.

3. CW inflation on the brane

For a drastic change in the thermal history of the Universe we
can immerse ourselves into a brane world scenario where we live
in a brane embedded in a higher dimensional Universe. Within
this scheme, the stress-energy momentum in the bulk can take
different forms, depending on the specifics of the model. By an
appropriate choice of the boundary conditions, the non-standard
behavior of the Universe on the brane we are looking for, can be
easily achieved. Even more, the Hubble rate itself on the brane
changes rather drastically taking the form

H2 = 1

3M2
P

ρ

(
1 + ρn

M4n
B

)
+ C

a4
(25)

where MB denotes a certain scale below which the cosmologi-
cal evolution follows the standard form. A useful model to illus-
trate these effects is the brane world cosmology of the Randall–
Sundrum (RS) model [7] in which the main correction is the term
quadratic in the density, i.e.,

H2 = 1

3M2
P

ρ

(
1 + ρ

2Λ

)
, (26)

and the new scale MB is given by the brane tension Λ = M4
B/2

satisfying Λ =
√

−6ΛbulkM3
5 where Λbulk is the bulk cosmological

constant and M5 is the 5-dimensional Planck scale [6].
During the inflationary stage the energy momentum tensor on
the brane is dominated by the scalar field, which is confined to it
and therefore still evolves as Eq. (3), as on the brane ∇ν Tμν = 0
holds. The condition to sustain a period of inflation is now

p < −2/3ρ (27)

for ρ 
 Λ and when the energy density is dominated by the scalar
potential

H2 �
(

1

3M2
P

)
V

[
1 + V

2Λ

]
. (28)

In this regime the slow-roll parameters become

εB = ε · 1 + 2Ṽ

(1 + Ṽ )2
, (29)

ηB = η · 1

1 + Ṽ
, (30)

ξ2
B = ξ2 · 1

(1 + Ṽ )2
, (31)

where we have defined Ṽ ≡ V /M4
B .

Note that all the slow-roll parameters recover their standard
forms for Ṽ = 0, but are suppressed by 1/Ṽ in the limit of Ṽ 
 1.
While the spectral index takes the same form: ns = 1 − 6εB + 2ηB ,
its running is given by

dns

d ln k
= −2ξ2

B + 16εBηB − 24ε2
B · 1 + 3Ṽ + 3Ṽ 2

(1 + 2Ṽ )2
. (32)

The power spectrum of primordial quantum fluctuations and the
tensor-to-scalar ratios are also modified to turn into

PR,B(k) = PR(k) · (1 + Ṽ )3, (33)

rB = 16εB
1

1 + 2Ṽ
. (34)

The number of e-folding during inflation is also changed to

NB = − 1

M2
P

φ f∫
φ∗

V

V ′ (1 + Ṽ )dφ. (35)

The condition for solving the horizon problem now gets an ex-
tra term which leads to an additional number of e-folding for the
scales of interest (k∗ = 0.05 Mpc−1) depending on Ṽ :

NB,∗ ≈ 61 + 1

2
ln(1 + Ṽ ) − ln

(
1016 GeV

V 1/4

)
− 1

3

(
V 1/4∗
ρ

1/4

)
. (36)
∗ reh
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Fig. 4. Evolution of the horizon size in a brane cosmology with n = 1 and V 1/4∗ =
105 GeV in terms of ln(a) with the normalization of anow = 1. The four lines cor-
respond to MB = ∞ (standard), 102,1 and 10−2 GeV from the top, respectively,
showing how the e-folding number after the horizon exit of the current horizon
scale changes.

This increase can be easily understood by seeing in Fig. 4 how
steeper the Hubble radius change is, once the new scenario kicks
in. The lower the scale associated with the new scenario (the brane
tension) the larger the required number of e-folds for a fixed value
of the potential at the end of inflation, i.e., for a fixed reheat-
ing temperature or a fixed scale factor for the end of inflation.
From the figure, it is immediate to see how the number of e-folds
required to solve the horizon problem (basically the number of
e-folds evolved by our Universe since reheating) changes for the
current horizon scale depending on the brane scenario scale MB .
For this figure, we have taken a low inflation scale V 1/4∗ = 105 GeV
and the end of inflation to happen at ln(a) ≈ −40. Note that the
commonly used value of N ≈ 60 is obtained for MB = 1 GeV.

Before continuing the numerical analysis of the CW brane in-
flation, we briefly discuss the consistency of introducing a huge
change with Ṽ = V /(2Λ) 
 1 in the Friedman equation. First,
we note that the length scale on the brane is determined by
L ∼ |Rμναβ |−1/2 ∼ |Tμν/M2

P |−1/2 ∼ V −1/2M P . On the other hand,
the length scale in the bulk is related to the AdS length scale,
l ∼ Λ−1/2M P , due to the relations to the input parameters in the

RS model, l =
√

6M3
5/|Λbulk| and Λ =

√
6M3

5|Λbulk| with M2
P ∼

M3
5 l. Thus, taking V /(2Λ) 
 1, we are in the regime that L/l ∼

(Λ/V )1/2 
 1 where the continuum of KK modes in the RS II
model with a single brane could be easily excited during inflation
and affect the slow-roll inflation on the brane. Therefore, we need
to stabilize the radius of extra dimension, for instance, by intro-
ducing a second brane in the bulk, so that the KK modes become
discrete and decoupled during inflation. We don’t go to the details
on the radius stabilization in our work and we just assume that a
radius stabilization mechanism of Goldberger–Wise type [9] is at
work. Then, the radius should be stabilized at a small value such
that the KK masses are larger than the Hubble parameter during
inflation. Moreover, in order for the inflaton potential not to desta-
bilize the radius, the mass of the radion, namely, the excitation
of the radius, must also satisfy m2

r � H2 where H2 ∼ Ṽ∗V∗/M2
P .

For instance, for V 1/4∗ = 105 GeV and Λ1/4 = MB = 1 GeV, we get
Ṽ∗ ∼ 1020 so the radion mass should be mr � 100 GeV. Conse-
quently, we can accommodate in our setup a light radion relevant
for collider physics and still be compatible with inflationary phe-
nomenology contrary to the high-scale case.

Let us now examine how successful inflationary solutions sat-
isfying the conditions, PR,B(k∗) = 2.2 × 10−9 and NB = NB,∗ , can
arise in the limit of Ṽ 
 1. For given vφ and MB , these conditions
can be solved uniquely by appropriate values of A and φ/vφ as
shown in Figs. 5 (varying MB ) and 6 (varying vφ ) for high and low
vφ (MB ), respectively.

When MB is not so small that the φ-independent prefactor of
the modified slow-roll parameters (e.g., ηB ≈ η/Ṽ ) remains much
larger than one: (4M P /vφ)2(4M4

B/Av4
φ) 
 1, one still finds solu-

tions for φ/vφ 
 1 leading to |εB | 
 |ηB | ≈
√

2|ξ2
B |/3 as in the

standard cosmology. Thus, the simple correlations in Eqs. (18),
(19), (20) still hold. This behavior can be seen from the solution
lines corresponding to the large region of MB and the small re-
gion of vφ in each panel of Figs. 5 and 6, respectively. As MB

(vφ ) becomes smaller (larger) starting from the right (left) end
in Fig. 5 (6), the CW parameters, φ/vφ and A, as well as the in-
flationary observables, ns and dns/dk, increase monotonically, and
ns reaches its local maximum at around 0.946 corresponding to
φ/vφ ∼ 0.01. This is the exactly same pattern as in Figs. 2 and
3 where the four quantities increase as vφ gets close to M P , and
ns(φ/vφ) approaches 0.945 (0.01) maximally allowed in the region
of vφ < M P . One can also check that the relation (19) holds intact
in this small φ/vφ region. Note that the spectral can be enhanced
a lot even for low vφ (Fig. 6) by choosing appropriate MB , but is
still limited below the Planck’s 2σ lowest value in the region of
φ/vφ � 0.01 as in the standard cosmology.

When MB (vφ ) becomes even smaller (larger) in Fig. 5 (6),
one finds solutions with φ/vφ � 0.01 eventually approaching the
one for which the standard relations (18), (19), (20) are invali-
dated, but new correlations appear. The spectral index (and also
its running) starts to rise rapidly at φ/vφ ∼ 0.1, but it reaches its
maximum value ∼ 0.966 (−0.005) and then decreases slowly to
approach 0.96 (−0.006). In this large φ/vφ region, the spectral in-
dex (and its running) is dominated by the εB contribution. One can
see that there appears a new correlation between these two ob-
servables, which is different from the standard one (19). Note that
A becomes much smaller than the typical value ∼ 10−14 in the
asymptotic region preventing the prefactor (4M P /vφ)2(4M4

B/Av4
φ)

becoming too small and thus allowing solutions with φ/vφ close
to one.

Let us remark that the four lines in each panel of Figs. 5 and
6 show the same behavior as functions of φ/vφ , that is, one can
always find an appropriate range of MB and vφ reproducing the
same values of ns and dns/dk, as well as the same correlation be-
tween them. Of course, MB cannot be taken to be smaller than
O(1) MeV for which the standard big-bang nucleosynthesis pre-
diction is spoiled. We find that a spectral index within 1σ range
of the Planck data can be obtained for vφ � 3 × 107 GeV with the
restriction of MB > 10 MeV. As in the standard cosmology, there
is also a remarkable correlation between the running of the spec-
tral index and the spectral index itself. Taking the 1σ range of the
Planck data for the spectral index, ns = (0.9540,0.9686), the CW
inflation on the brane predicts

dns

d ln k
= (−0.00064,−0.0005). (37)

It is worth noticing that this kind of correlation is unique to CW
potentials and cannot be avoided and therefore provides a crucial
test on the model. The ratio of tensor to scalar perturbations is not
shown because although it is different from zero and negative, its
actual value is so tiny that it is effectively zero from an experimen-
tal point of view. Again this feature cannot be circumvented in the
CW inflation, and therefore the measurement of gravity waves will
completely rule out small-field CW inflation.

The allowed ranges of the symmetry breaking scale, vφ ∼
108 GeV, and the quartic coupling, A ∼ 10−14, shown in Fig. 6, are
of our special interest as such small values of A can have a dy-
namical origin in a model where the full scalar potential, including
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Fig. 5. The spectral index ns , its running dns/dk, the quartic coupling A and the horizon-exit field value of φ/vφ are shown in terms of the brane scale MB for fixed symmetry
breaking scales vφ = 4 × 1015 GeV (left green curve) and 1016 GeV (right red curve) in each panel. The upper two horizontal lines in the first panel show ns within the 1σ
range of the Planck data and the lower line is the 2σ limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this Letter.)
both the inflaton and Higgs sectors, can be generated purely from
radiative corrections.

4. Dynamical generation of the inflaton potential

As a specific example of the CW inflation, let us consider the
SM extended with a generalized U (1)B−L gauge symmetry. In its
minimal setup where the U (1) charges are given by a linear com-
bination of B − L charge and hypercharge as X = Y B−L − xY , the
model requires three right-handed neutrinos which couple to a
B − L Higgs field Φ and thus acquire heavy Majorana masses after
the B − L symmetry breaking:

LB−L = −yNΦ(νR)cνR . (38)

The scalar potential at tree-level is written as

V tree(H,Φ) = m2
H |H|2 + m2

S |S|2 + λH |H|4 + λΦ |Φ|4
+ λHΦ |H|2|Φ|2 (39)

where H denotes the SM Higgs field. As noted in Ref. [4], all of
the above Higgs potential parameters, consistent with the recent
SM Higgs data [5], can be generated radiatively assuming a van-
ishing initial condition at a certain high scale ΛU V . All the scales
are generated by dimensional transmutation of the CW mecha-
nism applied to the B − L gauge symmetry breaking. In this setup,
there are two free parameters, the extra gauge coupling g X and
the right-handed neutrino Yukawa coupling yN , from which the
B − L breaking scale vφ as well as the B − L Higgs quartic coupling
λΦ are generated dynamically. Extending the analysis of Ref. [4] to
higher vφ scale, we will examine whether there exists an appropri-
ate CW minimization point which is consistent with the observed
cosmological quantities derived in the previous section.

Let us now consider the one-loop Coleman–Weinberg potential
[2] for the B − L sector. Taking Φ = φ/

√
2 in the unitary gauge

and the normalization condition of V ′′(0) = 0 and V ′′(Q ) = 6λΦ ,
the one-loop corrected B − L potential is given by [2]

V X (φ) = 1

4
λΦφ4 + 1

64π2
φ4(10λ2

Φ + 48g4
X − 8y4

N

)

×
(

ln
φ2

Q 2
− 25

6

)
+ V 0 (40)

where we took one Yukawa coupling for the right-handed neutri-
nos yN , and added a constant term V 0 normalizing the potential:
V X = 0 at the global minimum. Taking the renormalization scale
at Q = 〈φ〉 ≡ vφ to avoid the large-log uncertainty in the one-loop
approximation [2], one can evaluate the minimization condition of
the potential (40) and obtain

λΦ(vφ) = 11

48π2

(
10λ2

Φ + 48g4
X − 8y4

N

)
(vφ). (41)

This relation fixes the B − L breaking scale vφ in terms of input
values of λΦ , g X and yN which evolve from the high scale Λ to
vφ by renormalization group. Putting back (41) into (40), one has

V X (φ) = 3λΦ

22
φ4

(
ln

(
φ

vφ

)
− 1

4

)
+ 3λΦ

88
v4

φ, (42)

which is nothing but the general CW potential given in Eq. (2) with
λΦ ≡ 22A/3.
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Fig. 6. The spectral index ns , its running dns/dk, the quartic coupling A and the horizon-exit field value of φ/vφ are shown in terms of the symmetry breaking scale vφ for
fixed brane scales MB = 1 MeV (left green curve) and 10 MeV (right red curve) in each panel. The upper two horizontal lines in the first panel show ns within the 1σ range
of the Planck data and the lower line is the 2σ limit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
Letter.)
Fig. 7. The values of vφ vs. λΦ satisfying the CW minimization condition [4]. The
upper (blue), and lower (red) lines correspond to the UV scale M X = 2 × 1011 GeV,
and 1018 GeV, respectively. (For interpretation of the references to color in this fig-
ure legend, the reader is referred to the web version of this Letter.)

In Fig. 7 we present the values of vφ and λΦ satisfying the CW
minimization condition as well as the correct electroweak symme-
try breaking for appropriate values of g X . As noted in Ref. [4], one
can see that larger vφ requires smaller g X . From Fig. 6, one can
see that the spectral index ns falls into the 1σ range of the Planck
data for vφ � 5×106 GeV which requires λΦ ≈ 22A/3 � 2×10−13.
Furthermore, the required values of λΦ drop rapidly for higher vΦ .
Thus one finds viable parameter points around vφ ∼ 108 GeV and
MB ∼ 1 MeV in which the inflaton and Higgs potentials are gen-
erated simultaneously purely from radiative corrections. However,
we should remark that the solutions to the minimization condi-
tion, λΦ ∼ 11/π2(g4 − y4 /6), are found for fine-tuned choices
X N
of g4
X � y4

N/6 resulting in highly suppressed values of λΦ . It is
expected that much less fine-tuned solutions would be found in
some other U (1)′ models which have different beta-function coef-
ficients.

5. Conclusions

We have analyzed the plausibility of a (small field) CW poten-
tial naturally arising from quantum corrections to address inflation
in and beyond the standard cosmological scenario. We have shown
that although it is not possible in the standard scenario to solve
the horizon problem within 1σ consistency with the Plank mea-
surement of the spectral index, brane-world scenarios ease the re-
quirements on the numbers of e-folding needed to solve the hori-
zon problem, while preserving the correlations among the other
observables, allowing CW potentials to fulfill all the inflation re-
quirements and remain an attractive and natural explanation for
inflation. Besides, CW potentials have an inherent prediction on
the relation between the running of the spectral index and the
spectral index itself, which can be tested in the near future. Tensor
modes are essentially absent in CW inflation models and thus, if
found by next generation experiments, can rule out CW motivated
inflationary potentials altogether.

The inflation observables can easily accommodate a rather
small symmetry breaking scale ∼ 108 GeV but do require a tiny
quartic coupling ∼ 10−18. While the CW mechanism generates
small scales through dimensional transmutation, such a tiny cou-
pling may be indicative of a radiative origin. We have illustrated
how dynamical generation of the inflaton as well as the SM Higgs
potential can work consistently with the Planck results as well as
the Higgs mass measurement at the LHC in the context of the SM
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extended with the generalized B − L gauge symmetry to explain
the neutrino masses and mixing.
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