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Abstract: This paper presents two single-pole, double-throw (SPDT) mm-wave switches for Ka-band
phased-array transceivers, fabricated with a 65-nm complementary metal oxide semiconductor
(CMOS) process. One switch employs cross-biasing (CB) control with a single supply, while the other
uses dual-supply biasing (DSB) control with positive and negative voltages. Negative voltages were
generated internally, using a ring oscillator and a charge pump. Identical gate and body floated
N-type metal oxide semiconductor field effect transistors (N-MOSFETs) in a triple well were used as
the switch core transistors. Inductors were used to improve the isolation between the transmitter (TX)
and receiver (RX), as well as insertion loss, by canceling the parasitic capacitance of the switch core
transistors at resonance. The size of the proposed radio frequency (RF) switch is 260 µm × 230 µm,
excluding all pads. The minimum insertion losses of the CB and DSB switches were 2.1 dB at 28 GHz
and 1.93 dB at 24 GHz, respectively. Between 25 GHz and 34 GHz, the insertion losses were less than
2.3 dB and 2.5 dB, the return losses were less than 16.7 dB and 17.3 dB, and the isolation was over
18.4 dB and 15.3 dB, respectively. The third order input intercept points (IIP3) of the CB and DSB
switches were 38.4 dBm and 39 dBm at 28 GHz, respectively.

Keywords: single-pole-double-throw; CMOS; RF switch; Ka-band; phased-array transceiver;
gate-body floating; high isolation

1. Introduction

The recent explosive growth of mobile traffic has created a demand for increased bandwidths
and faster data rates in telecommunication. As a frequency band candidate for fifth-generation
(5 G) communication to solve this traffic increase, not only a band below 6 GHz but also Ka-band
communication, especially 28 GHz and 39 GHz, has been attracting attention. Also, for terrestrial-satellite
backhaul network communication, 17.7–20.2 GHz for downlink and 27.5–30 GHz for uplink are
considered in the Ka-band [1–3]. Due to the short wavelengths corresponding to these frequency
bands, compact phased-array antennas can be realized using wafer-scale, on-chip antennas or
printed circuit-board antennas, as well as mm-wave, complementary metal oxide semiconductor
(CMOS)-integrated circuit technology [4–7]. Many studies on the development of communication
systems using multi-antenna array structures with mm-wave bands have been reported [8–12].
The front-end of the phased-array transceiver is usually composed of a single-pole, double-throw
(SPDT) switch, low-noise amplifier (LNA), power amplifier (PA), and phase shifters (PS).

The SPDT switch selects the signal path between the antenna (ANT) and receiver (RX),
or transmitter (TX), as shown in Figure 1. The time to transmit and receive is divided by the switch,
which is called the time-division duplex (TDD) method, in order to share the antenna with the TX
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and RX. Since the performance of the switch is critical to the noise figure of the RX, and the output
power and efficiency of the TX, low insertion loss and high linearity are required. High isolation is
also important, to prevent signal leakage from the TX to the RX. In addition to these characteristics,
the area of the chip should be minimized, as many components are employed in a phased array
antenna. Although there are many advantages associated with CMOS technology, such as low
cost and high levels of integration, some challenges remain in implementing SPDT switches in this
manner. The main challenge is achieving high isolation in the off state, and low insertion loss in
the on state, simultaneously [13–15]. The π-network has been widely employed at low frequencies,
to enhance isolation, through the addition of shunt switches [16–20]. However, since these shunt
switches add additional parasitic capacitances to the signal path, the magnitude of the insertion loss
increases, and the operating frequency decreases. Previous works have attempted to reduce parasitic
capacitors by using a silicon-on-insulator (SOI) process or by adapting a switch biasing technique.
Thus, resonant switch configurations using isolation enhancement (IE) inductors perform better at
mm-wave frequencies [21–24]. Although the size is larger than π-network SPDT, it can be integrated,
and the switch performance can be improved in certain mm-wave bands.
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Figure 1. Block diagram of the beamforming transceiver. BB: baseband; LO: local oscillator; PS: phase 
shifters; PA: power amplifier; LNA: low-noise amplifier; SPDT: single-pole, double-throw switch. 

In this paper, two types of the SPDT switches for Ka-band phase-array transceivers are presented, 
in which the inductors are employed to enhance insertion loss and isolation by cancelling out the 
parasitic capacitances. The switches employ two different control methods, one using a single supply 
voltage, and one with dual supply voltages. The design of the mm-wave switch is detailed in Section 
2, along with the results of simulations. The results of experiments performed to characterize the 
SPDTs are described in Section 3. A conclusion, as well as a summary of this paper, is detailed in 
Section 4. 

2. Design of the Single-Pole, Double-Throw (SPDT) Switch  

Figure 2 shows the block diagram of the SPDT, which is composed of two switch cores, isolation 
enhancement (IE) inductors, LDS to cancel out the parasitic capacitances of the switch cores, three 
impedance matching circuits for the RX, TX, and ANT ports, and a switch selector. Two types of 
switch cores were designed: The first switch core employs cross-biasing (CB) control with a single 
positive supply (VDD) and ground voltage (0 V). The gate voltage is defined as VC, and the drain and 
source voltage is defined as , as shown in Figure 3a. Since  varies according to the state of the 
switch controls S1 and S0, direct current (DC)-blocking capacitors, CB, are added to the drain and 
source of the transistor. The other switch core uses dual supply biasing (DSB) control with positive 
and negative supply voltages (VDD, −VNN), as shown in Figure 3b. These supply voltages control only 

Figure 1. Block diagram of the beamforming transceiver. BB: baseband; LO: local oscillator; PS: phase
shifters; PA: power amplifier; LNA: low-noise amplifier; SPDT: single-pole, double-throw switch.

In this paper, two types of the SPDT switches for Ka-band phase-array transceivers are presented,
in which the inductors are employed to enhance insertion loss and isolation by cancelling out the
parasitic capacitances. The switches employ two different control methods, one using a single supply
voltage, and one with dual supply voltages. The design of the mm-wave switch is detailed in Section 2,
along with the results of simulations. The results of experiments performed to characterize the SPDTs
are described in Section 3. A conclusion, as well as a summary of this paper, is detailed in Section 4.

2. Design of the Single-Pole, Double-Throw (SPDT) Switch

Figure 2 shows the block diagram of the SPDT, which is composed of two switch cores,
isolation enhancement (IE) inductors, LDS to cancel out the parasitic capacitances of the switch cores,
three impedance matching circuits for the RX, TX, and ANT ports, and a switch selector. Two types
of switch cores were designed: The first switch core employs cross-biasing (CB) control with a single
positive supply (VDD) and ground voltage (0 V). The gate voltage is defined as VC, and the drain and
source voltage is defined as VC, as shown in Figure 3a. Since VC varies according to the state of the
switch controls S1 and S0, direct current (DC)-blocking capacitors, CB, are added to the drain and
source of the transistor. The other switch core uses dual supply biasing (DSB) control with positive
and negative supply voltages (VDD, −VNN), as shown in Figure 3b. These supply voltages control only
the gate voltage, VC, while the drain and source are grounded, i.e., VS,D = 0 V. The negative supply
voltage is generated by an internal negative voltage generator (NVG).
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Figure 3. Schematics of the switch cores with (a) cross-biasing (CB) control and (b) a dual-supply
biasing (DSB) control.

The CB technique is to control gate and drain/source voltages simultaneously, by reversing their
sign, to turn the switch on or off. The gate to drain/source voltage, VGD,S becomes VDD in the on state,
and −VDD in the off state. This negative VGD,S can increase the TX-RX isolation, because the parasitic
channel capacitances are reduced, in comparison to a normal biasing (NB) where VGD,S = 0 V in the
off state, due to the fixed drain and source voltage, i.e., VD,S = 0 V. With the DSB technique, the drain
and source voltages are fixed to 0 V, as with the NB technique. However, by applying VDD in the on
state and −VNN in the off state, a negative VGD,S is applied, as in the CB technique. Thus, high TX-RX
isolation is achieved. Since the DC-voltages of the drain and source are fixed to 0 V, no DC-blocking
capacitors are required. All the deep-N-well (DNW) nodes are tied to VDD, and the substrate node is
connected to 0 V. The lowest voltage is good in terms of the power linearity [18]. Thus, the body biases
of the CB switch are set to 0 V, and the body biases for the DSB switch are set to −VNN.

The substrate resistance of the CMOS process is as small as a few ohms. The noise and interference
between transistors occur through the substrate, resulting in a decrease in signal-to-noise ratio (SNR).
To reduce this effect, the P-type body of the transistor is separated to an N-type silicon layer, which is
called deep-N-well (DNW), as shown in Figure 4. The substrate of the transistor can be modeled as a
P-N-P diode with a triple-well structure. In addition, the junction of the drain/source and the body
can also be modeled as a diode. In Figures 3 and 4, JDB and JSB are the junction diodes between the
drain to body, and source to body, respectively. JB-DNW is the junction diode between the body and
DNW, and JDNW-SUB is the junction diode between the DNW and chip substrate, respectively. If the
voltage applied to the P-type silicon of the diode is higher than the voltage applied to the N-type
silicon, it is conducted. However, in the opposite case, a current does not flow through the diode.
It can be modeled as a reverse biased diode and a parallel parasitic capacitor. In Figures 3 and 4,



Appl. Sci. 2018, 8, 196 4 of 11

CGS and CGD are the parasitic capacitances between the gate and source, and the gate and drain,
respectively. CSB and CDB are the junction capacitances between the source and body, and drain and
body, respectively. The mm-wave-band signal can leak through parasitic capacitors which are caused
by junction diodes. All signal paths through these junction diodes to ground (GND) or DC control
voltage sources should be alternative current (AC)-floated to block unwanted signal leakages. Hence,
17.7 kΩ AC-floating resistors, RF, of are used to the gate, drain, source, body, and DNW, as shown in
Figure 3.
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Figure 4. Cross-sectional view of the triple-well complementary metal oxide semiconductor (CMOS)
transistor. SUB: substrate; DNW: deep-N-well.

The insertion loss and isolation of the switch core in Figure 5a can be defined, according to the
switch state, as |S21|. The power delivered to the output port is determined by the impedances of the
input and output ports, and the impedance of the source-drain channel (Zsw). The magnitude of S21

can be written as:

|S21|(dB) = 10 log
(

2R0

2R0 + |Zsw|

)2
(1)

where R0 is the input and output port impedance of 50 Ω [17]. The IE inductor, LDS, is introduced to
remove the reactance component of the Zsw, which is defined as:

Zsw = Rch||jωLDS||
1

jωCeq
. (2)

In Figure 5b, Rch is the channel resistance of the transistor, which is greater than the impedance of
the blocking capacitance, CB, at operating frequency. Ceq is the effective capacitance of the source and
drain, which is expressed as,

Ceq =
CGSCDS

CGS + CDS
+

CSBCDB
CSB + CDB

(3)

The IE inductance is designed such that the inductor resonates at the operating frequency, to cancel
the effective parasitic capacitance of the transistor. Figure 6 show the simulated insertion loss and
isolation results of the CB switch core when all the inductors (LDS, LTRX, LANT) are assumed to be
ideal, with infinite Q-factor, and the total gate width of the switching transistor is 128 µm. Since the
channel capacitance is canceled out at resonance, the isolation improves from −11 dB to −38 dB.
The insertion loss also improves from −1.1 dB to −0.78 dB, due to the reduction of the channel
capacitance. The switches are designed such that maximum isolation occurs at a target frequency of
28 GHz. Reducing the Q-factor of the IE inductor widens the switch bandwidth. However, the loss
and isolation performance will decrease.
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The CB selector in Figure 7a consists of a two-bit decoder and inverters. The DSB selector in
Figure 7b requires a negative voltage, −VNN, which is generated by an NVG. The NVG comprises a
ring oscillator (OSC), a negative charge pump (CP), and two level shifters (LVS). The oscillator charges
the capacitors, CCP, which have a capacitance of 2.3 pF. Negative charges from the capacitors are
transferred to the output node of the CP, generating −VNN. The oscillation frequency of the OSC is
set to 350 MHz. The estimated settling time is 380 ns, with −VNN = −836 mV, as shown in Figure 8.
The level shifter changes the control voltages from VDD and 0, to VDD and −VNN. The total static
current consumption of the NVG is 150 µA.
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Figure 8. Transient simulation result of the output voltage of negative voltage generator (NVG).

Table 1 shows the switch control voltages according to the control mode and selector. For the
CB switch selector, when both S0 and S1 are set high or low, the switch control voltages (Vc1_CB and
Vc2_CB) become 0 V and block all RF signals. When S0 is high and S1 is low, Vc1 is given by VDD,
and Vc2 goes to 0 V. In contrast, when S0 is low and S1 is high, Vc1 and Vc2 become 0 V and VDD,
respectively. The DSB switch selector turns off the switch in two ways. When both S0 and S1 are set as
low, the switch control voltages (Vc1_DSB and Vc2_DSB) become −VNN. Alternatively, both S0 and S1

are set to high to turn off the NVG by blocking the oscillator current source and setting the control
voltages to 0 V. When S0 is high and S1 is low, Vc1 goes to VDD and Vc2 goes to −VNN. In contrast,
when S0 is low and S1 is high, Vc1 and Vc2 become −VNN and VDD, respectively.

Table 1. Switch control voltages according to switch control mode. NVG: negative voltage generator.

Select Signal CB (Cross-Biasing) DSB (Dual-Supply Biasing)

S1 S0 Vc1 Vc2 Vc1 Vc2 NVG
0 0 0 0 −VNN −VNN On
0 1 VDD 0 VDD −VNN On
1 0 0 VDD −VNN VDD On
1 1 0 0 0 0 Off
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The top view of the layout of the proposed CB and DSB SPDT switches, which displays the
inductors and ground planes, is illustrated in Figure 9. Both switches are identical, with the exception
of the switch cores. All the active circuits are concentrated on the area of the core. Interference between
the active devices and the inductors, through electromagnetic coupling, is minimized by separating the
switch core from the inductors. The electro-magnetic (EM) characteristics were extracted using Sonnet,
a 2.5-D EM simulator. Excluding the core circuit, all the inductors, metal connections, pads and ground
planes except the core circuit were included in the EM simulation, to reduce the differences between
the results from simulations and measurements. The inductance and Q-factor of LDS were simulated
as 643.5 pH and 21.6 at 28 GHz, respectively. The simulated inductance of LTRX was 212.6 pH, and
the Q-factor was 14.9, at 28 GHz. The simulated inductance and Q-factor of LANT were 208.1 pH and
13.7 at 28 GHz, respectively.
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Figure 9. Top view of the layout of the switch.

The contribution to the total insertion losses of the proposed switches was analyzed. Figure 10a
shows the simulated insertion loss of the CB SPDT switch. The insulation loss at 28 GHz is 1.92 dB,
of which 40.6% occurred in the core cell, 21% occurred in the transceiver (TRX) matching circuit,
and 38.4% occurred in the antenna matching circuit, as shown Figure 10b. Figure 11a shows the
simulation insertion loss of the proposed DSB SPDT switch. The insulation loss at 28 GHz is 1.93 dB,
of which 41.3% occurred in the core cell, 20.9% occurred in the TRX matching circuit, and 37.8%
occurred in the antenna matching circuit.
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difference of less than 0.6 dB. The maximum isolation measured was −32 dB, and achieved at 27 GHz, 
as intended. As shown in Figure 13a, the measured isolation was greater than 19 dB, between 25 GHz 
and 34 GHz. With the DSB switch, between 25 GHz and 34 GHz, the measured insertion loss was less 
than 2.5 dB, which was slightly higher than with the CB switch, because the magnitude of the 
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3. Implementation and Measured Results

The proposed SPDT CMOS switches were fabricated using a 1P8M 65-nm CMOS process.
Figure 12a,b show microphotographs of the proposed Ka-band CB and DSB SPDT switches, which have
identical pads and inductors—LDS, LANT, and LTRX—and differ only in the core area. The total size of
the chip, including all the pads, is 460 µm × 520 µm, and the area of the switch is 260 µm × 230 µm.
All control pads, except the RF ports, were protected against electrostatic discharge (ESD). The test
chips were glued to a printed circuit board and RF signals were connected directly to the measuring
equipment using a ground–signal–ground (GSG) with a nominal impedance of 50 Ω. A supply voltage
of 1 V was used for switch control. Small-signal measurements were recorded using a Keysight PNA
E8363C network analyzer (Keysight, Santa Rosa, CA, U.S.). The linearity performances were measured
by a Keysight N9030A spectrum analyzer (Keysight, Santa Rosa, CA, U.S.) and two E8257D signal
sources (Keysight, Santa Rosa, CA, U.S.) with a power combiner.
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Figure 12. Microphotographs of (a) the CB SPDT switch and (b) DSB SPDT switch.

Figure 13 shows the simulated and measured insertion losses and isolation performances of the
CB and DSB switches. The loss from the GSG pads and interconnection line between the pads and
the core switch, which was compensated, was about 0.3 dB. The measured insertion losses of the CB
switch was less than 2.3 dB between 25 GHz and 34 GHz. The minimum insertion loss was 2.1 dB
at 28 GHz. The results from the measurements and simulations were in good agreement, with a
difference of less than 0.6 dB. The maximum isolation measured was −32 dB, and achieved at 27 GHz,
as intended. As shown in Figure 13a, the measured isolation was greater than 19 dB, between 25 GHz
and 34 GHz. With the DSB switch, between 25 GHz and 34 GHz, the measured insertion loss was
less than 2.5 dB, which was slightly higher than with the CB switch, because the magnitude of the
internally generated negative supply voltage, VNN, was smaller than VDD. The minimum insertion loss
was 1.93 dB at 24.4 GHz. The results from the measurements and simulations were in good agreement,
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with a difference of less than 0.6 dB. As shown in Figure 13b, the measured isolation was greater than
16 dB, between 25 GHz and 34 GHz. The minimum isolation measured was −34.81 dB, occurring at
30 GHz. Figure 14a,b shows that both the CB and DSB switches had very low return losses, which were
less than 17 dB in the operating bandwidth.
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Figure 15a,b shows the output powers of the fundamental tones and third order intermodulation
tones of the CB and DSB switches, respectively, according to the two-tone input power. Due to the lack
of a high power mm-wave signal source, the input power was limited to 10 dBm. The third order input
intercept (IIP3) points were calculated using two-tone signals at the frequency of 28 GHz. Each tone
power was 7 dBm and the tone spacing was 100 MHz. The measured IIP3s of the CB and DSB switches
were 38.4 dBm and 39 dBm, respectively.
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Figure 14. Return losses of (a) the CB SPDT switch and (b) DSB SPDT switch. 
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4. Conclusions

In this paper, two SPDT mm-wave switches for Ka-band beamforming applications were proposed,
which were fabricated using a 65 nm CMOS process: Two types of switch core circuit, one controlled
using a CB technique, and the other by a DSB technique, were also proposed. By connecting an
IE inductor for canceling out parasitic capacitances of the switch core at resonance, the isolation
performance of the switches can be improved, as well as the insertion loss, without additional shunt
switches. The core size of the proposed RF switch, excluding all pads, was 260 µm × 230 µm.
The measured insertion losses of the CB switch and the DSB switch were below 2.3 dB and 2.5 dB,
respectively, between 25 GHz and 34 GHz. The measured return losses of the CB and DSB switches
were below 16.7 dB and 17.3 dB, and the isolation of the switches was less than 18.4 dB and 15.3 dB,
respectively, in the bandwidth. The IIP3s of the switches were 38.4 dBm and 39 dBm, respectively,
at 28 GHz.
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