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We propose a new pattern matching algorithm for composite context-aware services. The new algorithm, RETE-ADH, extends
RETE to enhance systems that are based on the composite context-aware service architecture. RETE-ADH increases the speed
of matching by searching only a subset of the rules that can be matched. In addition, RETE-ADH is scalable and suitable for
parallelization. We describe the design of the proposed algorithm and present experimental results from a simulated smart office
environment to compare the proposed algorithm with other pattern matching algorithms, showing that the proposed algorithm
outperforms original RETE by 85%.

1. Introduction

The past decade has seen the dropping costs for wireless
personal devices such as smart phones and tablets while the
capabilities of those devices continue to evolve rapidly. Inter-
connecting these computing devices or distributed sensors
can be used to provide intelligent services, using a variety
of sensing technologies of various sizes, from simple motion
sensors to electronic tags or video cameras [1]. Further-
more, recent advances in software technology and computing
devices have enabled revolutionary and user-customized
digital services [2] such as ubiquitous computing. These
differ from conventional communication models, requiring
sophisticated integration of huge amounts of information on
the fly to enable performing appropriate actions in a timely
manner.

Because of these complex aspects, composite context-
aware (CCA) architecture, which we describe in detail in
Section 2, is promising for ubiquitous computing. Context-
aware techniques can be used to provide the user with useful
and intelligent applications by taking into account contextual
information from the user’s environment. The CCA archi-
tecture is composed of several elements, which include an
inference control function, interpretation function, composite

context information (CCI) repository, and inference engine.
Among them, the inference engine which uses the event-
condition-action (ECA) engine, is the key in speeding up CCA
services. To construct an efficient inference engine, one of the
most reasonable solutions is to implement an ECA engine by
using pattern matching algorithm developed for production
systems.

The RETE algorithm [3] is one of the most efficient
forward inference algorithms that can be used for construct-
ing an ECA engine; however, it has a few drawbacks [4–
6]. While there have been a number of contributions to
improving the pattern matching algorithm [7–10] in recent
decades, not many of them considered an ECA engine
within the CCA architecture as the target environment. In
addition, although past contributions have led to notable
performance improvements, the improved algorithms have
also been more complex. For example, although the RETE’
algorithm [10] has shown a performance improvement of
more than 80% relative to RETE, it requires a complicated
algorithmic structure and introduces time stamp in its data
structure.

In this paper, we propose a new pattern matching algo-
rithm called RETE-Alpha network Dual Hashing (RETE-
ADH). We developed RETE-ADH for CCA services, and
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herein we describe its validation through simulation in a
CCA environment. It is a relatively simple algorithm that
maximizes the use of referencing rather than comparing
or searching all nodes. This characteristic makes RETE-
ADH faster than other existing algorithms, as we show in
the evaluations in Section 4. Because of its concise network
structure, RETE-ADH is scalable, and thus it can han-
dle the varying characteristics of recent complex network
services. Furthermore, we predict that RETE-ADH can be
implemented in parallel hardware for the same reason. The
proposed algorithm efficiently searches only rules that can be
fired by reconstructing the alpha network with hash tables.
This can increase the speed of pattern matching considerably
while providing a full set of matched results like RETE.

2. Background and Related Work

2.1. Composite Context-Aware Service Architecture. Context
can be considered as a set of information that includes a user’s
activity, location, personal preferences, and current status.
The most widely accepted formal definition of context is that
of Abowd et al. [11]: “Context is any information that can be
used to characterize the situation of an entity. An entity can
be a person, place, or object that is considered relevant to the
interaction between a user and an application, including the
user and applications themselves.” In a previous study [12], we
have classified context into unitary and composite contexts.
We have defined the unitary context as a basic building block
that is not further divisible. Also, as shown in Figure 1, we
have defined the composite context information as a high-
level context abstraction by integrating or composing unitary
context information with related multientities [12]. In other
words, to provide composite contextual service, multiple
unitary contexts can be combined. For example, suppose that
a tourist is planning to visit an attraction near his home.
Then, visiting an attraction near homewould be considered as
the composite context. To construct the composite context,
the following various unitary contexts can be related to the
composite context: weather, allowed time, distance to the site,
budget, accompanying people, transportations, and so forth.
Future context-aware services are expected to manipulate
such complex composite context.

Figure 2 shows our proposed CCA service architecture.
When a user sends composite context information to the
CCA service, the service architecture requests/subscribes
the CCI through the service layer. The user requests the
CCI from the context-aware service, and then the service
responds to the user’s request from the CCI interface control
function if the service is immediately able to find the proper
presence information.Otherwise, the user subscribes theCCI
to the context-aware service. Then, the composite context-
aware service processes the CCI through the underlying
CCI interface control function. Once the CCI interface
control function finds the proper presence information for
the context, the information is sent to the user. After receiving
this request/subscribe command, the CCI interface control
function saves the CCI to the CCI repository.The CCI repos-
itory can be utilized for later requests/subscriptions. In the

CCI interpretation function, the request-subscribe command
is differentiated through a function-type decision process
and passed to the request/response and subscribe/notify
processes. After the request/subscribe command is processed,
the CCI is extracted by the CCI extraction function and then
the corresponding rules are parsed and translated. By using
the rule pattern matching algorithm, the inference engine
finds proper presence information for the context. We adopt
our proposed pattern matching algorithm for this inference
engine.

Figure 3 shows an example of the processing of CCI in
the proposed composite context-aware service architecture.
The context-aware service should increase the capabilities
of the user’s smart devices in various contexts, such as the
home, office, or shopping mall. Composite context-aware
applications can monitor such regions and modify their
behavior accordingly to help provide comfortable lifestyles.
Based on this, the CCI needs to be expanded to consider
the user’s current environment. For example, the CCI can be
expanded by using device ID, user ID, service ID, and location
ID. The device can have unique parameters such as device
name, type, provider, supported services, connected network
status, location, and owner. In a similar fashion, the user ID
has unique parameters such as user name, device name, user
location, and user’s status.

2.2. ECA Architecture and Pattern Matching Algorithms. The
ECA pattern is composed of three modules: event, condition,
and action. Each rule is expressed as IF <event-condition>
THEN <action>. The <event-condition> part of the rule
specifies the situation under which the actions are enabled,
and it is composed of a logical combination of events. An
event models some occurrence of interest in an application
or in an environment. The <action> part of the rule is
composed of one ormore actions that are triggered whenever
the <condition> part is satisfied [1].

The ECA architecture can be used to support the compos-
ite context-aware service, and one of the most efficient ways
to construct an ECA engine is to adopt a pattern matching
algorithm.Of course, we can adopt existing rule based pattern
matching algorithms; for this reason, we analyze existing
algorithms for the inference engine such as RETE [3], TREAT
[5], and LEAPS [7]. However, using an algorithm specifically
developed for CCA services would be expected to improve
the quality of service; accordingly, herein we propose a new
pattern matching algorithm.

2.3. Pattern Matching Algorithms. Rule-based systems exe-
cute actions based on the rules that are fired by the incoming
facts. Each fact is an expression of a certain situation or
environment in the real world. Each rule is a predetermined
method for how the system should behave in a certain
situation.

A typical rule-based system is composed of working
memory, a knowledge base, an inference engine, and an
action performer. The working memory is a space in which
facts are saved; facts are frequently updated and changed in
the system. The knowledge base is a space in which rules
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Figure 1: Derivation of composite context.
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Figure 2: Architecture of composite context-aware service.

are saved. Conditions are tested under the criteria of the
rules. The inference engine is a core part of the rule-based
system; it checks whether the facts satisfy the rules based
on a substitution method during each cycle of the inference
engine.This test should be repeated for all the rules; therefore,
there are usually a very large number of calculations in each
cycle of the inference engine. This process in the calculation
is called pattern matching. After finally deciding on a rule,
the <action> part is executed; this process is called “firing.”
When a rule is fired, the facts in the working memory can
be updated. The pattern matching time represents almost all
of the processing time; for this reason, reducing the pattern

matching time would directly improve the system’s overall
performance. An inference engine that uses the RETE or
TREAT algorithm has a space called an agenda. The agenda
temporally saves rules whose <condition> part matches the
facts; this set of rules is called a conflict set.

In this section, we will give a brief overview of RETE,
TREAT, and LEAPS, which are the most popular pattern
matching algorithms that are used inmany inference engines.
We will analyze these algorithms and discuss their limita-
tions.

2.3.1. RETE. Most pattern matching algorithms save in their
working memory any partial matches produced during the
previous inference cycle. Thus, they can avoid reevaluating
the entire set of facts whenever changes are made. The RETE
algorithm [3] is one such pattern matching algorithm; it
maintains a network of partial matches to improve run-time
efficiency. This network is composed of nodes that contain
the facts. Each fact can be mapped to a token, which consists
of a tag and a list of data elements. The tag indicates that
the corresponding token has been added to or deleted from
working memory.

There have been many previous efforts to address RETE’s
problems [4–6]. Among them, we specifically consider the
issue of beta memory explosion. The RETE network has
2-input nodes, which are referred to as beta nodes. They
send their outputs to beta memory, and because the RETE
retains partial matches for performance reasons, the number
of beta nodes increases rapidly, and thusmaintaining the beta
memory consumes vast memory resources.

2.3.2. TREAT. Oneof themain goals of theTREATalgorithm
is to overcome a major problem of the RETE, namely, to
reduce the overhead of networkmanagement.This algorithm
is motivated by McDermott’s hypothesis: “It seems highly
likely that for many production systems, the retesting cost
will be less than the cost of maintaining the network of
sufficient tests” [13]. Unlike RETE, TREAT does not use
beta memory; thus, it significantly reduces the overhead
of network management. As a result, TREAT exhibits a
maximum 50% better performance than RETE [5].

To avoid the use of the beta memory, TREAT recomputes
thematches repeatedly [14].Thismeans that the job of finding
the alpha nodes that correspond to the input of beta nodes is
done repeatedly, which may render TREAT inappropriate for
bounded algorithms.
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Figure 3: Example of composite context information structure.

2.3.3. LEAPS. Unlike RETE and TREAT, which use eager
evaluation techniques, LEAPS uses lazy evaluation. Instead
of generating all possible matches, LEAPS computes at most
one match per cycle. It discards the conflict set, using a stack
structure instead. Thus, it can reduce the computing time
relative to the case of RETE and TREAT, which require pro-
cesses for conflict resolution. Furthermore, LEAPS does not
need beta memory. The stack management cost for LEAPS is
known to be very low compared to most applications. LEAPS
shows better performance than other algorithms, especially
when the conditions are complex [15].

In spite of the advantages of LEAPS, there are some
obstacles to use it generally. Its characteristic of producing
at most one match per cycle makes it unsuitable for some
applications [16]. Such applications include the simulator
used herein to evaluate the proposed algorithm, and also
general ECA engines. Similarly, composite context-aware
services require a full set of match instances.

3. Proposed Algorithm

3.1. Overview. As mentioned before, RETE may consume a
lot of resources due to its heavy use of beta memory. TREAT
requires less memory than RETE, but may undergo an
explosive amount of recomputations. LEAPS is more efficient
than RETE or TREAT in terms of time and storage, but it
may not fit some applications, including our own scenario in
which its output of at most one match is not enough. For this
reason, we propose a new pattern matching algorithm called
RETE-ADHwhich extends the RETE algorithmwith hashing
techniques.

One of the primary features of the proposed algorithm
is its adoption of double hashing in the alpha network; this
increases the matching speed. Double hashing also reduces
the number of beta nodes, thereby reducing the volume of
the conflict set. This change, consequently, transforms many
comparison operations into simple referencing operations;
this is the main contributor to performance improvement by
this algorithm.

Recently, a few approaches including alpha network
hashing have been reported [8, 9]. In the alpha network, the
alpha nodes are used to evaluate literal conditions of the facts.
The fact data propagates through the next alpha node when it
satisfies the current literal condition.The alpha node hashing
is effective in the process when the propagation goes from an
object-type node to an alpha node [8, 9]. In these approaches,
an alpha node is added to a type-node, and the literal value is
added as a key to the alpha node.

3.2. Core Algorithm. In our proposed algorithm, we use
double hashing as follows.

(i) Each alpha node is hashed to variable nodes.
(ii) Each variable node consists of a variable name and a

secondary hash table.
(iii) Each entry in the secondary hash table consists of a

pair of fact attributes and a list of the related facts.

Note that in previous approaches using alpha network
hashing [8, 9], all the facts in the alpha network have to be
searched to build the beta network. In contrast, the proposed
algorithm avoids useless alpha nodes by using the secondary
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hashing table. For this reason, RETE-ADH can reduce the
volume of the beta network and turn some comparison
operations into referencing operations.

3.3. Case Study. Assume that we have the set of rules shown
in Figure 4(a). In Figure 4, the rule searches for a stack of
two blocks to the left of a block with a specific color. This
rule has three conditions, which are enclosed by parentheses.
Within each condition, let us denote a variable by enclosing
it with angle brackets. For example, ⟨𝑥⟩ indicates a variable
𝑥 in the condition. Constants and identifiers are not enclosed
by brackets. To fire this rule, we need facts satisfying the three
conditions, which we will refer to as 𝑐

1
, 𝑐
2
, and 𝑐

3
.

Assume that we have the fact (b1 ∧ on b2), which satisfies
condition 𝑐

1
. Then, the fact that satisfies condition 𝑐

2
will be

(b2 ∧ left-of b3), since b2 in condition 𝑐
1
and b2 in condition

𝑐
2
should be matched. The fact satisfying condition 𝑐

3
will

be (b3 ∧ color ⟨𝑐⟩). The ⟨𝑐⟩ in the condition specifies the
color that the user wants. Similarly, we can list the matched
conditions as shown in Table 1. The RETE pattern matching
algorithm constructs the alpha networkwith Table 1 as shown
in Figure 4(b).

Figure 5 shows the alpha network of RETE-ADH based
on the rule example shown in Figure 4(a). The matching
process of RETE-ADH is similar to that of RETE; the
difference is in how to construct the alpha network. In the
RETE algorithm, one node is chosen in the alpha network and
is attempted to bematchedwith the nodes of the beta network
by using all the facts. In contrast, the RETE-ADH algorithm
chooses facts in the alpha network that are highly likely to
match with beta nodes. Assume that we try to match 𝑐

1
with

𝑐
2
. In this case, 𝑐

1
has two variables ⟨𝑥⟩ and ⟨𝑧⟩. Because the

hashing table is composed of the variables, RETE-ADH tries
searching with these variables. Since 𝑐

2
has no ⟨𝑥⟩, RETE-

ADH searches 𝑐
2
with ⟨𝑦⟩ of 𝑐

1
. The 𝑐

2
has an identifier ∧

left-of, and 𝑐
2
has a hashing table that sets ⟨𝑦⟩ and ⟨𝑧⟩ as a

key. Each entry in hashing table of 𝑐
2
consists of a pair of fact

attributes and a list of the related facts. In Figure 5, B2 and
B3 are substituted into the ⟨𝑦⟩ of 𝑐

1
. Therefore, we can find

the fact (B2 ∧ color blue) by using the primary hashing table
that sets ⟨𝑦⟩ of 𝑐

2
as a key and the secondary hashing table

that has B2 as a key. In this manner, we can find (B3 ∧ color
red) with B3. Note that RETE-ADH searches facts using the
double hashing table instead of searching all of the facts of the
alpha node, as mentioned above.

In the previous example, RETE has to apply 24 combi-
nations of the facts to find condition matches in Figure 4(b);
contrastingly, RETE-ADH tries only 4 combinations. In this
specific example, the number of beta nodes is the same for
both RETE andRETE-ADH; if there aremany conditions and
facts, there will be a huge number of beta nodes generated in
RETE, making the matching execution time of RETE even
worse than in Figure 4 example.

3.4. Characteristics. In our study, among RETE, TREAT,
and LEAPS, we chose to extend RETE because it best fits
our application purpose. If we were to use TREAT for our
application, the recursive matching calculation of TREAT

(a)

Root

Alpha network

∧on ∧color ∧ left-of

(B1 ∧on B2) (B1 ∧color red)
(B2 ∧color blue)

(B2 ∧ left-of B3)
(B3 ∧ left-of B4)

(B3 ∧color red)
(B1 ∧on B3)

(B2 ∧on table)
(B3 ∧on table)
(B4 ∧on table)

(b)

Figure 4: Rule example and its alpha network in RETE.

Table 1: Facts of the 𝜔
𝑛
, where 𝑛 ∈ {1, 2, . . . , 9}.

𝜔
1
: (B1 ∧on B2)
𝜔
2
: (B1 ∧on B3)
𝜔
3
: (B1 ∧color red)
𝜔
4
: (B2 ∧on table)
𝜔
5
: (B2 ∧left-of B3)
𝜔
6
: (B2 ∧color blue)
𝜔
7
: (B3 ∧left-of B4)
𝜔
8
: (B3 ∧on table)
𝜔
9
: (B3 ∧color red)

could become explosive because there is a huge number of
facts in the composite context environment.We also consider
LEAPS to be unsuitable because it produces at most one
match per cycle, meaning that we cannot choose the most
appropriate service by using LEAPS alone.

Figure 6 shows a concise comparison between RETE
and our proposed algorithm with a rule (IF A = ⟨𝑥⟩∧ B
= ⟨𝑥⟩⟨𝑦⟩∧ C = ⟨𝑦⟩ THEN action) and the facts in Table 1.
The original RETE tries to trigger the action with two 2-
input nodes (Figure 6(a)) accompanying five comparison
operations (One A node with three B nodes and one AB
node with two C nodes) while RETE-ADH tries to trigger the
action with simple referencing (Figure 6(b)) accompanying
two operations (node A to B and node B to C). In this
example, our proposed algorithm reduces the number of
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Figure 5: Alpha network of the RETE-ADH.

Figure 6: Comparison between RETE and RETE-ADH.

comparison operations by 60%, which roughly matches with
the empirical results shown in Section 4.

Figure 6(c) shows another nice property of the proposed
algorithm and its suitability for the parallelization. Assume
that we use the same rule noted above.The tree in Figure 6(c)
has one more node below node A compared to those in
Figure 6(a) and Figure 6(b). Note that the nodes A, B, and C
and each of the groups of nodes below them can be stored
separately. For example, we can parallelize the algorithm by
implementing the map-reduce computation. After receiving
facts, we can execute a map phase in which the nodes that
should be searched are selected. Then we have a blue group
and a red group of mappings. After computations of these
groups, we can execute a reduce phase, noted in green.
Note that we can compute each of the grouped mappings
concurrently. Although in the case of Figure 6(c), there is
some overhead (relative to the sequential algorithm) because
each of the computations in grouped mappings should be

done thoroughly; we expect that for a large set of rules and
facts, such a parallelized algorithm can easily outperform
sequential ones. In addition, a parallel algorithm can delegate
the effort required for the matching process to modern
parallel processors such as CUDA GPUs, leaving the main
CPU free to perform other tasks.

4. Test Bed: Virtual Simulator for
a Smart Office Environment

In order to validate the proposed architecture and algorithm,
we prepared a number of test cases targeting application
in a smart office environment. Suppose that we are devel-
oping the smart office scenario depicted in Figure 7 with
a virtual simulator. The imaginary smart office application
automatically provides the most appropriate service for the
employees by using the pattern matching algorithm. When
an employee enters the office, the smart office application
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Figure 7: Composition of the smart office.

will automatically provide context-aware services such as
turning on his/her computer, light, and printer. In addi-
tion, it maintains comfortable temperature, humidity, and
illumination for the users by controlling air conditioners,
humidifiers, and lamps, allowing employees to work in an
optimal environment without bothering with environmental
controls.

4.1. Overview. Let us assume that three employees enter
office A and one employee enters office B. Before it can
yield meaningful context information, the system will need
to collect information as follows.

(i) Sensing: gathering context information from sensor
devices.

(ii) Aggregating: observing, collecting, and composing
context information from various context informa-
tion processing units.

(iii) Inferring: interpreting context information to derive
other types of context information, based on logic
rules and the knowledge base, for instance.

(iv) Adopting: projecting context information of given
situations.

One smart office scenario for a specific context adaptation
case is demonstrated in Figures 8 and 9. After the user
enters the smart office building, the user’s device sends a
request/subscriptionmessage to the composite context-aware
system. Based on the device ID and user ID, the main system
identifies the user and provides services accordingly.

Figure 8 shows a layout of the developed smart office
application. Our smart office application mainly consists of
three components: theMAP,DATA, and SYSTEMMESSAGE
modules. An event controller is also developed, as shown in
Figure 8. Each component is described as follows.

(i) MAP module: this module shows the office environ-
ment graphically. In this application, we assume that

there are four places: conference room A, conference
room B, office A, and office B. Also, this module
depicts the state of each electronic device, door, and
window, as well as each employee’s current location.

(ii) DATAmodule: this module shows the office environ-
ment numerically; that is, through context informa-
tion values. If a scenario occurs, this module shows
the resulting changes in each context value.

(iii) SYSTEM MESSAGE module: this module shows the
sequential control flow when a scenario operates. It
chronologically shows the scenarios that have been
occurring, the contexts that have changed, and the
values of those contexts.

In this application, we can generate a virtual scenario
by using the event controller. Table 2 shows the scenarios
included in the smart office application. If wewant to simulate
any other scenarios in the smart office environment, new
scenarios can be added using the event controller.

4.2. Structure. To validate the efficiency of the RETE-ADH
algorithm in the composite context-aware system, we com-
pared it with three other pattern matching algorithms in the
virtual simulator. For each algorithm, the inference engine
executed the algorithm and recorded the execution time
for performance comparison. The control package integrated
each algorithm. By using the filemanage function in the
control package, each algorithm was identified and adopted.
The related rules and factswere sent and received through this
filemanage function. Each algorithm sent and received nec-
essary parameters or call functions using the AlphaNet.java,
AlphaNode.java, and BetaNode.java files.

Figure 10 shows a class diagram of RETE-ADH. When
the RETE-ADH algorithm receives rules and facts, it differ-
entiates the facts and records them to the alpha memory.
After storing the facts, RETE-ADH composes the alpha
network while considering their relationships.This process is
performed by using the NewRete, AlphaNet, AlphaSubNode,
and AlphaNode classes. The AlphaSubNode class is used
only in the RETE-ADH algorithm, to support its secondary
hashing.The BetaNode class is used for saving interim results.
In the cases in which other algorithms are used, the basic
structure and process is similar.

Figure 8 shows an empty smart office. In the datamodule,
we can see the four employees’ favorite temperatures, illumi-
nation levels, and humidity levels, as well as their respective
locations. Note that, their locations are indicated as Out
because none of them are present. Moreover, we can see that
all devices are turned off. Now, we generate an event using the
event controller: <employeeA, B, C. andD enter office B,A, A,
and A, respectively>.

In the virtual simulator, we follow ECA-DL; accordingly,
this event can be expressed as person A goes to work at
office B, person B goes to work at office A, person C goes
to work at office A, and person D goes to work at office A.
Figure 9 shows that all the employees have entered their
offices. When the simulation begins with the start button
on the event controller, the person icons move to offices
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Figure 8: Initial status of the smart office.

Figure 9: Changed status of the smart office.

A and B. Furthermore, the devices are automatically set to
each employee’s favorites. In Figure 9, we can observe the
changes in the states of each person and electronic devices
through the DATA, SYSTEMMESSAGE and MAP modules.
Three employees are located in office A and one employee is
located in office B. Moreover, personal computers, lights, air
conditioners, and humidifiers are turned on in both rooms A
and B. In the DATA module, the employees’ locations are set
up, and other parameters are changed accordingly. However,
the humidity, temperature, and illumination are not set to
each employee’s favorites. This is because the three persons
in office A have different favorites.

4.3. Empirical Result. In this section, we compare the pro-
posed schemewith theRETE, TREAT, and LEAPS algorithms
in the context of smart office virtual simulator. In the
smart office scenario, our smart office application tries to
obtain context information by conducting pattern matching
between a set of rules and fact information.Then the applica-
tion picks appropriate services according to the context and
provides them to the users.

For this simulation, we randomly generated various
scenarios and measured the processing speed of each pattern
matching algorithm, which indicates the average processing
time to find a successful match.

Figure 11 shows the pattern matching performance for
each algorithm. As shown in the figure, the LEAPS algorithm
provided the best processing performance in finding a single
rule. As noted previously, this is because the LEAPS algorithm
does not try to find the full matched set, and fires at most
one rule permatching cycle. Our proposed algorithm outper-
formedTREAT andRETE. Asmentioned before, TREAT and
RETE spend much time in constructing the network, which
makes the corresponding systems access memory frequently
whenever the fact information is updated. One interesting
finding is that the RETE algorithm had better performance
than the TREAT algorithm. In the smart office application,
the number of rules that can be fired is relatively limited. It
can be deduced that the RETE and RETE-ADH algorithms
effectively utilize their beta memories in the given environ-
ment. Note that we cannot adopt the LEAPS algorithm for
our application, which needs a full set of matched rules
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Table 2: Scenarios included in the smart office application.

Scenario rule Description
Person, go to work at, room Commutes to the office
Person, go home, room Get off work
Person, hold a meeting with, person, at room Hold a meeting (two people)
Person, hold a meeting with, person, person, at room Hold a meeting (three people)
Person, hold a meeting with person, person, person, at room Hold a meeting (four people)
Person, adjourn the meeting with, person Adjourn a meeting (two people)
Person, adjourn the meeting with, person, person Adjourn a meeting (three people)
Person, adjourn the meeting with, person, person, person Adjourn a meeting (four people)
Person, call, person Call person
Person, call, person, person Call two persons
Person, call, person, person, person Call three persons
Person, ask, person, to leave Ask person to leave
Person, ask, person, person, to leave Ask two persons to leave
Person, ask, person, person, person, to leave Ask three persons to leave
Person, open the window Open the window
Person, close the window Close the window
Person, open the blinds Open the blinds
Person, close the blinds Close the blinds
Person, use printer Use a printer
Person, get tired Get tired (abstract scenario)
Person, feel bad Feel bad (abstract scenario)
Person, feel good Feel good (abstract scenario)
Person, happy Happy (abstract scenario)
Person, unhappy Unhappy (abstract scenario)
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Figure 10: Class diagram of the RETE-ADH. (NewRete class represents RETE-ADH class).
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Figure 11: Experimental results.

to signify accurate context, and to enable the system to
provide the most appropriate services. Rejecting the LEAPS
algorithm leaves us with the options of TREAT, RETE, and
our proposed algorithm. The experimental results suggest
that our proposed algorithm is the best fit among these
options for the targeted composite context-aware service.

5. Conclusions and Future Work

In this paper, we proposed a composite context-aware service
architecture and a new pattern matching algorithm. In
addition, we implemented a virtual simulator to validate our
architecture and algorithm.The proposed algorithmprovides
enhanced matching performance by searching only a subset
of the rules that can be matched. This improvement was
made possible by the adoption of double hashing in the alpha
network. We compared the proposed algorithm with the
well-known patternmatching algorithms RETE, TREAT, and
LEAPS by using our virtual simulator. The simulation results
show that our proposed algorithm outperforms the TREAT
and RETE algorithms. In addition, LEAPS was rejected due
to its unique behavior of firing at most one rule per matching
cycle, which is insufficient for context aware services. It was
observed that the matching performance of the proposed
algorithm was improved by 85% compared to that of RETE.
We presented a practical scenario set in a smart office to show
the applicability and validity of our composite context-aware
service architecture.

In the future work, wewill extend the proposed algorithm
to exploit a parallel hardware architecture such as that of a
CUDA GPU. In addition, we plan to carry out experiments
using actual sensor nodes in various real-world scenarios.
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