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We present a low cost battery-powered 6-degree-of-freedom wireless wand for 3D modeling in free space by tri-axis Magnetic,
Angular Rate, Gravity (MARG) and vision sensor fusion. Our approach has two stages of sensor fusion, each with different
algorithms for finding 3D orientation and position.The first stage fusion algorithm, a complementary filter, utilizes MARG sensors
to compute 3D orientation relative to the direction of gravity and earth’s magnetic field in a quaternion format, which was adjusted
with compensations for magnetic distortion. The second stage fusion algorithm, a Kalman filter, utilizes accelerometer data and
IR marker velocity to compute 3D position. In order to compute the IR marker linear velocity along the optical axis (the z-axis),
we present a simple and efficient image-based technique to find the distance of the object from the camera using blob area pixels
in the image. Our fusion (inside-in and outside-in) approach efficiently solves short time occlusion, needs of frequent calibration,
and unbounded drift problems involved in numerical integration of inertial sensors data and improves the degrees of freedom at
low cost without compromising accuracy. The results are compared with a leading commercial magnetic motion tracking system
to demonstrate the performance of the wand.

1. Introduction

There has been increasing research over the last decade
in using 6DOF motion tracking devices for 3D spatial
sketching and modeling [1–4] in immersive virtual reality
(VR) environments. Other efforts include 2D tablet screens
used to draw a 2D sketch that is processed into 3D designs
[5, 6]. The objective of practical spatial drawing and editing
in 3D demands low-cost, precision, small size, and ease of
use. Existing professional motion tracking systems that use
electromagnetic, ultrasonic, optical, inertial, and multiple-
sensor technologies [7] are too expensive for commercial
3D immersive VR and modeling and require a degree of
technical knowledge to use them. Outside-in stereo vision
has been widely used for 3D modeling, but this system often
suffers from occlusion and interference and apparent loss of
DOF. Any accidental change in the position of a camera after
calibration requires complete recalibration [8].

3Dmotion-based human computer interaction (HCI) has
long been an active research topic in VR, and it has been
shown that 3D interfaces can be useful in many consumer-
level applications such as home gaming [9] and 3D user
input [10–12]. Emerging demands for rich interaction have
led to the development of handheld pointingmotion interface
devices [13, 14].These commercial devices incorporatemicro-
electro-mechanical system (MEMS) inertial sensors such as
accelerometers and gyroscopes, and their contributions are
limited to gesture recognition, rotation, and vision sensing as
for 3D position. These devices are aimed to interact with 3D
digital media content and motion gaming and are unsuitable
for 3D modeling and editing in free space, which requires
precise 6DOF motion sensing.

The main technological bottleneck that limits accuracy
in computing position and orientation from MEMS inertial
sensors is the drift caused by numerical integration of accel-
eration and angular rate [15–17]. However, inertial sensors
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are well known for their short term precision, high-frequency
data rates, and size. To leverage these advantages, benefits of
sensor fusion techniques using additional sensors have been
proposed by researchers in the areas of navigation [18, 19] and
motion capture [20].

Another recent innovative work, called MEMSEye, uses
MEMS-mirror-based optical 3D tracking [21]. Combination
of two or more MEMSEye units can track light sources such
as IR light-emitting diodes (LED) and corner cube retrore-
flectors (CCRs). By triangulating the tracked object’s relative
position from each unit, its 3D position can be computed
in relatively large volumes with submillimeter precision at
update rates of >20 kHz. However, a fully functional unit
using this technology platform costs more than one thousand
dollars, making it unaffordable for a wide range of users.

With increasing interest in 3D display devices, a simple
and low-cost solution that can provide enough precision and
flexibility is not yet available for 3Dmodeling. Our work aims
to advance 6DOF motion sensing by two-stage multisensor
(MARG and vision) fusion to make use of their complemen-
tary properties, whichwas inspired bymultisensor navigation
systems. So it is essential to acquire accurate timestamp
information to synchronize MARG measurements and the
camera. In order to do that, we use a hardware triggerable
IR camera.

This paper is organized as follows. Section 2 gives the
description of the proposed system design and the details of
the wireless wand architecture. Section 3 explains first stage
sensor fusion for 3D orientation using MARG sensors and
themagnetic distortion correction technique. In order to find
the linear velocity of the IR marker along the camera z-axis,
we explain our image-based technique in Section 4, followed
by a description of the second stage sensor fusion, and
performance comparison results with a leading commercial
motion tracking system in Sections 5 and 6, respectively.
Section 7 concludes our approach. Throughout the paper, a
notation systemof leading superscripts and subscripts similar
to [22] is used to denote the relative frame of orientations and
vectors. For example, 𝑒

𝑏
𝑞
𝑡
describes the quaternion of sensor

body frame b relative to the earth frame e at time t, and 𝑒𝐴est
is an estimated vector described in frame e. The ⊗ operator
denotes a quaternion product.

2. System Design

2.1. System Overview. The wireless wand is designed to be
used in front of a computer monitor with a camera attached
on top of it as shown in Figure 1(a). We use a wide field of
view camera which has an IR filter and 640 × 480 resolution
to capture the spherical IR marker located at the tip of
the wand at 50, 75, and 100 frames per second (FPS). The
wand is equipped with triaxis MARG sensors, temperature
sensor, and a microcontroller communicates with them to
gather a full set of sensor data, from which it computes 3D
orientation that is sent in data packets to the computer via
wireless Bluetooth link. Data packets contain the first stage
sensor fusion output, 3D orientation in quaternion format,
raw and calibrated individual sensor data, and buttons and

LEDs status information as shown in Figure 2(a). A server
program running in the computer communicates with both
the wand and the camera as shown in Figure 2(b). In
server program, an image-based blob tracking module uses
thresholding technique for camera images to find the location
and area of the IR marker in image in terms of pixels. The
data preprocessing module uses our image-based technique
which is explained in Section 4 for finding IRmarker velocity
along the optical axis (z-axis) of the camera using the area of
the marker from the blob tracking result. Also, a technique to
calculate gravity vector from the quaternion is incorporated
into preprocessing module as MEMS triaxis accelerometer
senses gravity plus translational acceleration of wand. The
sensor fusion algorithm in Figure 2(b) has a 9-state Kalman
Filter (KF) algorithm to compute 3D position. The inputs
to the KF are triaxis translational acceleration and velocity
vectors from preprocessing module. The server program
(API updater) implemented in C++ serves 3D position,
orientation, and buttons and LEDs statuses to any application
for 3D interaction and modeling. The following section
presents the architecture of the wand in detail.

2.2. Wand Architecture. The wand shown in Figure 1(b) has
a triaxis digital 16-bit gyroscope, 12-bit accelerometer, and
12-bit magnetometer, each with its own respective selectable
ranges of up to ±2000∘/s, ±8 g, and ±8.1G. Also, a digital 16-
bit thermometer is incorporated into the wand for adaptive
compensation of time varying temperature biases in the
MEMS sensors. All the sensors, buttons, status LEDs, and
Bluetooth transceivers are connected to a microcontroller
for collecting, controlling, and processing data as shown
in Figure 3. Wand’s firmware incorporates MARG sensors
calibration routines and data for computing 3D orientation
in order to compensate for sensors biases.

3. MARG Sensor Fusion for 3D Orientation

To compute drift-free measurement of 3D orientation rel-
ative to the direction of gravity and earth’s magnetic field,
researchers proposed several algorithms using MARG sen-
sors [23–26], also known as an attitude heading reference
system (AHRS). A complementary filter using low-cost
MEMS inertial measurement unit (IMU)withmagnetometer
was proposed [23] with deep mathematical basis to compute
3D orientation in a direction cosine matrix (DCM) and
quaternion form [24]. Though this algorithm showed how a
magnetometer can be used along with an IMU (gyroscope
and accelerometer) to compute 3D orientation relative to
the earth direction of gravity and magnetic field, it was
not able to correct drift as was intended due to lack of a
compensation technique for magnetic distortions resulting
from nearby sources such as metal structures or power
supply buses. Several investigations [25, 27] have shown that
substantial errors may be introduced by magnetic distortions
in orientation estimated from MARG sensors. By adapting a
technique proposed in [22] for compensating for magnetic
distortions (termed soft iron errors), a complementary filter
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Figure 1: System setup to work with wireless wand; (a) working volume of wand in front of camera and different frame of references involved;
(b) wand.
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algorithm in quaternion form has been implemented on a
low-power hardware board in the wand system.

The potential advantage of this algorithm is in correcting
drift in orientation computed from gyroscope measure-
ments using an additional reference orientation computed
from the accelerometer and magnetometer, by successfully
incorporating magnetic distortion compensation without
any singularity problems. One more key advantage of this
technique is that it eliminates the need for the direction of
earth’s magnetic field to be predefined, which has been a
potential disadvantage of other algorithms [25, 26].The block
diagram shown in Figure 4 represents the first stage sensor
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fusion AHRS algorithm, in which red color box indicates the
magnetic distortion compensation technique. More details of
the algorithm are given in the Appendix. The compensation
technique is described as follows:

𝑏

𝑀
𝑡
= [0 𝑚

𝑥
𝑚
𝑦
𝑚
𝑧
] ,

𝑏

𝑒
𝑞
𝑡
= [𝑞
1
𝑞
2
𝑞
3
𝑞
4
] , (1)

𝑒

𝐻
𝑡
= [0 ℎ

𝑥
ℎ
𝑦
ℎ
𝑧
] =
𝑏

𝑒
𝑞
𝑡−1
⊗
𝑏

𝑀
𝑡
⊗
𝑏

𝑒
𝑞
∗

𝑡−1
, (2)

𝑒

𝐵
𝑡
= [0 √ℎ

2

𝑥
+ ℎ
2

𝑦
0 ℎ
𝑧
] , (3)

where 𝑏𝑀
𝑡
is the normalizedmagnetic field vector, computed

from the output of magnetometer of the wand body frame at
time t. 𝑏

𝑒
𝑞
𝑡−1

and 𝑏
𝑒
𝑞
∗

𝑡−1
are the normalized quaternion output

of the algorithm and its conjugate at previous time step 𝑡 − 1,
respectively. In (2), the direction of earth’s magnetic field 𝑒𝐻

𝑡

is computed, which may represent erroneous inclination and
can be corrected if algorithm’s reference direction of earth’s
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magnetic field 𝑒𝐵
𝑡
is of the same inclination. Equation (3)

ensures that any magnetic disturbances are limited to only
affect the estimated heading component of orientation.

4. IR Marker Velocity Tracking

In order to compensate for the numerical drift that results
from double integration of acceleration measurements of
triaxis accelerometer, we compute 3D velocity of the IR
marker from the output of a blob tracking module, which
provides the width, height, area, and 2D position (𝑐𝑝

𝑥
,
𝑐

𝑝
𝑦
)

of the IR marker in pixels after calibrating the image for
distortion correction. Now, finding velocities 𝑐V

𝑥
and 𝑐V

𝑦

using position is straightforward in x- and y-axis directions
of the camera frame of reference 𝑂

𝑐
, as follows:

𝑐V
𝑥
=

𝑐

𝑝
𝑥|𝑡−1

−
𝑐

𝑝
𝑥|𝑡

Δ𝑡

,
𝑐V
𝑦
=

𝑐

𝑝
𝑦|𝑡−1

−
𝑐

𝑝
𝑦|𝑡

Δ𝑡

, (4)

where (𝑐𝑝
𝑥|𝑡−1

,
𝑐

𝑝
𝑦|𝑡−1

) and (𝑐𝑝
𝑥|𝑡
,
𝑐

𝑝
𝑦|𝑡
) are the 2D positions

in camera frame of reference at the previous and present
time step, respectively, and Δ𝑡 = 1/FPS. There are two
methods to find object position in the z-axis using images:
stereovision and monovision. We propose a simple and

efficient experimental method to find object distance using
an object’s area in a single image, and using this distance we
find the velocity of a marker along z-axis.

Finding the distance of a specific-shaped object using a
single image has been proposed in [28, 29]. Object’s height
in a thresholded binary image has been used to determine
its distance from the camera using rectangular, triangular,
cylindrical, and spherical shaped objects. However, object’s
sizewas relatively large,withminimumdiameter of 0.65m for
a spherical object. For our experiment, we used an industry-
standard IR camera with uniform radiation capability to
illuminate a retroreflective spherical marker with 0.01m
diameter. Figure 5 shows the experimental setup used to
determine how the IR marker object height and area pixels
in the image change with varying distance from the optical
center of the camera in the z- and x- axes. Initially, themarker
is positioned exactly at the optical center of the camera and is
moved away from the camera on a 2-axis linear rail system.

It is found that the object height and area decrease
exponentially with increasing distance (0.36m to 1.5m) from
the camera along the z-axis, as shown in Figures 6(a) and
6(b), respectively. But, from Figure 6(a), it is clear that the
object height does not change continuously with increasing
distance when compared to the area of the object; this
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is the main reason for not using methods presented in
other previous schemes [29]. It is also observed that the
area measurements are repeatable at any particular intensity,
exposure, and threshold settings of the camera. However, in
order to calculate linear velocity, it is essential to linearize

𝑑 = − 0.0232577929 log (𝑎) + 6.7653875804, (5)

𝑐V
𝑧
=

(𝑑
𝑡−1
− 𝑑
𝑡
) 𝑘

Δ𝑡

. (6)

Figure 6(b) is done by taking the logarithm. Analysis of
Figure 6(c) leads to the fact that the object depth has a direct
relationship with its logarithmic pixel area. Now, we can find
the best fitting linear polynomial by linear regression to find
the object distance to the camera, which is given in (5), where
d is object distance and a is the object area in pixels. Having
object distance, we can find the velocity along z-axis using
(6), where k is a constant (scaling factor) determined by
observation to get velocity in m/s units.

However, at a particular distance from the camera, when
the marker moves laterally to the camera (perpendicular
to optical axis) from camera center in either x- or y-axis
direction, the object shape in image loses circularity, and the
object area is not constant; it varies as shown in Figure 7.

This significantly affects the velocity 𝑐V
𝑧
even if the marker

moves only in the x- and y-axis. For this, instead of finding
an analytical method based on blob tracking results to solve
this problem, we exploit sensor fusion to compensate for the
error introduced in the measured z-axis velocity.

The inertial navigation module shown in Figure 10
computes position and velocity estimates using translational
accelerations and corrections obtained from a KF algorithm.
The estimated z-axis velocity from this module, Vzest, can be
taken as a corrective reference for two reasons: estimated
velocity does not have significant integral drift because
correction from the KF is used to compute it; and next,
the frame rate of camera is less than the update rate of the
sensor fusion algorithm (equal to the sampling rate of inertial
sensors). Based on Vzest, lower and upper thresholds 𝑡𝑙 and 𝑡𝑢,
a discriminating window is applied for 𝑐V

𝑧
to compute valid

z-axis velocity 𝑐V
𝑧
using (7). Where thresholds 𝑡

𝑙
and 𝑡
𝑢
are

determined by

𝑐

V
𝑧
=

{

{

{

0 if V
𝑧est > 𝑡𝑙, V𝑧est < 𝑡𝑢,

V
𝑧est +

𝑐V
𝑧

2

otherwise,
(7)

𝑐

𝑉 = [
𝑐V
𝑥

𝑐V
𝑦

𝑐

V
𝑧
] (8)



6 International Journal of Distributed Sensor Networks

0

10

0 0.04 0.08 0.12 0.16

O
bj

ec
t a

re
a v

ar
ia

tio
n 

(p
ix

el
s)

Lateral physical distance from optical axis (m)

Object area variation in camera XY plane at 
different object distances to camera

0.40m
0.42m
0.44m

0.48m

−30

−20

−10

0.5m

Figure 7: Object area at different depth when object moved laterally to camera from its center.

observing V
𝑧est, which implies that below these thresholds

V
𝑧est has only integral drift resulting from noise in the
translational acceleration. Figure 8 shows the velocity graphs
for the marker moving back and forth in the x, y, and z
directions, before and after applying (7). If V

𝑧est falls below
both thresholds, 𝑐V

𝑧
is treated as error and is nullified;

otherwise we take the mean of both, which is better than
trusting noisy 𝑐V

𝑧
. Figures 8(a) and 8(b) show the affected

𝑐V
𝑧
and estimated velocity V

𝑧est when the marker is moved
back and forth along the x- and y-axes, and their corrected
counterparts in Figures 8(d) and 8(e). Similarly, Figure 8(c)
shows velocities when the marker is moved along z-axis
and its corrected counterpart in Figure 8(f), which shows
effectiveness of (7) in reducing noise.

5. Sensor Fusion for 3D Position

The MEMS triaxis accelerometer measures acceleration of
the wand in the body (moving) frame of reference 𝑂

𝑏

and has two components, translational acceleration (actual
acceleration), and gravity, which is a function of the 3D
orientation of the sensor. There are different ways to remove
gravity from acceleration [14, 30]. In this section we first
explain gravity removal from acceleration which is a part of
the data preprocessing module of Figure 2. The next step is
a KF sensor fusion algorithm to find 3D position from the
translational acceleration vector and velocity vector 𝑐𝑉.

5.1. Gravity Removal in Acceleration. A conditional offset fil-
ter [14] to remove gravity from acceleration may be sufficient
when its output is used only for gesture recognition, but
is not optimal in terms of responsiveness (depends on past
data) and accuracy (gravity still persists in transition regions).
This affects accuracy when our interest is precise position
computation from translational acceleration. The following
method, using a quaternion 𝑒

𝑏
𝑞
𝑡
, computes gravity according

to (9) and (10). Now, using (11), we can remove gravity

from the acceleration vector 𝑏𝐴 to find the translational
acceleration vector 𝑏𝐴

𝑟
of moving 𝑂

𝑏
. Figure 9(a) shows the

acceleration of the wand in a stationary state A and arbitrary
complex rotation regions B and C. Figure 9(b) indicates how
close the computed gravity is to the accelerations. The result
after gravity removal in the respective regions is shown in Fig-
ure 9(c), where region A contains only noise, and other parts
with magnitude greater than region A contain translational
accelerations occurring during rotation of wand. Now, body
frame translational accelerations have to be transformed to
𝑂
𝑒
according to strap-down kinematics theory using (12).

Equation (13) converts 𝑒𝐴 to units of m/s2.
Consider the following:

𝑏

𝑒
𝑞
−1

𝑡
= [𝑞


1
𝑞


2
𝑞


3
𝑞


4
] =

𝑒

𝑏
𝑞
∗

𝑡






𝑒

𝑏
𝑞
𝑡






2
, (9)

𝐺 =

[
[
[
[

[

2 (𝑞


2
𝑞


4
− 𝑞


1
𝑞


3
)

2 (𝑞


1
𝑞


2
+ 𝑞


3
𝑞


4
)

(𝑞


1
)

2

− (𝑞


2
)

2

− (𝑞


3
)

2

+ (𝑞


4
)

2

]
]
]
]

]

, (10)

[𝑎
𝑡𝑥
𝑎
𝑡𝑦
𝑎
𝑡𝑧
] =
𝑏

𝐴−𝐺
𝑇

,
𝑏

𝐴 = [𝑎𝑥 𝑎𝑦 𝑎𝑧] , (11)

[0 𝑎


𝑡𝑥
𝑎


𝑡𝑦
𝑎


𝑡𝑧
] =
𝑒

𝑏
𝑞
∗

⊗ [0 𝑎
𝑡𝑥
𝑎
𝑡𝑦
𝑎
𝑡𝑧
] ⊗
𝑒

𝑏

𝑞, (12)

𝑒

𝐴 = [
𝑒

𝐴] 9.81,
𝑒

𝐴 = [𝑎


𝑡𝑥
𝑎


𝑡𝑦
𝑎


𝑡𝑧
] .

(13)

5.2. Combined Tracking. Ablock diagramof combined track-
ing is shown in Figure 10 which serves as second stage sensor
fusion algorithm. A 9-state Kalman filter incorporated is the
heart of this algorithm. The KF is an efficient recursive filter
algorithm that provides optimal estimates of system states
from noisy observation data given the underlying model of
the system and assumes all the errors andmeasurements have
zero mean white Gaussian noise. It is also well known that to
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Figure 8: Before and after correction of cvz: (a) error introduced in cvz when marker moved along x-axis; (d) after correcting error in cvz; (c)
error introduced in cvz when marker moved along y-axis; (e) after correcting error in cvz.

compensate for errors of inertial navigation systems, inertial
sensors have to be assisted by other sensors, and use of a KF
is common for fusing data from different sensors. Also KF
is used in different applications, for example, moving target
tracking in a video [31]. We propose fusion of high sampling
rate MARG sensors and low frame rate vision sensor in
second stage sensor fusion for 3D position tracking, which

benefits from their complementary characteristics. The state
variables of the KF are position, velocity, and translational
acceleration.

The inertial navigation computing module estimates
position and velocity from translational acceleration vector
𝑒

𝐴 and corrections obtained from the filter at a previous
time step. The KF takes these estimates and velocity vector



8 International Journal of Distributed Sensor Networks

0

0.5

1

1.5

0 2 3 5 6 8 9

Acceleration

Time (s)

Ac
ce

le
ra

tio
n 

(G
)

A B C

−1.5

−0.5

−1

(a)

0 2 3 5 6 8 9

Gravity

A B C

0

0.5

1

1.5

Ac
ce

le
ra

tio
n 

(G
)

−1.5

−0.5

−1

Time (s)

(b)

0 2 3 5 6 8 9

After removal

A B C

0

0.5

1

1.5

Ac
ce

le
ra

tio
n 

(G
)

−1.5

−0.5

−1

Time (s)

(c)

Figure 9: Gravity removal in acceleration: (a) acceleration; (b) gravity vector computed; (c) resulting translational acceleration after gravity
removed.

𝑐

𝑉 to find the optimal estimates for position, velocity, and
acceleration. The filter architecture has the following system
dynamics and measurement model:

𝑋
𝑘
= 𝐹
𝑘−1
𝑋
𝑘−1

+ 𝑤
𝑘−1
, 𝑤
𝑘
∼ 𝑁 (0, 𝑄

𝑘
) ,

𝑍
𝑘
= 𝐻
𝑘
𝑋
𝑘
+ V
𝑘
, V
𝑘
∼ 𝑁 (0, 𝑅

𝑘
) .

(14)

Time Update. The state estimate and error covariance are
propagated based on the optimal estimation at previous time
step 𝑘 − 1.

Consider the following:

𝑥
𝑘
= 𝐹𝑥
𝑘−1
, (15)

�̂�
𝑘
= 𝐹𝑃
𝑘−1
𝐹
𝑇

+ 𝑄. (16)

For (15) we use estimates of inertial navigation computing
task and optimal states at the previous time step 𝑘 − 1. The
symbol (∧) represents predictions,𝑥

𝑘
is state vector, and F and

Q are state transition and process noise covariance:

𝑥
𝑘
= [𝑝
𝑥

V
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𝑦
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𝑧
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,
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[

[
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=

[
[
[

[

1 Δ𝑡

1

2

Δ𝑡
2

0 1 Δ𝑡

0 0 1

]
]
]

]

, 𝑖 = 𝑥, 𝑦, 𝑧,

𝑄 = [

[

𝑄
𝑖
0
3
0
3

0
3
𝑄
𝑖
0
3

0
3
0
3
𝑄
𝑖

]

]

, 𝑄
𝑖
=

[
[
[
[
[
[
[

[

Δ𝑡
5

20

Δ𝑡
4

8

Δ𝑡
3

6

Δ𝑡
4

8

Δ𝑡
3

6

Δ𝑡
2

2

Δ𝑡
3

6

Δ𝑡
2

2

Δ𝑡

]
]
]
]
]
]
]

]

𝑞
𝑐
.

(17)
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Matrices of size 9 × 9, 0
3
represent a 3 × 3 zero matrix, Δ𝑡

is the sampling period of the MARG sensors, and 𝑞
𝑐
is the

process noise covariance in continuous time.

Measurement Update. If measurements are available, this step
incorporates those measurements in vector 𝑧

𝑘
, by adjusting

the state variables, generating an optimal estimate and uncer-
tainty𝑃

𝑘
, using (18)–(20).𝐾

𝑘
is theKalman gain (9×9matrix),

often called acceptability vector of 𝑧
𝑘

𝐾
𝑘
= �̂�
𝑘
𝐻
𝑘
(𝐻
𝑘
�̂�
𝑘
𝐻
𝑇

𝑘
+ 𝑅
𝑘
)

−1

, (18)

𝑥
𝑘
= 𝑥
𝑘
+ 𝐾
𝑘
(𝑧
𝑘
− 𝑥
𝑘
) , (19)

𝑃
𝑘
= (𝐼 − 𝐾

𝑘
𝐻
𝑘
) �̂�
𝑘
. (20)

Measures of 𝑧
𝑘
,𝐻
𝑘
, and R are 9 × 9 measurement sensitivity

and noise covariance matrices, respectively. Covariance cal-
culated using (20) will be used for the next iteration.Matrices
𝑧
𝑘
,𝐻
𝑘
, and 𝑅

𝑘
are given below. Consider the following:

𝑧
𝑘
= [0 0 0
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𝑉 0 0 0]
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(21)

Since MARG sensors are sampled at 120Hz and the camera
is sampled at 75 FPS (<MARG sensors data rate), during
each time step, we check the inertial navigation computing
module for estimates and marker velocity vector 𝑐𝑉 from
the camera if they are available. If both are available, both
time and measurement update steps are updated to get the
current optimal estimate. If both are not available, a previous
optimal estimate becomes our current optimal estimate. If
estimates are available and 𝑐𝑉 is not ready, only predictions
are updated and these become the current optimal estimates.
If estimates are not available but 𝑐𝑉 is ready, predictions and

measurement updates are both calculated, but the prediction
equations use previous optimal estimates since new estimates
are not available from the inertial navigation module.

6. Results

The proposed tracking system was tested against a leading
commercial DC magnetic tracking system at 120Hz. To do
so, we set the update rate of the proposed tracking system
at 120Hz and the camera FPS at 75 and fixed them to a
rigid platform to be moved by hand. The trajectories of
translational motion obtained from both the systems along
x-, y-, and z-axes are plotted in Figures 11(a), 11(b), and
11(c), respectively. Comparison shows the potential of our
system in both static and dynamic arbitrary movements. A
close inspection of Figure 11(c) also reveals the linearity and
accuracy of measurements obtained from (5), (6), and (7).
This shows that our simple and efficient idea presented in
Section 4 can find themarker velocity along the camera z-axis
using area pixels of IR marker in thresholded image, without
the need for another camera or additional markers to track
the 3D position of the object.

In order to compare the quaternion orientation data of
the two systems, orientationwith respect to their fixed, steady
state quaternionsweremeasured and then decoupled to Euler
parameters describing the pitch 𝜑, roll 𝜃, and heading 𝜓
corresponding to rotations around the body frame x-, y-, and
z-axes, respectively. Figure 12 shows plots of 3D orientation
obtained from the wands complementary filter for which
magnetic distortion compensation incorporated. To show the
performance of our wand, comparison of the 3D trajectories
for helical motion in the earth frame of reference is presented
in Figure 13.

7. Conclusion

Motion tracking using MARG sensors with additional sen-
sors is a mature field of research. Modern techniques [14–
16] have focused on simpler fusion approaches on low power
hardware to reach a wide range of users. We presented a
simple and accurate approach for a wand system with two
stage sensor fusion: the first stage of fusion offloads the
3D orientation computation from the computer, allowing
focus on only 3D position computation in the computer
as the camera is connected to it. The basic idea is to
utilize low cost and wide field of view USB camera with IR
filter to prevent numerical drift in the position computed
from the acceleration of a MEMS accelerometer. Thus the
overall system benefits from the complementary properties
of inertial and vision sensing. Key advantages of the proposed
system are (1) theworking area of device, which allows user to
interact with a computer or 3D TV at a comfortable distance
by changing size of IR marker; (2) the small size and higher
update rate; (3) the magnetic distortion compensation that
helps to use the wand in challenging environments; and (4)
another potential application of this device that includes air
digital writing and signature verification.
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Figure 11: Comparison of trajectories of translational motion obtained from commercial tracker with our wand.

Appendix

Details of Complementary Filter

Complementary filter has two tuning parameters, propor-
tional gain 𝐾

𝑝
and integral gain 𝐾

𝑖
. The 𝐾

𝑝
determines how

quickly the algorithm output converges to the accelerometer
and magnetometer measurements. In other words, 𝐾

𝑝

allows us to tune how much you trust sensors; a low value
will trust the gyroscope more; for example, 𝐾

𝑝
= 0 means

accelerometer and magnetometer data are ignored; 𝐾
𝑝
= 0.5

is suitable in most cases. The 𝐾
𝑖
corrects for gyroscope bias;

𝐾
𝑖
= 0 is used because calibrated data is supplied to the filter.

Quaternion Computation. Let
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(A.1)

Estimation Block. Equations (1)–(3) along with the following
two equations will be computed in this block.

Estimated direction of gravity:

[

[

𝑔
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𝑔
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𝑧

]

]

=
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]
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]

. (A.2)

Estimated direction of magnetic field:

[

[

𝑤
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]
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. (A.3)

Error Block. Error is computed by taking the cross product
between estimated and measured quantities of gravity and
magnetic field. The total error is the sum of gravity and
magnetic field error vectors.
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Consider the following:
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(A.4)

PI Controller. The following adjustment will be sent to the
correction block where angular velocity 𝜔 of gyroscope will
be adjusted:

𝑈 = [
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(A.5)
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