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Multilabel feature selection involves the selection of relevant features from multilabeled datasets, resulting in improved multilabel
learning accuracy. Evolutionary search-based multilabel feature selection methods have proved useful for identifying a compact
feature subset by successfully improving the accuracy of multilabel classification. However, conventional methods frequently
violate budget constraints or result in inefficient searches due to ineffective exploration of important features. In this paper, we
present an effective evolutionary search-based feature selection method for multilabel classification with a budget constraint.
The proposed method employs a novel exploration operation to enhance the search capabilities of a traditional genetic search,
resulting in improved multilabel classification. Empirical studies using 20 real-world datasets demonstrate that the proposed
method outperforms conventional multilabel feature selection methods.

1. Introduction

Multilabel classification has emerged as a promising tech-
nique for various applications, including lifelong structure
monitoring [1], functional proteomics [2], and sentiment
analysis [3]. These applications produce a series of labels
for describing complicated concepts, which are compounded
when high-level concepts are composed of multiple subcon-
cepts, such as the environmental and operational conditions
of structures [1, 4, 5]. Let 𝑊 ⊂ R𝑑 denote a set of patterns
constructed from a set of features 𝐹. Then, each pattern 𝑤𝑖 ∈𝑊, where 1 ≤ 𝑖 ≤ |𝑊|, is assigned to a certain label subset𝜆𝑖 ⊆ 𝐿, where 𝐿 = {𝑙1, . . . , 𝑙|𝐿|} and is a finite set of labels.
Therefore, the task of multilabel classification is to identify
a function that maps given instances into one of 2|𝐿| label
subsets based on input feature values.

In practice, there can be a maximum number of features
allowed because of the limits on data acquisition rates or
energy consumption [6–8]. In reality, for example, this prob-
lem can emerge from the music applications on lightweight
mobile devices. Applications for mobile devices typically
have a limitation in computational capacity and there is a
maximum number of allowed features to be extracted [9, 10].

This is because an overly excessive number of extracted
features on mobile devices causes consumers to suffer low
quality user experience due to unacceptable waiting or
battery consumption.

Given input data with an original feature set 𝐹 and label
set 𝐿, the goal of our multilabel feature selection problem is
to identify a feature subset 𝑆 ⊂ 𝐹 with the maximum number
of features 𝑛 that yields the best multilabel classification
accuracy [11, 12]. This problem is known as budgeted feature
selection [13] or feature selection with test cost constraints
[8, 14, 15]. However, most studies have been conducted from
the perspective of traditional single-label learning. It should
be noted, especially when a given constraint 𝑛 is small,
that our multilabel feature selection problem becomes more
challenging in terms of classification accuracy due to the fact
that a small number of features must support multiple labels
simultaneously [16–19].

Multilabel feature selection methods can be categorized
according to how they assess the importance of candidate
feature subsets [16, 20–22]. Filter-based multilabel feature
selection methods identify a final feature subset by focusing
on the intrinsic discriminative power of features [21, 23–
25]. Some multilabel learning algorithms have a feature
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selection process embedded in their learning process [26,
27]. In contrast, wrapper-based multilabel feature selection
methods assess the importance of feature subsets through a
search process by using a multilabel classifier directly. This
typically results in better classification accuracy [11, 12]. For
this reason, we focus on a multilabel feature wrapper based
on an evolutionary search process [28].

During the search process, each chromosome represents
a feature subset and selects a number of features less than
or equal to 𝑛. As a result, most features remain unselected
by any chromosome in the population. This can lead to an
ineffective search because important features can be contin-
uously neglected. Without negatively affecting the strength
of the evolutionary search, this problem can be solved by
adding additional chromosomes that convey promising uns-
elected features to the population. In this study, we propose
an effective multilabel feature wrapper while considering
the constraint of feature subset size. Experimental results
demonstrate that the proposed method is able to identify an
effective feature subset for multilabel classification with the
aid of an enhanced evolutionary search process.

2. Related Work

In traditional single-label feature selection, the budgeted fea-
ture selection problem is treated as a special case of the feature
selection problem where the algorithm should consider the
effectiveness of the feature subset and the acquisition cost for
gathering each feature simultaneously. To solve this problem,
Zhang et al. [29] proposed a feature selection algorithm
based on the bare bones particle swarm optimization, which
considers the complexity of an algorithm due to additional
parameters. Because the acquisition cost for each feature
can be unequal, multiobjective particle swarm optimization
approach for cost-based feature selection and return-cost-
based binary firefly algorithm for feature selection are also
studied [30, 31] which have another objective function of
minimizing the cost sum of features.

In multilabel feature selection studies, one of the major
trends is the application of a feature selection method for
single-label problems by transforming multilabel datasets
into single-label datasets [32, 33]. Although this strategy facil-
itates the use of conventional methods, which has advantages
in terms of ease of use [34], algorithm adaptation strategies
that directly manage multilabel problems have also been
considered [35]. In these approaches, which are largely filter-
based, a feature subset is obtained by optimizing a specific
criterion, such as a joint learning criterion that involves
simultaneous feature selection and multilabel learning [27,
36], 𝑙2,1-norm function optimization [37], label ranking
error [26], Hilbert-Schmidt independence criterion [23], 𝐹-
statistics [21], or mutual information [16, 24, 38]. However,
these methods commonly suffer from low multilabel clas-
sification accuracy because of a lack of interaction with
multilabel classifiers.

As a notablemultilabel feature wrapper study, Zhang et al.
[12] proposed a multilabel feature selection method based on
a genetic algorithm (GA), which is the most common choice

in evolutionary feature wrapper studies [28]. Specifically,
their method combined instance- and label-based evalua-
tion metrics [39] as a fitness function to determine label
dependency. However, in the original proposal, a maximum
number of features to be selected were not considered dur-
ing the genetic search process. The multilabel classification
performance when considering the number of features to
be selected was later demonstrated for comparison purposes
[11]. During initialization, this method creates chromosomes
by selecting a number of features less than 𝑛. During
the genetic search process, this constraint is continuously
satisfied by employing restrictive crossover and mutation
operators [40] that immediately discard features randomly
if the number of selected features exceeds 𝑛. Although this
method satisfies the constraint, important features may be
discarded, resulting in an ineffective feature subset.

Recent multilabel feature wrapper methods have treated
the number of features to be selected as a secondary objective
to be achieved by the evolutionary search process (i.e.,
multiobjective optimization [28]). This is achieved through a
specifically designed rankingmethod formultiobjective opti-
mization problems, known as nondominated sort [41], where
the rank of each chromosome is based on the number of
times it dominates other chromosomes in terms of two fitness
values: multilabel classification accuracy and the number of
selected features. Because the ranking of the chromosomes
can be determined, it can be directly used in the natural
selection process of a GA. Although the most common
approach using a nondominated sorting method is NSGA-II
[42], nondominated sorting has also been employed in other
evolutionary search methods, including particle swarm opti-
mization (PSO) [43]. A common drawback in these methods
is that no solutionmay satisfy the feature number constraint if
such a solution is not included in the final Pareto front. Addi-
tionally, they may suffer from unnecessary searches of infea-
sible solutions conveying unacceptable number of features.

Our review indicates that conventional multilabel feature
wrappers can fail to identify a final solution that satisfies
a given constraint. To remedy this limitation, in addition
to the evolutionary process, it is necessary to devise a new
process, namely, exploration operation, to find important
features in a large set of novel features with the aid of an
effective filter and supply them to the population to enhance
the evolutionary search process. We summarize subsequent
issues and corresponding reasons to our approach as follows.

(i) The exploration operation must be able to identify
promising features in a large unselected feature set
size of 𝑂(|𝐹| − 𝑛) = 𝑂(|𝐹|). To achieve this, we
employ a criterion that measures the relevance score
of features.

(ii) The exploration operation must be computationally
efficient to circumvent performance degradation of
the entire search process. To achieve this, we employ
a multilabel feature filter that is confirmed to be
efficient because it only requires the dependency
between two variables [16].

(iii) Our exploration operation is designed to incur no
additional parameter that may cause complicated
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(1) procedure Proposed algorithm(V, 𝑚) ⊳ allowed FFC V(2) 𝑡 ← 0, 𝑢 ← 0 ⊳ 𝑡-th generation(3) initializing 𝑃(𝑡) ⊳ population 𝑃 of 𝑡-th generation(4) evaluating 𝑃(𝑡)(5) While 𝑢 ≤ V do ⊳ if spent FFC 𝑢 is less than V(6) create 𝐺(𝑡) using genetic operators(7) create 𝐸(𝑡) using exploration operator based on 𝐺(𝑡)(8) 𝑁(𝑡) ← {𝐺(𝑡) ∪ 𝐸(𝑡)} ⊳ offspring set𝑁(𝑡)(9) evaluate𝑁(𝑡) using a multi-label classifier(10) add𝑁(𝑡) to 𝑃(𝑡)(11) 𝑡 ← 𝑡 + 1(12) select 𝑃(𝑡) from 𝑃(𝑡 − 1) ⊳ natural selection(13) 𝑢 ← 𝑚 + 2 ⋅ |𝐺(𝑡)| ⋅ 𝑡 ⊳ update 𝑢 based on spent FFC(14) end while(15) end procedure

Algorithm 1: Procedures of proposed multilabel feature wrapper.

parameter control issues and increase the overall
complexity of the algorithm [11, 44]. Based on the
number of features given by the evolutionary search,
it automatically identifies an effective feature subset
that is composed only of novel features.

3. Proposed Method

3.1. Motivation and Approach. In this study, we enhance the
performance of a population-based search, such as a GA,
for multilabel feature selection with a budget constraint by
introducing novel chromosomes that inject promising uns-
elected features into the population. Figure 1 reveals several
key issues that should be considered when introducing novel
features into the evolutionary search-basedmultilabel feature
selection process with a budget constraint. In the original
feature set 𝐹, there may be a subset of important features
that are strongly dependent on multiple labels, leading to
excellent discriminative power in the multilabel classifier if
they are included in the final feature subset. After a random
initialization process is completed, important features, such
as 𝑓1, may be unselected by any chromosome (feature subset)
because each chromosome only covers a small number of
features under the budget constraint 𝑛. It should be noted
that ⌈|𝐹|/𝑛⌉ chromosomes should be evaluated to consider
all the features at least once, even though all chromosomes
are forced to select disjoint feature subsets, which incurs an
expensive computational cost. Instead, the proposed method
identifies promising features with the help of the employed
filter without explicit evaluation of candidate feature subsets.

Next, genetic operators, such as crossovers and muta-
tions, are applied to the population to create new chro-
mosomes. However, unselected important features may not
be considered because new chromosomes are created by
exchanging the alleles of their ancestors. This means that
if ancestors commonly unselect a feature, then their off-
spring will also unselect that feature. The only chance to
add neglected features into the offspring creation process is

through the use of a mutation operation. However, this is
computationally inefficient because the mutation operation
is done by selecting features randomly and, additionally, the
mutation rate is set to a small value in order to achieve
the convergence. Thus, a large number of iterations or
generations should be spent to introduce important features
into the population randomly.

In the proposed method, the exploration operator is
applied to each of the new offspring to create novel chro-
mosomes that contain promising features that were not
considered by the original offspring. During each exploration
operation, we calculate the dependency of unselected features
on multiple labels (𝑙1, 𝑙2, . . . , 𝑙8). After the ranking of each
feature is computed (e.g., 𝑓1 → 𝑓44 → 𝑓32 → 𝑓3 → ⋅ ⋅ ⋅ ),
a new chromosome that selects the most promising features
is created. Finally, exploration and genetic operation-based
chromosomes are then merged into a single population.

This paper presents an effective evolutionary search
method that remedies the aforementioned issues. In Sec-
tion 3.2, we discuss the procedural steps of the proposed
method and how to handle the issues associated with the
exploration operation and the creation of new chromosomes.
Section 3.3 presents a mutual-information-based search
method for efficiently capturing the relationships between
features and labels.

3.2. Algorithm. Algorithm 1 outlines the pseudocode for the
procedures used in the proposed method. The terms used
for describing the algorithm are summarized in “Terms Used
in This Study and Meanings” section. The feature selection
vector in a chromosome is a binary string where each bit
represents an individual feature, with values of one and zero
representing selected and unselected features, respectively. In
the initialization step (line (3)), the algorithm generates 𝑚
chromosomes via random assignment of maximum 𝑛 binary
bits. The selected feature subset (𝑆𝑐) encoded in 𝑐 ∈ 𝑃(𝑡) is
then evaluated using a fitness function. We use multilabel
classification error as the fitness function for the selected
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Figure 1: The cooperation process between genetic and exploration operation.

feature subset. Because 𝑚 chromosomes must be evaluated
in order to obtain their fitness values,𝑚 fitness function calls
(FFCs) are used in line (4).

After performing the initialization process, the pro-
posed method performs a reproduction process that can be

divided into two parts: reproduction via genetic operators
and reproduction via the exploration operator. First, the
proposed method creates an offspring set 𝐺(𝑡) (line (6))
using restrictive crossover and mutation operators to control
the number of selected features [40]. Next, the exploration
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(1) procedure Explore(𝐺(𝑡))(2) 𝐸(𝑡) ← {0}(3) for each 𝑐 ∈ 𝐺(𝑡) do(4) 𝑍 ← {0} ⊳ initialize novel feature subset 𝑍(5) for 𝑖 = 1 to |𝑆𝑐| do ⊳ feature subset selected by 𝑐, 𝑆𝑐(6) find the best feature 𝑓+ = argmax𝑓+∈{𝐹\{𝑆𝑐∪𝑍}}𝑄(𝑓+, 𝐿)(7) add 𝑓+ to 𝑍(8) end for(9) add 𝑍 to 𝐸(𝑡) as a chromosome(10) end for(11) end procedure

Algorithm 2: Procedures of exploration operator.

operator identifies unselected promising features from the
perspective of each chromosome in 𝐺(𝑡) and encodes them
into a new chromosome in 𝐸(𝑡) (line (7)). For balance
between the genetic and exploration operations, we set the
size of𝐸(𝑡) to the same value as that of𝐺(𝑡) because𝐸(𝑡)must
be evaluated in order to determine its fitness. These two sets
of chromosomes are then combined to form the offspring set𝑁(𝑡) of the 𝑡th population (line (8)). To evaluate the fitness of
the offspring set, the proposedmethod uses a certain number
of FFCs (line (9)). Specifically, the proposed method uses2 ⋅ |𝐺(𝑡)| FFCs in one generation. Next,𝑁(𝑡) is added to 𝑃(𝑡)
and 𝑚 chromosomes with higher fitness values are selected
(line (11)).This procedure is repeated until the algorithmuses
all of its allowed FFCs.This limit is denoted V and is chosen by
the user. The output of Algorithm 1 is the best feature subset
obtained during evolution.

3.3. Exploration Operator. Because a feature subset selects
a small number of features within 𝑛 and most features will
remain unselected, the exploration operator is needed in
order to explore a large set of unselected features. Algorithm 2
outlines the pseudocode for the proposed exploration opera-
tor. For each offspring generated by the genetic operators, we
iteratively select relevant features that maximize the objective
function and that were not selected by the offspring 𝑐 until
the subset size becomes |𝑆𝑐|, where |𝑆𝑐| is the subset size
of 𝑐. Thus, proposed exploration operation does not incur
additional parameter for determining the number of features
to be selected.

To implement our exploration operation, we employ an
effective filter method called the scalable criterion for large
label sets (SCLS) [16] as an objective function𝑄(𝑓+, 𝐿), where𝐿 is the label set. The selection of the 𝑖th feature from the set{𝐹\{𝑆𝑐 ∪ 𝑍}}, where 𝑍 is a feature subset with 𝑖 − 1 features
when selecting 𝑖th feature, is performed by identifying 𝑓𝑖 that
maximizes the value of the following relevance evaluation
[17]:

max
𝑓𝑖∈{𝐹\{𝑆𝑐∪𝑍}}

[𝐷 (𝑓𝑖) − 𝑅 (𝑓𝑖)] , (1)

where 𝐷(𝑓𝑖) and 𝑅(𝑓𝑖) denote the dependency of 𝑓𝑖 on𝐿 and the dependency of 𝑓𝑖 on the selected features of

𝑍, respectively. From [17], (1) can be reformulated as
follows:

max
𝑓𝑖∈{𝐹\{𝑆𝑐∪𝑍}}

[
[
∑
𝑙∈𝐿

𝑀(𝑓𝑖; 𝑙) − ∑
𝑓∈𝑆𝑖−1

𝑀(𝑓𝑖; 𝑓)]]
, (2)

where 𝑀(𝑥; 𝑦) = 𝐻(𝑥) − 𝐻(𝑥, 𝑦) + 𝐻(𝑦) is the mutual
information between variables 𝑥 and 𝑦 and 𝐻(𝑥) =−∑𝑃(𝑥) log𝑃(𝑥) is the joint entropy of the probability
functions 𝑃(𝑥), 𝑃(𝑦), and 𝑃(𝑥, 𝑦). Following from (2),𝐷(𝑓2)
can be calculated as follows:

𝐷(𝑓2) = ∑
𝑙∈𝐿

𝑀(𝑓2; 𝑙) . (3)

As (2), 𝑅(𝑓2) can be calculated as
𝑅 (𝑓2) = ∑

𝑙∈𝐿

𝑀(𝑓2; 𝑙) . (4)

In order to calculate 𝑅(𝑓2) while considering adaptability
against the scaling of 𝐷(𝑓2) and avoiding repetitive calcula-
tions by𝑓 ∈ 𝑆 and 𝑙 ∈ 𝐿, let Red(𝑓2) be represented as follows:

𝑅 (𝑓2) = 𝛼 ⋅ 𝐷 (𝑓2) = 𝛼∑
𝑙∈𝐿

𝑀(𝑓2; 𝑙) , (5)

where 0 ≤ 𝛼 ≤ 1, which must be estimated, determines the
reduction with relevance to𝑓2 based on𝐷(𝑓2), while circum-
venting the repetitive calculations for reduction against each
label. According to [16], 𝛼 can be approximated as follows:

𝛼 ≈ 𝑀(𝑓2; 𝑓1)𝐻 (𝑓2) . (6)

As a result, the relevance evaluation for 𝑓2 is performed as
follows:

𝐽 = ∑
𝑙∈𝐿

𝑀(𝑓2; 𝑙) − 𝑀 (𝑓2; 𝑓1)𝐻 (𝑓2) ∑
𝑙∈𝐿

𝑀(𝑓2; 𝑙) . (7)

Equation (7) represents how the relevance evaluation can
be performed when 𝑖 = 2. By considering the previously
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Table 1: Standard characteristics of employed datasets.

Dataset |𝑊| |𝐹| Type |𝐿| Card. Den. Distinct. Domain
Birds 645 260 Mixed 19 1.014 0.053 133 Audio
Emotions 593 72 Numeric 6 1.869 0.311 27 Music
Enron 1,702 1,001 Nominal 53 3.378 0.064 753 Text
Genbase 662 1,185 Nominal 27 1.252 0.046 32 Biology
LLog 1,460 1,004 Nominal 75 1.180 0.016 304 Text
Mediamill 43,907 120 Numeric 45 1.245 0.028 94 Video
Medical 978 1,494 Nominal 45 1.245 0.028 94 Text
Scene 2,407 294 Numeric 6 1.074 0.179 15 Images
Slashdot 3,782 1,079 Nominal 22 1.181 0.054 156 Text
TMC2007 28,596 981 Numeric 22 2.158 0.098 1,341 Text
Yeast 2,417 103 Numeric 14 4.237 0.303 198 Biology
Arts 7,484 1,157 Numeric 26 1.654 0.064 599 Text
Business 11,214 1,096 Numeric 30 1.599 0.053 233 Text
Computers 12,444 1,705 Numeric 33 1.507 0.046 428 Text
Education 12,030 1,377 Numeric 33 1.463 0.044 511 Text
Entertain 12,730 1,600 Numeric 21 1.414 0.067 337 Text
Health 9,205 1,530 Numeric 32 1.644 0.051 335 Text
Reference 8,027 1,984 Numeric 33 1.174 0.036 275 Text
Science 6,428 1,859 Numeric 40 1.450 0.036 457 Text
Social 12,111 2,618 Numeric 39 1.279 0.033 361 Text
Society 14,512 1,590 Numeric 27 1.670 0.062 1,054 Text

selected features in 𝑍, the final relevance evaluation can be
represented as follows:

max
𝑓𝑖∈{𝐹\{𝑆𝑐∪𝑍}}

[
[
∑
𝑙∈𝐿

𝑀(𝑓𝑖; 𝑙) − ∑
𝑓∈𝑆𝑖−1

∑
𝑙∈𝐿

𝑀(𝑓𝑖; 𝑙)𝐻 (𝑓𝑖) 𝑀 (𝑓𝑖; 𝑓)]]
. (8)

Equation (8) is the objective function for selecting rele-
vant features from the unselected feature subset used by our
exploration operation.

3.4. Experimental Settings. We experimented on 20 different
datasets from various domains. The Birds dataset is audio
data containing examples ofmultiple bird calls.TheEmotions
dataset is music data classified into six emotional clusters.
The Enron, Language Log (LLog), and Slashdot datasets were
generated from text mining applications, where each feature
corresponds to the occurrence of a word and each label
represents the relevancy of each text pattern to a specific
subject. The Genbase and Yeast datasets come from the bio-
logical domain and include information about the functions
of genes and proteins. The Mediamill dataset is video data
from an automatic detection system. The Medical dataset
was sampled from a large corpus of suicide letters obtained
from the natural language processing of clinical free text.
The Scene dataset is related to the semantic indexing of still
scenes, where each scene may contain multiple objects. The
TMC2007 dataset contains safety reports of complex space
system. The remaining nine datasets come from the Yahoo
dataset collection. We performed unsupervised dimension-
ality reduction on text datasets, including the TMC2007
and Yahoo collections, which were composed of more than

10,000 features. Specifically, the top 2% and 5% of features
with the highest document frequency were retained for
TMC2007 and the Yahoo datasets, respectively [45]. In the
text mining domain, existing studies report that classification
performancewill not suffer significantly from the retention of
1% of features based on document frequency [46].

Table 1 contains the standard statistics for the multilabel
datasets employed in our experiments, including the number
of patterns in the dataset |𝑊|, number of features |𝐹|, type
of features, and number of labels |𝐿|. When the feature
type is numeric, we discretize the features by using the
supervised discretization method [47] for multilabel näıve
Bayes classifier (MLNB) [12]. Specifically, each observed
numeric value is assigned to one of several bins that are
automatically determined by using the discretizationmethod.
The label cardinality Card represents the average number of
labels for each instance. The label density Den is the label
cardinality over the total number of labels. The number of
distinct label sets Distinct indicates the number of unique
label subsets in𝐿.Domain represents the application that each
dataset was extracted from.

We measured the mean size of the selected feature
subsets for both the proposed method and the conventional
multilabel feature selection methods (GA with restrictive
genetic operators [40] (RGA), NSGA-II [43], and MPSOFS
[43]) to determinewhichmethods achieved to select less than
10 features. Specifically, we provide detailed parameter setting
to support good reproducibility as follows:

(i) RGA creates 𝑚 = 20 initial solutions by selecting
less than 𝑛 = 10 features randomly in accordance
with each chromosome. Each solution in the initial



Complexity 7

population 𝑃(𝑡), where 𝑡 = 0, is evaluated using an
employed multilabel classifier. Next, the RGA creates
an offspring set 𝑁(𝑡) by using genetic operators. To
apply the crossover operator, two solutions in 𝑃(𝑡) are
randomly selected andmated; thereafter, one solution
in 𝑃(𝑡) is randomly selected and mutated. In this
study, we employed restrictive crossover and restric-
tive mutation operators with both crossover rate and
mutation rate set to 1.0. Therefore, for each iteration,
the GA creates three new solutions to compose𝑁(𝑡).
Each newly created solution is evaluated using the
multilabel classifier. To create 𝑃(𝑡 + 1),𝑁(𝑡) is added
to 𝑃(𝑡), and 20 solutions with higher fitness values
are selected.This procedure is repeated until the RGA
spends 100 FFCs.

(ii) NSGA-II creates 𝑚 = 20 initial solutions ran-
domly, the same number RGA creates.Themaximum
number of allowed feature is set to |𝐹| because the
NSGA-II naturally minimizes the number of selected
features. Each solution in 𝑃(𝑡) is evaluated using
an employed multilabel classifier and the number
of features. The NSGA-II then creates 𝑁(𝑡) where|𝑁(𝑡)| = 3which is the same setting of RGA. To create𝑃(𝑡 + 1), 𝑁(𝑡) is added to 𝑃(𝑡), and the superiority
of each solution is determined by the nondominated
sort method. After the superiority among solutions in{𝑃(𝑡) ∪ 𝑁(𝑡)} is determined, the top 20 solutions are
selected to form 𝑃(𝑡 + 1). This procedure is repeated
until the NSGA-II spends 100 FFCs.

(iii) MPSOFS creates 20 initial solutions randomly, the
same number RGA creates. Each solution in 𝑃(𝑡)
is evaluated using an employed multilabel classifier
and the number of features and ranked using the
nondominated sort method. The MPSOFS then pre-
serves the best solution of 𝑃(𝑡) called the global
best solution. In addition, the best solution which
each chromosome experienced is also preserved; this
is called the individual best solution, and therefore
there are 20 individual best solutions. Thereafter, the
MPSOFS updates the representation of each chromo-
some based on the global best solution and its own
individual best solution using a velocity with inertia
weight of 0.7298 and two acceleration coefficients of
1.4962 suggested from the study of [48]. After all
chromosomes in𝑃(𝑡) aremodified, they are evaluated
and regarded as 𝑃(𝑡 + 1). This procedure is repeated
until the MPSOFS spends 100 FFCs.

Although different parameter setting may result in better
performance, we fixed the size of the population 𝑚 to 20
and the number of spent FFCs V to 100 for all the methods
to ensure a fair comparison. To evaluate the quality of the
feature subsets obtained by each method, we used MLNB
classifier because it outputs a predicted label subset based on
the intrinsic characteristics of a given dataset without requir-
ing any complicated parameter-tuning process that might
influence the final multilabel classification performance [39].
For the sake of fairness, we used the hold-out cross-validation
method for each experiment [11, 49]. 80% of the samples in a

given dataset were randomly chosen as the training set for
multilabel feature selection and classifier training, while the
remaining 20% of the samples were used as the test set to
obtain themultilabel classification performance. For both the
RGA and the proposed method, we set the population size
to 20 and the maximum number of allowed FFCs to 100.
Each experiment was repeated 10 times and the average value
was used to represent the classification performance of each
feature selection method.

We employed four evaluation metrics: Hamming loss,
multilabel accuracy, ranking loss, and normalized coverage.
Let 𝑇 = {(𝑇𝑖, 𝜆𝑖) | 1 ≤ 𝑖 ≤ |𝑇|} be a given test set where𝜆𝑖 ⊆ 𝐿 is a correct label subset. For a given test sample 𝑇𝑖,
a classifier, such as MLNB, should output a set of confidence
values 0 ≤ 𝜓𝑖,𝑙 ≤ 1 for each label 𝑙 ∈ 𝐿. If a confidence value𝜓𝑖,𝑙 is larger than a predefined threshold value, such as 0.5, the
corresponding label 𝑙 will be included in the predicted label
subset 𝑌𝑖. Based on the ground truth 𝜆𝑖, confidence values𝜓𝑖,𝑙, and predicted label subset 𝑌𝑖, multilabel classification
performance can be measured with each evaluation metric
[33, 45, 50].

Multilabel accuracy is defined as follows:

mlacc (𝑇) = 1|𝑇|
|𝑇|∑
𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖 ∩ 𝑌𝑖󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆𝑖 ∪ 𝑌𝑖󵄨󵄨󵄨󵄨 . (9)

Hamming loss is defined as follows:

hloss (𝑇) = 1|𝑇|
|𝑇|∑
𝑖=1

1|𝐿| 󵄨󵄨󵄨󵄨𝜆𝑖 △ 𝑌𝑖󵄨󵄨󵄨󵄨 , (10)

where△ denotes the symmetric difference between two sets.
Ranking loss is defined as follows:

rloss (𝑇) = 1|𝑇|
|𝑇|∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨{(𝑎, 𝑏) | 𝑎 ∈ 𝜆𝑖, 𝑏 ∈ 𝜆𝑖, 𝜓𝑖,𝑎 ≤ 𝜓𝑖,𝑏}󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆𝑖󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝜆𝑖󵄨󵄨󵄨󵄨󵄨 , (11)

where 𝜆𝑖 is a complementary set of 𝜆𝑖.Therefore, ranking loss
measures the average fraction of (𝑎, 𝑏) pairs with 𝜓𝑖,𝑎 ≤ 𝜓𝑖,𝑏
over all possible relevant and irrelevant label pairs. Finally,
normalized coverage is defined as follows:

ncov (𝑇) = 1|𝐿| ( 1|𝑇|
|𝑇|∑
𝑖=1

max
𝑙∈𝜆𝑖

rank (𝑙) − 1) , (12)

where rank(⋅) returns the rank of the corresponding relevant
label 𝑙 ∈ 𝜆𝑖 according to 𝜓𝑖,𝑙 in nonincreasing order. There-
fore, normalized coveragemeasures howmany labelsmust be
marked as positive for all relevant labels to be positive. Higher
values of multilabel accuracy and lower values of Hamming
loss, ranking loss, and normalized coverage indicate good
classification performance.

Additionally, because we are interested in the superiority
of the proposed method over conventional multilabel feature
selectionmethods, we perform theWilcoxon signed-rank test
[51] to validate the performance of the proposed method.
Let 𝑑𝑖 be the difference between the performance of the
two methods for the 𝑖th dataset. The differences are ranked
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Table 2: Comparison results for multilabel feature selection methods in terms of selected feature subset size (mean ± std. deviation). The N
symbol is used to indicate that the corresponding method failed to select less than 10 features for the dataset.

Dataset Proposed RGA NSGA-II MPSOFS
Birds 7 ± 2 5 ± 2 99 ± 51N 138 ± 4N
Emotions 8 ± 1 9 ± 1 50 ± 6N 37 ± 4N
Enron 8 ± 1 9 ± 1 74 ± 51N 527 ± 23N
Genbase 9 ± 0 7 ± 1 974 ± 139N 637 ± 24N
LLog 8 ± 1 7 ± 2 205 ± 108N 522 ± 17N
Mediamill 5 ± 1 4 ± 0 7 ± 2 52 ± 3N
Medical 8 ± 1 8 ± 1 664 ± 138N 762 ± 30N
Scene 9 ± 1 9 ± 0 137 ± 31N 147 ± 4N
Slashdot 9 ± 0 8 ± 2 970 ± 85N 569 ± 22N
TMC2007 8 ± 1 8 ± 1 495 ± 93N 506 ± 20N
Yeast 9 ± 1 9 ± 1 34 ± 10N 52 ± 3N
Arts 9 ± 1 7 ± 1 1,019 ± 85N 613 ± 25N
Business 4 ± 2 4 ± 2 130 ± 140N 578 ± 20N
Education 8 ± 1 8 ± 2 1263 ± 51N 742 ± 24N
Entertainment 9 ± 0 8 ± 2 985 ± 227N 840 ± 28N
Health 7 ± 1 4 ± 1 842 ± 184N 814 ± 33N
Reference 7 ± 2 8 ± 1 1052 ± 334N 1058 ± 42N
Science 9 ± 0 7 ± 1 969 ± 265N 993 ± 65N
Social 6 ± 1 8 ± 1 1,699 ± 401N 1,353 ± 71N
Society 7 ± 2 4 ± 3 498 ± 95N 826 ± 28N

based on their absolute values and the smallest 𝑑𝑖 is assigned
to the first rank. If ties occur, average ranks are assigned.
Let 𝑅+ be the sum of the ranks for the datasets on which
the compared method outperforms the proposed method,
defined as follows:

𝑅+ = ∑
𝑑𝑖>0

rank (𝑑𝑖) + 12 ∑
𝑑𝑖=0

rank (𝑑𝑖) . (13)

Let 𝑅− be the sum of the ranks for the datasets on which
the proposed method outperforms the compared method.
Then, based on the critical values from theWilcoxon test, for
a confidence level of 𝛼 = 0.05 and 𝑁 = 20, the difference
between the compared methods is significant if min(𝑅+, 𝑅−)
is less than or equal to 8. In this case, the null hypothesis of
equal performance is rejected.

4. Experimental Results

4.1. Comparison Results. Table 2 contains the results for the
mean size and standard deviation of the selected feature
subsets of the proposed method and conventional multil-
abel feature selection methods when the evaluation metric
is multilabel accuracy. The N symbol indicates methods
that failed to satisfy given constraint for the corresponding
dataset. The proposed method and RGA both selected less
than 10 features for all datasets. The NSGA-II and MPSOFS
methods failed to select less than 10 features for all datasets
other than theMediamill dataset for NSGA-II, despite having
objective functions to minimize feature subset sizes. Because
theNSGA-II andMPSOFS failed to select less than 10 features
for most datasets, we compared the performance of the

proposed method with the performance of the RGA from
subsequent experiments. It should be noted that 𝑛 can be set
to a larger value than 10, such as 30 or 50. The experimental
results in Table 2 show that the NSGA-II or MPSOFS will
fail to satisfy the given constraints because they output the
final feature subset, which is composed of tens or hundreds
of features for most experiments.

Tables 3 and 4 contain the experimental results for
the proposed method and RGA on 20 multilabel datasets,
presented as the average performances for hold-out cross-
validation with corresponding standard deviations. Table 3
contains the performance results for multilabel accuracy
and Hamming loss, and Table 4 contains the performance
results for ranking loss and normalized coverage. The best
performance between the two methods is indicated by bold
font and a✓ symbol. Finally, Table 5 contains the results of the
Wilcoxon signed-rank test for the proposed method against
RGA for Genbase dataset with a significance threshold of𝛼 = 0.05. For each evaluation metric, the winner of each
comparison is indicatedwith bold font and the corresponding
sum of the outperformed rank 𝑅+ over the total rank and 𝑝
values are presented in the parenthesis.We observed a similar
tendency from the same experiments on the other multilabel
datasets.

As shown in Tables 3 and 4, the proposed method
outperformed RGA for most multilabel datasets. Specifically,
the proposed method achieved the best performance for
90% of the datasets in terms of multilabel accuracy, 95%
of the datasets in terms of Hamming loss, 95% of the
datasets in terms of ranking loss, and 100% of the datasets
in terms of normalized coverage.Thus, the proposed method
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Table 3: Comparison results for multilabel feature selection methods in terms of multilabel accuracy and Hamming loss (mean ± std.
deviation). The ✓ symbol indicates the method that achieves the best performance for each dataset.

Methods
Evaluation measure

Multi-label accuracy Hamming loss
Proposed RGA Proposed RGA

Birds 0.497 ± 0.048✓ 0.459 ± 0.048 0.055 ± 0.005✓ 0.056 ± 0.004
Emotions 0.460 ± 0.020✓ 0.447 ± 0.029 0.243 ± 0.022✓ 0.252 ± 0.016
Enron 0.360 ± 0.021✓ 0.271 ± 0.042 0.056 ± 0.002✓ 0.060 ± 0.001
Genbase 0.886 ± 0.041✓ 0.155 ± 0.097 0.011 ± 0.004✓ 0.042 ± 0.003
LLog 0.213 ± 0.027✓ 0.166 ± 0.026 0.016 ± 0.001 0.016 ± 0.001✓
Mediamill 0.366 ± 0.002✓ 0.359 ± 0.005 0.034 ± 0.000 0.034 ± 0.000✓
Medical 0.517 ± 0.048✓ 0.097 ± 0.046 0.018 ± 0.002✓ 0.026 ± 0.002
Scene 0.408 ± 0.019✓ 0.352 ± 0.030 0.157 ± 0.002 0.154 ± 0.005✓
Slashdot 0.144 ± 0.017✓ 0.031 ± 0.011 0.048 ± 0.001✓ 0.053 ± 0.000
TMC2007 0.372 ± 0.005✓ 0.318 ± 0.020 0.084 ± 0.001✓ 0.088 ± 0.001
Yeast 0.465 ± 0.013✓ 0.442 ± 0.019 0.224 ± 0.006✓ 0.225 ± 0.010
Arts 0.140 ± 0.012✓ 0.049 ± 0.015 0.060 ± 0.001✓ 0.063 ± 0.001
Business 0.678 ± 0.011 0.678 ± 0.008✓ 0.029 ± 0.001 0.029 ± 0.001✓
Education 0.109 ± 0.019✓ 0.033 ± 0.011 0.042 ± 0.001✓ 0.044 ± 0.001
Entertain 0.233 ± 0.016✓ 0.128 ± 0.042 0.058 ± 0.000✓ 0.065 ± 0.002
Health 0.510 ± 0.018✓ 0.402 ± 0.016 0.040 ± 0.001✓ 0.049 ± 0.001
Reference 0.382 ± 0.044 0.393 ± 0.011✓ 0.030 ± 0.001✓ 0.034 ± 0.001
Science 0.120 ± 0.011✓ 0.042 ± 0.015 0.034 ± 0.001✓ 0.036 ± 0.001
Social 0.546 ± 0.018✓ 0.134 ± 0.060 0.024 ± 0.001✓ 0.030 ± 0.001
Society 0.304 ± 0.135✓ 0.280 ± 0.146 0.055 ± 0.001✓ 0.059 ± 0.001

Table 4: Comparison results for multilabel feature selection methods in terms of ranking loss and normalized coverage (mean ± std.
deviation). The ✓ symbol indicates the method that achieves the best performance for each dataset.

Methods
Evaluation measure

Ranking loss Normalized coverage
Proposed RGA Proposed RGA

Birds 0.143 ± 0.015✓ 0.166 ± 0.019 0.227 ± 0.019✓ 0.248 ± 0.028
Emotions 0.218 ± 0.025 0.217 ± 0.029✓ 0.499 ± 0.028✓ 0.524 ± 0.030
Enron 0.098 ± 0.008✓ 0.115 ± 0.008 0.277 ± 0.001✓ 0.296 ± 0.010
Genbase 0.035 ± 0.026✓ 0.152 ± 0.037 0.084 ± 0.026✓ 0.212 ± 0.029
LLog 0.170 ± 0.019✓ 0.179 ± 0.021 0.215 ± 0.024✓ 0.223 ± 0.022
Mediamill 0.057 ± 0.001✓ 0.058 ± 0.001 0.194 ± 0.003✓ 0.197 ± 0.002
Medical 0.093 ± 0.026✓ 0.173 ± 0.260 0.132 ± 0.027✓ 0.199 ± 0.023
Scene 0.159 ± 0.012✓ 0.188 ± 0.015 0.311 ± 0.007✓ 0.326 ± 0.012
Slashdot 0.247 ± 0.004✓ 0.297 ± 0.010 0.301 ± 0.004✓ 0.353 ± 0.010
TMC2007 0.113 ± 0.004✓ 0.154 ± 0.006 0.254 ± 0.004✓ 0.316 ± 0.008
Yeast 0.199 ± 0.007✓ 0.200 ± 0.008 0.550 ± 0.010✓ 0.553 ± 0.013
Arts 0.161 ± 0.017✓ 0.180 ± 0.019 0.260 ± 0.016✓ 0.275 ± 0.019
Business 0.059 ± 0.025✓ 0.062 ± 0.025 0.129 ± 0.024✓ 0.132 ± 0.023
Education 0.095 ± 0.004✓ 0.109 ± 0.003 0.152 ± 0.004✓ 0.168 ± 0.004
Entertain 0.130 ± 0.005✓ 0.137 ± 0.005 0.215 ± 0.005✓ 0.222 ± 0.009
Health 0.089 ± 0.028✓ 0.107 ± 0.027 0.161 ± 0.025✓ 0.179 ± 0.026
Reference 0.110 ± 0.022✓ 0.119 ± 0.023 0.155 ± 0.023✓ 0.164 ± 0.022
Science 0.138 ± 0.005✓ 0.152 ± 0.003 0.201 ± 0.007✓ 0.213 ± 0.005
Social 0.073 ± 0.010✓ 0.107 ± 0.027 0.124 ± 0.010✓ 0.132 ± 0.011
Society 0.143 ± 0.005 0.137 ± 0.005✓ 0.249 ± 0.006✓ 0.261 ± 0.005
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Table 5: Wilcoxon signed-rank test results for the proposed method against RGA for Genbase dataset with a significance threshold of 𝛼 =0.05, sum of outperformed rank 𝑅+ over the total rank and 𝑝 values.

Evaluation measures Proposed versus RGA
Result Stats 𝑝 value

Hamming loss Win 55/55 2.0𝑒 − 3
Multilabel accuracy Win 55/55 2.0𝑒 − 3
Ranking loss Win 55/55 2.0𝑒 − 3
Normalized coverage Win 55/55 2.0𝑒 − 3

significantly outperforms RGA for all evaluation metrics.
This is evident from the experimental results shown in
Table 5, which clearly demonstrate that the proposedmethod
is statistically superior to RGA.

4.2. Analysis. Figure 2 shows the convergence behaviors of
the GA and proposed method according to the number
of spent FFCs (𝑢) in terms of the multilabel accuracy; the
horizontal axis represents 𝑢, and the vertical axis indicates the
multilabel accuracy performance. Because the convergence
behaviors may differ according to each experiment owing to
the stochastic nature of the population-based search meth-
ods, we set the same initialized population in both algorithms
and averaged the multilabel accuracy performance of the
top elitist in the population after conducting the experi-
ment 10 times. Figure 2 shows that the multilabel accuracy
performance monotonically improves with 𝑢. Because the
initialization steps consume 20 FFCs and the two methods
have the same initialized population that is randomly created,
both methods gradually improve the multilabel accuracy
initially. However, the experimental results indicate that the
multilabel accuracy value of the proposedmethod is dramati-
cally improvedwhen 𝑢 ≥ 20 because the exploration operator
is applied to the population after the initialization. Thus,
Figure 2 indicates that the proposed method can efficiently
locate a good feature subset from unselected features.

The goal of our exploration operation introduces novel
promising features that would effectively improve the multi-
label classification performance. To validate the effectiveness
of our exploration operation, we conduct an additional exper-
iment by comparing the fitness values of the offspring set
created by the proposed exploration operation and the ran-
dom operation, respectively. Specifically, 50 chromosomes,
namely, 𝐺, that select 10 or lesser number of features as
the same initialization procedure of RGA were used and
50 new chromosomes are then created by applying the
proposed exploration operation to each chromosome in 𝐺
to form the first offspring set. Thereafter, for the sake of
comparison, novel features with regard to each chromosome
in 𝐺 are selected randomly and introduced to create the
second offspring set. Finally, the fitness values of the first
and second offspring sets in terms of the four performance
measures aremeasured. Figure 3 shows the box plots of fitness
values given by the two offspring sets of the Genbase dataset.
The experimental results indicates that the fitness values of
the first offspring set (Proposed) is much better than that of
the second offspring set (Random) from the viewpoint of all

measures, indicating that the proposed exploration operation
has a much better search capability than the random search.

5. Conclusion

We proposed an effective evolutionary search-based feature
selection method with a budget constraint for multilabel
classification. As a feature subset selects a small number of
features within the maximum allowed number of features
and most features are unselected in the budget constraint
problem, we employ a novel exploration operation to find
relevant features in the large unselected feature subset. Our
experiments on 20 real-world datasets demonstrated that
proposed exploration operator successfully enhances the
search capability of genetic search, resulting in an improve-
ment in multilabel classification.The results also showed that
the proposedmethod can search a feature subset successfully,
which does not violate the budget constraint. Statistical
tests showed that our method outperformed conventional
methods in four performance measures. Although the pro-
posed exploration operation improves the effectiveness of
evolutionary searchwithout incurring additional parameters,
it cannot be applied directly to certain types of evolutionary
search algorithms, such as particle swarm optimization,
which do not depend on offspring sets. Thus, an additional
consideration should be made to design a new exploration
operation for such cases.

A future research direction will be a study on an
evolutionary algorithm. The proposed method is a genetic
algorithm based feature selection; however, it can be applied
to other evolutionary algorithms such as the Estimation of
Distribution Algorithm. We would like to study this issue
further.

Terms Used in This Study and Meanings

Constants
𝑡: Number of generations𝑚: The size of the population, |𝑃(𝑡)| = 𝑚𝑛: Maximum number of allowed features

selected by 𝑆𝑐𝑐: A chromosome in 𝑃(𝑡)𝑆𝑐: A selected feature subset represented by 𝑐
V: Maximum number of allowed fitness

function calls (FFCs)𝑢: Number of spent FFCs, 𝑢 = 𝑚+2 ⋅ |𝐺(𝑡)| ⋅ 𝑡.
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Figure 2: Comparison results of the convergence between RGA and the proposed method in terms of multilabel accuracy (a higher value
indicates a good classification performance).
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Figure 3: Comparison results showing the effectiveness of the proposed exploration operator and random search in terms of the four
performance measures on the Genbase dataset.

Sets

𝑃(𝑡): The population at the 𝑡th generation𝐺(𝑡): A set of newly created solutions from
genetic operator𝐸(𝑡): A set of newly created solutions from
exploration operator𝑁(𝑡): A set of newly created solutions from 𝑃(𝑡),𝐺(𝑡) ∪ 𝐸(𝑡).
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