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In smart manufacturing, production machinery and auxiliary devices, referred to as industrial Internet of things (IIoT), are
connected to a unified networking infrastructure for management and command deliveries in a precise production process.
However, providing autonomous, reliable, and real-time offloaded services for such a production is an open challenge since these
IIoT devices are assumed lightweight embedded platforms with limited computing performance. In this paper, we propose
a pattern-identified online task scheduling (PIOTS) mechanism for the networking infrastructure, where multitier edge
computing is provided, in order to handle the offloaded tasks in real time. First, historical IIoT task patterns in every timeslot are
used to train a self-organizing map (SOM), which represents the features of the task patterns within defined dimensions.
Consequently, offline task scheduling among edge computing-enabled entities is performed on the set of all SOM neurons using
the Hungarian method to determine the expected optimal task assignments. In real-time context, whenever a task arrives at the
infrastructure, the expected optimal assignment for the task is scheduled to the appropriate edge computing-enabled entity.
Numerical simulation results show that the proposed PIOTS mechanism overcomes existing solutions in terms of computation
performance and service capability.

1. Introduction

Recently, smartization in manufacturing has been consid-
ered as one of the major trends realizing the fourth industrial
revolution [1]. In the smart factory, production machinery
and auxiliary devices, which are referred to as industrial
Internet of things (IIoT), maintain permanent connections
to a unified networking infrastructure, where Internet ser-
vice is available. In this environment, all of the connected
IIoTdevices acquire mutual cooperation with each other and
they request the working commands from central man-
agement entities in the network. For instance, precise
production processes require trigger feedback from control
entities to adjust reactions of machines and robots if an
unexpected issue occurs. Another example is when smoke is
detected in a warehouse, a real-time shutdown command

should be immediately dispatched to electrical working
chains and a real-time activation command should force
the fire extinguishing system to be activated [2]. However,
since these IIoT devices are assumed to be lightweight
embedded platforms with limited computing resources, it
is inappropriate to execute real-time services using its own
power of the devices.

Fortunately, thanks to the advances of the emerging
fifth-generation (5G) technologies, the 5G mobile edge
computing (MEC) can provide autonomous, reliable, and
real-time offloaded services for these IIoT devices and ap-
plications. Defined by the European telecommunications
standards institute (ETSI), the MEC provides cloud-
computing capabilities and an IT service environment at
the edge of the network [3]. To be more specific, multitier
MEC (mMEC) is a virtualized hierarchical MEC framework
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where edge computing-enabled entities (ECEs) are layered
according to its computing performance. +e operation of
mMEC framework is supervised by a central orchestrator
[4]. +e orchestrator schedules the tasks offloaded from IIoT
devices among ECEs in order to maximize computation
performance and decrease energy consumption while
keeping the IIoT applications’ requirements.

Aiming at this objective, we propose a pattern-
identified online task scheduling (PIOTS) mechanism for
the mMEC framework in smart factory for handling the
offloaded IIoT tasks in real time. First, historical IIoT task
patterns in every timeslot are used to train a self-organizing
map (SOM), which represents the features of the task
patterns within defined dimension [5]. As a result, a set of
typical SOMs for IIoT task patterns are identified. At the
beginning of each timeslot, offline task scheduling among
ECEs is performed on the neuron set of the typical SOM
using the Hungarian method to determine the expected
optimal task assignments. +ereafter, whenever a task
arrives at the mMEC framework, the task is matched into
the current SOM to find the best matching SOM neuron for
it. Based on that, the expected optimal assignment for this
matched SOM neuron is scheduled for the task, assigning
to appropriate ECE in online manner. +e main contri-
butions of this paper are three-fold:

(i) First, expected optimal assignments are scheduled
for offloaded IIoT tasks that arrived at the mMEC
framework in real time. In other words, a task as-
signment delay is reduced significantly.

(ii) Second, the duration of task assignment calculation
is decreased because this operation works on the
SOM neuron set within defined dimension. +e
neuron set is a representative of the historical in-
coming tasks, which is not greater than the size of
real task patterns in each timeslot. As a result, the
computational complexity and calculation latency
are reduced as well.

(iii) +ird, the expected optimal task assignment cal-
culation is performed independently on the task
scheduling timeline. +erefore, the task assignment
can be operated continuously in real time without
waiting for the task assignment calculation to be
completed.

+e remainder of this paper is organized as follows.
Section 2 surveys the state-of-the-art-related work. Section 3
describes the proposed pattern-identified online task sched-
uling mechanism in detail. Section 4 provides the system
setup, evaluation methodology, and evaluation metric defi-
nitions. Based on that, the performance of the PIOTS
mechanism in comparison to other techniques is analyzed in
Section 5. Finally, the paper is concluded in Section 6.

2. Related Work

Optimal task assignments in multitier edge computing have
been classified into three main categories: latency awareness,
energy awareness, and quality-of-service (QoS) awareness
including their variants [6, 7].

+e latency-aware approaches focus on minimizing
execution latency of the task offloaded to the edge servers.
+e execution latency involves three portions: trans-
mission duration from the IIoTdevices to the edge servers,
queuing and processing duration at the edge servers, and
return duration for successful reception of the result in the
IIoTdevices [8, 9]. +e mMEC framework can be designed
and supported by several emerging technologies such as
network functions virtualization (NFV) and software
defined networking (SDN). In [10], Dao et al. proposed an
adaptive balancing scheme (ARB) to distribute tasks
among edge servers in the remote radio heads in order to
improve the serviceability of the network, especially in
terms of task execution latency.+e ARB scheme combines
the Hungarian method and the backpressure algorithm for
this purpose. In [11], Mao et al. aim at reducing the task
execution latency by using a low-complexity Lyapunov
optimization-based dynamic computation offloading
(LODCO) algorithm. +e LODCO algorithm handles CPU
utilization in the edge servers according to the task arrival.
On the other hand, Liu et al. [12] considered application
buffer queuing state, available computing powers, and
channel quality to conduct the optimal offloading decision.
+e tasks will be assigned to the edge servers if the total
execution latency made by the edge server is shorter than
the duration spent to execute the task locally by the IIoT
devices. Otherwise, the IIoTdevices will execute their tasks
themselves.

+e energy-aware approaches aim at minimizing en-
ergy consumption for task execution in edge computing.
Typically, the energy consumption is considered on task
delivery and task computation. In [13], an energy reduction
method was proposed based on the Bak–Tang–Wiesenfeld
sandpile. When an edge server exceeds a certain capacity
threshold, it collapses and initiates an avalanche of mi-
grating tasks in order to balance the workload among edge
servers. +e achievement results in a significant reduction
in task assignment errors and redundancy, which domi-
nates the overhead of energy consumption. On the other
hand, You et al. [14] considered the transmission energy for
multiple IIoT devices offloaded tasks to the edge-
computing framework. +e optimal solution was de-
veloped and resolved so as to minimize the weighted sum
mobile energy consumption under the constraint on
computation latency. In [15], the problem of in-
terdependent task scheduling was addressed within an edge
system of deep memory hierarchies to obtain energy effi-
ciency. +e intermediate data of the tasks are prioritized
and assigned at appropriate levels of cache memory to
optimize latency and energy in data access. In order to
make the offloading decision, Li et al. formulated the
problem in a 0-1 nonlinear integer programming with
a consideration of channel interference threshold and the
time deadline [16]. Based on that assumption, a reverse
auction based offloading policy has been proposed to
obtain energy efficiency improvement for task execution.

+e QoS-aware approaches consider multiple criteria
of IIoT service requirements such as execution latency,
service availability, transmission throughput, and security as
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trade-o� problems, which have to be optimized. In [17],
a distributed optimization algorithm that cooperated among
edge servers, called o�oad forwarding, is proposed by using
the distributed alternating direction method of multipliers
(ADMM) via variable splitting to maximize QoS and energy
e�ciency. For focusing on maximizing the transmission
throughput for task o�oading, Vu et al. [18] utilize the
Hungarian method to optimize the downlink sum rate in fog
computing-enabled networks. On the other hand, Zeng et al.
[19] proposed a security-aware and budget-aware work�ow
scheduling strategy (SABA), which considers the task dis-
tribution among providers to achieve cost-e�ective and
secure services in the context of convergent network. �is
strategy is applicable to the edge computing environment
where edge servers act the role of service providers for
o�oaded tasks from the IIoT devices. Within the same
purpose, Xu et al. proposed the green o�oading (GO)
scheme [20] that uses the reverse auction theory to develop
the o�oading decision while satisfying the user quality-of-
service (QoS) requirements, bandwidth, and the maximum
transmit power.

Although the existing approaches have signi�cantly
contributed to improve the performance of the edge com-
puting, most of the existing approaches face a drawback in
online task handling, where the tasks that arrive at the edge
framework have to be queued before the scheduling decision
is made. �is queuing behavior generates signi�cant latency,
especially in cases of smart manufacturing, where real-time
response requirement is a crucial criterion for precise
production processes. In the next section, our proposed
PIOTS mechanism, which overcomes these issues, is de-
scribed in detail.

3. Pattern-Identified Online Task Scheduling

3.1. Basic Assumptions. In this paper, we consider a net-
working infrastructure for smart manufacturing where
mMEC framework is covered. Machinery and auxiliary
devices participate in a smart production process, generate
their IIoT tasks, and o�oad them to the mMEC framework
for centralized handling. �e IIoT tasks are processed and
responded to the IIoT devices on demands. Typically, the
production process operates continuously in a long du-
ration (e.g., weeks, months, and even years). �erefore, we
assume that the IIoT task patterns maintain their perma-
nent trends even though instant tasks are generated ran-
domly by the IIoT devices. In this circumstance, real-time
response is considered as a crucial requirement for precise
productions. Figure 1 illustrates the system model where
the IIoTdevices are supported by the mMEC framework in
smart manufacturing environment. �e IIoT devices are
connected to the network via wireless access points (APs)
and switches (SWs). �e mMEC framework consists of
APs/SWs, routers, and local servers/storages, which have
various computing capacities. In a mMEC framework, all
these ECEs are managed and scheduled their computations
by a central device named orchestrator.

3.2. Self-OrganizingMap. Self-organizing map is an arti�cial
neural network (ANN) that utilizes unsupervised learning
on the high-dimensional data to produce a de�ned low-
dimensional representation called map (Figure 2). Each
SOM is formed by a de�ned number of neurons, which
re�ect the map dimension. �e operation of the SOMs
includes two modes: training and mapping. �e training
mode develops a map based on the input set of tasks.
Meanwhile, the mapping mode is used for classifying new
arrived tasks.

�e SOM algorithm to train the map is iterated by two
steps after initialization as follows.

Initialization: Assume that there are n tasks in the input
set X, wherein each task i(1≤ i≤ n) is characterized by l
features forming a corresponding vector
xi
→ � [fi1, fi2, . . . , fil]. Accordingly, each neuron j in the
SOM (1≤ j≤ k) has a 1-dimensional weight vector wj

�→,
where wj

�→ � [wj1, wj2, . . . , wjl]. To start the SOM algorithm
in order to train the map, each neuron initiates its own
weight vector with random values. Afterwards, the two steps
below are contiguously repeated for each task in the X. In
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Figure 1: System model where the IIoT devices are supported by
the mMEC framework in smart manufacturing environment.
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Figure 2: Self-organizing map (SOM).
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detail, for task i, the SOM algorithm performs the following
steps:

Step 1 (matching): Euclidean distance between task i and
each neuron in the SOM is calculated in order to �nd the
best matching unit. �e best matching unit for the task
i is the neuron w∗i

�→
, which has the smallest Euclidean distance

to the task i. In other words, w∗i
�→

is given by

w∗i
�→

� arg min
∀j,1≤ j≤ k

�������������

∑
l

s�1
fis −wjs( )

2

√√

. (1)

Step 2 (neuron update): all neurons in the neighborhood
of the neuron w∗i

�→ update their weight vectors to be closer to
task i by

wj
�→(t + 1) � wj

�→(t) + θ(t) · μ(t) · xi
→−wj
�→(t)( ), (2)

where wj
�→(t) is the weight vector of neuron j at this iteration

t. θ(t) is the neighborhood function, which has diminished
every iteration. θ(t) determines the distance from the
neuron w∗i

�→
to de�ne the neighboring neurons. μ(t) is the

learning factor, which calculates the amount of e�ect from
the input task i to the neuron j based on distance between
them [21].�emathematical expressions of θ(t) and μ(t) are
described as follows:

θ(t) � exp −
w∗i
�→∣∣∣∣∣∣
∣∣∣∣∣∣
2

2σ2(t)


, (3)

μ(t) � μ0 × exp −
t lg (R)
|X|( ), (4)

where R is the maximum radius from the center of the map
(i.e., 0.5 max MapWidth,MapHeight{ }) and σ(t) is the
neighborhood radius that is given by

σ(t) � R × exp −
t2 lg (R)
|X|( ). (5)

3.3. Pattern-Identi�ed Online Task Scheduling. In this sec-
tion, we describe the PIOTS mechanism in detail. �e ra-
tionale behind the PIOTS includes three steps: (i) identifying
the set of typical SOMs for IIoT task patterns, (ii) calculating
expected optimal task assignment on the typical SOM prior
to each timeslot, and (iii) online assigning new arrived tasks
to appropriate ECEs. Steps (i) and (ii) are in the o�ine mode
and step (iii) is in the online mode.

3.3.1. O�ine Mode. (1) Typical SOM identi�cation: in terms
of task execution o�oading, a IIoT task i is characterized by
a four-dimensional feature vector as given by

xi
→ � ui, ci, ri, τi[ ], (6)

where ui, ci, ri, andτi are relative task size, relative average
processing complexity, relative response size, and relative

execution deadline compared to their minimum and max-
imum values of all trained tasks, respectively. As mentioned
in Section 3.1, the production process operates continuously
during a given period. Within each timeslot in this period,
given that there is an average numberNx tasks in the set χ(t)
of IIoT tasks o�oaded to themMEC framework, the number
k of neurons in the SOM is selected as

k �
1
λ
Nx〈 〉, λ≥ 1, (7)

where ·〈 〉 is the nearest integer function and λ is a scale level,
which supports reduction of the SOM size. Based on these
settings, the k-neuron two-dimensional SOM is trained
using all o�oaded IIoT tasks in the given period. For
each distinctive period, we obtain a typical trained SOM to
represent the o�oaded IIoT tasks. A distinctive period is
de�ned as a cycle of the o�oaded IIoT task arrival; after this
duration, the task arrival is repeated again in terms of
volume and characteristics.

(2) Expected optimal task assignment calculation: Figure
3 describes the PIOTS operation timeline in a random IIoT
task arrival context. Prior to timeslot t, the PIOTS mech-
anism performs the H(t) function at t−Δt in order to
determine the expected optimal task assignment during
timeslot t. �e H(t) function uses the Hungarian method
[22] to address the expected optimal task assignment
problem between the neuron set of the typical SOM in
timeslot t and the current ECE set. �e result of H(t)
function will be applied for online task assignment in the
whole duration from timeslot t to timeslot t + 1 even though
the H(t + 1) function will start at (t + 1)−Δt.

�e expected optimal task assignment problem is de-
�ned as “Given the current performance status (i.e., task
bu�er and CPU frequency) of ECEs and the transmission
status (i.e., access data rate between IIoT devices and the
mMEC framework and forwarding data rate among ECEs),
minimize the total latency of task execution when assigning
the neuron set of the typical SOM to the ECEs.”

�e expected optimal task assignment problem can be
formulated as follows. Let W and M denote the set of k
neurons in the SOM and the set of m ECEs in the mMEC
framework, respectively. Since the SOM neurons have
trained by using the historical tasks, the weight vector of
the neuron re�ects the average values of the task features,
accordingly. �at is, wj1, wj2, wj3, and wj4 in the weight
vector wj

�→ of neuron j re�ect the average values of the
relative task size, relative average processing complexity,

t t + 1Random IIoT task arrival
during timeslot t

Apply H(t)

Calculate H(t)

Start H(t)

Apply H(t + 1)

Timeline
∆t

Figure 3: IIoT task arrival and PIOTS operation timeline.
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relative response size, and relative execution deadline,
respectively. Let the current buffer size of tasks waiting
for processing in ECEs be bs CPU cycles. Hence, the
total latency Ljs when neuron j is assigned to ECEs is as
follows.

Ljs �
wj1 + wj3

rajs􏽼√√√√􏽻􏽺√√√√􏽽
(a)

+
bs

Cs􏽼􏽻􏽺􏽽
(b)

+
wj1wj2

Cs􏽼√√􏽻􏽺√√􏽽
(c)

+
wj1 + wj3

rbjs􏽼√√√√􏽻􏽺√√√√􏽽
(d)

,
(8)

where Cs, rajs, and rbjs are the CPU frequency of ECEs in
Hz, the access data rate from the IIoTdevice that owned task
j to the network in bps, and the internal forwarding rate to
the ECEs in bps, respectively. Equation (8) consists of (a)
uploading latency, (b) queuing latency, (c) task processing
latency, and (d) response latency. +e access data rate rajs is
given by

rajs � BWjs log2 1 + SINRj􏼐 􏼑, (9)

where BWjs and SINRj are the bandwidth allocated for the
IIoT device and the channel quality between the IIoT device
and the network, respectively.

Based on that, the expected optimal task assignment
problem (F) can be described as follows:

(F) minimize : 􏽘
k

j�1

􏽘
m

s�1

zjsLjs, (10)

s.t. zjs ∈ 0, 1{ }, (11)

Ljs ≤wj4, (12)

􏽘
k

j�1

zjs � 1, ∀s � 1, 2, . . . , m, (13)

where the indicator zjs is given by

zjs �
1, if neuron j is assigned to ECEs,

0, otherwise.
􏼨 (14)

Constraint (13) ensures that a neuron could only be
assigned to one ECE and the maximum matchings are
established for all m neurons of the SOM.

It is observed that task assignment problem F regards
a bipartite graph of two sets W and M. We apply the
Hungarian method (referred as H(·)) on the graph to
achieve the optimal solution. Function H(·) is performed as
follows (see Algorithm 1):

(i) Augment the latency matrix of all possible task
assignments from neuron set W to ECE set M into
a square matrix (named V) with dimension
max (|W|, |M|) by supplementing additional en-
tries of constant number (e.g., 0).

(ii) In each row of V, subtract the smallest row entry
from all of the row entries. Similarly, in each column
of V, subtract the smallest column entry from all of
the column entries.

(iii) Find the minimum number υ of rows and columns
by which all zero entries are covered.

(iv) If υ is equal to the size of V, the optimal solution is
found. Pick up a set of 0 entries satisfying in which
no more than two 0 entries are in the same row or
column. Otherwise, if υ is less than the size of V,
determine the smallest entry c that is uncovered in
the previous step. Afterwards, subtract c from all
uncovered rows and add c to all covered columns.
Return to the previous step to find the minimum
number υ again.

For each timeslot, the functionH(·) is calculated priorΔt
before the beginning of the timeslot in order to find the
expected optimal task assignment solution.

3.3.2. Online Mode. Online task assignment: in the online
mode, when an IIoT task arrives at the mMEC framework,
the task is matched to the SOM so as to seek the best
matching neuron, using (1) with the computational com-
plexity of O(1). According to the optimal assignment for the
found neuron that was determined by function H(·) in the
offline mode, this assignment is performed on the arrived
IIoT task immediately.

4. Evaluation Preparations

4.1. SystemSettings. In order to evaluate the performance of
the PIOTS scheme, we considered a network model, where

(1) Generate a square latency matrix V from W and M.
(2) In each row, subtract all entries by the smallest row entry.
(3) In each column, subtract all entries by the smallest column entry.
(4) Find the minimum number υ of rows and columns that cover all zero entries.
(5) If υ �� |V|, the optimal solution is found.
(6) If υ< |V|,

Find the smallest entry c in the matrix,
Subtract all uncovered rows by c,
Add all covered columns by c,
Return to Line (4).

ALGORITHM 1: Pseudocode of function H(·).
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the mMEC framework consists of 20 ECEs equipped with
various CPU frequencies of {1.5, 2.5, 5.0, 10.0, 25.0}GHz. +e
total number of IIoT devices associated with the network is
300. +e task processing complexity is determined as {10, 50,
100, 500, 1000} cycles/bit derived from the practical analysis
presented in [23]. Execution deadline is randomly set within
(0.5, 1.5) s. Lastly, timeslot duration is set to 0.1 s. +ese
simulation parameters are summarized in Table 1.

In terms of task and response size settings, we derived
these parameters from a part of the CAIDA anonymized
Internet traces data set [24]. +e CAIDA data set contains
anonymized passive traffic traces from the Equinix-Chicago
Internet data collection monitor located at an Equinix
datacenter in Chicago, IL, on high-speed Internet backbone
links. Table 2 shows statistical indexes of the task samples
used for SOM training and system evaluation. +e tasks are
selected for three types of traffic as follows:

(i) Environmental sensor data: the information of en-
vironmental conditions is reported to central ap-
plications in the mMEC framework during each
fixed period. +e task size is configured within
constant and small dimension, and these tasks do
not require response from the applications.

(ii) Video surveillance data: live streaming data from
monitoring cameras are delivered to surveillance
applications in the mMEC framework for video
analysis and storage. +ese tasks are packetized in
fixed and large size. +e response data might be
issued from the applications if there are any alarms
that should be announced.

(iii) Production control data: these data are generated by
the machinery during precise production processes.
+e tasks are regularly offloaded to the mMEC
framework within a determined size. Tasks require
responses from the applications to exactly handle
production work.

4.2. Evaluation Methodology. Within the aforementioned
system settings, our proposed PIOTS scheme has been
compared to the offline Hungarian task assignment (OHTA)
algorithm and the online greedy task assignment (OGTA)
algorithm. Initially 30,000 samples of the selected tasks
derived from the CAIDA data set are used to train the SOM
in the PIOTS scheme. +en, 90,000 other samples are used
for evaluation (Table 2). +e operations of these schemes are
described as follows:

(i) +e PIOTS scheme is performed as shown in Sec-
tion 3.3.

(ii) +e OHTA algorithm gathers all arrived tasks at the
input buffer of the mMEC framework during one
timeslot. At the end of each timeslot, the Hungarian
method is utilized to decide the optimal task as-
signment for all tasks in this timeslot [22].

(iii) +e OGTA algorithm determines an ECE, which
provides the lowest latency for task execution fol-
lowing (8), for the arrived task [25].

+e simulation results are logged in terms of task exe-
cution latency and execution error rate. +e execution error
rate evaluates the ratio of the over-deadline task executions
and the total offloaded tasks.

5. Numerical Result Analysis

First, the proposed PIOTS scheme is compared to the op-
timal solution of the objective function F . +e optimal
solution for the integer programming problem F used in
this paper is a combination of the Hungarian method and
backpressure algorithm [10]. Figure 4 illustrates the out-
comes of F depending on various IIoT task arrivals through
300 timeslots. Numerical results reveal that the PIOTS
scheme provides an approximate performance compared to
the optimal solution. +e difference in average task pro-
cessing latency is 0.159ms. It is worth noting that the PIOTS
scheme performs the expected task assignment based on the
typical task set derived from the SOMmap; then, it does real
task assignment online. Moreover, the SOM map is trained
by using the collected IIoT tasks arrived at the network in the
past. +erefore, within a sufficient number of neurons in the
SOM map that well represents for the typical characteristics
of the incoming IIoT tasks, the mMEC framework can
classify the incoming tasks immediately and then it handles
the tasks by approximately optimal assignment. +at is, each
incoming task is immediately assigned to appropriate ECE
right after the task arrives at the network. Meanwhile, the
optimal solution is calculated based on the set of gathered
IIoT tasks in each timeslot.

Table 3 shows statistical indexes of time consumption
in ms for task assignment decision of the orchestrator
when applying the PIOTS, OHTA, and OGTA schemes,
respectively. +e average decision-making duration that the
PIOTS scheme consumes is 0.038ms, which is smaller than
the OHTA scheme’s 100.1027ms (approximate 2635 times of
reduction) and greater than the OGTA scheme’s 0.0355ms
(approximate 15 times of increase). +e reason is because

Table 1: Simulation parameters.

Parameter Value

Orchestrator configuration CPU: Intel Core i5-6400 2.7GHz;
RAM: 16GB

Number of ECEs 20
CPU frequency of ECEs {1.5, 2.5, 5.0, 10.0, 25.0} GHz
Number of IIoT devices 300
Task processing complexity {10, 50, 100, 500, 1000} cycles/bit
Execution deadline 0.5–1.5 s
Timeslot duration 0.1 s
Simulation duration 300 timeslots

Table 2: Statistical indexes of task samples for SOM training and
system evaluation.

Index Value
Number of tasks 120,000
Min, max, and average values of task sizes {129, 512, 316.45} kb
Min, max, and average values of response
sizes {0, 32, 15.47} kb
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the PIOTS scheme calculates (1) for all neurons in the SOM
map, while the OHTA scheme must wait until the end of
each timeslot to calculate the optimal solutions. �e OGTA
scheme achieves the smallest duration since it performs
(8) for only 20 ECEs and selects the smallest latency
value. Although there is a di�erence between the PIOTS
and OGTA schemes, the average values are considered to
insigni�cantly a�ect the task processing latency. �e stan-
dard deviation and standard error mean show that all
schemes are performed in a stable condition.

Figure 5 demonstrates a comparison of the average
task processing latency when applying three competitors
(PIOTS, OHTA, and OGTA). �e PIOTS scheme achieves
an e�ective performance since the typical task set is used
to predetermine the expected task assignment for incoming
tasks. Meanwhile, the OHTA scheme performs task as-
signment based on the gathered incoming tasks during
each timeslot. Although the OHTA scheme provides better
adaptation to varying task arrivals, it must wait until the end
of each timeslot to collect the tasks and then determine
the optimal assignment. On the other hand, the OGTA
scheme greedily assigns tasks to the ECEs of lowest latency.
In statistic perspective, for average take processing latency,
the PIOTS scheme overcomes the OHTA scheme and the
OGTA scheme by 41.47% and 4.47%, respectively.

In order to evaluate the service capability of the network,
we utilize the execution error rate, which is de�ned by the
percentage of deadline-violated IIoT devices in the total
associated devices in the network. Figure 6 shows simulation
results corresponding to three thresholds of execution

deadline including 0.5 s, 1.0 s, and 1.5 s as aforementioned in
the system settings (Table 1). During 300 simulated time-
slots, the execution error rates for 0.5-second deadline are
approximate among PIOTS, OHTA, and OGTA schemes
(0.970%, 0.976%, and 0.977%, resp.). Meanwhile, in terms of
1.5-second deadline, the PIOTS scheme decreases the exe-
cution error rate to 0.826% (approximate 5.7% and 1.2%
decreases compared to the OGTA and OHTA schemes,
resp.). �is analysis demonstrates that the PIOTS scheme
provides better balanced task distribution among ECEs in
order to satisfy task execution deadlines.

Figure 7 plots average bu�ering latency for IIoT tasks
arrived at the ECEs during 100, 200, and 300 timeslots. Since
the arrived task volume has been con�gured to over ca-
pacitate the ECE performances leading to a saturated
condition in the network, bu�ering latency increases by
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Table 3: Time consumption in ms for task assignment decision of
the orchestrator.

Scheme Mean Standard deviation Standard error mean
PIOTS 0.0380 0.00242 0.00011
OHTA 100.1407 0.00265 0.00012
OGTA 0.0025 0.00111 0.00005
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Figure 4: PIOTS scheme versus optimal solution for the objective
function F .
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timeslot. It is observed that the OGTA scheme makes sig-
ni�cant bu�ering latency in every timeslots. On the other
hand, the PIOTS scheme achieves the lowest bu�ering la-
tency by 44.33% and 4.32% in timeslot 300, compared to the
OGTA scheme and OHTA scheme, respectively. Figure 8
depicts task distribution among ECEs, which helps to clarify
the reason for the bu�ering latency achievements of the
schemes. �e y-axis represents the assigned task volume in
gigacycles (a.k.a. computational CPU cycles) among ECEs,
which is given by a production function of task size and task
processing complexity for all assigned tasks in each ECE. In
the OGTA scheme, the arrived tasks are assigned more
equally among ECEs (represented by the width of the
box plotted) in comparison with other schemes. Since the
PIOTS scheme and OHTA scheme are able to adapt task

distribution according to the diversity of ECE computation
performances, they provide better task assignments resulting
in lower bu�ering latency.

6. Concluding Remarks

In this paper, a pattern-identi�ed online task scheduling
mechanism has been proposed to deliberate on real-time
task assignment in the smart manufacturing system. �e
proposed PIOTS scheme utilizes SOM technology for task
identi�cation and then assigns the task to appropriate ECE
by using the Hungarian method. Simulation results dem-
onstrate that the PIOTS scheme overcomes the existing
algorithms in terms of task processing latency and service
capability for satisfying IIoTapplications. In future research,
individual requirements of IIoT applications will be con-
sidered and veri�ed via several popular datasets within the
purpose of achieving the optimal performance for task
handling in the entire network. Moreover, a consideration of
applying game-theoretic approach should be studied to
develop a distributed computational mMEC framework.
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