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Automatic task classification is a core part of personal assistant systems that are widely used in mobile devices such as
smartphones and tablets. Even though many industry leaders are providing their own personal assistant services, their proprietary
internals and implementations are not well known to the public. In this work, we show through real implementation and
evaluation that automatic task classification can be implemented for mobile devices by using the support vector machine al-
gorithm and crowdsourcing. To train our task classifier, we collected our training data set via crowdsourcing using the Amazon
Mechanical Turk platform. Our classifier can classify a short English sentence into one of the thirty-two predefined tasks that are
frequently requested while using personal mobile devices. Evaluation results show high prediction accuracy of our classifier
ranging from 82% to 99%. By using large amount of crowdsourced data, we also illustrate the relationship between training data

size and the prediction accuracy of our task classifier.

1. Introduction

Artificial intelligence and machine learning has received
much attention in our information technology era, and we
are observing more and more applications in our daily lives
than before. In particular, many industry leaders have de-
veloped and introduced top-notch applications based on
artificial intelligence [1-5]. These applications include per-
sonalized content recommendations and personal assistant
services [3-7].

Many advanced personal assistant services heavily de-
pend on natural language understanding (NLU) for human-
computer interactions [8-10]. There are also many systems
that are based on touch-driven interactions [11, 12].
Nowadays, many machines can interact with humans with
a certain level of intelligence, and at the core of them are
artificial intelligence algorithms and natural language
processing.

There are many unsolved problems of natural language
understanding, and the problem of automatically classifying

a given natural language input into a suitable task or cat-
egory is one of them. Many researchers and industry leaders
have suggested various algorithms and approaches to tackle
the problem [8, 9, 13-20]. These research and development
activities later resulted in various personal assistant services
such as Apple’s Siri, Google’s Google Now, and Amazon’s
Alexa.

However, the personal assistant services that are pro-
vided by the industry leaders are proprietary, and their
internals and implementations are not well known to the
public. As they have been continuously updated and im-
proved over the past several years, we believe that their
implementations are highly sophisticated and complicated
combinations of many different algorithms and the state-of-
the-art technologies. Therefore, we asked ourselves the
following question: “Is it possible to implement a personal
assistant system that is simple enough to be built by ap-
plying a well-known machine learning algorithm and per-
sonally crowdsourced data?” By answering this question, we
hope that our work motivates many researchers and small
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industries to build their own intelligent systems in their
particular domains.

With the motivation in mind, in this paper, we introduce
our own implementation of an automatic task classification
system, which is based on a classical machine learning al-
gorithm and crowdsourcing. Many different classification
algorithms have been proposed and introduced to the ar-
tificial intelligence and machine learning community. To
implement our task classification module, we used the
support vector machine (SVM), a popular classification
algorithm. In particular, we used the LibShortText library
[21], which is an extension of Liblinear [22], a library
implementing linear support vector machine algorithms.

Using our implementation, we show that the support
vector machine algorithm can be successfully used for
building personal assistant services, in particular, task
classifiers for mobile devices. This task classifier can take
a natural language text input and classify the input text into
an implied task category among many predefined tasks.
Therefore, it can understand humans’ natural language
command and execute the intended task accordingly on
behalf of the user.

Even though Apple, Google, and Amazon are not dis-
closing the internal architecture or algorithms that were used
to implement their own personal assistant services [3], it is
believed that they are making use of a large amount of data
that they have collected from various sources to implement
their systems. In order to train our classification module, we
also collected our own training data, and we describe how we
collected our data via crowdsourcing.

By using a large amount of collected training data, we
investigate and present a relationship between task classi-
fication accuracy of our classifier and training data size. We
verify that the more training data we use, the better prediction
accuracy we can get, but the performance increase rate drops.

This paper is organized as follows. Section 2 introduces
a couple of commercial personal assistant systems and the
support vector machine algorithm. Then, an open-source
library implementing the support vector machine is briefly
introduced. Our classifier uses the library to build a task
classifier model. In Section 3, we describe our classifier and
the library on which the classifier is built. Section 4 describes
our crowdsourcing procedure for collecting training data
that are used to train our classifier model. Section 5 shows
that our classifier can classify short English texts into implied
task categories. In particular, precision and recall values are
presented for each task. The relationship between prediction
accuracy and training data size is also investigated. In
Section 6, we propose an overall architecture of a possible
implementation of a personal assistant system, which is based
on our task classifier. Finally, Section 7 concludes the paper.

2. Background and Prior Work

Before we propose our task classifier, we introduce some
prior work on natural language processing and a couple of
personal assistant systems. Then, a brief background on the
support vector machine algorithm is introduced.
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2.1. Natural Language Processing. Natural language pro-
cessing is a fairly large research area and has a long history in
the computer science community. The following are a few
prior work in the field.

In 1972, Winograd tried to implement a computer
system that can interact with human beings in English [14].
Kuhn and De Mori tried a new data structure, semantic
classification tree, to implement a building block for robust
matchers for NLU tasks [9]. Manning and Schiitze describe
statistical natural language processing in their book [8]. Yi
et al. presented a sentiment analyzer that extracts sentiment
about a subject using natural language processing techniques
[15]. Collobert et al. proposed a unified neural network
architecture and learning algorithm that can be applied to
various natural language processing tasks including part-of-
speech tagging, chunking, named entity recognition, and
semantic role labeling [16].

Task or category classification has much prior work, too.
In 1994, Cavnar and Trenkle proposed a text classification
approach based on N-gram [17]. Yang and Pedersen per-
formed a comparative study on feature selection methods in
text categorization [18]. Text categorization via SVM was
studied by Joachims in 1998 [19]. Yang and Liu performed
a study on five different methods for text classification [23].
Sebastiani summarized many different approaches for text
classification based on machine learning [24]. Pang et al.
performed a study on sentiment analysis (positive or neg-
ative) by employing three different machine learning al-
gorithms: naive Bayes, maximum entropy classification, and
support vector machine [25]. Tong and Koller proposed
support vector machine active learning for text classifi-
cation applications [20]. Leopold and Kindermann showed
that term-frequency transformations have a larger impact
on the performance of SVM for text classifications than the
kernel functions [26]. Genkin et al. proposed a new ap-
proach based on logistic regression that can handle high-
dimensional data such as natural language text [27]. Lan
et al. proposed a new term weighting method for text
classification [28].

2.2. Personal Assistant Systems. One of the innovative and
well-known automatic task classification systems for a nat-
ural language input sentence would be Siri, a personal as-
sistant system developed by Apple, Inc. [29]. Soon after Siri
was introduced, Google also started providing its own
similar service, which is called as Google Now [30, 31].

These two systems can understand humans’ natural
language command, which means that they can classify
a given natural language input to a command implied by the
input text and perform the predicted task accordingly. For
example, these systems understand a voice input command
such as “Call John,” and on behalf of the user, they perform
automatically the user’s intended task, which is a “Call” task.

However, Apple and Google have not disclosed how
these systems are implemented. Therefore, we designed and
implemented our own automatic task classifier based on
a widely used classification algorithm, the support vector
machine.



Mobile Information Systems

2.3. The Support Vector Machine. There are many classifi-
cation algorithms that are well known to the machine
learning community. In particular, Deep Learning [32-34] is
a very hot topic these days. If designed and trained carefully,
deep learning algorithms usually outperform (in terms of
classification accuracy) most of the previously known
classification algorithms such as the support vector machine,
random forests, and naive Bayes in many domains. How-
ever, in order to train a competitive deep learning network,
a very large amount of training data is usually required.
Furthermore, deep neural networks are often regarded as
black boxes because it is hard to understand how the net-
works classify test instances into correct categories through
the deep network layers.

On the contrary, the support vector machine is seen to be
more interpretable than deep neural networks, and it had
been mostly used in many classification problems. Even
though there is no one universal algorithm that outperforms
every other classification algorithms in various domains, the
support vector machine was widely used due to its relatively
powerful performance over many different areas [35].
Considering our goal of this work, we decided to use the
support vector machine algorithm rather than using more
contemporary but complicated deep learning algorithms.

Support vector machine algorithm was conceptually
invented in 1963 by Vapnik and Chervonenkis [36]. In 1992,
Boser et al. proposed a way to create nonlinear classifiers via
the kernel trick [37]. A couple years later, Cortes and Vapnik
introduced the concept of the soft margin [38]. Since its
introduction, SVM has seen many applications such as
hand-written character recognition.

There are many implementations of SVM with different
optimization algorithms. Fan et al. implemented an open-
source library for large-scale linear classification, which is
named as Liblinear [22]. Liblinear supports logistic re-
gression and linear support vector machines. Another open-
source library for short text classification and analysis, called
LibShortText, was implemented [21]. LibShortText is an
extension of Liblinear, and it can train a classification model
with a given training data set consisting of short natural
language texts with labels.

3. Automatic Task Classifier

Our main idea is that a practical task classifier, a core part of
personal assistant systems, can be implemented to reach
a sufficient accuracy by using a classical classification al-
gorithm and basic natural language processing techniques.
As we have briefly introduced in Section 2, there exists an
open-source library for text classification based on the
support vector machine. Therefore, we adopted this library
to design our task classifier instead of reinventing the wheels.

3.1. Predefined Tasks. We implemented our own automatic
task classifier that can classify a given natural language input
text to the most appropriate task among the thirty-two
predefined tasks. The thirty-two distinct tasks that we
have used are shown in Table 1. We picked these tasks based

3
TaBLE 1: The predefined thirty-two tasks for mobile devices.
Search App Chatting
Transportation Map Call Greeting
Travel Music E-mail Praise
Movie Photo Camera Dispraise
Book News Check schedule Boredom
Game Apps Schedule Love
Restaurant Recipe Memo —
Shopping Weather Timer —
Hospital — Alarm —
Wikipedia — Music player —
Information — SNS —

on our observation that they would span most frequently
used tasks that a user can command their mobile devices
such as smartphones or tablets. However, these thirty-two
tasks are not meant to be hardcoded; users can define any
task list of their own interest.

For example, the thirty-two tasks contain the “Call” task,
and our task classifier can classify an input text “Call John.”
In other words, our classifier will automatically recognize the
user’s intended task, which is the “Call” task, and the per-
sonal assistant system will command the mobile device to
search its contacts list to find “John” and finally place a call to
him. Even though we defined our own thirty-two tasks
targeting mobile devices, different use cases can define their
own task lists. For an instance, navigation systems may have
totally different tasks such as “Search Location” or “Cancel
Navigation.”

3.2. Training Task Classifier. In order to implement our
automatic task classifier, we exploit LibShortText [21], an
open-source library implementing a short-text classifier.
This library is very well implemented and provides a capa-
bility to change the parameters of the support vector ma-
chine algorithm or natural language processing. As the
authors of LibShortText claimed, our preliminary experi-
mentation has shown that the default parameters of the
library result in very good classification accuracies for our
purpose, if not the best, so we mostly followed their rec-
ommendations as is.

In addition, in an attempt to enhance the accuracy
turther, we designed a preprocessing step, which is to replace
some words into more general categories. For example, if
the given sentence is “I want to have a sushi,” then the
word “sushi” is replaced with “categoryFood.” Therefore, the
final sentence in this case becomes “I want to have
a categoryFood.”

We experimented with the idea of word replacement
because replacing more specific words with more general
terms may increase classification accuracies by decreasing
the dimension of the input feature space (the space of
N-grams). In order to implement the preprocessing of word
replacement, we first created a dictionary, which maps some
words to more general categories. For example, “sushi” and
“pizza” are mapped to the “categoryFood” category. After we
generated the dictionary, we applied the preprocessing step
to the training data set. In other words, all the training data



sentences were transformed to sentences where specific
words are replaced with corresponding category titles. Of
course, when the task classifier classifies a test input sen-
tence, the same preprocessing step should be performed on
the test sentence before the classification process kicks in.

To our disappointment, however, the experiment results
were not promising; the classification accuracy with the
preprocessing was not higher than the case without that step.
We believe there may be many reasons for this. First of all,
the classification accuracy of the support vector machine is
already very high without the preprocessing, which makes it
very hard to increase the accuracy further. Second, the
feature space dimension is not reduced enough to affect the
classification accuracy.

After we confirmed the experiment results, we chose to
stay with the recommended setting of LibShortText without
the preprocessing. We also want to mention that the pre-
processing takes computation time, which is another reason
why we chose not to apply our tested preprocessing.

The LibShortText library requires a training data set to
train a support vector machine, so we used a popular
crowdsourcing platform to collect our training data set. In
order to achieve high classification accuracy for general
natural language text inputs, we need a large amount of data.
The data collection process is described in the next section.

4. Data Collection via Crowdsourcing

This section describes how we collected our own training
data set for our task classifier training.

4.1. Amazon Mechanical Turk. Crowdsourcing has been
a powerful way to obtain human intelligent services, ideas, or
content by soliciting contributions from a large group of
people and especially from online communities [39]. A well-
known online survey platform, SurveyMonkey, is a good
example of many services that can be used for collecting data
via crowdsourcing. Many people are now using Survey-
Monkey in small scales for personal, academic, or industrial
purpose.

Amazon.com, Inc. is also providing a popular and
commercial crowdsourcing platform called Amazon Me-
chanical Turk (MTurk). MTurk provides an easy-to-use
system for collecting a large amount of data sets via
crowdsourcing. There have been many research results
about the data quality collected by MTurk. Buhrmester et al.
described and evaluated the potential contributions of
MTurk to psychology and other social sciences [40]. Paolacci
et al. addressed potential concerns about the quality of
collected data through MTurk by presenting new de-
mographic data about the Mechanical Turk subject pop-
ulation, reviewing the strengths of MTurk relative to other
online and offline methods of recruiting subjects and
comparing the magnitude of effects obtained using Me-
chanical Turk and traditional subject pools [41]. Kittur et al.
also performed a study on validity of MTurk platform [42].
Many of them indicate that MTurk is a good crowdsourcing
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platform to collect high-quality data with inexpensive
monetary costs.

We collected our own training data set using MTurk to
train our task classification engine. MTurk enables crowd-
sourcing requesters to upload their questionnaires. Once
uploaded, MTurk publishes the questionnaires to the MTurk
open marketplace so that many MTurk workers can answer
the uploaded questionnaires and get paid by the requester.

4.2. Our Data Collection Process. In order to collect English
sentences for commanding any of the predefined thirty-two
tasks, we created a questionnaire that requests a worker to fill
out his/her own example sentence for each different task. For
example, for the task of “Restaurant Search”, one person can
provide an example sentence such as “Find me a good Italian
restaurant nearby,” and another person can provide a dif-
ferent sentence such as “best Korean food in San Francisco.”
Once a worker finished filling out an example sentence for
each of all the thirty-two tasks, then we compensated the
worker for their contribution.

Through the aforementioned MTurk crowdsourcing
process, we were able to collect 65,890 sentences for the
thirty-two tasks. Each task has at least 2,000 sentences. All
these sentences are human generated, so the data set has high
quality and variety. For example, a worker provided an
example sentence, “I am hungry” for the task of “Restaurant
Search,” whereas many other workers just provided names
of various cuisines such as “Pizza” or “Sushi.”

5. Prediction Accuracy

In order to train our classifier and evaluate the classification
accuracy, we applied the tenfold cross-validation approach
using the 65,890 sentences for the thirty-two tasks collected
via crowdsourcing. While applying tenfold cross validation,
we measured the precision and recall values for each task.

5.1. Precision and Recall. While performing the tenfold cross
validation, the precision and recall values for each task can
be computed as follows for each fold.

Suppose that we randomly partition all the collected data
set T'into ten equal folds. We partitioned T'so that each fold
has roughly equal number of data points for each task. To
compute precision and recall values corresponding to
a partition P;, i =1,2,...,10, we form a training data set
consisting of all the data except those belonging to P;. In
other words, if we call the training data set for the fold P; as
T;, we have

T,={deT|d¢P} (1)

By using T} as a training data set, we train a task classifier
model f;. We then measure the prediction accuracy of the
model f; using the fold P; as a validation set.

For each pair of task ti j=12,...,32, and fold P,
i=1,2,...,10, the precision and recall values are computed
by the following equations:
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TaBLE 2: The precision and recall values of each task as well as the top 3 misclassifications.
Task name Precision (%) Recall (%) Top 3 misclassifications
. Travel Map Restaurant
Transportation 91.48 94.33 1.61% 1.46% 0.76%
Restaurant Shopping Transportation
Map 8387 8276 5.53% 4.49% 3.45%
Transportation Wikipedia Restaurant
Travel 93.64 94.44 0.85% 0.81% 0.62%
. Music player Wikipedia Book
Music 88.98 86.25 6.33% 3.07% 1.56%
. Book Information Music
Movie 89.74 93.10 1.28% 1.18% 1.09%
Information Camera Wikipedia
Photo 95.86 95.13 0.99% 0.90% 0.61%
Music Wikipedia Shopping
Book o121 o151 1.52% 1.47% 1.09%
Wikipedia Information Book
News 9308 ol 1.37% 0.85% 0.61%
Apps Music player Movie
Game 88.23 89.07 6.48% 0.71% 0.47%
Game Map Movie
Apps 9002 8892 6.92% 0.47% 0.43%
Map Shopping Transportation
Restaurant 86.54 88.35 431% 2 84% 1.14%
. Restaurant Information Map
Recipe 97.14 98.15 0.43% 0.24% 0.14%
. Map Restaurant Hospital
Shopping 86.25 88.75 3.999% 271% 1.04%
News Information Check schedule
Weather 97.90 99.20 0.14% 0.14% 0.14%
. Shopping Map Restaurant
Hospital 95.55 94.92 1.28% 1.05% 0.81%
T Information News Music
Wikipedia 83.05 78.63 7 98% 3.32% 1.85%
. Wikipedia Music Book
Information 82.51 83.88 5.61% 1.24% 1L14%
Greeting Love Movie
Call 98.57 9834 0.48% 0.24% 0.14%
. Call Dispraise Memo
E-mail 99.38 99.19 0.14% 0.14% 0.10%
Photo Apps Movie
Camera 98.16 98.72 0.24% 0.19% 0.14%
Schedule Boredom Memo
Check schedule 90.60 92.97 4.66% 0.48% 0.38%
Check schedule Memo Timer
Schedule 93.43 91.35 6.51% 0.90% 0.14%
Schedule E-mail Timer
Memo 97.57 97.29 0.62% 0.29% 0.24%
) Alarm Memo Information
Timer 97.59 98.24 0.76% 0.24% 0.14%
Timer Greeting Movie
Alarm 98.38 98.38 0.90% 0.24% 0.14%
. Music Timer Love
Music player 91.23 96.28 2 62% 0.14% 0.14%
News Movie Wikipedia
SNS 98.69 96.36 1.09% 0.57% 0.43%
. Dispraise Check schedule Praise
Greeting 93.87 92.14 1.51% 111% 1.00%
. Dispraise Love Restaurant
Praise 89.12 89.52 2.79% 1.95% 1.06%
o Boredom Praise Shopping
Dispraise 84.00 83.48 3.299% 3.07% 1.79%
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TaBLE 2: Continued.
Task name Precision (%) Recall (%) Top 3 misclassifications
Dispraise Game Greeting
Boredom 89.76 84.14 4.80% 2.79% 1.45%
Praise Dispraise Boredom
Love 92.40 88.27 441% 2.12% 1.68%

Accuracy of our classifier (in terms of precision and recall) is promisingly high ranging from 82% up to 99%.

[{d < P £ =t = ]
Hd € Pi|fi(d) :tj}l

Precision(tj, Pl.) =

(2)
{4 e Pl fi@ =t =1 ]
[d e Pl t(d) = 1]

Recall(tj, Pi) =

>

where t (d) and f;(d) are the original and the predicted task
labels of the data sentence d, respectively.

5.2. Measured Prediction Accuracy. The tenfold cross-
validation results are shown in Table 2. As shown in Table 2,
the precision and recall values are very high ranging from 82%
up to 99%. Even though there are some misclassifications be-
tween similar tasks, the overall prediction accuracy is promising.
Therefore, our task classifier can be employed to build practical
personal assistant services.

We can also observe that only a few groups of similar
tasks have relatively high misclassification ratios. For ex-
ample, the three tasks of “Map,” “Restaurant,” and “Shop-
ping” search were mostly confused with each other. The
“Music” search and “Music player” app launch tasks were
also mostly confused with each other. The “Apps” search and
“Game” app launch tasks were mostly confused with each
other, and the “Wikipedia” and “Information” search tasks
were also confused with each other. Finally, the five chatting
tasks were confused among themselves.

In order to increase the accuracy of our task classifier
further, we may build a second layer of classification, which
is applied to and classifies each group of similar tasks to
amore accurate task inside the group. The second layer need
not use the support vector machine as the first layer; it may
use rule-based classifiers or any other algorithm.

5.3. Accuracy and Training Data Size. We performed an
experiment to investigate the relation between training data
size and classification accuracy. It is expected that the more
the data we use for training, the more the accuracy we can
get. We wanted to confirm this expectation and to get the
precise relation between the classifier performance and the
training data size. For this experiment, we randomly chose
20% of all the collected data points as the test set. Then, we
used the remaining 80% of the data set as a training data
pool, so that we can sample a certain amount of data points
randomly from the pool.

More specifically, suppose that S is the randomly sam-
pled test set whose size is 20% of the collected data set T.
Then, the remaining 80% of the collected data is used as the

training data pool P, from which we sample different sizes of
training data. Therefore, we have

PUS=T,

PnS=0. ©)

In particular, we tested with ten different sizes of training
data: 10%,20%,30%, . ..,100% of the training data pool P.
For each different training data size of (i/10)|P| for
i=1,2,3,...,10, we repeated random sampling from the
pool P ten times to train ten different classifier models with
the same training data size. In other words, for each i, we
train ten different task classifiers f;; for j = 1,2,3,...,10 by
sampling training data of the same size from the pool P ten
times. Then, using each classifier f;;, we measured the
classification accuracy acc;; as

Hd € S|fij(d) = t(d)H

aCCij = ISl >

(4)

where f ij (d) and t (d) are the predicted and original task of
the input text d, respectively. Therefore, we have ten different
accuracy values for each training data size.

The results of the experiment are shown in Figure 1,
where a boxplot is generated with ten different accuracy
values for each different training data size. The figure shows
that the classifier performance increases as the training data
size increases, but the performance increase rate drops as the
training data size increases. This result is reasonable and
verifies our original hypothesis.

6. Personal Assistant Systems

So far, we have described our proposed task classifier that is
based on the support vector machine algorithm. The pro-
posed task classifier may be used to build a personal assistant
system. Figure 2 shows the overall architecture of a possible
implementation of a personal assistant system. A user’s voice
command is first transmitted to a server, which is running
the speech-to-text converter and the task classifier.

For the speech-to-text converter, any suitable converter
may be used; for example, we may use Sphinx speech rec-
ognition system [43-45].

The received speech at the server is converted to text, and
the converted text is given to the task classifier, a core part of
the overall system. The task classifier classifies the given text
into the most probable task, and the predicted task is
transmitted back to the user’s mobile device. Then, the task
launcher of the personal assistant system performs the
predicted task accordingly on behalf of the user.
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FIGURE 1: Prediction accuracy increases as we use more training data, but the increase rate drops.
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FIGURE 2: A proposed architecture of a personal assistant system.

Since the proposed task classifier is built upon the linear
support vector machine, the computation time typically
ranged from a few milliseconds to a few tens of milliseconds.
Of course, as we use more powerful servers, we can reduce
the computation time more.

7. Conclusion

We presented a method to implement personal assistant
services that can understand human’s natural language
commands. Even though there already exist such services
including Siri, Google Now, and Alexa, the internal tech-
nologies have not been disclosed and are not well known to
the public. Therefore, we investigated whether it is possible
to build a task classifier, a core part of personal assistant
services, using a well-known machine learning algorithm.
Our implementation is based on the support vector ma-
chine, a widely used classification algorithm in many
domains.

To train our support vector machine with sufficient data,
we collected our own training data set by using a popular
crowdsourcing platform, the Amazon Mechanical Turk. We
predefined thirty-two tasks that are frequently commanded
while using mobile devices and collected natural language
sentences for each task by using the crowdsourcing platform.

Through this process, we were able to collect 65,890 natural
language sentences in total.

We tested our task classifier performance with the
tenfold cross-validation approach. The evaluation results
show that the precision and recall values of our classifier are
very high. This result indicates that our simple approach can
be employed to implement practical personal assistant
services.

The relationship between training data size and classifier
performance was also investigated. We confirmed that the
performance becomes better as we use more training data,
but the performance increase rate drops as we increase the
training data size. All of these observations are reasonable,
and we hope that our work can motivate and be referred to
by many researchers or industries who are trying to build
their own personal assistant systems.
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