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ABSTRACT This paper presents a dual autoencoder network model based on the retinex theory to perform
the low-light enhancement and noise reduction by combining the stacked and convolutional autoencoders.
The proposed method first estimates the spatially smooth illumination component which is brighter than
an input low-light image using a stacked autoencoder with a small number of hidden units. Next, we use
a convolutional autoencoder which deals with 2-D image information to reduce the amplified noise in
the brightness enhancement process. We analyzed and compared roles of the stacked and convolutional
autoencoders with the constraint terms of the variational retinex model. In the experiments, we demonstrate
the performance of the proposed algorithm by comparing with the state-of-the-art existing low-light and
contrast enhancement methods.

INDEX TERMS Autoencoder, image processing, image enhancement, neural networks, variational retinex
model, unsupervised learning.

I. INTRODUCTION
Digital cameras play a role in sensing information from
external world in various applications such as artificial intel-
ligence, remote sensing, surveillance system, and advanced
driver assistance system. However, when the amount of
incoming light to the sensor is insufficient under poor illumi-
nation conditions, the dynamic range of the acquired image
is reduced. In addition, the low-light images are corrupted
by additive noise because of the limited number of photons
received by each pixel. As a result, it is difficult to obtain
a high-quality image under the low-light condition and the
low-light artifacts may reduce the performance of computer
vision applications such as object recognition, detection, and
tracking. A theoretically sound approach to solve this prob-
lem is image enhancement based on the retinex theory with
the understanding of the human visual system (HVS). More
specifically, Land et al. first proposed the retinex theory to
demonstrate the process of the HVS to perceive colors from
the retina to visual cortex [1], [2]. They demonstrated that the
HVS perceives the colors by the reflected ratios of the light
rather than the lightness.

The retinex theory-based image enhancement methods
have been further developed to improve the dynamic range

of the dark region. These methods enhance the visibility by
subtracting the local and global illumination components, but
the separation of the illumination and reflectance compo-
nents is an ill-posed problem. Jobson et al. [3] defined the
reflectance component as a ratio of the intensity value at the
center to the average of the intensity values. They proposed
single-scale retinex (SSR) to enhance the dynamic range
by eliminating the illumination component, which is esti-
mated by Gaussian low-pass filtering. However, the resulting
image shows halo effect near edges because of the conti-
nuity of the illumination component. To solve this problem,
Rahman et al. [4] presented multi-scale retinex (MSR) using
multiple Gaussian kernels with different standard deviations.
Although the MSR algorithm can suppress the halo effect
using the weighted summation of multiple illumination com-
ponents, the resulting image cannot avoid color distortion.
Jobson et al. extended their previous work to compensate the
color component by applying the color restoration function
using the ratio of each color channel [5].

As an alternative approach to enhance the low-light image,
variational retinex models were proposed based on pri-
ors of illumination and reflectance components [6]–[12].
Kimmel et al. [6] estimated the illumination component by
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minimizing the gradient of illumination component using
l2 regularization. Ma et al. [7] estimated the reflectance
component which contains high-frequency components using
anisotropic total variation (TV)-prior instead of the Gaus-
sian smoothness prior to reduce the amplified noise while
preserving the edge. Fu et al. [8] demonstrated the relation-
ship between the bright channel and illumination component
using the bright channel prior, and presented a variational
retinex model which can suppress halo-effect. Park et al. [9]
penalized the brightness of illumination using quadratic
fidelity prior of the illumination component with respect to
its enhanced version to suppress over-enhancement of the
reflectance component.

Recently, deep learning-based image processing meth-
ods have been proposed in the image enhancement field.
Lore et al. [13] adopted stacked-sparse denoising autoen-
coder to a low-light image enhancement framework to simul-
taneously perform the brightness enhancement and noise
removal. Shen et al. [14] analyzed the property of MSR algo-
rithm in the sense of convolutional neural network (CNN),
and proposed MSR-net to enhance the low-light image using
the CNN architecture.

In this paper, we present a novel low-light image enhance-
ment framework combining the stacked and convolutional
autoencoders based on the retinex theory. In addition, we ana-
lyze the relationship between the variational retinex model
and the proposed autoencoder-based enhancement meth-
ods. Major contribution of the proposed method is twofold:
i) Since the stacked autoencoder decomposes the low-light
input patch into compact features, it can reconstruct the opti-
mal illumination component with enhanced brightness, and
ii) the convolutional autoencoder plays a role in suppressing
noise amplification in the reflectance component without
degrading sharp edges. In addition, the stacked autoencoder
can be regarded as the smoothness term or brightness con-
straint on the illumination component. In the same manner,
the convolutional autoencoder enforces the penalty on the
reflectance component to reduce the amplified noise.

The paper is organized as follows. Section II describes
the variational retinex model and low-light net as a theo-
retical background. Section III presents the proposed low-
light image enhancement framework using dual autoencoder.
Experimental results are shown in Section IV and Section V
concludes the paper.

II. RELATED WORKS
A. VARIATIONAL RETINEX MODEL
To enhance the contrast of a low-light image,
Kimmel et al. [6] estimated the illumination component by
minimizing the energy functional in the iterative manner.
However, since the illumination and reflectance components
are inversely proportional, the low illumination component
results in the over-enhancement of the reflectance compo-
nent. To overcome this problem, they adjusted the amount of
gamma correction to enhance the brightness of the estimated

illumination component. The resulting image is obtained
by multiplying the reflectance and adjusted illumination
components.

To prevent the over-enhancement of the reflectance com-
ponent, Park et al. [9] presented amodified variational retinex
model using an additional data-fidelity term which penalizes
the brightness of the illumination component as

argmin
fR,fL

λ1‖fRfL − g‖22 + λ2‖∇fL‖
2
2

+ λ3‖∇fR‖1 + λ4‖fL − f̂L‖22, (1)

where ‖fRfL − g‖22 represents the data-fidelity term,
‖∇fL‖22 and ‖∇fR‖1 the smoothness terms on illumination
and reflectance components, respectively, ‖fL − f̂L‖22 the
data-fidelity term between illumination component and its
enhanced version by the gamma correction. λ1, λ2, λ3, and
λ4 represent regularization parameters.

In Park’s method, the smoothness term on the illumination
component, ‖∇fL‖22, penalizes the gradient of illumination
component using an isotropic TV-prior which is equivalent to
the Gaussian smoothness prior. In addition, since the bright-
ness of illumination component is iteratively increased using
the fourth quadratic data-fidelity term in (1), this method can
estimate the natural reflectance component without gamma
correction on the illumination component. Moreover, this
method can reduce noise by minimizing the loss of edge
information using an anisotropic TV-prior on the reflectance
component.

B. LEARNING-BASED IMAGE ENHANCEMENT METHODS
An autoencoder is a feed-forward neural network which aims
to extract meaningful features by compressing the input data
in an unsupervised manner [15]–[19]. Vincent et al. [17] per-
formed noise removal using stacked denoising autoencoder
and pairs of original and noise corrupted vectors. This method
trains the autoencoder to reconstruct the output vector as close
to as the original vector in a self-supervised manner from a
compressed representation of noise vector.

Motivated by the denoising autoencoder, Lore et al. [13]
presented low-light net (LLNet) to enhance the low-light
image using the stacked denoising autoencoder with the
sparsity prior because the low-dimensional representations
provide more compact and meaningful features. To simul-
taneously perform contrast enhancement and noise removal,
Lore et al. generated a pair of ground-truth and cor-
rupted images as the training data. The corrupted images
were produced by degrading the brightness of ground-truth
image using gamma correction and adding white Gaussian
noise. The weights and biases of the autoencoder were
updated in the back-propagation step to minimize the error
between ground-truth and reconstructed images. Moreover,
they learned each denoising and contrast enhancement net-
work separately, and presented staged LLNet to indepen-
dently control the performance of each image enhancement
module.
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FIGURE 1. The proposed low-light image enhancement framework.

III. DUAL AUTOENCODER NETWORK
This section describes the proposed low-light image
enhancement framework using stacked and convolutional
autoencoders. The proposed dual autoencoder model esti-
mates the enhanced image in three steps: i) estimation
of illumination component using a stacked autoencoder,
ii) initial estimation of reflectance component, and iii) refine-
ment of reflectance component using a convolutional autoen-
coder. In the following subsections, we describe the roles of
stacked and convolutional autoencoders.

In addition, we analyze the relationship between the
proposed network architecture and each constraint term of
modified variational retinex model in [12]. Fig. 1 shows a
block-diagram of the proposed low-light image enhancement
framework.

A. ILLUMINATION ESTIMATION USING STACKED
AUTOENCODER
Based on the retinex decomposition model, the illumina-
tion component has a low-frequency characteristic since
it smoothly changes in the image space. For that reason,
a Gaussian low-pass filter was the most popular in exist-
ing illumination estimation methods. On the other hand,
the proposed method estimates the enhanced illumination
component using the stacked autoencoder which reduces the
dimensionality of the input data.

A conventional denoising autoencoder plays a role in esti-
mating the original data given its corrupted version. In the
training step of the neural network, if we use a very small
number of hidden units, the encoder layer provides more
compressed representation of the input data. It implies that
the reconstruction of original data cannot be successful.
Fig. 2 shows the comparative results of the reconstruction
of brightness enhanced illumination given the input low-light
image.

As shown in Fig. 2, the neural network with smaller num-
ber of hidden units cannot successfully preserve the image
structure such as edges and textures. The poor performance
in preserving edges implies that the resulting image cannot be
consistent with the original image in terms of noise reduction.
However, the blurred result of the autoencoder can be used as
the illumination component because it has the low-frequency

FIGURE 2. Comparative results of the reconstruction of brightness
enhanced illumination patches: (a) corrupted input patches, (b)
reconstructed patches using 256, 128, and 32 hidden units in each
hidden layer, (c) reconstructed patches using 256, 128, and 64 hidden
units in each hidden layer, and (d) reconstructed patches using 256, 128,
and 96 hidden units in each hidden layer.

property over the entire image as shown in Fig. 2. In addition,
since the proposed method trains the neural network using a
pair of low- and high-contrast image patches, the brightness
enhanced illumination component can be obtained. In the
third, fifth, and seventh columns of Fig. 2, row (d) has better
reconstructed edges and details because of more hidden units
in the bottleneck layer than row (b) and (c).

B. REFLECTANCE ESTIMATION USING CONVOLUTIONAL
AUTOENCODER
We can estimate the reflectance component using the ratio
of the input image to the illumination component estimated
in the previous subsection. Given the estimated illumination
component in the previous step, the initial reflectance com-
ponent is estimated as

R =
g
L
, (2)

where R represents an initially estimated reflectance com-
ponent, g the input low-light image, and L the estimated
illumination component.

However, since the noise components are amplified dur-
ing the contrast enhancement process, the noise removal of
reflectance component is needed to provide a high-quality
image. Although the stacked denoising autoencoder can
perform noise removal to a certain degree, it ignores the
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FIGURE 3. The proposed convolutional autoencoder model.

two-dimensional structural information of image since the
input low-light patch was transformed into one-dimensional
vector. On the contrary, the convolutional autoencoder can
use the two-dimensional structural information for train-
ing. So it results in reducing the loss of details [18], [19].
For that reason, the proposed method can estimate improved
reflectance component using convolutional autoencoder to
reduce noise amplification while preserving the edge.
Fig. 3 shows the proposed fully convolutional autoencoder
network model.

The encoding part consists of one convolution layer and
one pooling layer, all of which has one activation function.
The first convolution layer is represented as

f1(x) = max (0,w1 ∗ x + b1), (3)

where x represents the input image and ∗ the convolution
operation. wk and bk represent the weight and bias of the
k-th convolution layer, respectively. The extracted features
are compressed by down-sampling the output of convolution
layer using the max-pooling as

f2(x) = p(f1(x)), (4)

where p(·) represents the max-pooling operation, which
decreases the dimensionality of input data and extracts effec-
tive features by taking the maximum activation.

The decoding part consists of one up-sampling and two
convolution layers. The second convolution layer is repre-
sented as

f3(x) = max (0,w2 ∗ f2(x)+ b2). (5)

This layer takes compact and coded features to reconstruct
the input image. The up-sampling process can be represented
as

f4(x) = u(f3(x)), (6)

where u(·) represents the up-sampling operation. The up-
sampling layer plays a role in enlarging the spatial resolution
of f3(x) to have the same dimension of the input image x.
Finally, the reconstruction of resulting image is performed in
the third convolution layer as

f5(x) = σ (w3 ∗ f4(x)+ b3), (7)

where σ (·) represents the sigmoid function. Since the last
convolution layer provides the reconstructed resulting image
in [0,1], we used the sigmoid function as activation function
than rectified linear unit (ReLU).

The weight and bias of each convolution layer are updated
to minimize the difference between the reconstructed and its
ground-truth images. Mean squared error (MSE) is used to
define the loss function as

L(θ ) =
1
n

n∑
i=1

‖f (xi; θ )− yi‖2 , (8)

where θ = {w1,w2,w3, b1, b2, b3}, n represents the number
of training data, and yi the i-th ground-truth image of xi.

C. MOTIVATION FROM THE VARIATIONAL
RETINEX MODEL
In low-light condition, since the reduced amount of incoming
light results in the low illumination component, it is highly
probable to obtain the over-enhanced reflectance component
because the estimated reflectance is inversely proportional to
the illumination component. In this subsection, we compare
the proposed dual autoencoder network model with the con-
straint terms of variational retinex model to prevent the over-
enhancement of reflectance component [12].

The proposed method estimates the illumination compo-
nent from the extremely compressed representation of the
input low-light image explained in subsection 3.A. Since
the proposed stacked autoencoder is trained to provide the
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blurred illumination component using the small number of
hidden units, it can be regarded as the smoothness prior,
‖∇fL‖22, of the illumination component in the variational
retinexmodel in (1). In addition, the proposed stacked autoen-
coder learns the mapping between the low- and high-contrast
patches to obtain the illumination component of bright-
ness enhanced image. It implies that the proposed stacked
autoencoder enforces the data-fidelity between the illumina-
tion component of an input low-light image and that of its
enhanced version as the fourth term in (1).

In terms of noise reduction, the proposed method reduces
the amplified noise in the enhanced reflectance compo-
nent by using the convolutional autoencoder. The conven-
tional denoising autoencoder performs the training in the
form of the randomly corrupted input and original vectors
to reduce the dimensionality. On the other hand, the con-
volutional autoencoder trains the neural network using the
two-dimensional image data. For that reason, the convolu-
tional autoencoder can better preserve the image structure
since the weights are shared at all input data. In the pro-
posedmethod, the convolutional autoencoder can be regarded
as the constraint term on the reflectance component using
l1-norm minimization in (1). In addition, the proposed dual
autoencoder is trained to provide the output which is equal
to input in self-supervised learning manner, the stacked and
convolutional autoencoders are regarded as the data-fidelity
term ‖fL − f̂L‖22 in the retinex model.

IV. EXPERIMENTAL RESULTS
This section demonstrates the performance of proposed dual
autoencoder model by comparing with existing low-light
image enhancement methods including Kim’s method [20],
Jiang’s method [21], Jobson’s method (MSRCR) [5], Fu’s
method [8], Guo’s method [22], and Park’s method [12].
The objective assessments are evaluated using the peak
signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) [23].

In addition, we describe the training condition, to generate
proper training data, and analyze the performance of pro-
posed dual autoencoder model. Adam, which is proposed by
Kingma and Ba [24], is used for optimization with a learn-
ing rate of 0.001. The mini batch size of each autoencoder
is respectively set to 512 and 128. The experiments were
performed on a personal computer with a CPU of 3.9 GHz,
RAMof 24 GByte, and Nvidia GPUTitan Xp. The training of
stacked and convolutional autoencoder networks respectively
took about 254 and 1,501 seconds usingGPU.Given the input
image of size 512 × 512, the proposed method provided the
enhanced result in 13.3 seconds using CPU.

A. TRAINING DATA GENERATION
The proposed method respectively estimates the illumina-
tion and reflectance components in the stacked and convo-
lutional autoencoders as shown in Fig. 1. Since the stacked
autoencoder estimates the brightness enhanced illumination
component from the input low-light image, we generated a

FIGURE 4. Set of ideal images collected from the internet to synthesize
the training dataset.

set of training data using a pair of low- and high-contrast
patches because it is difficult to naturally obtain low- and
high-contrast image pairs [13].

For that reason, we synthesized the low-contrast image
patch using about 80,000 patches of size 33×33, which were
sampled from a set of ideal (high-contrast) images collected
from the internet and the dataset used in [25] as shown
in Fig. 4. The low-contrast patches were generated using the
gamma corrected luminance channel in the HSV color space
of ideal image patches as

fp = gγp , (9)

where gp and fp represent the low- and high-contrast patches
and γ the adjusting parameter which is randomly set to
in [1.6, 3.3] for each patch.

In the proposed dual autoencoder model, the convolutional
autoencoder performs the noise reduction in the initially
estimated reflectance component. To train the convolutional
denoising autoencoder, we generated about 190,000 pairs of
noisy and noise-free patches size 28×28 using the luminance
channel in the HSV color space of the ideal image. The noisy
patch was synthesized by adding Gaussian noise with zero
mean and randomly selected standard deviation σ ∈ [10, 18].
Fig. 5 shows a part of synthesized noisy low-contrast patches
and their ground-truth.

B. PERFORMANCE OF PROPOSED AUTOENCODER
MODELS
In this subsection, we compare the performance of the stacked
autoencoder to estimate the illumination component. Since
the autoencoder reconstructs the original data from the com-
pressed representation of the input data, the performance
depends on the number of hidden units. For that reason,
we compared the resulting image with different number of
hidden units in the bottleneck layer as shown in Fig. 6.
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FIGURE 5. A part of synthesized training dataset for the proposed dual
autoencoder network: (a) high- and low-contrast patches for the stacked
autoencoder and (b) noise-free and noisy patches for the convolutional
autoencoder.

FIGURE 6. Comparative results using different number hidden units in
the bottleneck layer: (a) input image, (b) 32 hidden units (AE: 7.5489),
(c) 64 hidden units (AE: 7.5208), and (d) 96 hidden units (AE: 7.5205). The
first row shows the enhanced resulting images, and the second row
shows the estimated illumination components.

Since the input patch of size 33 × 33 is transformed to a
vector in R332 , the number of bottleneck layer should be
lower than 332 to compress the input data.

Fig. 6 shows the resulting images using the estimated
illumination component by three different stacked autoen-
coders having 32, 64, and 96 hidden units in the bottle-
neck layer. Specifically, the resulting image using 32 hidden
units provided the best contrast because of more com-
pressed representation of the input low-light image. It implies
that the stacked autoencoder can better represent the low-
frequency property of the illumination component with the
small number of hidden units. Moreover, the higher aver-
age entropy (AE) value implies that the resulting image has
more image information such as visible edges [26]. Based on
the observation, we used 32 hidden units in the bottleneck
layer.

In the convolutional autoencoder, we compared the perfor-
mance of noise reduction using the MSE at different number
of convolution filters and different sizes of receptive field of

TABLE 1. Comparison of the performance of convolution layer with three
different filter sizes and receptive fields of the max-pooling layer using
the MSE value (10−2).

TABLE 2. The output size of each layer in the convolutional autoencoder.

FIGURE 7. The test images used in the objective assessments.

max-pooling layer as summarized in Table 1. As shown in
the Table 1, n1, n2, and n3 represent the number of filters
used in each convolution layer, and p1 is the size of receptive
field in max-pooling layer. u1 is a factor of magnification
in the decoding part as shown in Fig. 3. As summarized
in Table 1, the smaller size of the receptive field in max-
pooling layer and more convolution filters provided better
denoising performance with the smallest MSE value in the
training and validation. Therefore, the proposedmethod takes
the maximum value in the local window of size 2 × 2.
The output size of convolution and max-pooling layers are
summarized in Table 2.
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FIGURE 8. The performance comparison of proposed and existing methods using the synthesized low-light image: (a) input image, (b) synthesized
low-light image, (c) Kim’s method [20], (d) Jiang’s method [21], (e) Jobson’s method [5], (f) Fu’s method [8], (g) Guo’s method [22],
(h) Park’s method [12], and (i) the proposed method.

FIGURE 9. The performance comparison of proposed and existing methods using the synthesized low-light image: (a) input image, (b) synthesized
low-light image, (c) Kim’s method [20], (d) Jiang’s method [21], (e) Jobson’s method [5], (f) Fu’s method [8], (g) Guo’s method [22],
(h) Park’s method [12], and (i) the proposed method.

C. OBJECTIVE ASSESSMENTS
To perform the objective assessments of the proposed
method, we synthesized the low-light image by degrading
the brightness of the ideal image with an additive Gaussian
noise with zero mean and σ = 3 only in the dark region.
Fig. 7 shows a set of ideal images, and the corresponding
PSNR and SSIM values are summarized in Table 3.

Figs. 8(a) and 9(a) show the ideal images and
Figs. 8(b) and 9(b) show the synthesized low-light images.

The histogram-based method cannot provide a success-
fully enhanced result in both dark and bright regions with
an artifact of brightness saturation [20]. As shown in
Figs. 8(d) and 9(d), although the transmission map-based
method provided the enhanced result using the degradation
model of hazy image, it cannot avoid the noise amplifi-
cation and color distortion [21]. Likewise, although Job-
son’s method provided the enhanced result using multi-scale
retinexwith the color correction function to suppress the color
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TABLE 3. Objective evaluation of the performance using PSNR and SSIM [23]. The red and blue colors represent the first and second best scores,
respectively.

FIGURE 10. The performance comparison of proposed and existing methods using the real low-light image: (a) original image, (b) Kim’s method [20],
(c) Jiang’s method [21], (d) Jobson’s method [5], (e) Fu’s method [8], (f) Guo’s method [22], (g) Park’s method [12], and (h) the proposed method.

FIGURE 11. The performance comparison of proposed and existing methods using the real low-light image: (a) original image, (b) Kim’s method [20],
(c) Jiang’s method [21], (d) Jobson’s method [5], (e) Fu’s method [8], (f) Guo’s method [22], (g) Park’s method [12], and (h) the proposed method.

distortion, it also shows the noise amplification, which can be
easily recognized in the cropped, enlarged image [5].

As shown in Figs. 8(f) and 9(f), the variational retinex
model-based method provided better enhanced result using
the bright channel prior [8]. However, it loses the edges
and textures while suppressing the noise since it esti-
mates the reflectance component using l2-norm minimiza-
tion. Although Guo’s method provided high-contrast image
by refining the illumination map at the low-computational
cost, it cannot control the amplified noise as shown in
Figs. 8(g) and 9(g) [22]. Park’s method provided better per-
formance than Fu’s method in preserving the edges by the
l1-norm minimization while suppressing the noise, but the
resulting image shows a certain amount of brightness satura-
tion [12]. On the other hand, the proposed method provided
better enhanced result in the sense of brightness enhancement
and noise reduction without undesired artifacts using retinex-
based dual autoencoder network.

D. QUALITATIVE ASSESSMENTS
In this subsection, the performance of the proposed dual
autoencoder is evaluated using real low-light images as
shown in Figs. 10 and 11. The histogram-based method can
provide contrast enhanced image by redistributing the his-
togram bins in each sub-histogram, but it cannot successfully
improve the quality of the dark region of the background [20].
Although Jiang’s method provided the significantly enhanced
result by using the transmission map estimated from the
inverted input low-light image, it cannot avoid the color
distortion and noise amplification [21].On the other hand,
Jobson’s method provided enhanced result by estimating
the reflectance component using multiple Gaussian kernels.
However, it provides unnaturally enhanced results with a
narrow dynamic range [5].

The variational retinex approach provided better enhanced
images, but it shows the over-enhancement with amplified
noise and black halo near edges [8]. Although Guo’s method
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provided the high-contrast resulting image using refined illu-
mination map, it needs additional post-processing to reduce
the noise amplification [22]. In terms of noise removal,
Park’s method provided better resulting images by using
l1-norm minimization to the reflectance component, but this
method cannot avoid the brightness saturation in the bright
region [12]. On the other hand, the proposed method can
provide significantly enhanced result without saturation and
noise amplification using the retinex-based dual autoencoder
model than existing image enhancement methods.

V. CONCLUSION
In this paper, we proposed the novel low-light image enhance-
ment framework using the dual autoencoder network model
based on the retinex theory. The proposed dual autoencoder
model consists of the stacked and convolutional autoencoders
to perform both brightness enhancement and noise reduction.
In the proposed algorithm, the stacked autoencoder is used
to estimate the brightness enhanced and blurred illumination
component since the very small number of hidden units gen-
erates the very compact features of an input data. The convo-
lutional autoencoder is used to prevent the noise amplification
of the estimated reflectance component while preserving the
edge. In addition, we observed that the stacked and convo-
lutional autoencoders play a role of the smoothness terms on
the illumination and reflectance components in the variational
retinex model. Finally, the proposed method can provide the
high-quality image in various image processing applications
such as robot vision and visual surveillance systems in low-
light condition.
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