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ABSTRACT As Internet-of-Things (IoT) technology emerges, smart manufacturing has recently attracted a
large amount of attention. Smart manufacturing leads to smart energy management because of its significant
operating expenditure savings. However, it is believed that centralized energy management of IoT devices
will impose critically large overhead since massive numbers of IoT devices are expected to be deployed.
Therefore, distributed energy management or demand response (DR) is deemed to be a better solution for
emerging massive smart manufacturing systems. There have been a significant number of distributed DR
algorithms, including Stackelberg game theoretic approaches. However, the Stackelberg game theoretic
approaches require a large number of iterations to reach Nash equilibrium, which in turn necessitates
communication overheads among IoT devices. This communication overhead causes a large amount of
energy consumption as well as delay. In this paper, we propose a light-weight DR scheme based on the
Stackelberg model without iterations for the massive smart manufacturing systems. The proposed scheme
manages energy consumption based on a non-iterative Stackelberg model and historical real-time pricing.
To the best of our knowledge, our approach is the first technique that considers communication overheads
for the DR technique. The performance evaluation demonstrates that the proposed scheme shifts operations
to avoid peak loads, and the electricity bill is significantly reduced, operations occur at preferred times, and
communication energy consumption and delay are minimized.

INDEX TERMS Smart manufacturing, smart grid, distributed demand response, Stackelberg game model,
communication overhead.

I. INTRODUCTION
Traditional manufacturing has critical problems, including
long downtime, inefficient asset utilization, labor inef-
ficiency, scheduling inaccuracy, and inefficient energy
consumption [1]. Due to the proliferation in IoT tech-
nology, smart manufacturing has emerged, disrupting the
legacy of traditional manufacturing [2]. For instance,
the Smart Manufacturing Leadership Coalition (SMLC)
proposed an open smart manufacturing platform based on
IoT technology [3], [4]. According to the SMLC report [3],
energy efficiency in smart manufacturing systems is expected
to increase by more than 25% with energy manage-
ment or demand response (DR) [5], [6].

Considering that smart manufacturing systems are exten-
sive energy consumers that have an already implemented

infrastructure endowed with a massive number of IoT
devices, a larger amount of DR in this sector is expected
compared to the residential and commercial sectors [7].

DR schemes can be generally divided into central-
ized or distributed schemes depending on the location of
the DR algorithm, i.e., whether the DR is implemented
within a central entity or in each IoT device, respec-
tively [8]. In centralized DR schemes, it is almost impos-
sible for a central entity such as an energy management
system (EMS) to receive and manage real time informa-
tion from more than 10,000 IoT devices in real time.
In this context, a distributed DR scheme that can determine
energy scheduling using individual IoT devices is adequate
for information exchange in massive smart manufacturing
systems.
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Distributed DR schemes have been proposed that use
game theory (related work on game-theoretic DR is well
discussed in [5]). Among these approaches, the Stackelberg
game model has been paid a great deal of attention. This
model fits well the distributed DR scheme, where the leader
(the power retailer) and followers (IoT devices) compete for
profits [9].

The existing Stackelberg game models have only demon-
strated improved scheduling performance through iterative
calculation for a small number of power consumers and do
not consider extensive iterative strategy exchanges between
a leader and followers. However, in massive manufacturing
systems, such models have to include communication over-
heads since iterative calculation of the Stackelberg game
model requires communication between the power retailer
(the leader) and IoT devices (followers) for exchanging
strategies.

These communication overheads result in extra power
consumption in response to iterative strategy exchanges
and will significantly delay the manufacturing operation.
In manufacturing systems, in particular, the operation delay
can raise the production cost and these systems require a
product manufacture deadline [10]. Since material require-
ments and production planning are systematically based on
successive planning of a deadline, it is very important to
reduce the communication overhead in the manufacturing
systems [11]. Therefore, the DR scheme based on the Stack-
elberg game has to consider the communication overhead for
the stable operation of smart manufacturing systems.

In this paper, we propose the distributed demand response
scheme with the light-weight Stackelberg game theoretic
approach without an iterative calculation process for massive
smart manufacturing systems. Since typical IoT devices
perform similar tasks every day, abolishing the iterative
calculations among IoT devices causes significant energy
savings. As shown in Fig. 1, the system consists of a power
retailer agent and multiple IoT devices, which can commu-
nicate with each other. In order to distribute the energy
demand, the power retailer agent calculates an estimated day-
ahead real time pricing (RTP) based on the historical energy
consumption data of the IoT devices and then announces

FIGURE 1. Proposed architecture for a massive smart manufacturing
system.

the RTP. The IoT device schedules the power demand and
operating time based on the convenience of the RTP. In the
proposed game, the power retailer agent plays the role of
a leader to disperse the power demand, and the IoT device
plays the role of a follower who wants to maximize its utility.
In addition, the proposed game is a non-cooperative compe-
tition since each IoT device does not share its strategies.

The proposed scheme makes the following contributions.

• In a massive environment with more than 10,000 IoT
devices, the proposed demand response scheme can
reduce communication overheads that occurred by
unnecessary iterative calculations. The existing schemes
perform a tremendous amount of communication for
iteratively exchanging strategies. Iterative communica-
tion is not necessary since significant overhead occurs
and conventional manufacturing tasks are nearly static.
However, the proposed scheme exchanges strategies
between the power retailer agent and IoT devices
only once per day. Therefore, the communication over-
heads are significantly reduced through the proposed
scheme.

• We demonstrate that the proposed scheme can achieve
near-optimal scheduling based on day-ahead RTP data.
Initially, there is insufficient data on the power consump-
tion pattern, causing a cold start problem where an
appropriate peak load shift is not achieved. However,
as the data accumulate gradually, the problem quickly
converges to a near-optimal strategy, showing high-level
performance. As a result, a performance of the proposed
scheme works as well as the existing schemes.

This paper is organized as follows. Section II describes
the proposed system model, basic assumption, and objec-
tive function of the power retailer agent and IoT devices.
Section III provides the light-weight Stackelberg game theo-
retic approach model. Section IV presents the reduction
of communication overheads compared with the existing
scheme and the scheduling performance in amassive environ-
ment. Section V provides the conclusion and future works.

II. SYSTEM MODEL
In this section, we formulate the mathematical model of
DR for massive smart manufacturing systems. The proposed
system is modeled on both the supply and demand sides.

A. BASIC ASSUMPTION
In the energy prediction systemmodel, environmental factors
such as weather and issues are important. In fact, energy
prediction models considering environmental factors have
been extensively studied [12], [13]. However, this study does
not consider environmental factors and issues since it aims
to reduce communication overhead by eliminating iteration
of the strategy exchange process in the existing Stackelberg
model.

In the proposed system, we assume that there are a finite
number of IoT devices, as shown in Fig. 1. We assume that
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IoT device setA consists of K appliances and is described by

A = {a1, a2, · · · , ak , · · · , aK }. (1)

Moreover, we assume that the time is divided into equal
timeslots t and is described by

T = {1, 2, 3, · · · , t, · · · ,T }. (2)

The timeslot can be represented by any unit of time. In this
paper, we select hours for simplicity.

In the proposed system, the power retailer agent uses the
RTP to disperse the power demand. We denote by pt the
RTP of time slot t . We assume that the RTP was sent from
the power retailer agent to all IoT devices at the end of the
previous day. Then, each IoT device schedules its operation
time based on the RTP. Denote by Sk the energy scheduling
vector of IoT device ak , and it is represented by

Sk = [s1k , s
2
k , s

3
k , · · · , s

T
k ], (3)

where

stk =

{
1, if IoT device ak is operating at t ,
0, otherwise.

In this paper, we assume that IoT device ak consumes
energy Eonk per each timeslot t during operation. Moreover,
we assume that ak has a preferred begin time and a preferred
end time, which can be represented as Cbegin

k and Cend
k ,

respectively, where Cbegin
k < Cend

k . Denoting by ρk the
required number of timeslots of device ak , we can derive the
following constraint:

T∑
t=1

stk = ρk , ∀k. (4)

Moreover, we derive the following constraint since
the preferred time section of device ak should be less
than or equal to the operation time:

Cend
k − Cbegin

k + 1 ≤ ρk . (5)

Following the previous notation, denote by prk the profile
of IoT device k , which is expressed by

prk = [Eonk ,C
begin
k ,Cend

k , ρk ], (6)

where ρk is the required operation timeslot for ak .

B. SUPPLY SIDE MODEL
As mentioned earlier, the retailer agent stores the statistics
of energy consumption historically with a simple moving
average method [14]. Analysis of the historical power
consumption pattern to predict the next power consumption
is widely used [15].

Denote by E tN the average energy consumption of timeslot
t at the N th day, which can be obtained by

E tN =
(N − 1) · E tN−1 + E

t
N

N
, (7)

where E tN is the measured electricity consumption at timeslot
t for day N . The retailer agent determines RTP ptN based on
E tA using the following quadratic equation [16]:

ptN = α
t
· E tN

2
+ β t · E tN + γ

t , (8)

where αt ≥ 0, β t ≥ 0, and γ t ≥ 0 at each timeslot t ∈ T .
Denote byPN the day-ahead RTP of theN th day, described

by

PN = [p1N , p
2
N , p

3
N , · · · , p

T
N ]. (9)

Algorithm 1 shows the day-ahead RTP decision algorithm.
In order to calculate the day-ahead RTP, the estimated energy
consumption is calculated based on the historical electricity
consumption. However, we assume that on the first day,
there are no historical data for electricity consumption. We
assume that each IoT device operates during its preferred time
section on the first day. Therefore, the expected electricity
consumption is calculated based on the profiles of the IoT
devices (Lines 2-10 in Algorithm 1). From the second day
onward, the energy consumption is estimated based on real-
istic measured electricity consumption using (7) (Lines 11-14
in Algorithm 1). Based on the estimated energy consump-
tion, the RTP can be calculated by (8) (Lines 16 and 17
in Algorithm 1). Then, the power retailer agent sends the RTP
to the IoT devices (Line 19 in Algorithm 1).

Algorithm 1 Day-Ahead RTP Decision
1: Estimate Energy Consumption
2: if N = 1 then
3: for t = 1→ 24 do
4: E t0 ⇐ 0
5: end for
6: for k = 1→ K do
7: for t = Cbegin

k → Cend
k do

8: E t0 ⇐ E t0 + E
on
k

9: end for
10: end for
11: else if N > 1 then
12: Update E tN−1
13: Calculate E tN−1 by (7)
14: end if
15: Decision of Day-ahead RTP
16: for t = 1→ T do
17: Calculate ptN by (8)
18: end for
19: Return PN

C. DEMAND SIDE MODEL
Using the notation in Section II-A, we formulate the IoT
devices modeling in this section. The IoT device schedules
its operation time considering the electricity bill and its
own convenience. Denote by Bk the electricity bill of IoT
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device ak , which is calculated by

Bk =
1
τB

T∑
t=1

(ptN · s
t
k · E

on
k ), (10)

where ptN is the RTP of timeslot t for day N and τB is the
scaling denominator which is an expected maximum elec-
tricity bill per timeslot for Bk [16].
As mentioned in Section II-A, we assume that an IoT

device has preferred begin operation and end operation times.
We assume that the user will be satisfied if the operation
time scheduled by the power retailer occurs between these
preferred times. Moreover, we assume that the satisfac-
tion decreases as the scheduling result deviates from these
preferred times. Denote by wtk the degree of user dissatis-
faction for IoT device k , which represents how much the
scheduled time differs from the preferred time, described by

wtk =



Cbegin
k − t, t < Cbegin

k ,

0, Cbegin
k ≤ t < Cend

k ,

t − Cend
k , Cend

k ≤ t.

(11)

Denote by Dk the user dissatisfaction of the scheduling
result, which we can obtain based on the user dissatisfaction
degree as follows [16]:

Dk =
1
τD

T∑
t=1

wtk · s
t
k

ρk
, (12)

where the reason for dividing by ρk is that we assume the
dissatisfaction of IoT device is less sensitive if it has a
long operation time and τD is scaling denominator, which
is an expected maximum user convenience per timeslot for
Dk [16].

III. PROBLEM FORMULATION: THE STACKELBERG GAME
A. PROBLEM DEFINITION
In this section, we formulate the optimization problem
and apply the Stackelberg game based on the modeling
in Section II.

We assume that benefit of the power retailer agent is maxi-
mization of the electricity bill value. Therefore, the utility
function of the power retailer agent is defined as

UR(P,SK ) =
K∑
k=1

T∑
t=1

1
τB
· Eonk · s

t
k · p

t . (13)

Since the power retailer agent wants to maximize its
benefit, the optimization problem is formulated as follows:

maximize
P

UR(P,SK ), (14)

subject to
T∑
t=1

stk = ρk ,∀k. (15)

According to this optimization problem, the power retailer
agent will increase the RTP when more power consumption
is expected.

On the IoT device side, the benefit is defined as reduction
of the electricity bill and dissatisfaction. From (10) and (12),
we derive the utility function of IoT device k as follows:

UA(Sk ,P) = −
T∑
t=1

(
1
τB
· Eonk · s

t
k · p

t
+

1
τD
·
wtk · s

t
k

ρk
). (16)

Since the IoT device wants to maximize its benefit,
the optimization problem is defined as follows:

maximize
Sk

UA(Sk , P̃), (17)

subject to
T∑
t=1

stk = ρk , ∀k. (18)

Therefore, the IoT device schedules its operation time
using this optimization problem. Moreover, computing is
possible on IoT devices with low computing performance
since the objective function is standard convex form.

The derived optimization problems (14) and (17) together
form the Stackelberg game, i.e., the power retailer agent and
each IoT devices takes on the role of leader and a follower
respectively. Moreover, the strategies of the followers can be
affected by the leader’s strategy.

Algorithm 2 shows the proposed light-weight Stakelberg
scheme. At the end of each day, the power retailer agent
calculates the RTP using Algorithm 1 and announces it to all
IoT devices. Then, each IoT device schedules its operation
time using objective function (17) and sends the result of its
scheduling to the power retailer agent.

Algorithm 2 Light-Weight Stackelberg Game Theoretic
End of Day (N − 1)
1) The retailer broadcasts day-ahead RTP pt to each IoT

device ak .
2) Each IoT device ak calculates maximize

Sk
UA(S∗k , P̃

∗).

3) Each IoT device transmits the result to the retailer.
Day (N )
1) Each IoT device operates during its scheduled

timeslot.

The proposed light-weight algorithm exchanges the strati-
gies once a day. Since the proposed algorithm determines
the strategies based on accumulated power consumption data,
it is typical Stackelberg game in the long term. Therefore,
the theoretical basis of the proposed algorithm is not as prob-
lematic as that of the existing algorithms. As shown in Fig. 2,
the shape of the existing algorithm graph and that of the
proposed algorithm graph are very similar.

B. STACKELBERG EQUILIBRIUM
In the proposed game, the Stackelberg equilibrium (SE) is
defined as follows. Let P∗ be the best response for the
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FIGURE 2. Similarity between the proposed algorithm and the existing
algorithm.

optimization problem of the power retailer agent and S∗k be
the best response for IoT device k . Then, point (P∗,S∗k ) is
a SE for the proposed game if for any (P,Sk ) with P ≥ 0
Sk ≥ 0, the following conditions are satisfied:

UR(P̃∗,S∗K ) ≥ UR(P̃,S∗K ) (19)

and

UA(S∗k , P̃
∗) ≥ UA(Sk ,P∗),∀k. (20)

Generally, the SE can be obtained by finding its subgame-
perfect NE. However, in the proposed game, each IoT device
considers only the power retailer agent, and there is no
strategy exchange or competition among the IoT devices.
In these non-cooperative and competitive games, we find
empirical stability through the average value of the best poli-
cies determined by cumulative best responses rather than by
deriving NEs. As shown in (17), the objective function of
the IoT device is convex and there are no impacts from other
IoT devices. Therefore, each IoT device will find its optimal
scheduling (best response) and will not change its strategy
at every iteration. At the power retailer agent side, the best
response of power retailer agent will be obtained from (14)
because the equation is convex and there is only one player on
the supplier side. For the proposed scheme, the calculation of
the SE is at first gradual but quickly stabilizes and converges
as follows. At the beginning of the first day, each IoT device k
findsS∗k by (17) for a givenP . Then,E tA is updated according
to the IoT device scheduling. Based on E tA, the power retailer
agent findsP∗ by solving (14). The next day, we calculate the
objective function on the follower side again with the mean
value of the best strategies of the power retailer agent we
obtained the day before. As a result, the proposed algorithm
is a series of processes of obtaining the SE. The conventional
Stackelberg game model repeats the proposed algorithm until
it obtains the SE for each timeslot. However, in a massive
system with no major changes, it is possible to derive a near-
optimal strategy even after one execution per timeslot, as in

the proposed algorithm. Furthermore, given the statistics of
the previous RTP data, this early processing can be skipped.

IV. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed
game in terms of the communications overhead and delay. For
this evaluation, an event-driven simulator for the proposed
game was implemented in the C programming language.
Moreover, the optimization problem was computed using the
MOSEK optimization tool [17].

The simulation parameters are illustrated in Table 1.
To demonstrate the performance of the proposed scheme,
small-scale topologies (K=100), and large-scale topologies
(K=10,000) are configured. In the small-scale topologies,
the existing scheme presented in [18] is compared with the
proposed scheme. This is because that comparison scheme
cannot be simulated in large-scale topologies since its compu-
tation time is exponential. In the large-scale topologies,
we verify that the proposed scheme can prevent system
blackout by adjusting the electricity demand so that the peak
electricity consumption remains low in the massive environ-
ment with more than 10,000 devices.

TABLE 1. Simulation parameters.

A. SMALL TOPOLOGIES (K = 100)
This section compares the peak load reduction and commu-
nication overhead of the proposed scheme with the compar-
ison scheme [18]. For comparison of peak load reduction,
we analyze the peak-to-average ratio (PAR) of the power
scheduling. In order to compare the communication over-
head, we also analyze the number of iterations of strategy
exchanges, which increases according to the number of IoT
devices. Then, we simulate the impact of increasing the
number of iterations on communication power consumption
and delay.

1) PEAK LOAD REDUCTION
Fig. 3 shows the PAR according to days. As shown in the
figure, the PAR of the proposed scheme decreases with
increasing number of days since the strategy converges to
near-optimal (i.e., SE). The initial PAR of the proposed
scheme is 2.2. However, the PAR of proposed scheme rapidly
decreases in early days and then stabilizes steadily at 1.2.
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FIGURE 3. PAR vs. days.

FIGURE 4. Iteration vs. number of IoT devices.

This shows that the proposed scheme works well over the
earliest days. The problem of a very high PAR at the initial
days (i.e., cold start problem) can be solved by the early
accumulation of DB. On the other hand, the PAR of the
comparison scheme is stably maintained at 1.4. The reason
the comparison scheme maintains a stable PAR from the
beginning is it uses the SE state strategy starting from the first
day. The Fig. 3 shows that the convergence PAR reduction of
proposed scheme and comparison scheme are 45% and 35%,
respectively.

2) ITERATION OF STRATEGY EXCHANGES
In order to analyze the communication overheads, we first
need to analyze the characteristics of the iterative in strategy
exchange. It has been experimentally demonstrated in [19]
that the number of iterations increases as the number of
followers increases. We also verified through several simula-
tions that the number of iterations increases only moderately
in the comparison scheme as the number of IoT devices
increases as shown in Fig. 4. However, the number of
iterations in the proposed scheme is always 1 regardless

FIGURE 5. Communication energy consumption vs. number of IoT devices.

FIGURE 6. Minimum latency per day vs. packet size (K = 100, Data
size = 1,600 bytes).

of the number of IoT devices since the proposed scheme
exchanges strategies only once a day. Since IoT devices
and the power retailer need to communicate for strategy
exchange, the number of iterations is equivalent to the number
of communications. Therefore, in the proposed scheme,
the number of communications for strategy exchange is much
smaller than that of the comparison scheme.

3) COMMUNICATION OVERHEAD
In this simulation, we assume that Wi-Fi wireless technology
is used for comparative analysis of communication over-
heads. For convenience of calculation, the data size of the
exchanged strategy is 1,600 bytes. Furthermore, due to prac-
tical limitations, it is difficult to implement wireless commu-
nication simulations using 10,000 IoT devices. Thus, energy
consumption is calculated by applying energy per bit [20]
in the wireless communication process.

In one strategy exchange communication, energy consump-
tion occurs as much as the strategic data size and increases
in proportion to the number of iterations. Therefore, based
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FIGURE 7. Power consumption vs. timeslot for days 1-3. (a) Original demand. (b) 1st day. (c) 2nd day. (d) 3rd day.

on Fig. 4, the communication energy consumption is calcu-
lated, as shown in Fig. 5. The communication energy
consumption of the proposed scheme increases just a little,
but linearly since only the amount of total communication
data increases as the number of IoT devices increase. On the
other hand, the communication energy consumption in the
comparison scheme exponentially increases with the number
of IoT devices since the number of iterations increases as
well as the amount of total communication data. As a result,
the proposed scheme can reduce the communication energy
consumption by more than 99% compared with the compar-
ison scheme.

Latency is caused by communication in each strategy
exchange. The latency is accumulated by the iterative
communication, which is a critical problem for smart manu-
facturing systems. For comparative analysis of commu-
nication latency between the proposed scheme and the
comparison scheme, we refer to the analysis data of [21].

According to [21], the packet size determines how many
strategy data are fragmented in wireless communication and
has a significant impact on the amount of the latency. Consid-
ering the number of communications in the comparison
scheme as shown in Fig. 4, the minimum latency per day
for each packet size is shown in Fig. 6. In the comparison
scheme, the total latency is high since the latency is accu-
mulated as the number of communication increases. On the
other hand, the proposed scheme reduces the latency more
than 99% compared with the the comparison scheme by
minimizing the latency with one-time communication. As
a result, the proposed scheme can dramatically reduce the
communication latency compared to the existing scheme, and
can operate an efficient smart manufacturing systems.

B. LARGE TOPOLOGIES (K = 10,000)
In this section, we demonstrate a performance of the proposed
scheme in the large-scale topologies. First, we show the cold
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FIGURE 8. Maximum power consumption vs. days for 1-700. (a) Maximum power consumption vs. days for 1-200. (b) Maximum power
consumption vs. days for 200-700.

start problem due to the lack of power consumption pattern
data through simulation at the early days. After a sufficient
amount of pattern data has accumulated, the proposed scheme
stably reduces the peak load well in the large-scale environ-
ment by converging to the near-optimal strategy.

Fig. 7 shows the cold start problem that occurs in the
early days of the proposed scheme when power consumption
pattern data are insufficient. As shown in Fig. 7 (a), the orig-
inal demand of power consumption is concentrated at 13:00h.
The IoT devices shift their operation time for minimizing
the cost function. Therefore, the average power consumption
pattern with considering original demand and the first day
is figured almost flat as shown in Fig. 7 (b) by algorithm 1.
On the second day, the power consumption is concentrated
at 11:00 and 14:00 since the degrees of user dissatisfaction
are the same and electricity costs are inexpensive within the
preference time. Despite the degree of user dissatisfaction
being high, the power consumption is also concentrated at
2:00 and 23:00 since the cost function is minimized at those
times due to low electricity costs. Therefore, the average
power consumption pattern is figured as shown in Fig. 7 (c).
With this iterative process, the power consumption pattern
converges to SE after early days.

Fig. 8 shows the maximum power consumption per day
and a process of solving the cold start problem. As shown
in Fig. 8 (a), the cold start problem occurring during the
early stage is solved by converging very quickly to the stable
section with the accumulation of power consumption pattern
data. Furthermore, as shown in Fig. 8 (b), the deviation
of the maximum power consumption is gradually reduced
in the stable section and the power consumption pattern
converges to a near-optimal strategy. Therefore, it is possible
to verify that the proposed scheme significantly reduces the
peak load in large-scale topologies as well as small-scale
topologies.

V. CONCLUSIONS
In this paper, we considered the power consumption of
massive smart manufacturing systems consisting of more
than 10,000 IoT devices. Since the power consumption of
IoT devices does not fluctuate, we proposed a light-weight
Stackelberg game theoretic DR scheme for massive smart
manufacturing systems. This scheme is proposed to reduce
the peak load and communication overheads without iterative
processes to calculate the SE. For the Stackelberg game,
the optimization formulation and corresponding model were
proposed for the power retailer agent and IoT devices. To
maximize the benefit of the power retailer agent, we proposed
the day-ahead RTP algorithm, which is based on histor-
ical power consumption statistics. To maximize the benefit
of the IoT devices, we proposed a scheduling optimization
problem that considers the electricity bill and the degree of
user convenience. Via simulations, we demonstrated that the
power consumption can be distributed over the day using the
proposed scheme. We also verified that the proposed scheme
reduces the communication overheads 99% more than the
conventional Stakelberg game based scheme. By comparison
with the conventional scheme, we show that the proposed
algorithm can sufficiently reduce the communication over-
head and delay. In addition, the proposed scheme can reduce
the electricity peaks in massive smart manufacturing systems
using the historical RTP. Future research will focus on the
cold start problem of RTP based on appliance usage patterns
using machine learning algorithms while considering envi-
ronmental issues and factors.
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