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ABSTRACT The goal of coverage path planning is to create a path that covers the entire free space in a given
environment. Coverage path planning is themost important component of cleaning robot technology, because
it determines the cleaning robot’s movement.When the environment covered by a cleaning robot is extremely
large and contains many obstacles, the computation for coverage path planning can be complicated. This can
result in significant degradation of the execution time for coverage path planning. Not many studies have
focused on the scalability of coverage path planning methods. In this paper, we propose a scalable coverage
path planning method based on rectangular map decomposition. The experimental results demonstrate that
the proposed method reduces the execution time for coverage path planning up to 14 times when compared
with conventional methods.

INDEX TERMS Cleaning robot, robot path planning, coverage path planning, scalability, computational
efficiency.

I. INTRODUCTION
For the past two decades, coverage path planning (CPP)
has been regarded as an important research issue in the
intelligent robot community for popular applications that
include demining robots [1], lawn mowers [2], and harvest-
ing robots [3]. The goal of CPP is to create a path that
covers the entire free space in a given known or unknown
environment [4], [5]. Although the goal of covering the entire
free space can be achieved by employing the well-known
random walk process [6] because the random walk-based
direction control suffers from path repetition [4], [5], many
researchers have dedicated efforts to developing more effi-
cient and effective CPP methods. For example, a cleaning
robot, which is a popular robotic application, can extend
cleaning time unnecessarily and waste its battery by cleaning
the same locations multiple times if unplanned direction con-
trol is involved. To overcome this drawback, many strategic
CPP methods have been proposed for indoor/outdoor clean-
ing scenarios [4], [7], [8].

A basic CPP procedure can be described as follows.
First, the cleaning robot attempts to identify the boundary
of the given environment by following the outermost wall

(or obstacle). After returning to its initial position, the robot
creates a map representing the environment. Next, the robot
begins cleaning map using a coverage path such as spi-
ral [9] or zigzag [10]. At the cleaning process, the robot
can be surrounded by previously cleaned space; the current
position of the robot at this moment is known as a blind
alley. To escape the blind alley situation, a path planning
method such as the Dijkstra algorithm [11] or A* [12], [13]
is invoked to identify the robot’s next cleaning posi-
tion. Finally, these tasks are repeated until there is no
uncleaned space. The majority of CPP methods use strate-
gies based on grid information gathered in the process of
cleaning [9], [14]–[20]. However, grid-based strategies
require significant computational cost, which increases the
total execution time [21], [22].

Recently, demands have emerged from industrial com-
munities for efficient and effective cleaning robots that can
cover significantly larger environments such as libraries,
warehouses, stadiums, and airports [23]. When conventional
CPP methods are used in these large-spaced environments,
the results are unsatisfactory because of the large number
of grids used in the process. To efficiently address these,
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the CPP method to control the cleaning robots must be scal-
able to the size of any given environment. However, to the
best of our knowledge, there remains a lack of studies focused
on the scalability of CPP methods. In this paper, we propose
a novel CPP method scalable to large environments. The
experimental results on large environments confirm that the
proposed method completes the CPP task considerably more
quickly than conventional methods.

II. RELATED WORK
CPP is one of the most important control components influ-
encing the efficiency and effectiveness of a cleaning robot
because it schedules the entire cleaning path. In the majority
of studies, the initial position of a cleaning robot is assumed
to be near the boundary [24] because of practical constraints
such as power supply. In general, spiral shape-based CPP
is implemented on a grid-based map that is obtained by
gridizing the sensed environment [9], [15], [25]. This is one
of the most widely considered map-encoding schemes in
cleaning robot studies owing to its easy implementation and
rapid situation awareness of a given map [5]. After the robot
identifies the boundary of the given environment, the robot
divides the environment into specific grid shapes such as
disks [26], rectangles [27], triangles [28], or hexagons [29].
Typically, the size of each grid is set to the same size as the
cleaning robot to avoid unintended uncleaned space. Based
on the size and shape of the grid, the map is created and the
CPP process is initiated using the obtained map.

In the earliest studies of CPP, the map was obtained
by gridizing a known environment. For example,
Zelinsky et al. [30] illustrated a simple CPP method based
on transformed distance values that are primarily assigned
to all the grids before the actual CPP is executed. However,
this also decreases the availability of the cleaning robot
because of its impractical assumption that the environment
is known. In this study, we assume that the environment is
unknown, and therefore the robot must explore and clean
the environment simultaneously. To address an unknown
environment for which the cleaning robot cannot initially
obtain a map, Gabriely and Rimon [15], [31], [32] proposed
spanning tree-based coverage (STC) path planning. This
method gridizes the environment with grids twice the size of
the cleaning robot to obtain the map and then sets two virtual
walls, left/right and top/bottom, from the center of each grid.
Based on these virtual walls, the robot creates a spanning tree
that connects all the uncleaned grids. In the case where the
robot encounters a blind alley situation, the method executes
CPP recursively. Thus, when the given map is extremely
large or there are many obstacles on the environment, CPP
can suffer from an impractically high computational cost
and memory consumption due to an excessive number of
recursive calls.

Another well-known CPP method is the backtracking spi-
ral algorithm (BSA) based on the STC method [9], [25],
where the final coverage path is created by following vir-
tual walls. This method performs CPP using backtracking

grids that are composed of potential alternative paths and
invoking a simple breadth-first search (BFS) algorithm rather
than using recursive CPP. Choi et al. [14] proposed linked
spiral path (LSP), which employs the concept of backtracking
grids and the constrained inverse distance transform (CIDT)
method with distance wave. This strategy was also used
in the works of Baek et al. [33] and Lee et al. [8], [27].
However, if there are excessive backtracking grids due to
a large environment with obstacles, these algorithms even-
tually consume unacceptable computational resources when
using the BFS and distance transform algorithm. Similarly,
Viet et al. [16] proposed the BA* method using the well-
known A* search algorithm. In this case, if a large number
of grids are employed to represent a sizable environment,
the computational efficiency of the BA* method is signifi-
cantly degraded because the A* search algorithm must con-
sider a large number of grids to determine a safe path to the
next uncleaned grid [22].

FIGURE 1. Example of CPP using BSA method. (a) Map with L-type
obstacles. (b) Encounter with blind alley situation. (c) Creation of path
through BFS. (d) Cleaning uncleaned space.

The process of CPP used by the BSA method, which
is among the conventional CPP methods, is illustrated
in Figure 1. In Figure 1(a), a map with L-type obstacles is
displayed. The cleaning robot is marked by a triangle; the
black grid represents the obstacles. Figure 1(b) displays the
cleaning process of the given map by a cleaning robot using
the BSA method. The BSA method uses the spiral coverage
path indicated by the solid lines and the cleaning robot fol-
lows the spiral coverage path and cleans. It is confirmed that
if the cleaning robot uses the spiral coverage path, it cannot
clean the entire space in one process owing to the obstacles.
The gray grid represents the cleaned spaces and the white
grid indicates the spaces that have not been cleaned. If the
cleaning robot moves to the position on the grid marked by
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coordinates (11, 16), it is surrounded by previously cleaned
space, hence, a blind alley occurs. In this case, the cleaning
robot moves to the next grid that has not been cleaned, and
continues cleaning.

Figure 1(c) indicates the process ofmoving to an uncleaned
grid from a blind alley using BFS path planning from the BSA
method. Using the BFS algorithm, the cleaning robot at the
grid coordinates (11, 16) explores whether there is a grid that
has not been cleaned among the four surrounding grids in the
horizontal and vertical directions (10, 16), (11, 15), (12, 16),
and (11, 17). If among the four surrounding grids there is
not a grid that has not been cleaned, it continually explores
grids in the horizontal and vertical directions. For example,
for the grids, (9, 16), (10, 15), and (10, 17) that surround grid
(10, 16), the grids in the horizontal and vertical directions
that have not been explored, are addressed. This process is
repeated on the remainder of the surrounding grids until a
grid that has not been cleaned is identified. The explored
range is marked by a dark gray color.When the cleaning robot
goes to (2, 9) and determines that it has not yet been cleaned,
it marks the grid (2, 9) as a point of entry to an uncleaned
region. Using the explored grids, the created path’s route is
marked by the dotted lines.

Figure 1(d) indicates the process of cleaning an uncleaned
space as the cleaning robot moves to grid (2, 9) and again
follows a spiral coverage path. As indicated in Figure 1,
if there are obstacles on the map, a blind alley can be created.
Each time a blind alley is encountered, the next step of the
robot is to determine a path to a location that requires clean-
ing. When the BFS algorithm is used in a map with L-type
obstacles, more than half of the grids can require exploration.
In summary, conventional CPP methods are difficult to apply
on large maps because they use ineffective path planning
strategies. To solve this problem, this study analyzes the
pseudocode of conventional CPP methods including BSA,
LSP, and BA*.

Algorithm 1 represents the pseudocode for the BSA. In the
BSA, the cleaning robot first cleans the map using a spiral
path (line 3). The robot must check for the occurrence of blind
alleys at every move because it is cleaning an unknown map
(line 4). If a blind alley is detected, the robot uses the BFS
method to plan a path that leads to the next uncleaned space
(line 6). If no blind alleys are detected, the robot continues
to clean along the spiral path (line 3). Figure 2(a) displays a
map with a blind alley that can be divided into cleaned and
uncleaned areas with the BSA pseudocode. The white and
gray areas in Figure 2(a) represent the uncleaned and cleaned
areas, respectively. Figure 2(b) indicates that when the robot
detects a blind alley, it uses BFS to travel to an uncleaned area.
The red spaces represent the areas explored when using BFS.

Algorithm 2 represents the pseudocode for the LSP
method. First, the cleaning robot follows the walls and uses
information on the outline of the map to match the coordi-
nates of the robot and the map (line 2). The robot checks
for the presence of blind alleys at every move, as they can
occur on an unknown map (line 4). If the robot detects a blind

Algorithm 1 BSA Method
1: Input: current {cureent: cleaning robot’s current

position}
2: while true do
3: gridcandidate← Execute map cleaning use spiral paths;

{gridcandidate: back-tracking grids}
4: if blind alley occurs in current then
5: if gridcandidate 6= φ then
6: path← Execute BFS; {grid map-based search

path}
7: current ← Follows the path go to uncleaned

space;
8: else
9: Break;
10: end if
11: end if
12: end while

Algorithm 2 LSP Method
1: Input: current {cureent: cleaning robot’s current

position}
2: gridcandidate ← Execute wall following and map coordi-

nate assignment; {gridcandidate: back-tracking grids}

3: while true do
4: if blind alley occurs in current then
5: if gridcandidate 6= φ then
6: path← Execute CIDT; {grid map-based search

path}
7: current ← Follows the path go to uncleaned

space;
8: else
9: Break;
10: end if
11: else
12: gridcandidate ← Execute map cleaning use spiral

paths;
13: end if
14: end while

alley, it uses the CIDT method to plan a path that leads to
an uncleaned space (line 6). If no blind alleys are detected,
the robot continues to clean themap by following a spiral path
(line 12). Figure 2(c) displays a map with a blind alley that
can be divided into cleaned and uncleaned areas with the LSP
pseudocode. Thewhite and gray areas in Figure 2(c) represent
the uncleaned and cleaned areas, respectively. The red areas
in Figure 2(d) represent the area explored by the robot using
CIDT to travel to an uncleaned area.

Algorithm 3 represents the pseudocode of the BA*method.
In BA*, the cleaning robot first cleans the map following
zigzag paths (line 3). The robot must check for the possible
occurrence of blind alleys at every move (line 4). If a blind
alley is detected, the robot uses the A* algorithm to plan

38202 VOLUME 6, 2018



X. Miao et al.: Scalable Coverage Path Planning for Cleaning Robots

FIGURE 2. Example of explored areas for path planning with the BSA, LSP,
BA* and proposed method. (a) Cleaned and un-cleaned areas in BSA.
(b) Path planning using BFS in BSA. (c) Cleaned and un-cleaned areas in
LSP. (d) Path planning using CIDT in LSP. (e) Cleaned and un-cleaned
areas in BA*. (f) Path planning using A* in BA*. (g) Cleaned and
un-cleaned sub-maps in the proposed method. (h) Path planning using
BFS in the proposed method.

a path that leads to an uncleaned space (line 6). With the
BA* method, the path planned using the A* algorithm is
revised to obtain a shorter path (line 7). If no blind alleys are
detected, the robot continues to clean the map following the
zigzag paths (line 3). Figure 2(e) displays a map with a blind
alley that can be divided into cleaned and uncleaned areas.
Figure 2(f) indicates that when the robot detects a blind alley,
it uses theA* algorithm to travel to an uncleaned area. The red

Algorithm 3 BA* Method
1: Input: current {cureent: cleaning robot’s current

position}
2: while true do
3: gridcandidate ← Execute map cleanning use zigzag

paths; {gridcandidate: back-tracking grids }
4: if blind alley occurs in current then
5: if gridcandidate 6= φ then
6: path←Execute A*; {grid map-based search

path}
7: path← Smoothed path;
8: current ← Follows the path go to uncleaned

space;
9: else
10: Break;
11: end if
12: end if
13: end while

areas represent the areas explored using the A* algorithm.
With conventional CPP algorithms, a large amount of space
must be explored on a grid map when a blind alley occurs
while planning coverage paths on an unknownmap. However,
with the proposed method, only a relatively small amount of
space is required for exploration, as indicated in Figure 2(h),
by utilizing the edges that connect the sub-maps when a
blind alley occurs. This is because rectangular sub-maps
can be generated with the proposed method, as indicated
in Figure 2(g). Thus, this study confirms that the proposed
method demonstrates high efficiency because it utilizes the
connective edges between sub-maps instead of all the grids
on a map.

In summary, blind alleys can be detected while a cleaning
robot is cleaning amap using CPP; in this case, the robot must
travel to uncleaned areas from cleaned areas. Conventional
CPP methods require high computational cost in this process
because they use a large number of grids on the map. How-
ever, the method proposed in this study utilizes the connective
edges between rectangular sub-maps rather than all the grids
on a map to determine paths from a blind alley. This enhances
the performance of CPP by effectively managing problems
related to path finding. This paper proposes a new CPP
method that provides an effective application of the cleaning
robot to a large map.

The proposed method divides the map into rectangles and
path planning is based on the edges created in the map
decomposition. That is, a planning method based on a map
decomposition divided into rectangles and edges created in a
map decomposition is proposed. A large map can be divided
into rectangular sub-maps and edges that connect the divided
sub-maps created. In the decomposed sub-map, when blind
alleys are encountered, the cleaning robot calculates a path to
the next sub-map a distance away that must be cleaned. In this
case, instead of high-calculation path planning that considers
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all of the grids and possible edges, path planning based on the
created edges is used in the map decomposition process and
the path’s exploration range is dramatically reduced.

III. PROPOSED METHOD
Figure 3 displays the proposed CPP method flowchart based
on rectangular map decomposition that can be applied to a
large map. The stages are as follows: map exploration, map
decomposition, sub-map cleaning, and sub-map selection.
During the map exploration process, where the cleaning robot
explores unknown maps, the robot searches for walls and
obstacles; as indicated in Figure 3(a), it collects information
on conventional corners and edges. Next, map decomposition
uses the collected corners, and divides the map into sub-maps
as indicated in Figure 3(b). For map cleaning, as displayed in
Figure 3(c), using the map divided into sub-maps, the clean-
ing robot follows and cleans the proposed spiral coverage
path based on the edges. Then, as illustrated in Figure 3(d),
the edge information is used. Another sub-map is selected and
a path to move to the selected sub-map is created.

FIGURE 3. Proposed CPP flowchart based on rectangular map
decomposition. (a) Map exploration. (b) Map decomposition.
(c) Sub-map cleaning. (d) Selection of next sub-map.

Figure 4 displays the detailed algorithm for map explo-
ration, map decomposition, sub-map cleaning, and sub-map
selection. The cleaning robot follows the walls and collects
information on the corners and edges of the unknown map.
The map corners can be classified as either concave or con-
vex. Map decomposition or sub-map cleaning is selected
based on the classification of the corner. If a corner is
not convex, then perform sub-map cleaning, else perform
map decomposition. After performing either map decompo-
sition or map cleaning, a sub-map is added or deleted to/from

FIGURE 4. Summary of proposed CPP method.

Algorithm 4 Proposed Method
1: Initialize:

1) The size of the grid is set according to the size of the
robot which is 351.5 mm in diameter and the robot
cleans one grid at a time as it moves.

2) follows the walls and get current , concave, convex,
boundary of the unknown map {cureent: cleaning
robot’s current position}

2: if convex = {φ} then
3: convex ← Execute Submap cleanning;
4: end if
5: if convex 6= {φ} then
6: ExecuteMap decomposition;
7: while set of sub-map 6= {φ} do
8: convex ← Execute Submap cleanning;
9: if convex 6= {φ} then

10: ExecuteMap decomposition;
11: else
12: current sub-map is deleted from set of sub-map;
13: end if
14: Execute Submap selection;
15: end while
16: end if

the remainder of the sub-maps. If a sub-map already exists
in the set of sub-maps, the next sub-map to be cleaned is
selected, and the map is explored. This process is repeated
until there are no remaining sub-maps among the set of sub-
maps and cleaning of the entire map is complete. Then,
the proposed CPP method terminates. The procedural steps
of the proposed method with additional detail are described
in Algorithm 4.
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A. MAP EXPLORATION AND RECTANGULAR
SUB-MAP DECOMPOSITION
In this paper, we assume that infrared (IR) sensors are used
in the cleaning robot to identify its surroundings in unknown
maps. This indicates that the robot can detect the presence
of obstacles in its surroundings (on the front, right, and left
sides) while traveling. Through the IR sensors, obstacles are
detected and information is collected regarding the corners
in the map [33], [34]. The cleaning robot explores the map
by moving along the walls. This study includes two cases
of map exploration. (A) Exploration of the outline of a
map or an obstacle. In essence, the robot navigates around the
boundaries of the map or obstacle and explores their outline
by moving along the walls. (B) Exploration of sub-maps.
The robot can encounter obstacles on a sub-map generated
through map decomposition. To explore the presence of such
obstacles, the robot searches for obstacles while it moves
along the boundaries of the sub-map. If the robot detects an
obstacle, it begins exploring the outline of the obstacle. The
robot can explore unknown maps and gather information on
existing corners with the proposed map exploration method.
Among the collected corners, convex corners are used, and
the process of map decomposition initiates.

Figure 5 illustrates the process of exploring walls and
obstacles and identifying convex and concave corners on an
unknown map. Figure 5(a) depicts a 17× 17-sized unknown
map. The gray area represents an unexplored obstacle and
the triangle represents the cleaning robot. As illustrated in
Figure 5(b), the robot explores the map by following the
walls. The arrows indicate the direction of the robot’s path.
The gray area is indicated in black after the robot identifies
an obstacle through map exploration. Figure 5(c) indicates
that as the cleaning robot follows the walls, it collects the
corners and boundary edges marked as map boundaries. A set
of eight corners are collected. The ith corner is defined as
{li|i = 1, 2, ..., 8}. The boundary edges consist of two corners
and are defined as 〈li, li+1〉. This indicates that the edges are
non-directional edges, which are represented with solid lines.
Next, using the grids on the boundary edge and the grids
surrounding the corners, the type of corner is determined.

Figure 5(d)–(e) uses two boundary edges 〈l4, l5〉 and
〈l5, l6〉 and three grids l4, l5, and l6. It displays the process of
determining the type of grid l5. Figure 5(d) indicates the grids
including the boundary edges 〈l4, l5〉 and 〈l5, l6〉 connected to
grid l5 as �. The grids that comprise the dark gray colored
region mark the grids surrounding l5 in the horizontal and
vertical direction. First, among the grids surrounding l5, grids
included along the boundary edges 〈l4, l5〉 and 〈l5, l6〉 are
selected using (1).

g1 = N (li) ∩ 〈li−1, li〉

g2 = N (li) ∩ 〈li, li+1〉 (1)

N (li) defines the corner li’s surrounding grids and g1 and g2
define the grids included amongN (li), 〈li−1, li〉, and 〈li, li+1〉.
If at li, i = 1, then li−1 is selected as l8; if at li, i = 8, then li+1
is selected as l1. If the grids g1 and g2 selected using (1) are

FIGURE 5. Process of identifying concave corners and convex corners.
(a) Unknown map. (b) Map exploration(follows the wall). (c) Search for
corner while following wall. (d) Selection of corner l5’s surrounding grids
g1; g2. (e) Selection of grid g3, which is surrounded by g1 and g2.
(f) Selection of corner l6’s surrounding grids g1; g2. (g) Selection of grid
g3, which is surrounded by g1 and g2. (h) Final results identifying all
corners.

marked as coordinates, they are (12, 1) and (11, 2), respec-
tively. Figure 5(e) uses (2); it then indicates that with the
exception of grid li, which must be classified as either a
concave or convex corner, grid g3 is selected from the vertical
and horizontal grids neighboring g1 and g2.

g3 = N (g1) ∩ N (g2)− li (2)
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For grid g3, if there are obstacles on the map, li is defined
as a convex corner; if g3 is an empty grid, li is defined
as a concave corner. Thus, the dark gray colored regions
represent the grids surrounding g1 and g2. Further, using (2),
the coordinates of selected grid g3 are (12, 2). Because grid g3
is an empty grid, grid l5 is defined as a concave corner.
Figure 5(f)–(g) displays the process of categorizing the type
of corner of grid l6. Equations (1) and (2) are used for grid l6,
and because there are obstacles in the finally selected g3,
grid l6 is defined as a convex corner. Lastly, Figure 5(h)
displays the results of identifying the type of all the corners;
the symbols ⊗ and ⊕ represent concave and convex corners,
respectively. After the classification of corners into concave
and convex, map decomposition using the convex corners
selected in the proposedmethod is initiated. As in Figure 5(h),
the information on six concave corners and two convex cor-
ners is collected. Next, the collected convex corners are used
to divide the map into rectangles and edges are created for
map decomposition.

Figure 6 displays the decomposition process of the map
using the decomposition edges created by creating decompo-
sition edges using the two convex corners (7, 5) and (11, 5).
The vertical and horizontal edges (solid lines) that are
the boundary lines of the convex corner (7, 5) are dis-
played in Figure 6(a) at 〈(1, 1), (7, 1)〉, 〈(1, 1), (1, 17)〉,
〈(1, 17), (17, 17)〉, and 〈(17, 1), (17, 17)〉. These display the
four decomposition edges; displayed as coordinates, they are
represented by 〈(7, 5), (7, 1)〉, 〈(7, 5), (1, 5)〉, 〈(7, 5), (7, 17)〉,
and 〈(7, 5), (17, 5)〉. Because decomposition into rectangular
sub-maps is possible if one edge among the four edges is used,
one decomposition edge that meets the following conditions
is selected.

1) A decomposition edge should not overlap with map
boundary edges and the boundary edges of the explored
obstacles.

2) A decomposition edge should not pass through
explored obstacles.

3) A decomposition edge should not overlap with the
decomposition edge formed first by another convex
corner.

4) If there are decomposition edges that meet conditions
1), 2), and 3), then one will be selected by a random
method.

Using the convex corner (7, 5), among the created
four edges, the decomposition edge 〈(7, 5), (1, 5)〉 that
satisfied all four conditions is selected. Next, using
the selected decomposition edge, the boundary edges
that intersect are divided. In Figure 6(b), intersection
point (1, 5) where the decomposition edge 〈(7, 5), (1, 5)〉
and boundary edge 〈(1, 1), (1, 17)〉 intersect is marked
with a circle. Based on the intersection point (1, 5) where
boundary edges 〈(1, 1), (1, 17)〉 intersect, the boundary
edges are divided into 〈(1, 1), (1, 5)〉 and 〈(1, 5), (1, 17)〉.
Figure 6(c) indicates how the four decomposition edges
〈(11, 5), (11, 1)〉, 〈11, 5), (1, 5)〉, 〈(11, 5), (11, 17)〉, and
〈(11, 5), (17, 5)〉 with respect to the convex corner (11,5)

are created. Of the four decomposition edges, because
〈(11, 5), (11, 1)〉 and 〈(11, 5), (1, 5)〉 satisfy Conditions 1)
and 3), they are removed. Of the two edges 〈(11, 5), (11, 17)〉
and 〈(11, 5), (17, 5)〉, 〈(11, 5), (11, 17)〉 is randomly selected
and lastly, the convex corner (11, 5) is selected as a decom-
position edge. In Figure 6(d), the convex corners (11, 5) and
(7, 5) are used and the selected two decomposition edges
〈(11, 5), (11, 17)〉 and 〈(7, 5), (1, 5)〉 are indicated.

Next, based on the selected two decomposition edges and
ten boundary edges, a sub-map is created. In the process of
creating a rectangular sub-map, the A* algorithm, which uses
the heuristic estimated value for the problem of calculating
the shortest path, is used as it is frequently employed to
determine the shortest path from a starting point to an ending
point in amap [12], [13]. Following this, a sub-map is created.
Figure 6(e) displays the process of creating a rectangular sub-
map using the A* algorithm. From the current position of the
cleaning robot (triangle), edge 〈(1, 1), (1, 5)〉 is selected and
grids (1, 1) and (1, 5) are defined as the starting point and
target point, respectively. TheA* algorithm is used and explo-
ration begins from the starting point; the arrow indicates the
range of exploration. The result is that edges 〈(1, 1), (1, 5)〉,
〈(1, 5), (7, 5)〉, 〈(7, 5), (7, 1)〉, and 〈(7, 1), (1, 1)〉 are con-
structed as one sub-map defined as ẍ1. In Figure 6(f), through
the same process, the second sub-map is created. Because
the edges 〈(1, 1), (1, 5)〉, 〈(1, 5), (7, 5)〉, 〈(7, 5), (7, 1)〉, and
〈(7, 1), (1, 1)〉 are already used, among the remaining edges,
a random edge is selected, Further, the starting point and
target point are selected.
Edge 〈(17, 1), (11, 1)〉 is selected and grids (17, 1) and

(11, 1) are selected as the starting point and target point,
respectively. Using the A* algorithm, the second sub-map is
created and defined as ẍ2. Figure 6(g) indicates that the third
created sub-map is defined as ẍ3. After creating sub-map ẍ3,
because all edges are used, the map decomposition process
terminates. The final decomposed three sub-maps ẍ1, ẍ2, and
ẍ3 are displayed in Figure 6(h). Each sub-map is displayed
by a rectangle with a pattern. The decomposition edge and
boundary edges that appeared first become the boundary
edges displayed in the sub-maps with solid lines. Further,
owing to the fact that the collected concave corner, convex
corner, and intersection points could become corners in the
divided sub-maps, and the fact that the type of corner of a
decomposed sub-map can change, all corners are returned to
a nonclassified situation and marked with the condition (©).
TheMap decomposition function is described in Algorithm 5.

B. RECTANGULAR SUB-MAP CLEANING AND NEXT
SUB-MAP SELECTION IN BLIND ALLEY SITUATION
Following the completion of the map decomposition,
the cleaning robot can use the corner of each sub-map to
create the proposed spiral path based on the edges. In this
manner, the robot cleans using the spiral coverage path based
on the created edges. Figure 7 displays the cleaning pro-
cess whereby the cleaning robot uses the spiral path based
on its edges. The cleaned grids are represented in gray.
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FIGURE 6. Process of decomposition into rectangular sub-maps (Solid line: boundary edge, Dotted line: decomposition edge, Arrow:
Exploration range). (a) Start of creating edge using convex corner (7, 5). (b) Selecting edge that connects (1, 5) and (7, 5). (c) Start of creating
edge using convex corner (11, 5). (d) Selecting edge that connects (11, 5) and (11, 17). (e) Creating rectangular sub-map ẍ1 that used A*.
(f) Creating the rectangular sub-map ẍ2 that used A*. (g) Creating rectangular sub-map ẍ3 that used A*. (h) Division into three rectangular
sub-maps.

Figure 7(a) represents the edges in the map decomposition
process of ẍ1 as 〈(1, 1), (1, 5)〉, 〈(1, 5), (7, 5)〉, 〈(7, 5), (7, 1)〉,
and 〈(7, 1)(1, 1)〉. As the cleaning robot (triangle) follows
the wall based on the edges from sub-map ẍ1, it collects
information on the corners.

Figure 7(a) displays the path following the edges with a
solid line. Figure 7(b) indicates the collected four concave

corners with respect to sub-map ẍ1. The number next to
the circle displays the order in which information regarding
the concave corners is received. Because a convex corner
does not exist in sub-map ẍ1, map cleaning begins. When
cleaning the map, the process of creating the spiral coverage
path based on using the edges is as follows. First, for the
collected concave corners, (3) is used and neighboring grids
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Algorithm 5Map Decomposition
1: Input: current , convex, ẍboundary, oboundary {ẍboundary:

boundary of sub-map, oboundary: boundary of obstacle}
2: Output: submap {submap: set of sub-map}
3: D← oboundary; {D: set of edges}
4: submap← {φ};
5: for all convexi ∈ convex do
6: cedge← Use convexi to create edges;
7: sedge← Select decomposition edges from cedge;
8: D← D ∪ {sedge};
9: end for

10: 〈start, target〉 ← Find an edge from ẍboundary that
include current;

11: while ẍboundary 6= {φ} do
12: ẍboundary ← Edge 〈start, target〉 is deleted from the

ẍboundary;
13: s← D ∪ ẍboundary;
14: createmap← A* (start, target, s);
15: submap← submap ∪ {createmap};
16: D← D ∪ {createmap};
17: ẍboundary← createmap is deleted from the ẍboundary;
18: 〈start, target〉 ← Select an edge from the ẍboundary

randomly;
19: end while

FIGURE 7. Cleaning process of the sub-map ẍ1 using edge-based spiral
coverage path. (a) Following wall. (b) Sub-map ẍ1’s edge. (c) Creating
spiral coverage path based on edges. (d) Cleaning sub-map ẍ1 through an
edge-based spiral coverage path.

in a diagonal direction are calculated. For example, for the
first concave corner, the four neighboring diagonal grids are
marked using (3).

{(xj, yj)|j = 1, 2, 3, 4} (3)

(xj, yj) is the coordinate of the jth neighboring grid on the
first concave corner. Equation (4) is used to mark the highest
and lowest coordinates on the X and Y axes of the sub-map
ẍ1 where edges are represented.

(maxx ,maxy) = max(ẍ1)
(minx ,miny) = min(ẍ1) (4)

Next, using (5), the location relationship between sub-map
ẍ1 and the surrounding grids can be calculated.

T = sign(xj − minx)+ sign(xj − maxx)

+ sign(yj − miny)+ sign(yj − maxy)

sign(n) =

{
1 n ≥ 0
−1 n < 0

(5)

When T = 0, the (xj, yj) grid implies inside sub-map ẍ1;
when T 6= 0, the (xj, yj) grid implies outside sub-map ẍ1 or on
the edges. Through the value of T , among the neighboring
grids, a grid inside sub-map ẍ1 can be chosen. In Figure 7(c),
(3), (4), and (5) are used on the four concave corners and
the final grids (2, 2), (2, 4), (6, 4), and (6, 2) are selected and
marked with the symbol ⊗. Next, the concave corners are
connected to the grids in their respective order and become
new edges 〈(2, 2), (2, 4)〉, 〈(2, 4), (6, 4)〉, 〈(6, 4), (6, 2)〉, and
〈(6, 2), (2, 2)〉. The new edges calculated above are selected
as the edges of the current sub-map ẍ1.
The cleaning robot follows the new edges and continuously

cleans. When it reaches (3, 2), it uses the same process to
calculate another grid inside sub-map ẍ1. Using (3), (4), and
(5) on grids (2, 2), (2, 4), (6, 4), and (6, 2), the grids (3, 3) and
(5, 3) are obtained. In the same manner, sub-map ẍ1’s edge
changes to edge 〈(3, 3), (5, 3)〉. Figure 7(d) indicates that the
cleaning robot can follow the edge 〈(3, 3), (5, 3)〉 and clean;
when it arrives at grid (5, 3), it again uses (3), (4), and (5)
on sub-map ẍ1’s current edge 〈(3, 3), (5, 3)〉 and grids (3, 3),
(5, 3). However, it cannot obtain a sufficient grid inside sub-
map ẍ1. Hence, map cleaning using the edge-based spiral
coverage path terminates. The Submap cleaning function is
described in Algorithm 6.

When the cleaning of the cleaning robot inside sub-map
ẍ1 completes, because the neighboring grids of the cleaning
robot are all cleaned, a blind alley is produced. The robot
then quickly moves to the next sub-map. To create a path to
the next sub-map to be cleaned, it uses edges to explore the
path. Figure 8 displays the process by which the robot moves
to sub-map ẍ2 after completing the cleaning of sub-map ẍ1.
Figure 8(a) indicates the cleaning robot’s (triangle) current
position, sub-map ẍ2, and the edges of sub-map ẍ2, which
are marked by solid lines after the robot has cleaned sub-
map ẍ1. Because maps ẍ1 and ẍ2 can be adjoined, the cleaning
robot moves first to sub-map ẍ1’s corner. As indicated in
Figure 8(b), four corners are included on the sub-map. Using
the following process, a corner is selected and the cleaning
robot moves.

1) A corner in commonwith sub-map ẍ2 is selected among
the sub-map ẍ1 corners.
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Algorithm 6 Submap Cleaning
1: Input: current , ẍboundary
2: Output: current , oboundary
3: while true do
4: (current, oboundary)← Follows the ẍboundary;
5: if oboundary 6= {φ} then
6: Break;
7: end if
8: temporaryboundary← {φ};
9: (maxx ,maxy)← max(ẍboundary);
10: (minx ,miny)← min(ẍboundary);
11: for all corner ∈ ẍboundary do
12: (x, y)← Find four neighbors of corner in a diago-

nal direction;
13: for j← 1 to 4 do
14: T ← sign(xj, yj,maxx ,maxy,minx ,miny);
15: if T 6= 0 then
16: temporaryboundary ← temporaryboundary ∪

{(xj, yj)};
17: end if
18: end for
19: if temporaryboundary = {φ} then
20: Break;
21: end if
22: ẍboundary← temporaryboundary;
23: end for
24: end while

FIGURE 8. Using edge-based BFS algorithm and creating path to move to
sub-map ẍ2. (a) Current location of robot and sub-map ẍ2. (b) Movement
within sub-map ẍ1. (c) Creating path using BFS. (d) Movement to
sub-map ẍ2.

2) If there are multiple corners in common with map ẍ2,
the Euclidean distances between the cleaning robot and

the corners are calculated. The shortest path is selected;
if the distances are the same, one is chosen randomly.

3) If there is no corner in common between sub-map ẍ1
and sub-map ẍ2, on sub-map ẍ1, the Euclidean distances
between all the corners in sub-map ẍ1 and the cleaning
robot are calculated and the shortest path is selected; if
the distances are the same, one is chosen at random.

Algorithm 7 Submap Selection
1: Input: current , submap, oboundary
2: Output: current , index
3: index ← Check current in which corner of submap;
4: if index 6= φ then
5: Return;
6: else
7: dist ←Calculate the distance from current to submap;

8: index ← Use dist to find the nearest sub-map;
9: start ← current;

10: target ← submap{index};
11: s← submap ∪ oboundary;
12: path← BFS (start, target, s);
13: current ← Follows the path
14: end if

Using process 3) indicated in Figure 8(b), corner (7, 1)
is selected and the cleaning robot moves to the selected
corner (7, 1). Because corner (7, 1) is not a corner of sub-
map ẍ2, the cleaning robot uses the created edges from the
map decomposition process and determines a path to move
to sub-map ẍ2. Figure 1(c) indicates that when a conventional
CPP method calculates path planning to the next area to be
cleaned, it considers all the grids on the map and creates
a path. To decrease the explored space for creating a path,
Figure 8(c) indicates that based on the edges produced in the
map decomposition process, the conventional BFS algorithm
can be used to create a path to the sub-map ẍ2. First, boundary
edge information is used. The cleaning robot first explores
corners connected to corner (7, 1). Then, it explores corners
(7, 5) and (1, 1). Because these two corners are not corners
on sub-map ẍ2, on the basis of corner (7, 5) and corner
(1, 1), a new connected corner is explored. From corner (7, 5),
corner (11, 5) and corner (1, 5) are explored. Because corner
(11, 5) is a corner on sub-map ẍ2, the BFS algorithm is
terminated; the arrow indicates the entire explored region.
In Figure 8(d), the cleaning robot follows the path determined
by the BFS algorithm. It then moves to sub-map ẍ2. Next,
it begins cleaning from corner (11, 5). The Select submap
function is described in Algorithm 7.

C. ADDRESSING THE OCCURRENCE
OF UNKNOWN OBSTACLES
The rectangular sub-maps can be divided using the proposed
map decomposition method. However, owing to the lack of
information on an unknown map, there can be unexplored
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FIGURE 9. Prevention of closed area regarding obstacles not explored in
map. (a) Case when unexplored obstacles exist sub-map ẍ2 and sub-map
ẍ3. (b) Closed area formed by sub-map ẍ2’s edges and obstacles.
(c) Following obstacle’s walls. (d) Recognizing obstacle’s corner.
(e) Constrution of a ẍmerge map that combines sub-map ẍ2 and ẍ3.
(f) Obstacles corner and ẍmerge map. (g) Creating edge. (h) Map
decomposition using A*.

obstacles on the divided sub-maps. Thus, a closed space is
produced between a divided sub-map and the obstacles. If a
closed space is produced, the cleaning robot recognizes this as
an obstacle and does not perform cleaning of the closed space.
Therefore, for a divided sub-map similar to that in Figure 9,

map decomposition is again performed. In Figure 9(a),∏
-type unexplored obstacles exist in sub-map ẍ2 and

sub-map ẍ3. Among the edges of sub-map ẍ2, edge
〈(11, 5), (11, 17)〉 and unexplored obstacles intersect.
In Figure 9(b), because unexplored obstacles and edge
〈(11, 5), (11, 17)〉 intersect, a closed space with symbol �
is produced. Because a closed space exists outside of sub-
map ẍ2, the cleaning robot cannot clean the closed space.
Further, in sub-map ẍ3, a closed space (�) is encircled by
neighboring obstacles; hence, it is impossible for the cleaning
robot to enter and clean the closed space. Thus, to prevent a
closed space, edge 〈(11, 5), (11, 17)〉 is deleted. Sub-maps
relating to edge 〈(11, 5), (11, 17)〉 are combined and map
decomposition is performed again.

Figure 9(c)–(h) displays the entire process of prevent-
ing closed spaces. First, for the cleaning robot to clean
sub-map ẍ2, in the process of moving, it follows the
edges of sub-map ẍ2 and discovers new obstacles. Next, as
in Figure 9(c), the cleaning robot follows the walls of obsta-
cles and collects information on the corners and edges of the
obstacles. Figure 9(d) indicates that in the process of follow-
ing the obstacles, eight edges are determined and indicated
by solid lines, with six convex corners by (⊕), and two con-
cave corners by (⊗). The cleaning robot identifies obstacles
at edge 〈(11, 5), (11, 17)〉, hence, edge 〈(11, 5), (11, 17)〉 is
deleted and sub-maps that include edge 〈(11, 5), (11, 17)〉 are
selected. Sub-map ẍ2 and sub-map ẍ3 are connected as one
sub-map and defined as ẍmerge.
In Figure 9(e), sub-map ẍ2 and sub-map ẍ3 form sub-map

ẍmerge, the edges of sub-map ẍmerge are marked as solid lines.
In Figure 9(e), solid lines mark the edges of sub-map ẍmerge,
which is formed by sub-map ẍ2 and sub-map ẍ3. Circles
represent the corners of the ẍmerge map. Figure 9(f) displays
the

∏
-type obstacles and sub-map ẍmerge’s corners and edges.

In Figure 9(g), the convex corners of the obstacles are used.
Edges are created; solid lines indicate the final created edges.
The map decomposition results using the A* algorithm on the
created edges are indicated in Figure 9(h). Sub-map ẍmerge,
which was formed from sub-map ẍ2 and sub-map ẍ3, is again
divided into six new sub-maps and the closed space generated
by the

∏
-type obstacles is prevented.

IV. EXPERIMENTAL RESULTS
To test the performance of the proposed method from
the viewpoint of computational efficiency and effective-
ness, we chose five conventional CPP methods: LSP [14],
STC [15], BSA [9], BA* [16] and TWPS [18]. Thesemethods
employ different path planning techniques for determining
the next uncleaned grid: STC recursively calls the spanning
tree-based CPP, BSA and LSP use the BFS and CIDT meth-
ods with backtracking grids, BA* uses the A* algorithm, and
TWPS use a two-way proximity search. We conducted exper-
iments related to the performance of the proposed method on
eight maps composed of diverse shapes and different numbers
of obstacles. Figure 10 displays an illustration of each map
and its corresponding name.
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FIGURE 10. Illustrations of experimental maps. (a) Gym 01. (b) Gym 02.
(c) Library 01. (d) Library 02. (e) Warehouse 01. (f) Warehouse 02.
(g) Airport 01. (h) Airport 02.

To verify the scalability of the proposed strategy and com-
pare it against conventional CPP methods, the eight given
maps were increased 1 ∼ 10 times the original size while
maintaining their shapes. Maps sized 100× 100 to 1, 000 ×
1, 000 were used to compare the efficiencies of each method.
TheCPP quality wasmeasured in both terms of coverage ratio
and execution time based on the path created by each method
and the running time for CPP. The coverage ratio measures

the portion of cleaned grids among uncleaned grids, where
a value of 1.0 represents perfect coverage. The execution
time measures the running time required to obtain the final
coverage path. The simulation was performed on a 3.40 GHz
Intel Core i7 with 16 GB of memory, running a MATLAB
8.0 environment.

TABLE 1. Coverage ratio of compared methods on four experimental
maps with different sizes

.

Table 1 presents the coverage ratio of the six compared
methods on four experimental maps of different sizes: Gym
01, Library 01, Warehouse 01, and Airport 01. In each row of
Table 1, the coverage ratio achieved by each CPP method on
a given map ranging from 100× 100 to 1, 000× 1, 000 size
is represented. The experimental results confirm that the
proposed method achieved a perfect coverage ratio regard-
less of the size of the given map. As mentioned previously,
the coverage ratio is the ratio between the total free spaces on
the map and the cleaned spaces. In this study, 1.0 indicates
a 100% coverage ratio. However, we failed to record the
coverage ratio in the 200 × 200-sized map because record-
ing the STC of conventional CPP methods requires a large
amount of memory resource. Thus, the relevant information
is recorded as N/A. Furthermore, STC could not produce the
final coverage path if the size of the map was larger than
200× 200. We observed the same tendency in the remaining
four maps of different sizes; all CPP methods achieved a
perfect coverage ratio except STC.

Figure 11 displays the execution time required for each
compared method to plan the final coverage path; the exe-
cution time for each method on the 500 × 500, 700 × 700,
and 1, 000 × 1, 000 map sizes are represented by overlaid
blue, green and red bars, respectively (this can be viewed
in the color-printed or PDF version of this paper). Because
STC consistently failed to produce the coverage path for a
given map if the size of the map was larger than 200 × 200,
we excluded STC from the experiments. The experimental
results reveal that the execution times of each method differ
according to the map, and that overall, the execution times of
the proposed method is less than conventional CPP methods.
Further, the difference between the execution times increases
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FIGURE 11. Comparison results of CPP methods in terms of execution
time in seconds(s) (the execution time of each method on maps with
sizes of 500× 500, 700× 700, and 1, 000× 1, 000 are represented by
blue, green and red overlaid bars, respectively). (a) Gym 01. (b) Gym 02.
(c) Library 01. (d) Library 02. (e) Warehouse 01. (f) Warehouse 02.
(g) Airport 01. (h) Airport 02.

as the maps become larger. For example, the execution times
of the proposed method, BSA, LSP, BA*, and TWPS on Gym
01when themap size was 500×500were 10 s, 41 s, 13 s, 27 s,
and 22 s, respectively. The largest and smallest differences
between the execution times were 31 s and 3 s. The execution
times of each method when the map size was 700 × 700
were 16 s, 82 s, 25 s, 52 s, and 42 s. The greatest and least
differences between the execution times were 66 s and 9 s.
The execution times of each method when the map size was
1, 000 × 1, 000 were 27 s, 166 s, 47 s, 116 s, and 81 s. The
greatest and least differences between the execution times
were 139 s and 20 s. Moreover, with the more complicated
Airport 02 map, the execution times when the map size was
1, 000 × 1, 000 were 34 s, 4,582 s, 129 s, 440 s, and 83 s.

The greatest and least differences between the execution
times were 4,548 s and 49 s. The results demonstrate that
with the proposed method, the cleaning robot could perform
path planning in a reduced amount of time on large-sized
maps compared to conventional CPP methods, particularly
compared to the BSA and BA* methods. Further, as the sizes
of the maps increased, the execution time of the proposed
method increased more slowly, whereas that of the compared
methods increased rapidly.

TABLE 2. Comparison results of execution time required for clean
map (SM) and path to next uncleaned grid or sub-map (Move). Least
execution times among five CPP methods are marked with † symbol.

To validate the superiority of the proposed method in more
detail, we analyzed the experimental results of 1, 000×1, 000
maps from the viewpoint of execution time required for clean
sub-maps and the path to the next grid. Table 2 represents
the execution time that each method required for a clean
map (SM) and the path from blind alley to the next uncleaned
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grid or uncleaned sub-map (Move), where the best perfor-
mance among the compared CPP methods is identified by
a † symbol. Experimental results confirm that the least total
execution time for all experimental maps was achieved by
the proposed method, indicating that the proposed method
produced the final coverage path faster than all othermethods.
It is interesting to note that the proposed method required
a significantly smaller execution time for planning the path
to the next grid than the compared methods. For example,
the proposed method required 21 s to clean map and 6 s to
plan the path to the next grid in an uncleaned sub-map on
the 1, 000 × 1, 000-sized Gym 01 map. Conversely, BA*
required 8 s to clean map and 108 s to plan the path to the
next uncleaned grid. Moreover, the average standard devia-
tion of the time (Move) for all maps used in the proposed
method to travel to an uncleaned grid from a blind alley was
4 s. With conventional CPP methods, the average standard
deviation of the time (Move) for all maps were 1629 s,
32 s, 1296 s, and 1104 s each. Therefore, we can conclude
that the proposed method requires a significantly reduced
time (Move), rendering the method robustly applicable to a
variety of different maps. Consequently, the proposedmethod
produced the final coverage path considerably more quickly
than BA*, supporting the assertion that the proposed strategy
to invoke path planning based on edges is more efficient.

FIGURE 12. Variations of Airport 02. (a) Map size 2, 000× 2, 000.
(b) Map size 3, 000× 3, 000. (c) Map size 4, 000× 4, 000. (d) Map size
5, 000× 5, 000.

As indicated in Figure 12, experiments were conducted
with larger and more complicated maps to test the scalability
of the proposed method. In Figure 12, each map was rendered
in sizes 2, 000 × 2, 000 ∼ 5, 000 × 5, 000 and the number

TABLE 3. Comparison results of LSP, TWPS, and proposed method on
variations of Airport 02 with execution time(s) (NSM: number of
sub-maps).

FIGURE 13. Simulation experiment of CPP methods. (a) BSA. (b) LSP.
(c) BA*. (d) TWPS. (e) Proposed method.

of obstacles in each map was increased accordingly. The
execution times and number of sub-maps were compared
between the proposed method and conventional CPP meth-
ods. As LSP and TWPS demonstrated the best performance
among the conventional methods, the performance of the pro-
posed method was compared to these two methods in Table 3.
Table 3 indicates that the proposed method required a shorter
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execution time compared to LSP and TWPS. For example,
the execution times of the proposed method, LSP, and TWPS
when the map size was 2, 000 × 2, 000 were 236 s, 949 s,
and 77,346 s, respectively. Because TWPS required excessive
time, the remainder of the relevant information is recorded as
N/A. In particular, when the map size was 5, 000 × 5, 000,
the proposedmethod required 14 times less than the execution
times of LSP. With the proposed method, the number of
sub-maps generated increases with the number of obstacles;
nonetheless, a reduced execution time is guaranteed.

In summary, the experimental results strongly validate
that the proposed method is significantly more scalable
to the size of any given map than conventional methods
because the proposed method can plan the coverage path
with a reduced execution time, even when a large map is
involved. Lastly, we illustrate the final coverage paths of
each CPP method on a 300 × 300-sized Airport 01 map to
demonstrate the different characteristics of the planned paths;
we intentionally chose 300 × 300-sized maps for clarity.
Figure 13 displays the final coverage paths planned by the
five CPP methods; a blue line displays the trajectory of a
sub-map and a red line represents the trajectory of the robot
when it moves to the next uncleaned grid. In Figure 13,
we can observe that rectangular sub-maps were planned by
the proposed method. Consequently, the robot could quickly
plan the path to the next grid using sub-map boundaries
without backtracking or path planning based on previously
explored grids, which significantly degrades the efficiency of
a cleaning robot. Readers can view the simulation video at
http://ibot.knu.ac.kr/vediocleaningrobot.html.

V. CONCLUSION
In this paper, we proposed a scalable CPP method for
extremely large environments based on rectangular sub-map
and boundary edges to accelerate the CPP process. To achieve
this, we developed a new map decomposition method that
uses a spiral path for large, unknown environments. The
experimental results on large maps demonstrated that the
proposed method created the final coverage path without
expending excessive computational resources for path plan-
ning, resulting in a significant acceleration of the cleaning
process. Conversely, the conventional methods required con-
siderably greater execution times on large maps than the
proposedmethod, indicating that the proposedmethod is con-
siderably more scalable than conventional CPP methods for
sizable environments. Specifically, CPP using the proposed
methodwas up to 14 times faster than CPP using conventional
methods. A possible extension of this study could focus on
the map selection process that selects the next cleaning sub-
map by Euclidean distance from a set of created sub-map.
Alternatively, the proposed approach could lengthen the final
coverage path compared to conventional methods because the
proposed method uses boundary and decomposition edges
as opposed to diagonal edges, which can’t shorten the final
coverage path. The proposed method could solve some of
the problems of conventional studies. However, its limitations

include battery shortage when applying the method on a
larger map with a single cleaning robot and sudden malfunc-
tions. To solve these problems, we plan to expand the method
into a multi cleaning robot system and test the method in real
environments.
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