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PAPER

Key-Frame Selection and an LMedS-Based Approach to Structure 

and Motion Recovery

Yongho HWANG•õ, Student Member, Jungkak SEO•õ, and Hyunki HONG•õ*a), Nonmembers

SUMMARY Auto-calibration for structure and motion recovery can be 
used for match move where the goal is to insert synthetic 3D objects into 
real scenes and create views as if they were part of the real scene. However, 
most auto-calibration methods for multi-views utilize bundle adjustment 
with non-linear optimization, which requires a very good starting approxi-
mation. We propose a novel key-frame selection measurement and LMedS 
(Least Median of Square)-based approach to estimate scene structure and 
motion from image sequences captured with a hand-held camera. First, we 
select key-frames considering the ratio of number of correspondences and 
feature points, the homography error and the distribution of corresponding 
points in the image. Then, by using LMedS, we reject erroneous frames 
among the key-frames in absolute quadric estimation. Simulation results 
demonstrated that the proposed method can select suitable key-frames ef-
ficiently and achieve more precise camera pose estimation without non-
linear optimization.
key words: auto-calibration, key frames selection, corresponding points, 
absolute quadric estimation, least median of square

1. Introduction

Computer vision techniques have been applied for visual ef-
fects since the 1990's, and match move is one of the rep-
resentative research areas. This makes it possible to insert 
synthetic 3D objects into real, but un-modeled scenes, and 
create views from given camera positions so that they appear 
to move as if they were part of the real scene [1]. For sta-
ble 3D appearance changes of the object from the camera, 
camera pose estimation is needed. At the same time, the 3D 
structure of the scene is used for placement of the objects 
with respect to the real scene free of occlusion. Manually 
compositing a synthetic object on real scenes is a very dif-
ficult and time consuming process that might take days or 
weeks. In order to automate this process, we introduce re-
liable camera pose and scene geometry recovery that works 
with auto-calibration.

Multi-view pose and geometry analysis has attracted 
much attention in recent years [2]-[4]. Auto-calibration is 
the process of determining camera parameters directly from 
multiple images in a sequence obtained by a hand-held cam-
era. Projective reconstruction is necessary as a preceding 
step in auto-calibration for scene structure and motion esti-

mation, and it is classified into merging-based and factoriza-
tion methods. Sawhney presented a method that accurately 
estimates relative camera pose from the fundamental matrix 
over a video sequence [1]. Pollefeys proposed a 3D model-
ing technique over image sequences from a hand-held cam-
era, and then extended that for AR-systems [4], [5]. Gibson 
described an improved feature-tracking algorithm based on 
the KLT (Kanade-Lucas-Tomasi) tracker, and presented a 
robust hierarchical scheme merging sub-sequences together 
to form a complete projective reconstruction [6]. Sturm pre-
sented a factorization method to calculate all camera projec-
tion matrices and structure at the same time, which suffers 
from less drift and error accumulation [7]. The drawback 
of factorization methods relying on matrix decomposition 
is that all corresponding points must remain in all views 
from the first frame to the last. The merging-based projec-
tive reconstruction method is able to solve this problem [8], 
[9]. Sequential merging algorithms are heavily dependent 
on a good initial estimate of structure, and are susceptible to 
drift over long sequences, so the resulting error accumulates 
over time. Hierarchical merging algorithms were proposed 
to improve sequential methods, and have the advantage of 
the drift error being more evenly distributed over the entire 
sequence [6]. In our experiments, we evaluate the accuracy 
of the proposed auto-calibration algorithm on the sequential 
and hierarchical approach.

In general, motion between frames has to be fairly 
small so that a precise correspondence can be established 
by using automatic matching, while significant parallax and 
a large baseline is desirable for obtaining a well-conditioned 

problem [10]. A good choice of the frame from an image se-
quence can produce more appropriate input for pose and ge-
ometry recovery, thereby improving the final result. Hence 
the goal of key-frame selection is to select a minimal sub-
sequence of feature views from the images, such that cor-
respondence matching still works for all pairs of adjacent 
frames in the sub-sequence. Sawhney mentioned that the 
key-frame may be chosen using the following criteria: when 

parallax motion is beyond a certain threshold and there is a 
change in the number of feature tracks [1]. Nister presented 
a frame decimation scheme based on global motion estima-
tion between frames and a sharpness measure, which is the 
mean square of the horizontal and vertical derivatives, eval-
uated as finite differences [10]. In this approach, computa-
tional time is mainly dependent on the image size, because 
the image sharpness has to be evaluated. Gibson's measure 
includes the fraction of features that were reconstructed in
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the previous key-frame pair, but cannot possibly be recon-
structed in this pair [6]. In addition, the median epipolar 
error between every two views is estimated, which is a very 
time consuming process.

In this paper, we propose a novel measure for key-
frame selection and an LMedS-based approach to projec-
tive reconstruction. Our quantitative measure takes into ac-
count the ratio of the number of corresponding points and 
feature points, the homography error and the distribution 
of corresponding points in the image. Carefully selecting 
key-frames enables camera pose and scene geometry re-
covery, which is a relatively expensive process, to be per-
formed on a smaller number of views. In addition, video 
sequences with different amounts of motion per frame be-
come more isotropic after frame decimation. Then we reject 
an erroneous frame among key-frames causing the absolute 

quadric estimation to fail by using LMedS (Least Median of 
Square). The LMedS algorithm chooses among the entire 
tested hypothesis the one that has the least median squared 
residual on the entire absolute quadric sets. The absolute 

quadric is re-estimated from the selected camera matrix set, 
and we recover the camera matrices of the rejected frames 
by the camera resection [11], [12]. We can obtain projec-
tive reconstruction by decomposing the absolute quadric. 
Finally, we determine a rectifying homography and trans-
form the projective to a metric reconstruction [3]. In Fig. 1, 
the shaded regions compare contributions with the previ-
ous method. We evaluated various projective reconstruction 
methods and embodied an automatic match move to insert

synthetic 3D objects into real scenes and create their views 
from the recovered camera positions.

This paper is laid out in the following format: Sec-
tion 2 describes auto-calibration using absolute quadric, and 
Sect. 3 discusses key-frame selection. After details of our 
LMedS based on absolute quadric estimation are given in 
Sect. 4, we tackle the experimental results for synthetic and 
real scenes in Sect. 5. Finally, Sect. 6 discusses the conclu-
sion.

2. Auto-Calibration 

In this section, we briefly review the essence of the auto-
calibration method. Given point matches from more than 
two images, projective structure and motion can be com-

puted without camera parameters. In order to upgrade 
the projective structure to metric reconstruction, traditional 
methods first calibrate a camera by using an object with 
known 3D Euclidean geometry and a calibration pattern. 
Then, a metric structure of the given scene can be acquired 
from the correspondences between images. Recently there 
has been an active research on auto-calibration algorithms 
to avoid setting the calibration box in the scene because pre-

procedures for calibration have a number of limitations and 
involve the setting of equipment [3], [12].

In general, we obtain projective reconstruction from a 
set of images acquired by a camera with fixed internal pa-
rameters. Then we compute a rectifying homography H 
from auto-calibration constraints, and transform to this a 
metric reconstruction [12]. The process of projection (P)

(a) (b)

Fig. 1 Block diagram, (a) previous method, (b) proposed method.
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of a point X in 3D to a point x in the image plane can be 

represented as follows:

x=PX=KR[I|-C]X=K[R|t]X,

where K is the camera calibration matrix with intrinsic pa-

rameters: focal length (fx, fy) in the x- and y-axis , skew fac-

tor (s), and principal point (x0, y0). I,C ,t, and R are an 

identity matrix, the coordinates of the camera center in the 

world coordinate frame, -RC, and 3•~3 rotation matrix rep-

resenting the orientation of the camera coordinate frame, re-

spectively.

We choose the world frame to coincide with the first 

camera, P1=K[I|0], so that R1=I and t1=0, where 

the superscript •g1•h represents the first frame . Because of 

the absence of intrinsic parameters, we eliminate K from 

projection matrices by using a linear transformation H as 

follows:

x1=P1X=K[I|0]X=K[I|0]HH-1X=[I|0]Xp

x2=P2X=K[R|t]X=K[R|t]HH-1X=[M|p4]Xp (2)

where x1 and x2 are projections of two images of 3D point X

. Xp is a projective reconstruction of X, where the sub-

script •gp•h means the projective reconstruction. M and p4 

represent KR and the last column of P2, respectively. In the 

projective reconstruction, the camera position for the first 

view is established so that P1p= [I|0].

We can reconstruct a scene up to a projective transfor-

mation by using only the corresponding points on the im-

ages. Calibration is the process of finding the transforma-

tion H, which can be obtained by decomposing the absolute 

quadric. In projective reconstruction, the dual image of the 

absolute conic (ƒÖ*) is the projection of the absolute quadric 

(ƒ¶p) as follows:

ω*=PpΩpPTp=KKT (3)

When the camera has zero-skew, unit aspect ratio and 

the known principle point, the linear equations on ƒ¶p are 

generated from the zero entries in (3) as follows:

(PpΩpPTp)12=(PpΩpPTp)13=(PpΩpPTp)23=0,

(PpΩpPTp)11=(PpΩpPTp)22 (4)

where ()ij is element of i-th row and j-th column. We can 
estimate the absolute quadric from at least three images by 
using (4). Then we decompose the absolute quadric by using 
the eigen value decomposition, EVD, as

EVD(Ωp)=UDUT=U√DΩeuc√DUT=HΩeucHT (5)

where ƒ¶euc, U and D are the absolute quadric in metric co-

ordinate frame, an orthogonal matrix and a diagonal matrix, 

respectively, and the 0 eigenvalue in D is replaced by 1. Fi-

nally, from (5) we obtain metric camera motion and struc-

ture by applying H to projective coordinate frame [3].

3. Key-Frame Selection Measurement

In this section, we introduce the measures for key-frame se-
lection. In order to achieve a suitable key-frame selection , 
we propose a new quantitative measurement that includes 
three factors: (i) the ratio of the number of corresponding 

points and feature points, (ii) the distribution of correspond-
ing points about the frame and (iii) the homography error . 
These measurements are combined as follows:

S=w1(1-
Nc/)

NF
+w2σc+w3

1/

Herr 
(6)

where S is the score to select the key-frame , Nc and NF 

are the number of corresponding points and feature points . 

ƒÐc is the standard deviation of the density of corresponding 

points, and Herr is the homography error. wi(i=1,2,3) 

is the weight used to alter the relative significance of each 

score. In experiment on various sequences, we determine 

three weights of the measure as: W1=3, w2=1, and w3=

10.

Correspondences between the first frame and succes-

sive frames gradually diminish as the frame number grows 

over the image sequence. The first term of (6) examines how 

many corresponding points remain on the successive frames. 

When the corresponding points are evenly distributed on 

the image, we can obtain a more precise fundamental ma-

trix [13]. Since the fundamental matrix contains all avail-

able information on camera motion, more evenly distributed 

correspondences allow the improvement of 3D estimation 

results. The proposed method uses the standard deviation 

of the point density representing the distribution of corre-

sponding points. In order to evaluate the degree of the point 

distribution on the image, we divide the entire image uni-

formly into subregions according to the number of the cor-

responding points, and calculate the point density of the 

subregion and that of the image [14]. Figure 2 shows the 

segmented sub-regions and corresponding points, which are 

represented by red points. The standard deviation can be 

represented as follows:

where NS and NC are the total number of subregions and 
corresponding points, and NCi is the number of correspond-
ing points in i-th subregion, respectively.

The homography error is the median re-projection error 
when a planar projective homography is used for establish-
ing corresponding points. Therefore, the homography error 
represents how many correspondences are distributed on a 

planar surface. If corresponding points are distributed on 
various surfaces, it is difficult to establish a one-to-one cor-
respondence due to self-occlusion, increasing the homogra-

phy error. This means that the homography error represents 
how much a camera moves between frames, and is used to 
evaluate a baseline length between two views. For these
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(a)  (b)

Fig. 2 Segmented sub-regions, (a) synthetic image , (b) real image.

reasons, Gibson used the homography error to select key-
frames for sub-sequence grouping [6]. In addition, in order 
to estimate the fundamental matrix precisely, most corre-
sponding points should not be placed on a planar surface or 
a line segment.

We determine the 2D homography matrix H such that 
x'i=Hxi from a set of four 2D to 2D point correspondences 

{xi•©•¨x'i}. This equation may be represented in terms of 

the vector cross product as .x'i•~Hxi=0, and we can obtain 

H from the simple' linear equation using the singular value 

decomposition (SVD). In the case of more than four points, 

we use the normalized direct linear transform (DLT) [12]. 

Then we evaluate how many corresponding points on two 

frames satisfy the estimated homography as follows:

Herr= (8)

where N is the number of correspondences between two 
frames, and d(,) is the Euclidean distance measurement.

After choosing the first frame as the key-frame, we ex-
amine all possible pairs of the first frame with consecutive 
frames in the sequence. Assuming that the key-frame has 
already been placed at the present frame, we achieve key-
frame selection by evaluating the score for a pair of the cur-
rent frame with the subsequent frame. This process con-
tinues until the ratio of the number of corresponding points 
and that of feature points is under 50%. The frame with 
the lowest score of Eq.(6) is then marked as the key-frame 
within the sub-sequence. Therefore, because the key-frames 
are selected automatically from the sequence, the proposed 
algorithm need not adjust the number of the key-frame in 
advance as Gibson's [6] method does.

4. LMedS-Based Absolute Quadric Estimation

LMedS estimation scores the model by the median of the 
distances to all points in the data. Minimum sizes of sub-
set samples are selected randomly with the number of sam-

ples obtained [12]. We can estimate absolute quadric by us-
ing (4) from at least three images. For more precise ab-
solute quadric estimation, we propose a novel method us-
ing LMedS-based random sampling. We select random sets 
of projection matrices from the key frames, and derive the 
linear equations through (4). We automatically reject the

frame with large errors among the key-frames, causing the 
absolute quadric estimation to fail. The obtained absolute 

quadric is projected to each camera matrix, and each resid-
ual is computed as follows:

ri=(P1pΩpP1pTP-PipΩpPiTp)
norm (9)

where superscripts •g1•h and •gi•h represent the first frame and 

the i-th, respectively. Hence, P1p is the first camera ma-

trix that is an initial projection matrix [I|0] in the projec-

tive. We iterate the sampling and computing residuals, and 

then find the absolute quadric with the minimum median 

residual. From the minimum residual, a threshold for re-

jecting camera matrix with numerous errors is computed as 

follows [11]:

τ=2.5×1.4826[1+5/(n-s)] √rmedian  (10)

where rmedian and n are the minimum median residual and 

the number of the camera matrices-1, and S is the number 

of the sampled camera (S=2), respectively. The reader is 

referred to [15] for an explanation on these magic numbers, 

2.5 and 1.4826. The advantage of LMedS-based estimation 

is that it requires no setting of thresholds or a priori knowl-

edge of the variance of the error. The limitation is that it 

fails if more than half the data is outlying, for then the me-

dian distance will be to an outlier [12].

Reference [12] presented the equation to determine 

how many samples should be selected. The number of sam-

ples N is chosen sufficiently high to ensure with a probabil-

ity, p, that at least one of the random samples of S points is 

free from outliers. Usually p is chosen at 0.99. Suppose w is 

the probability that any selected data point is an inlier, and 

thus ƒÃ=1-w is the probability that it is an outlier. Then 

at least N selections (each of S points) are required, where 

(1-ws)N=1-p, so that

N=log(1-p)/log(1-(1-ε)S).(11)

The LMedS-based absolute quadric estimation is sum-
marized as follows.

Step 1: Projective reconstruction process.
Step 2: Random sampling of two camera matrices except 

the first camera matrix.
Step 3: Estimate absolute quadric by (4) and compute the 

residual of each camera matrix by (9).
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Step 4: Repeat 2-3, and find the absolute quadric with the 
minimum median residual.

Step 5: Reject erroneous camera matrices (frames) using 
the threshold from (10).

Step 6: Re-estimate the absolute quadric from the inlier 
camera matrix set.

Camera matrices of the rejected frames are recovered by the 
camera resection, and finally, the scene structred is recon-
structed.

5. Experimental Results

In order to evaluate the performance of the proposed key-
frame selection algorithm, we have compared its results on 
4 image sequences (Figs. 7 and 9) with those obtained by 
Nister's (A) and Gibson's (B) methods [6], [10]. Our sim-
ulation was performed on a PC using an Intel Pentium 4 
2.3 GHz processor with 1GBRAM. Table 1 shows the num-
ber of key-frames and the computation time. In the results 
obtained using Nister's method, computation time largely 
dependent on image size because image sharpness is evalu-
ated. Gibson's method estimates the median epipolar error 
between every two views, and selects a relatively smaller

number of key-frames than Nister's . However, Gibson's 

computation time is approximately the same as Nister's
, be-

cause the estimation of a precise fundamental matrix and the 

median epipolar error is a very time consuming process. In-

stead of estimating the fundamental matrix and the median 

epipolar error, we consider the distribution of corresponding 

points on the frame, so the proposed algorithm (C) proves to 

be faster than previous methods.

In Fig. 3, the symbol •g•¥•h represents positions of key-

frames by three methods on the homography error of the 

•g Fountain•h and •gDesk•h sequences. The position and number 

of key-frames using the proposed method are almost similar 

to those of Gibson. These figures show that our proposed 

method enables key-frames to be more evenly distributed 

over the sequence. Because camera pose and scene geom-

etry are estimated on the key-frames, a selection of fewer 

and more precise key-frames guarantees computational ef-

ficiency and accuracy. Therefore, though LMedS is a time 

consuming technique, the computation load of the proposed 

algorithm can be lessened.

Figure 4 shows the computed values of three terms in 

Eq. (6) with relative weights (w1=3, W2=1, and w3=10) 

on •gDesk_2•h sequence. The previous method [6] gives more 

weight towards the homography error than other two factors,

Table 1 Number of selected key-frame and computation time.

(a)

Fig. 3 Selected key-frames on the homography error of Fountain (left) and Desk (right), (a) Nister's 
method (A), (b) Gibson's method (B), (c) the proposed method (C).



HWANG et al.: KEY-FRAME SELECTION AND AN LMedS-BASED APPROACH 

119

(b)

(c)

Fig. 3 (Continued)

and takes into account the number of corresponding features 
in tracking process. The proposed algorithm includes not 

only these two items but also the measure of the distribution 

of correspondences in the present frame, instead of using the 

median epipolar error.
In our key-frame measure, the first term divides the im-

age sequence into sub-sequences and the other two terms 

play an important role to determine the key-frame position. 
More specifically, the lower values in the second and the 

third term represent that most of corresponding points are 

more uniformly distributed and the camera positions moved 

more far away from the previous key-frame, respectively.

Therefore, Fig. 4 shows that these results of two terms are 
much lower at the key-frame. In addition, the second term 
can alleviate the oulier effects in the homography term. Ta-
ble 1 shows that the proposed method obtains the same re-
sults as those by Gibson [6], with better computation perfor-
mance.

At first, we compared the auto-calibration algorithms 
on the synthetic data (Fig. 5) in terms of the estimated in-
trinsic parameters and reconstruction results. The camera is 
rotated around the model and moved along positive y-axis 
at the same time. The intrinsic parameters are fixed, and 
Gaussian noise is added to the input images. We have esti-
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Fig. 4 Results of three terms in the selection measure with weight values.

Fig. 5 Synthetic model and camera pose.

(a)

(b)

Fig. 6 Intrinsic parameter accumulation error graph, (a) on sequential 
merging-based reconstruction, (b) on hierarchical merging-based recon-

struction.

mated the absolute quadric with the linear method, bundle 

adjustment [12] and the proposed algorithm on two merg-

ing approaches: sequential merging [7] and a hierarchical 

merging [6]. Figures 6 and 7 represent a cumulative error 

of the camera's intrinsic parameters, and comparison of the 

camera pose recoveries. The sequential merging algorithm 

depends on an initial estimate of the structure, and the error 

propagates increasingly over time. On the other hand, since 

the hierarchical merging algorithm enables the error to prop-

agate evenly over an entire sequence, the performance of the 

hierarchical merging algorithm is better than the sequential 

merging algorithm. In addition, bundle adjustment merges 

frames better than using the linear method exclusively. Fig-

ures 6 and 7 demonstrates how the proposed method achieve 

more precise camera estimation and reconstruction.

In Table 1, the numbers of the selected key-frames in 

image sequences are 12-24. In particular, the frame number 

of the •gDesk•h sequence is 407 and 13 key-frames are se-

lected. In the proposed LMedS-based method, because the 

absolute quadric is obtained from two images, a minimal 

subset of size (S) is 2 and the number of the possible every 

pair (combination) is 13C2=78. It is often computation-

ally infeasible and unnecessary to try every possible sam-

ple. Therefore, we should adjust a sampling rate suitable to 
remove the outlier effects by using the above Eq. (11).

In the simulation results, we have checked that most of 
the selected key-frames were generally inlier sets. However, 
in order to cope with the worst case: half of the key-frames 
are outliers (s=0.5), we determine the sampling rate as 
17. If more than half the data is outlying, the LMedS-based
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Sequential Merging based 
Reconstruction

Hierarchical Merging based 

Reconstruction

Liaear Method Linear+Bundle adjustment Proposed Method

Fig. 7 Recovered camera motion and scene geometry .

(a)

(b)

(c)

Fig. 8 Simulation results on Box sequence, (a) Box sequence (1, 100, 200, 300, 400, 500, 600, and 
621 frame, from upper left to lower right), (b) key-frames on the homography error, (c) principal point 

accumulation error of key-frames on sequential merging-based.

method fails since the median distance will be to an out-
lier [12]. The proposed method takes no account of this 
worst case, where most of the key-frames are outliers in 
the absolute quadric estimation, and an additional solution 
would be needed.

Figures 8 (a) and (b) show 8 frames in the •gBox•h se-

quence and 14 key-frames selected by the proposed method, 

respectively. (c) represents the results using the linear 

method, bundle adjustment and the proposed method, on 

the sequential merging. The results are obtained by accu-
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(b

)

(c) (d)

Fig. 9 3D reconstruction from Cottage sequence, (a) 3D ponts (b) triangle mesh, (c) shaded model.

(d) recovered camera motion and textured model.

(a) (b)

(c)

Fig. 10 Augumented image sequences, (a) Fountain, (b) Cottage, (c) Desk-2.

mulating the distance error of the actual principal point of 

the camera and the estimated point.
Since we have achieved calibration between successive 

image pairs, we can exploit the epipolar constraint that re-

stricts the correspondence search to an 1-D range. To es-
tablish a correspondence, rectification is performed, which

enables the epipolar lines to coincide with the image scan 

lines, followed by dense stereo matching [16]-[18]. Fig-

ure 9 shows the reconstructed 3D points with a 5•~5 match-

ing block, the triangle mesh, the shaded model, and the re-

covered camera trajectory and the textured model from the 

•g Cottage•h sequence, respectively. The use of the hierarchi-
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cal matching on multiple views may alleviate the effects 

caused by occlusion, and more consideration of advanced 

dense matching measures can achieve better performance . 

The virtual object is integrated with the real scene by using 

the recovered camera motion and the scene geometry. Fig-

ure 10 shows augmented image sequences of •gFountain•h , 

•gCottage•h, and •gDesk_2•h.

6. Conclusion

The authors propose a novel measure for key-frame selec-

tion and LMedS-based absolute quadric estimation for cam-

era motion and scene structure recovery. By considering 

the ratio of the number of corresponding points and feature 

points, the homography error and the distribution of cor-

responding points, a sparse but sufficient set of views for 

3D estimation can be selected with computational efficiency. 

In addition, the LMedS-based method enables frames with 

large errors among the key-frames to be rejected efficiently. 

Simulation results demonstrated that our algorithm achieved 

more precise camera and scene reconstruction of image se-

quences without non-linear optimization.
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