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Solid-state drive (SSD) becomes popular as the main storage device. However, over time, the reliability of SSD degrades due to bit
errors, which poses a serious issue.(e periodic remapping (PR) has been suggested to overcome the issue, but it still has a critical
weakness as PR increases lifetime loss. (erefore, we propose the conditional remapping invocation method (CRIM) to sustain
reliability without lifetime loss. CRIM uses a probability-based threshold to determine the condition of invoking remapping
operation. We evaluate the effectiveness of CRIM using the real workload trace data. In our experiments, we show that CRIM can
extend a lifetime of SSD more than PR by up to 12.6% to 17.9% of 5-year warranty time. In addition, we show that CRIM can
reduce the bit error probability of SSD by up to 73 times in terms of typical bit error rate in comparison with PR.

1. Introduction

Solid-state drive (SSD) is a high-performance and energy-
efficient storage device based on NAND flash memory. SSD
has become increasingly popular in recent times, seeing
usage from in personal computers to in high-performance
servers [1, 2]. In particular, SSD can enhance the perfor-
mance of cloud storage systems. Cloud storage systems in
data centers should consider energy efficiency, performance,
and maintenance costs [3, 4]. In large-scale cloud storage
system, the replacement costs of storage devices can be
concerned. SSDs can be the key solution because their
performance is much faster than that of hard disk drives
(HDDs), and their cost is much lower than that of static
random access memory (SRAM).

However, SSD has reliability problems because NAND
flash memory has bit errors. (e bit errors degrade the
performance and lifetime of SSD [5]. Especially, the degra-
dation of lifetime is a serious problem because it reduces the
amount of available blocks which are limited resources. (us,
enhancing lifetime is an important and urgent demand, so
many studies have been proposed until recently [6–10].

Many SSDs handle bit errors by applying error cor-
rection code (ECC) mechanisms such as BCH [11]. How-
ever, ECC does not completely solve the bit error problem
because the error correction capability of ECCs is not
scalable. For example, BCH-512 can correct 7 bit errors with
a 512-length code. BCH-32 k can correct 259 bit errors—the
code length is 64 times longer than BCH-512 but the number
of correctable errors is only 37 times more. Furthermore, the
power consumption and additional space for metadata in-
crease by multiples of 71 and 85, respectively [12].

After that, more advanced way to handle bit errors has
been suggested: applying the periodic remapping (PR) of
data blocks [12]. PR periodically replaces error-prone blocks
into healthy ones. However, PR has a critical weakness in
that PR reduces the overall lifetime of SSDs. (us, we at-
tempt to find a way to minimize the lifetime loss caused by
PR.

Our key observation is that the cause of lifetime loss is
invoking remapping operations too often in PR. As solution,
we propose CRIM, the conditional invocation of the
remapping operation based on failure likelihood. To reduce
lifetime loss, CRIM invokes the remapping operation only
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when a certain condition is met. (e condition is based on
the probability of bit error occurrence, and it determines
how much a target block is error prone.

For evaluation, we compare CRIM with PR with various
workloads. We test how long a SSD can survive until all
blocks run out, how many times a SSD can perform write
operations when blocks are available, and how much a SSD
reduces the bit error probability for each method. In our
results, with CRIM, we show that SSD can survive more time
than PR by maximum 230 days (12.6% of 5-year warranty
time). CRIM also can endure more block writes than PR by
326.77, and this means that SSD can operate more time than
PR by 17.9 % of 5-year warranty time when a workload with
medium write ratio (Table 1) runs. Also, CRIM reduces the
bit error probability by up to 182.23 × 10−8 over PR, and this
means the 73-fold improvement of typical bit error rate
2.48 × 10−8 [13] in cloud data center.

Our work has two contributions. First, we suggest
a novel SSD reliability approach that is based on prediction
of bit error occurrence. Second, our work helps to reduce the
overhead of reliability handling mechanism of SSDs in terms
of lifetime loss.

In Section 2.1, we explain SSD background and review
the previous work in bit error handling in SSD. Section 3
describes our problem of lifetime degradation. We suggest
the main idea of CRIM in Section 1, and Section 5 presents
experimental evaluation of CRIM and PR. Finally, we
conclude in Section 7.

2. Background

2.1. SSD Basics. (is section explains some key concepts of
SSDs to aid the understanding of our work. Our work fo-
cuses on NAND flash memory-based SSDs.

2.1.1. Structure. A typical SSD storage device consists of
multiple NAND flash memory chips. A chip consists of dies,
and several planes are in a die. A plane is partitioned into
blocks, and each block has a fixed number of pages. A page
consists of multiple bytes, and it is an access unit for read and
write operations using a loading/unloading page buffer. A
basic unit for an erase operation is a block. Each block
contains an array of memory cells. A memory cell includes
one or more bits as encoding methods such as single-level
cell (SLC), multilevel cell (MLC), and triple-level cell (TLC).
A SLC has a bit data: 0 or 1. MLC and TLC have two bits and
three bits data. It is known that many bits in a cell are prone
to errors [14].

2.1.2. Write and Erase. A page physically cannot be over-
written. (us, an erase operation must be done before each
new write. Each cell in a block can only endure a limited
number of erase operations, and the bit data in a cell cannot
be guaranteed to be preserved when the operation count of
the cell reaches the maximum count (Maximum program-
erase(P/E) cycles).

2.1.3. Bit Errors. In SSDs, data in a cell can be corrupted by
bit errors such as read, write, and retention error. Read errors
occur when the read operations are performed. Write errors
are bit errors when the data are written. Retention errors are
bit errors that occur after the data is written. In SSD, every
time when data are written, the SSD cell is recharged.
However, the datamay be corrupted over time due to natural
leakage of charged electrons, and this is why retention errors
occur. (e time to retention error after data is written is
retention time. (e retention errors are known as the most
dominant bit errors, and write errors are the second
dominant one [12, 15]. (us, we use the conventional bit
error model considering both errors [5, 16]. (e standard
metric to evaluate SSD flash reliability is the raw bit error
rate (RBER) of a SSD, defined as the number of corrupted
bits per number of total bits read [13]. A recent study
evaluates RBER of various SSD devices based on data of
Google’s data center, and the typical value of RBER in MLC
SSD is reported as 2.48 × 10−8 [13].

2.1.4. Wear-Leveling. To avoid the “specific cell wear-out”
described above, SSDs adopt a wear-leveling technique. (is
technique allows data writes to be evenly distributed over
storage. (e wear-leveling is achieved by an algorithm that
the flash controller remaps logical block addresses to dif-
ferent physical block addresses in the SSD. (e block ad-
dresses are checked for wear-leveling for every write request
in the flash controller.

2.2. Related Work. Our work is mainly related to studies to
enhance reliability of storage. In SSDs, there are two tra-
ditional approaches to enhance reliability: reducing bit error
occurrences and reducing the impact of bit errors.

2.2.1. Reducing Bit Error Occurrences. To reduce retention
error occurrences, periodic remapping (PR) [12] and re-
tention relaxation (RR) [16] mechanisms have been sug-
gested. PR [12] tried to reduce the impact of retention errors
by periodically refreshing the stored data by mapping the
data to a new block. However, PR has a limitation of periodic
refreshing overhead which leads to additional lifetime loss.
To overcome it, the authors in [12] suggest FCR. FCR has the
same goals as CRIM but the differences are refresh condition
and granularity. We cover these in more detail in Section 6.

RR [16] tried to relax the retention capability of NAND
flash memory by shortening the refreshing time. However,
RR has a limitation that the optimal refreshing time depends
on specified datacenter workloads. CRIM tries to reduce the
lifetime loss of PR and does not require physical modifi-
cation of refreshing time. To reduce write error occurrences,
disk-based write cache (DW) [17] is used in HDDs as
a persistent write cache. In DW, all data written to SSDs are
first appended in HDDs, and the data are migrated to SSDs
later. However, this approach has a limitation that it requires
HDD storage device additionally. CRIM does not require
any additional HDDs.
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2.2.2. Reducing Bit Error Occurrences. A solution is to make
data resilient. Data differential redundant array of in-
dependent disks (Diff-RAID) [18] enhanced the data re-
liability by SSD RAID. Diff-RAID redundantly distributes
parity blocks considering the age of storage device. However,
this approach requires additional storage devices for the
same amount of data; thus, it is costly. CRIM does not
require additional storage.

Next solution is to mitigate the programming in-
terference; two studies [19, 20] have been suggested. Dy-
namic voltage allocation (DV) [19] tried to reduce the
interference by scaling the charging voltage. However, this
approach requires additional storage capacity of device
scaled by the number of cells. Progressive programming
method (PP) [20] presented a single-level per cell- (SLC-)
based progressive programming method to discover the
lifetime of flash cell. By exploiting the gradual noise margin
degradation, PP can sustain the bit data longer. However,
this approach does not target modern SSDs such as MLC-
based or TLC-based SSDs. CRIM does not require special
programming method, nor targets a specific type of SSDs.

Our approach, CRIM, covers both approaches and also
has a novelty. CRIM tries to reduce both retention errors and
write errors by conditionally limiting invocation of
remapping operations. Also, CRIM takes a new approach:
prediction of bit error occurrences. In CRIM, a remapping

operation is invoked only when a target block is error prone.
(us, CRIM can prevent the impact of bit errors effectively.

3. Problem: Lifetime Degradation due to
Unconditional Remapping

(is section explains our problem—lifetime degradation due
to unconditional remapping operations. In order to inspect
the impact of the problem, we analyze the amount of the
lifetime degradation over a period of remapping operation
(time between two remapping operations).

First, we need a metric to evaluate lifetime quantitatively
in SSDs. It is difficult to know the exact lifetime of SSDs
because it is to be measured through running workloads on
the actual SSD until all blocks are unavailable. Instead of
that, the estimated lifetime is used in many SSD studies
[12, 17, 19, 20]. Commonly, the lifetime of SSD is estimated
by endurable P/E cycles-the number of P/E cycles that
memory cells could endure. For example, let us assume that
there is a SSD with maximum 3K P/E cycles, and all blocks
in the SSD have 1K P/E cycles. (en, the amount of en-
durable P/E cycles is 2 K. However, the endurable P/E cycle
is not intuitive because this metric is not based on time.
(us, we use the extended estimated lifetime metric in a SSD
vendor’s white paper [14] which is as follows:

LifetimeYears �
CapacityGB( 􏼁 × EndurablePECycles􏼐 􏼑 × Utilization%( 􏼁

UsagePerDayGB( 􏼁 × WriteAmplificationRatio( 􏼁 × 365Days/Year􏼐 􏼑
. (1)

(is lifetime metric includes both endurable P/E cycles
and UsagePerDay. Note that UsagePerDay can vary as the
number of write operations of the given I/O workload.
WriteAmplification factor (WA) is a constant for quantifying
writing overhead. WA in [14] is 1.1. Utilization is a usage
ratio of total block. Utilization of actively working SSD
shows 95% in [14].

As the workload characteristics, a lifetime of SSD may
appear differently. Especially, SSDs in enterprise servers
assume active usage of 24 hours per day in JEDEC SSD
standard [21]. Typically, SSD endurance is commonly de-
scribed in terms of full Drive Writes Per Day (DWPD) for
a certain warranty period (typically 3 or 5 years) [22]. Also,
typical endurable P/E cycles for MLC SSD block are known
as numbers range 3K to 10K in the recent literature [22].
For example, the estimated lifetime of SSD with endurable

P/E cycles of 3K, the capacity of 256GB and the Usage-
PerDay of 256GB is around 7.1 years. However, this assumes
moderate SSD usage. (e lifetime degrades by 10% if we
assume the enterprise server of 10 DWPD; thus, it can se-
riously affect maintenance cost and reliability of server
storage.

Second, we need to know the additional cost of a single
remapping operation in PR study [12]. (e steps of
remapping operation are as follows: First, the data of a whole
block are read out (Read a block). Second, if necessary, errors
are corrected page by page (Modify memory pages). (ird,
the corrected block is written into another empty block
(Write a block).

Finally, we can infer that the third step of remapping
operation degrades the lifetime because the third step re-
quires ‘write a block’ and the write operation decreases
endurable P/E cycles in the above lifetime metric. Namely, if

Table 1: (e summary of DWPD of test workloads.

Write ratio (WR) Low Medium High
Workload MSR Financial OLTP JEDES-client Postmark Cello99 JEDES-server-1 IOzone JEDES-server-2
DWPD 0.005 0.05 0.14 1 2.8 5.5 10 20 30
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we perform remapping unconditionally, the problem of
reduction lifetime can occur constantly. For solving that, our
insight is to apply remapping operation conditionally.

4. Solution: Conditional Remapping
Invocation Method

(e basic idea of our solution is to invoke conditionally
remapping operations. (is operates like a filter against
unconditionally flooding operations. We use a probability-
based threshold and a raw bit error rate (RBER) model based
on previous studies [5, 16] to determine the condition in
which data blocks will be remapped. Figure 1 shows the
overall architecture of CRIM. (e white-filled boxes show
traditional SSD components, and the black-filled boxes
indicate new components for CRIM. CRIM requires two
main software components in the flash controller, the block-
life-judge (BLJ), and the block-life-saver (BLS). (e BLJ
decides when to apply the BLS, which performs remapping
operations for the target block.

Figure 2 shows how CRIMworks for incoming write and
read operations from a host. Initially, CRIM waits for I/O
operations from a host (state 0). In a typical SSD, ECC
checking is performed whenever a read operation occurs
(state 1). (is is a conventional behavior of SSD [22]. When
an ECC checking fails or a write operation occurs, BLJ is
invoked to predict whether the target block is error prone or
not (state 2). (e details of BLJ are in Algorithm 1.

In Algorithm 1, RBER is expected to increase with the
number of P/E cycles, and the growth was reported as ex-
ponential in the traditional literatures [5, 12]. However, in
the recent literature [13], the authors have reported and
verified the growth is close to a linear increase. (us, we
build a linear RBER model based on a-year-RBER data
which is reported in [5]. (e result is as follows:

RBER(t, c) � 9.991 × 10−10(c− 1) + 1.0 × 10−9

+ 4.485 × 10−4 × t
1.25

,
(2)

where tmeans retention time and c indicates the P/E cycles.
We use the values that reflect the typical error rate of NAND
flash memory that corresponds to a year-long data retention
capability specified in JEDEC standard (SSD industrial
standard [21]) under room temperature (e.g., 25°C).

Current is the amount of currently available P/E cycles,
and Expected is the amount of changed P/E cycles. We can
easily get the Current via wear-leveling management scheme
with a timestamp; thus, we can represent it as time-series.
(en, we obtain the Expected by a moving average filter
through the feedback control way [23]. Moving average filter
calculates the average value based on recent incoming data;
therefore, it can reflect dynamically changing P/E cycles
consumptions of workloads. Also, feedback control is
a promising way to calculate expected values from time-
series data. Using both techniques, BLJ can predict Expected
adaptively for the dynamic workloads.

(e ABER represents a criterion to classify two states:
error-prone and normal. Acceptable raw bit error rate (ABER)
is the maximum RBER that SSD can tolerate without any

workloads under the given SSD device configuration (such
as ECC code-size). SSD device vendors or SSD standards
generally specify their ABER. For example, the un-
correctable bit error rate under typical workload execution
should be less than 10−15 [24]. (e RBER can increase
during a year without additional operations such as read or
writes by retention error. In CRIM, we get the ABER by
calculating maximum retention error rate during a year.
Workload execution affects the increment RBER because
bit errors are accumulated by write or read operations. If
there exist some workloads to execute, the RBER will reach
ABER faster than no workloads. (erefore, CRIM will
invoke remapping operations conditionally when the ex-
pected RBER on next prediction exceeds ABER. (e spe-
cific value of ABER can be changed depending on the flash
chip type and error probability aspects. However, ABER is
not dependent to a specific workload.

If there are no workloads to execute for a long time, re-
tention errors can be accumulated by data ages (� retention
time). Because retention errors depend on time, we need to
estimate the deadline time to mitigate it in advance. We
calculate the deadline time by solving the equation of
RBER(t, c) � ABER for t. We explain how it is solved in
Appendix, and the solution for obtaining t is as follows:

t � e
log ABER− 9.991×10−10 ·(c−1)+ 1.0×10−9( )( )/ 4.4485×10−4( )( )/1.25

.

(3)

We name the estimated time as the “expected retention
time (ERT).” When BLJ predicts “error-prone,” CRIM also
instantly checks the ERT value (state 4 in Figure 2). If the
ERT value does not expire, CRIM checks the ERT value
lazily in a garbage collection (GC) task which is invoked
when the SSD is idle (state 3 in Figure 2).

BLS is invoked when the ERT expires (state 5 in
Figure 2). (en, BLS performs remapping according to 2.

(e BLS sets the target block status as error prone and
starts to search for a new free block in the free block pool
(state 5 in Figure 2). (en, the BLS remaps the logical ad-
dress to the physical address of the new block. When the free
block pool is empty, current block mapping relation is
maintained. After that, if a block error occurs, it is marked as
a bad block and becomes unavailable by a bad blockmanager
in SSD devices [25] (state 7 in Figure 2). (is does not affect
the conventional SSD structure because we utilize it only.

When BLS finishes remapping successfully, or BLJ
predicts “normal,” the ERT value is recalculated for pre-
venting further retention errors (state 6 in Figure 2).

5. Evaluation

(e purpose of our evaluation is to show that CRIM per-
forms better than PR in terms of reliability and lifetime loss
prevention. All evaluation data used to support the findings
of this study have been deposited in the github repository
(https://github.com/saintgodkyp/CRIM.git).

Evaluation points are two. First, we conduct the re-
liability analysis of CRIM and PR (PR-day and PR-week).
Second, we evaluate the remapping costs of CRIM and PR.
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5.1. SSD Configurations and Workloads Characteristics.
Our evaluation method is an analytic model validation method
based on parameters obtained from simulations on realistic
workloads. We collect workload characteristics using DiskSim
4.0 simulator with SSD extensions, which is commonly used in
SSD studies. We set the SSD configuration as 256GB with 2 bit-
MLC (4 channels, 8 chips per channel, and 8192 blocks per chip)
which is a typical SSD configuration and is used in PR [12]. We
use various real workload trace data used in PR. (e trace data
include Financial, Cello99, Postmark, and MSR-Cambridge
(MSR), and their read ratios are 23%, 38%, 52%, and 80%,
respectively. From the trace data, we extract all DWPDs of the
workload. Also, we consider application classes in JEDEC
standard [21].(ere are two classes: client and enterprise server.
In terms of DWPD, we assume that a client (JEDES-client) has
1DWPD and two enterprise severs (JEDES-server-1,2) have
from 10 to 30DWPD. We categorize our workloads into three
classes as write ratio (WR), and summarize our workload
characteristics in terms of DWPD in the following Table 1.

5.2. Evaluation Results

5.2.1. Reliability Analysis. To evaluate SSD’s reliability, we
simulate typical remapping methods (PR-day and PR-week)
and CRIM. Our simulation program is written by using
Python code (version 3.5.2). We assume that our SSD device
has 256GB storage and the endurable P/E cycles of each
block are 3 K, and simulation time is 5 years, which is
a typical SSD configuration used in PR [12].

We apply workload characteristics into them and con-
duct reliability analysis. To analyze SSD reliability, we
measure “mean time to failures (MTTF),” “remained P/E
cycles,” and “last RBER.” First, “MTTF” is a classic reliability
analysis method [26] that is commonly used in evaluating
system reliability. High MTTF means more reliable. In SSD
context, we consider a failure to completely run out of
available SSD blocks.

Table 2 shows the result of MTTF and remained P/E
cycles. We categorize our results into three workload classes
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in terms of write ratio: low, medium, and high. (e column
“MTTF” shows the average MTTF of each workload class.
For low WR, all methods can satisfy the five-year warranty
period; namely, MTTF of all methods are five years (1825
days). In this case, some available blocks remain because
total consumed P/E cycles based on DWPD of lowWR is less
than endurable P/E cycles. For example, DWPD of OLTP
workload is 0.14 in Table 1. If we consider purely consumed
P/E cycles during five years by OLTP workload, the whole
P/E cycles are about 256 (� 1825 × 0.14). (e P/E cycles are
much lower than the endurable P/E cycles (3 K); thus, 2744
available blocks remain. However, for medium WR, all
methods cannot reach the warranty period.MTTF of PR-day
in medium WR shows 50.26% of 5 years, and one of PR-
week is 61.68%. CRIM in medium WR shows 62.89%, and
this is the longest MTTF. CRIM can survive 230 days or
more than PR-day, and 22 days or more than PR-week. In
worst cases, for high WR, all methods except CRIM cannot
reach 10% of 5 years warranty period. In PR-day, SSD has
been unavailable when the time reaches 9.37% of warranty
period. PR-week shows MTTF of 9.95% of warranty period.
CRIM shows the longest MTTF of 10.05% of warranty
period, and this result is 12 days and 2 days longer MTTF
than PR-day and PR-week. (ese several days are precious
time for handling SSD device failures; thus, CRIM can save
the time.

To clearly show the effectiveness of CRIM, we calculate
the average lifetime gain against PR-day and PR-week in
Figure 3. From the result, we observe that CRIM can extend
a lifetime of SSD more than PR by maximum 230 days,
which means 12.6% of 5-year warranty period.

Data: Current P/E cycles of target block (Current), Expected increment value of P/E cycle (Expected), Acceptable bit error rate
(ABER), Retention time (t)
Result: “error-prone”, “normal.”
if (RBER(t, (Current + Expected)) ≥ ABER) then
return “error-prone”;
end
else
return “normal”;
end

ALGORITHM 1: Block-life-judge.

Data: the logical address of target block (Logical), physical address of target block (Physical)
Result: “done”
SetErrorPronePhysicalBlock(Physical);
NewPhysical�GetFreePhysicalBlock();
Remap(Logical, NewPhysical);
return “done”;

ALGORITHM 2: Block-life-saver.

Table 2: Results of mttf and remained P/E cycles for warranty period of 5 years.

Write ratio Low Medium High
Used metrics MTTF Cycles MTTF Cycles MTTF Cycles
Methods
PR-day 1825 206.36 917.33 0 171 0
PR-week 1825 486.55 1125.66 0.72 181.66 0
CRIM-best 1825 533.13 1147.66 0.93 183.33 0
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Second, the “remained P/E cycles” indicates how long we
will use SSD in the future, namely, currently available
lifetime. Larger remained P/E cycles are better. (e column
“cycles” in Table 2 shows the result of remained P/E cycles
after running each workload. For low WR, PR-day and PR-
week show the remained P/E cycles on average of 206.36 and
486.55. CRIM shows the best result of 533.13. For medium
WR, all workloads that DWPD of Postmark or more run out
of available P/E cycles. PR-day shows a worst result of the
remained P/E cycle of zero. PR-week shows 0.72, but CRIM
shows the largest result of 0.93. For high WR, all methods
cannot survive during 5-year warranty period; thus, all
methods show zero of remained P/E cycles. From the best
result, CRIM saves the remained P/E cycles up to maximum
326.77, and with the remained P/E cycles, a workload of
medium write ratio (e.g., JEDES-client in Table 1) can keep
running more time than PR by 17.9% of 5-year warranty.

(ird, “last RBER” means that how much bit errors can
occur when SSD operations perform to target block. Low last
RBER shows better reliability. In short, for better reliability,
a target method should have a higher MTTF, larger remained
P/E cycles and lower last RBER. We summarize average last
RBER in Figure 4. For each WR, we measure last RBER after
completing all block writes, and the values are scaled by 10−8.
For low WR, last RBER of PR-day and PR-week show 219.29
and 63.03 on average. CRIM shows the best RBER of 37.06;
thus, the error rate is lowest. For medium WR, last RBER of
PR-day and PR-week show 326.14 and 295.19 on average.
CRIM shows the best RBER of 286.61; thus, the error rate is
the lowest in three methods. For high WR, CRIM also shows
the lowest last RBER, but all methods have high RBER of 324
or more. (is is because workloads in high WR consume
available P/E cycles fast, and write errors affect the entire bit
errors seriously rather than retention errors.

We summarize CRIM’s gains of reliability in Figure 5.
(e reliability improvement in Figure 5 indicates how much
CRIM reduces average last RBER against PR methods (PR-
day and PR-week) relatively. (e calculation formula is as
follows:

Avg. last RBERPR −Avg. last RBERCRIM

Avg. last RBERPR
. (4)

For workloads in low and medium WR, CRIM can
enhance reliability of SSD block access as much as maximum
83% on average. Workloads in high WR, CRIM does not
show effectiveness because of heavy write errors. From the
best result, CRIM reduces the bit error probability more than
PR by up to 182.23 × 10−8. Considering the typical bit error
rate-2.48 × 10−8 [13], CRIM shows the 73-fold improve-
ments more than PR.

5.2.2. Remapping Cost. To analyze the remapping cost that
reduces available lifetime of SSD, we take each average of
additional P/E cycles of low, medium and high WR
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workloads with PR-day, PR-week and CRIM. Namely, more
additional P/E cycles indicate more lifetime loss. In Figure 6,
we can see that the average lifetime loss of CRIM-best is only
maximum 0.67, and it is the smallest in the all methods. (is
results show that CRIM can effectively remove un-
conditionally invoking hundreds or more remapping op-
erations (maximum 1824 and 260 operations in PR-day and
PR-week). Note that CRIM shows better lifetime gains in
Figure 3, and this is the reason of it.

6. Discussion

(e state of the art of PR is Adaptive-rate FCR suggested in
[12]. It has the same goals as CRIM but also has differences.
(us, we discuss two questions: what are different points and
what are CRIM’s benefits. Unfortunately, Adaptive-rate FCR
is not open source software; thus, it is difficult to compare it
accurately with CRIM in running code level. Instead, we try
to compare CRIM with the logic of adjusting the refresh
period in Adaptive-rate FCR.

6.1. Common and Different Points. Commonly, both CRIM
and the Adaptive-rate FCR have the same goal of mitigating
refresh overhead and enhancing lifetime. (e significant
differences are two: refresh condition and granularity. (e
refresh condition determines when refresh invokes. (e
refresh granularity indicates how precisely a refresh is
invoked.

With regard to the refresh condition in CRIM, when an
SSD block failure is highly predictive, a refresh task is in-
voked. CRIM predicts a block access failure through a pre-
diction model and performs conditional remapping
according to the prediction result. In Adaptive-rate FCR, at
the refresh period adjusted by the refresh rate, a refresh
action is invoked. Adaptive-rate FCR adjusts this refresh rate
from low to high as P/E cycles degrade.

(e refresh granularity of CRIM is fine-grained as fre-
quently as a write interval. (e CRIM’s block-life-judge
(BLJ) is triggered when a write request is made. Regard-
less of the time interval length between writes, at the next
write time, BLJ determines the error-prone state considering
both the current bit error rates and available P/E cycles. (e
refresh granularity of Adaptive-rate FCR is limited to a daily
refresh at the highest refresh rate. Adaptive-rate FCR can
change the refresh rate from no-refresh to a daily refresh; it
does not provide a more precise rate than the daily rate [12].

In short, CRIM mitigates bit errors by predictively re-
freshing on writes, and Adaptive-rate FCR mitigates bit
errors by periodically refreshing on the adjusted rate. Also,
CRIM provides a fine-grained refresh of using write in-
tervals, and Adaptive-rate FCR provides a coarse-grained
refresh (from a daily refresh to no refresh) than CRIM.

6.2. Benefits of CRIM. From the above two differences,
CRIM has two benefits than Adaptive-rate FCR. First, CRIM
can handle more bit errors with a fine-grained manner in
a modern OS than Adaptive-rate FCR. From the comparison
with CRIM and Adaptive-rate FCR, we identify that there

can be bit errors that Adaptive-rate FCR cannot handle.
(ese unhandled bit errors can deteriorate consistency in the
file system of a modern OS. Modern OSs maintain the
consistency between in-memory and on-disk data of the file
system by typically using a journaling-based file system
(e.g., Linux Ext4 and BSD log-structured file system (LFS)).
(ese file systems periodically generate many write requests
to synchronize their journals to SSD storage at every
checkpoint (a periodic time to flush, typically seconds:
e.g., five seconds in Linux Ext4 (https://www.kernel.org/doc/
Documentation/filesystems/ext4.txt)). Because writes to blocks
can occur per second, the bit error rate can increase per
second. However, Adaptive-rate FCR cannot refresh them
because its minimum refresh rate is daily (24 hours). Because
CRIM does not miss any writes, bit errors on writes can be
refreshed when it predicts an error-prone state.

Second, CRIM can extend lifetime more than Adaptive-
rate FCR in a modern OS. (e refresh rate of Adaptive-rate
FCR increases as the available P/E cycles reduce. When the
highest rate daily refresh is applied, Adaptive-rate FCR invokes
a refresh every 24 hours. If the refresh rate is daily, it means that
the available P/E cycles are low. However, within the 24 hours,
bit errors can occur with a high probability. Bit errors under
low available P/E cycles produce a block access failure, and
then its MTTF is determined at the block access failure time.
However, CRIM can handle bit errors regardless of the period;
thus it can extend MTTF of the block because CRIM has
already remapped it in advance at the previous write time.

7. Conclusion

(e reliability of SSDs can be enhanced if blocks are
remapped periodically (PR). However, it has a limitation
that PR causes additional lifetime loss. We propose a new
method, CRIM, in order to reduce the additional lifetime
loss by conditionally invoking remapping operations. In our
experiments, we show that CRIM can extend a lifetime of
SSD more than PR by up to 12.6% to 17.9% of 5-year
warranty time. Also, we show that CRIM can reduce the bit
error probability of SSD by up to 73 times in terms of typical
bit error rate in comparison with PR.

Appendix

Solving Expected Retention Time Equation

Original RBER equation is as follows:

RBER(t, c) � 9.991 × 10−10(c− 1) + 1.0 × 10−9

+ 4.485 × 10−4 × t
1.25

.
(A.1)

Our goal is to solve the equation RBER(t, c) � ABER for
t, and the target equation is as follows:

9.991 × 10−10(c− 1) + 1.0 × 10−9

+ 4.485 × 10−4 × t
1.25

� ABER.
(A.2)

Let us define k and r as
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k � 9.991 × 10−10(c− 1) + 1.0 × 10−9,

r � 4.485 × 10−4.
(A.3)

(en, the original equation will be

k + r · t
1.25

� ABER. (A.4)

Now, we solve this for t as the following steps. First,
subtract k term on the same side of “�” sign, and we get

r · t
1.25

� ABER− k. (A.5)

Second, divide r term on the same side of “�” sign; note
that r is not zero, and we get

t
1.25

�
(ABER− k)

r
. (A.6)

Here, let us define a constant p as p � (ABER − k)/r, and
we get

t
1.25

� p. (A.7)

Next, we apply logarithm with base e on the same side of
“�” sign, and we get

log t
1.25

􏼐 􏼑 � log(p). (A.8)

(en, we get t equation by arranging exponents as
follows:

1.25 × log(t) � log(p),

log(t) �
log(p)

1.25
,

t � e
log(p)/1.25

.

(A.9)

Finally, we get predicted t equation by substitution of all
constants k, r and p as follows:

t � e
log ABER− 9.991×10−10 ·(c−1)+1.0×10−9( )( )/ 4.4485×10−4( )( )/1.25

.

(A.10)
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