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Recent progress in the development of sensor devices improves information harvesting and allows complex but intelligent
applications based on learning hidden relations between collected sensor data and objectives. In this scenario, multilabel feature
selection can play an important role in achieving better learning accuracy when constrained with limited resources. However,
existing multilabel feature selection methods are search-ineffective because generated feature subsets frequently include
unimportant features. In addition, only a few feature subsets compared to the search space are considered, yielding feature
subsets with low multilabel learning accuracy. In this study, we propose an effective multilabel feature selection method based
on a novel feature subset generation procedure. Experimental results demonstrate that the proposed method can identify better
feature subsets than conventional methods.

1. Introduction

Recent progress in the development of sensor networks
improves the precision of continuous data sensing [1],
which increases the coverage of ambient applications such
as activity monitoring in daily routines that may involve
the concurrent prediction of the activity level and caloric
expenditure [2, 3]. Owing to limitations in computational
and storage capability [4, 5] and redundant data sensing
for denoising [6, 7], composing a strategy that would
produce the best accuracy under given data collection
conditions is considered one of the most important issues
in this field [8]. Consequently, multilabel learning is con-
sidered to be a promising approach because it allows for
improvements in accuracy by exploiting the dependency
among labels [9, 10].

LetW ⊂ℝ F denote the set of patterns described by a set
of features F = f1,⋯, f d . Then, each pattern wi ∈W,
where 1 ≤ i ≤ W , is assigned to a certain label subset λi ⊆ L
in which L = l1, l2, l3,⋯, l L and represents a finite set of
labels. To attain additional improvements in accuracy, the

algorithm has to exploit useful dependencies among labels
based on input feature values [11]. For this purpose, the
multilabel feature selection that identifies a subset S ⊂ F with
maximum n < <d features that provide the largest depen-
dency on L can be used as a promising preprocessing step
because it remedies the complicated relation among features
and labels by selecting important features and discarding
unnecessary ones [12, 13].

Basically, multilabel feature selection is a search problem
[14]; it can be achieved by identifying the optimal feature
subset that gives the best prediction accuracy from

〠
n

k=1

d

k
1

candidate feature subsets [15]. Because the examination of all
feature subsets is impractical, conventional methods employ
a heuristic search method that identifies a feasible solution
within limited computational costs by sacrificing optimality
[16]. Of the many search methods, the evolutionary search
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method is considered a promising approach because it
effectively narrows down the search space by examining
neighbor solutions or feature subsets of the best solutions
created from past generations [17, 18].

In the evolutionary search method, the best solution is
replaced if a newly created neighbor solution yields a better
fitness value. Therefore, generating promising solutions
determines the effectiveness of the search. Owing to the
extensively wide search space and limited computational
cost, a conventional strategy tackling this difficulty is to
employ a cheap evaluation method that measures the
potential of possible solutions, filtering out unpromising
solutions and then validating the exact fitness value of
the remaining solutions [19]. However, to the best of our
knowledge, there is no serious investigation on this direction
from the literatures related to intelligent sensor applications
and multilabel feature selection.

In this study, we propose a novel effective evolutionary
search method for multilabel datasets. Previous studies
considering the intelligent sensor applications incurring
multilabel feature selection did not tackle the issue related
to the generation of promising feature subsets, resulting in
a degeneration of search effectiveness. Our contribution
can be summarized as follows:

(i) The proposed method improves search effectiveness
by producing a large number of feature subsets with
important features and then filters out unpromising
feature subsets using a cheap evaluation method.

(ii) A cheap feature subset evaluation method is
employed to filter out unpromising feature subsets
without checking the fitness value which demands
expensive computational cost.

(iii) We compared the performance of conventional
multilabel feature wrapper methods and the pro-
posed method on 14 multilabel datasets and con-
ducted 53 standard statistical tests to validate the
superiority of the proposed method

2. Related Work

Because multilabel feature selection can improve the learning
accuracy as well as the efficiency of a later algorithm by
highlighting important features such as multilabel classifier
for the concurrent prediction, it gained significant attention
from diverse fields [20, 21].

Feature selection methods come in two categories: filters
and wrappers. Filter methods rank features based on their
own criterion by evaluating the importance of each feature.
For multilabel feature selection on multilabel datasets, a
simple strategy that changes the label sets to a single label
set was often considered, such as a label powerset [22]. This
method is advantageous because it enables conventional
feature selection methods for single-label datasets. Several
conventional filter methods have been reported [23]; how-
ever, filter methods commonly suffer from low multilabel
classification accuracy, owing to noninteraction with multila-
bel classifiers or subsequent problems such as imbalance in

transformed single-label data. By contrast, wrapper methods
evaluate created feature subsets and improve them. In
detail, they locate promising feature subsets using a search
method employed and then evaluate them using a later
learning algorithm [17]. Although the learning algorithm
can be different according to the application, recent review
indicated that the most frequent choice for the search
method is the evolutionary search [24] because it is effective
at searching for feasible solution in global perspective.
Zhang et al. [14] proposed a multilabel feature selection
method based on genetic algorithms. However, a major
drawback of the genetic algorithm is their premature con-
vergence to unrefined solutions [17]. On the other hand,
a genetic algorithm-based nondominated sorting genetic
algorithm-II [25] and multiobjective particle swarm optimi-
zation [26] have been used for multilabel feature selection.

Although most studies consider single-label sensory
datasets, there are several studies on feature selection
methods because of the promising potential. To apply auto-
matic view generation, a semisupervised feature selection
method for features extracted from very high-resolution
remote sensing images was proposed [27]. Specifically,
features are categorized into a series of disjoint groups, and
then important features in each group are selected by solving
the l11,2-norm-based minimization problem. Similarly, a
refined feature subset from discrete wavelet transform coeffi-
cient features, extracted from artificial tongue sensor signals,
was selected by using a dispersion ratio computation [12].
Activity recognition using accelerometers was also shown
to be improved by feature selection [28]. There are several
studies related to the identification of a set of important fea-
tures based on the fitness or classification accuracy derived
from the learning algorithm. For example, a feature subset
can be obtained by iteratively including the best feature at
each step, which is referred to as the sequential forward
selection algorithm [29]. This technique is applied to the
application of chiller fault detection [30], which is an
instantiation of an automatic fault detection problem in a
smart factory [31]. The genetic algorithm which is one of
the most famous evolutionary search methods in the
machine learning community was also considered for
selecting discriminative features for online bearing fault
diagnosis [32]. In addition, the particle swarm optimization
technique, which is another popular evolutionary search
method, was also used to find the optimal feature subset
for intrusion detection [13]. Support vector machine recur-
sive feature elimination has been used for the analysis of
correlated gas sensor data [7]. Energy consumption was
minimized and the classification accuracy was improved
by feature selection from sensor data [5].

3. Proposed Method

3.1. Preliminary.Of the various evolutionary search methods,
estimation of distribution algorithm (EDA) has proven
effective for solving various problems [24, 33]. Unlike typ-
ical evolutionary search methods, to generate new feature
subsets, EDAs do not use genetic operators [19]. Instead,
conventional EDAs generate new solutions or candidates
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using a probability model and update the probability model
based on a statistical distribution estimated from the repre-
sentation of solutions. Thus, it provides an opportunity to
generate promising feature subsets by manipulating the
probability model. The probability model can be imple-
mented as follows [33, 34]:

Pt+1 i = Pt × 1 − LR + Ft i × LR, 2

where Pt i is the selection probability of the i-th feature
in the t-th generation, Ft i is the probability associated
with the i-th feature in the top 50% feature subsets in
the t-th generation that are ranked in terms of their fitness
values, and LR is the learning rate, which is a user-defined
parameter that controls the influence of F i to the proba-
bility model in the next generation. Through (2), the prob-
ability of selecting a feature in the (t + 1)-th generation,
Pt+1, is calculated, and in the (t + 1)-th generation, feature
subsets are built. This process is repeated until the maxi-
mum allowed computational cost is exhausted. Although
there are many stopping criteria, we set the number of
spent fitness function calls (FFCs) as the termination condi-
tion for all evolutionary search methods employed in this
study for a fair comparison against diversified settings and
implementations [35].

In the feature selection problem, the algorithm should
be capable of searching a huge parametric space; thus, sig-
nificant computational cost is associated with finding a
promising solution. Although simple probability models
are easy to implement, it can be insufficient for solving
complicated problems, such as pinpointing promising fea-
ture subsets in a large search space [36]. For example, in
the conventional EDA-based feature selection method, all
features are initially assigned the selection probability of
0.5. This means that nonpromising features can be also
present in feature subsets. To overcome this drawback, we
devise a process for generation of a promising feature
subset. Specifically, when creating a feature subset, the algo-
rithm will consider important features more frequently by
setting the priority to such features given by an individual
feature filter.

After creating the feature subsets, the next step amounts
to selecting promising feature subsets. Although good fea-
ture subsets can be created using filter methods, there can
be nonpromising feature subsets because the creation pro-
cess is probabilistic and there can be efficient interaction
among features. Nonpromising feature subsets consume
FFCs and negatively affect the search efficiency. To over-
come this problem, we propose a feature subset evaluation
method consuming a cheap computational cost. Using the
methods of information theory, the proposed method cal-
culates, for each subset, the relevance and redundancy of
the subset features. Then, the proposed method selects
feature subsets with maximal relevance and minimal redun-
dancy. Because there is a possibility that the proposed solu-
tion will be only locally promising, the proposed method
uses roulette wheel selection as the selection algorithm

[37]. Thus, nonpromising feature subsets are filtered out
from the neighbor set, without exact evaluation.

In the proposed method, there are two key functions for
the feature subset generation. create function makes candi-
date feature subsets that is composed of relevant features.
select function selects promising feature subsets among cre-
ated ones by using roulette wheel selection based on their
potential given by a feature subset evaluation method.
Figure 1 schematically shows the proposed method. In the
first stage, the probability model is initialized, indicating
feature subsets containing randomly chosen features will
be created frequently. The probability model is represented
as a vector where each element encodes the presence of
each feature. In the next step, feature subsets are created
using create function. All feature subsets are assigned ran-
dom integers, ranging from one to n. If one feature subset
is determined to choose two features, the proposed
method ranks the features in terms of their importance,
using a filter method. In the first iteration, the most
important feature is f4. Then, the proposed method
chooses a random number r between 0 and 1 and com-
pares r to the selection probability of f4 in the probability
model, p4. Since p4 is greater than r in the example, f4 is
selected and added to the feature subset. In the second
iteration, features are again ranked using the filter method.
In this case, the features’ importance is measured again in
terms of relevance and redundancy under the selection of
f4. Thus, the features’ ranks can change. In this example,
f2 is the most important feature. Then, another random
number r is drawn and compared to the selection proba-
bility of f2, p2. However, p2 is lower than r; thus, f2 is
not selected. Then, the second most important feature
can be selected. In this example, f5 is added to the subset
of features, and iteration is terminated. Through this
process, the proposed method creates a series of new
feature subsets including important features. The next step
amounts to selecting promising feature subsets among cre-
ated feature subsets using select function. The proposed
method chooses m promising feature subsets by roulette
wheel selection biased by the proposed feature subset eval-
uation. Finally, the probability model is updated using m
promising feature subsets and (2), to reflect the presence
of features in the best half of new feature subsets ranked
by fitness value.

3.2. Proposed Search Procedure. The proposed algorithm
creates feature subsets to large searching spaces and filters
nonpromising subsets using the proposed subset evaluation
method that does not incur exact evaluation. Algorithm 1
shows the proposed method. For the population size m and
maximal number of FFCs v, the method initializes feature
subsets O t and the probability model P (line 3). The
method generates a set of m feature subsets O t through
a random assignment of maximum F binary bits. The
probability model P is an F length vector, and each entry
in the vector refers to the probability of choosing coordi-
nated features. Each entry is initialized for the distribution
of the features of O t . Then, the created set O t is eval-
uated (line 4). The method set consumed FFCs u to 0
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Figure 1: Schematic overview of the proposed method.

4 Journal of Sensors



(line 5) and stores the global best feature subset to Sg (line 6).
P is updated by (2) (line 8). The method creates a set of
neighbor feature subsets E, which is based on a filter
method by create function (line 9). Then, m feature sub-
sets are selected by roulette wheel selection weighted by
select function in the set E t and yield the new generation
O t + 1 (line 6). The feature subset O t + 1 is evaluated
(line 11), and sets consumed FFCs u (line 12). The feature
subset Sg, which offers globally optimal performance, is
stored and replaced in the procedure (line 13). After all
allowed FFCs are consumed, the algorithm returns the fea-
ture subset Sg.

Algorithm 2 is a create function that shows the pro-
cess of creating feature subsets. Each feature subset selects
random size n features (line 5). To introduce important
features more frequently, first, each feature should be
ranked by their importance value. To achieve this, we

evaluate the importance of each feature using the relevance
criterion [20]:

I f i = Rel f i − Red f i , 3

where Rel f i and Red f i denote the relevance and redun-
dancy of the i-th feature and I f i denotes the importance
of the i-th feature. Although both functions can be imple-
mented differently according to the subject of each study,
we use a recent filter method for measuring the importance
of features. In the work of [15], we proposed a filter method
for multilabel dataset, and was shown to outperform conven-
tional filter methods. Because of this reason, we use this
method for measuring the importance of features. Accord-
ingly, Rel f i can be implemented as

Rel f i =〠
l∈L

M f i ; l , 4

1: Input: population size m, max FFCs v
2: Output: best feature subset Sg
3: initializing O t and probability model p
4: evaluating O t
5: u ← 0 ⊳ Set consumed FFCs to 0
6: store the global best feature subset to Sg
7: while u ≤ v do
8: update P by Eq. (2)
9: E t ← create neighbor set
10: O t + 1 ← select feature subsets in E t
11: evaluate O t + 1
12: u ← u+m ⊳ update consumed FFCs
13: update global best feature subset Sg
14: end while

Algorithm 1: Proposed method.

1: Input: neighbor population size e, probability model P
2: Output: neighbor set E (t)
3: E t ←∅
4: for k = 1 to e do
5: n ← random integer value in 0, F ⊳ set a feature subset size randomly
6: Sk ← {∅}
7: for i = 1 to n do
8: R← f1, f2, f3,⋯ ⊳ ranked features by Eq. (6)
9: for j = 1 to F do
10: if Pt f j >random value in [0,1] then
11: Sk ← Sk ∪ j
12: break
13: end if
14: end for
15: end for
16: E t ← E t ∪ Sk
17: end for

Algorithm 2: create function.
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whereM x ; y =H x −H x, y +H y indicates the mutual
information between variables x and y and H x =
−∑P x log P x is the joint entropy obtained from the
probability P x , P y , and P x, y . Next, Red f i can be
implemented as

Red f i =〠
f ∈S

〠
l∈L

M f i ; l
H f i

M f i ; f 5

Thus, the feature f i’s importance is measured by

I f i =〠
l∈L

M f i ; l −〠
f ∈S

〠
l∈L

M f i ; l
H f i

M f i ; f 6

Then the rank of each feature can be determined by using
(6) and remembered (line 8). After then, the function decides
whether to choose a feature from the most important subsets
by P (lines 9 to 13). If a feature is chosen, it is added to subset
Sk (line 11). In addition, after a subset is created, it is added to
the set of neighbor feature subsets E (line 16).

It is well-known fact from the feature selection com-
munity that a set of individually good features is not nec-
essarily a good feature subset due to the interaction among
features. This means that the created feature subset can be
unpromising even though (6) only included important
features. To achieve this, select function described in Algo-
rithm 3 that shows the process for selecting promising fea-
ture subsets in a neighbor set is necessary. In select
function, a new feature subset filter method is employed
[38]. Specifically, it evaluates the fitness of the feature
subset as

E S = 〠
f i∈S

〠
l∈L

M f i ; l − 〠
f i∈S

〠
f j∈S

M f i ; f j 7

By using (7), select function ranks feature subsets in
the neighbor set E (line 3). Next, the algorithm selects m
feature subsets G t using roulette wheel selection [37],
which is a biased selection weight by (7) (line 4).

In summary, in the generation of a feature subset, the
algorithm ranks the importance of features using the filter
method and selects the most important feature i based on
the probability Pt i considering subset S selected at this
point. If the i-th feature is not chosen, the next most impor-
tant feature j can be selected with the probability Pt j , and
the process repeats until a feature is selected. Then, for each
neighbor feature subset, (7) ranks the importance of feature
subsets, and feature subsets with highest E · values are likely
to selected.

4. Experimental Results

We conducted experiments on 14 datasets from various
domains. The Birds dataset is audio data containing samples

of multiple bird calls. The Enron and Language Log (Llog)
datasets are generated from text mining applications, where
each feature corresponds to the presence of a word and
each label represents the relevance of each text pattern to
a specific subject. The Mediamill dataset contains video
data from an automatic detection system. The Medical
dataset is sampled from a large corpus of suicide letters
obtained from the natural language processing of clinical
free texts. The TMC2007 dataset contains safety reports of
a complex space system. The remaining eight datasets came
from the Yahoo dataset collection. We performed unsuper-
vised dimensionality reduction on datasets, including the
TMC2007 and Yahoo collections, consisting of more than
10,000 features. Because our algorithm uses information
theory, for numeric features, we performed discretization
using the supervised discretization method [39]. Table 1
shows the standard characteristics of the multilabel datasets
used in our experiments, including the number of patterns
in the datasets W , number of features F , type of features,
and number of labels L . The label cardinality measure C
ard represents the average number of labels for each
instance. The label density measure Den is the label cardi-
nality over the total number of labels. The number of
distinct label sets Distinct indicates the number of unique
label subsets in L. Domain represents the applications
associated with the extracted datasets.

We compared the proposed method with conventional
methods, including the genetic algorithm (GA) [14], non-
dominated sorting genetic algorithm-II (NSGA-II) [25],
and multiobjective particle swarm optimization feature
selection (MPSOFS) [26]. We considered a conventional
multilabel classifier, namely, the multilabel naïve Bayes
(MLNB) classifier [14]. We used conventional hold-out
cross-validation for each dataset. Of the patterns, 80%
were randomly chosen as a training set and the remaining
20% were chosen as a test set. We set the size of the
population to 20, and the maximal number of FFCs was
limited to 100. In our proposed method, we created 500
feature subsets using the probability model and set the
learning rate (LR) to 0.4. The GA and NSGA-II created
two offspring feature subsets and one feature subset from
mutation operators in each generation. The MPSOFS pre-
served the global best particle solutions and each particle’s
best solutions. Thereafter, the MPSOFS updated the velocity
values. All experiments were repeated 10 times, and the
average measured values were used to compare the perfor-
mances of the methods.

To measure the methods’ performances, we employed
the following four evaluation metrics: multilabel accuracy,

1: Input: neighbor set E, population size m
2: Output: filtered set G t
3: rank feature subsets in set E by Eq. (7)
4: select m feature subsets by roulette wheel selection
5: G t ← selected feature subsets

Algorithm 3: select function.
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hamming loss, ranking loss, and normalized coverage. Multi-
label accuracy is defined as

mlacc T = 1
T

〠
T

i=1

λi ∩ Yi

λi ∪ Yi
, 8

where T is a given test set. Hamming loss is defined by

hloss T = 1
T

〠
T

i=1

1
L

λiΔYi , 9

where λ denotes the correct label subset and Δ denotes the
symmetric difference between the two sets. Ranking loss is
defined by

rloss T = 1
T

〠
T

i=1

a, b a ∈ λi,ψi,a ≤ ψi,b

λi λi
, 10

where λi is a complementary set of λi. Ranking loss measures
the average fraction of a, b pairs with ψi,a ≤ ψi,b over all
possible relevant and irrelevant label pairs. Finally, normal-
ized coverage is defined as:

ncov T = 1
L

1
T

〠
T

i=1
max
l∈λi

rank l − 1 , 11

where rank · returns the rank of the corresponding relevant
label l ∈ λi according to ψi,l in nonincreasing order. There-
fore, normalized coverage measures how many labels must
be marked as positive for all relevant labels to be positive.
Higher values of multilabel accuracy and lower values of
hamming loss, ranking loss, and normalized coverage
indicate good classification performance.

Tables 2, 3, 4, and 5 list the experimental results for the
different performance measures as averages over the experi-
ments on the employed datasets. The best performance of
each dataset is indicated by a bold font. In each table, the last
column shows the average rank (Avg. rank) of each compar-
ison method over all the multilabel datasets. In terms of the
multilabel accuracy and ranking loss measures, the proposed
method outperformed the GA, NSGA-II, and MPSOFS, on
all datasets. In terms of the hamming loss, the proposed
method outperformed conventional methods on all datasets
except TMC2007. In terms of the normalized coverage, the
proposed method outperformed the conventional methods
on all datasets except Llog.

After measuring the performance of the methods on all
datasets, we analyzed the performance using statistical tools.
We employed the Friedman test, a widely used statistical test,
for comparing multiple methods over a number of datasets
[40]. Supposing there are k methods and N datasets, and let
Rj denote the average rank for the j-th method under the null
hypothesis (i.e., when all of the methods perform equally
well). Then, the following Friedman statistic FF is distributed
according to the F-distribution with k − 1 numerator degrees
of freedom and (k − 1) (N − 1) denominator degrees of
freedom as parameters:

FF
N − 1 χ2

F

N k − 1 − χ2
F

, 12

where χ2
F is defined as

χ2
F =

12N
k k + 1 〠

k

j=1
R2
j −

k k + 1 2

4 13

If FF is larger than the critical value at a significance
level α, the null hypothesis is rejected, implying that the
compared methods have different performances. After the

Table 1: Standard characteristics of employed datasets.

Dataset W F Type L Card Den Distinct Domain

Birds 645 260 Mixed 19 1.014 0.053 133 Audio

Enron 1702 1001 Nominal 53 3.378 0.064 753 Text

Llog 1460 1004 Nominal 75 1.180 0.016 304 Text

Mediamill 43,907 120 Numeric 101 4.376 0.043 6555 Video

Medical 978 1449 Nominal 45 1.245 0.028 94 Text

TMC2007 28,596 49,060 Numeric 22 2.158 0.098 1341 Text

Business 11,214 1096 Numeric 30 1.599 0.053 233 Text

Education 12,030 1377 Numeric 33 1.463 0.044 511 Text

Entertainment 12,730 1600 Numeric 21 1.414 0.067 337 Text

Health 9205 1530 Numeric 32 1.644 0.051 335 Text

Reference 8027 1984 Numeric 33 1.174 0.036 275 Text

Science 6428 1859 Numeric 40 1.450 0.036 457 Text

Social 12,111 2618 Numeric 39 1.279 0.033 361 Text

Society 14,512 1590 Numeric 27 1.670 0.062 1054 Text
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null hypothesis is rejected, we perform a post hoc test to
analyze whether the proposed method performs significantly
better than other methods. The Bonferroni–Dunn test is
employed [41]. Critical difference (CD) is used to compare
the proposed method and one comparison method. CD
is defined as

CD = qα
k k + 1
6N , 14

where the critical value qα is constant and is determined
by the number of methods and the significance level. If
the difference between the two compared methods’
average ranks is greater than CD, the better-ranking
method is concluded to perform significantly better than

the other method. Because our experiment used four
methods, including the proposed method, and 14 datasets,
we set k = 4 and N = 14. We employed the Friedman test
when the significance level α was 0.05. Table 6 shows the
summary of the employed Friedman test. The critical value
for 3 and 39 degrees of freedom was 2.845. The Friedman
statistic FF for all performance measures was above the
critical value. Thus, the null hypothesis that the compared
methods perform equally well was rejected.

To employ the Bonferroni–Dunn test, the calculated
CD with α = 0 05 was 1.168 since qα = 2 394 at the signif-
icance level α of 0.05. Figure 2 shows the CD diagrams for
all evaluation measures, where the average rank of each
method is on the top of each figure. Our proposed method
significantly outperforms other, conventional, methods on
all evaluation measures.

Table 3: Comparison results in terms of hamming loss.

Method Birds Enron Llog Mediamill Medical

Proposed 0.061± 0.008 0.060± 0.003 0.016± 0.001 0.034± 0.000 0.020± 0.001

GA 0.072± 0.015 0.100± 0.033 0.075± 0.073 0.048± 0.022 0.023± 0.001
NSGA 0.064± 0.008 0.104± 0.026 0.072± 0.071 0.054± 0.032 0.022± 0.001
MPSOFS 0.135± 0.018 0.198± 0.007 0.292± 0.008 0.174± 0.005 0.023± 0.001
Method TMC2007 Business Education Entertainment Health

Proposed 0.088± 0.002 0.029± 0.001 0.042± 0.001 0.055± 0.001 0.039± 0.001

GA 0.088± 0.004 0.035± 0.005 0.046± 0.003 0.070± 0.007 0.051± 0.004
NSGA 0.086± 0.004 0.037± 0.010 0.048± 0.004 0.068± 0.004 0.054± 0.005
MPSOFS 0.117± 0.002 0.079± 0.003 0.061± 0.002 0.105± 0.003 0.067± 0.002
Method Reference Science Social Society Avg. rank

Proposed 0.034± 0.006 0.035± 0.003 0.025± 0.003 0.054± 0.002 1.07

GA 0.055± 0.013 0.051± 0.012 0.042± 0.007 0.062± 0.005 2.71

NSGA 0.047± 0.008 0.045± 0.008 0.040± 0.010 0.060± 0.002 2.29

MPSOFS 0.086± 0.005 0.110± 0.005 0.070± 0.002 0.144± 0.007 3.93

Table 2: Comparison results in terms of multilabel accuracy.

Method Birds Enron Llog Mediamill Medical

Proposed 0.527± 0.044 0.383± 0.012 0.249± 0.014 0.362± 0.004 0.427± 0.030

GA 0.491± 0.055 0.284± 0.022 0.209± 0.018 0.336± 0.031 0.303± 0.058
NSGA 0.480± 0.040 0.282± 0.022 0.208± 0.014 0.347± 0.013 0.297± 0.018
MPSOFS 0.453± 0.031 0.206± 0.012 0.042± 0.002 0.163± 0.007 0.286± 0.033
Method TMC2007 Business Education Entertainment Health

Proposed 0.441± 0.004 0.672± 0.011 0.318± 0.009 0.396± 0.004 0.537± 0.011

GA 0.435± 0.010 0.657± 0.021 0.316± 0.010 0.361± 0.011 0.499± 0.011
NSGA 0.434± 0.005 0.662± 0.013 0.318± 0.010 0.362± 0.010 0.495± 0.009
MPSOFS 0.420± 0.005 0.634± 0.008 0.283± 0.005 0.365± 0.010 0.496± 0.013
Method Reference Science Social Society Avg. rank

Proposed 0.436± 0.009 0.288± 0.010 0.546± 0.008 0.371± 0.008 1.00

GA 0.422± 0.012 0.231± 0.009 0.517± 0.012 0.258± 0.011 2.79

NSGA 0.429± 0.009 0.237± 0.010 0.526± 0.009 0.267± 0.010 2.64

MPSOFS 0.414± 0.017 0.234± 0.013 0.527± 0.012 0.239± 0.007 3.57
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5. Conclusion

To handle multilabel sensor datasets, we proposed an effec-
tive search based on a promising feature subset generation
method for multilabel feature selection problem. The main

contribution of this work is to propose and validate a new
feature subset generation method. Specifically, the proposed
method generates candidate feature subsets using important
features and chooses promising subsets of features without
consuming significant computational cost. Experimental
results show that our method converges faster than other
conventional methods. In the future, we would like to
investigate a new feature subset generation that is more
effective because the proposed feature subset generation is
strongly dependent on the employed filter method, and it
may result redundant feature subsets during the search
process. In addition, we would like to apply the proposed
method to various sensor datasets and compare the perfor-
mance with conventional feature selection methods consid-
ered from sensory data analysis.

Table 5: Comparison results in terms of normalized coverage.

Method Birds Enron Llog Mediamill Medical

Proposed 0.194± 0.015 0.277± 0.015 0.202± 0.025 0.196± 0.003 0.155± 0.029

GA 0.223± 0.025 0.337± 0.038 0.201± 0.021 0.205± 0.005 0.180± 0.027
NSGA 0.212± 0.020 0.336± 0.038 0.199± 0.025 0.208± 0.019 0.178± 0.029
MPSOFS 0.222± 0.023 0.413± 0.014 0.201± 0.023 0.330± 0.006 0.179± 0.027
Method TMC2007 Business Education Entertainment Health

Proposed 0.203± 0.002 0.132± 0.023 0.148± 0.004 0.197± 0.003 0.157± 0.023

GA 0.208± 0.004 0.139± 0.024 0.159± 0.003 0.221± 0.009 0.167± 0.026
NSGA 0.209± 0.004 0.141± 0.021 0.159± 0.004 0.219± 0.009 0.167± 0.026
MPSOFS 0.211± 0.002 0.168± 0.023 0.159± 0.004 0.233± 0.003 0.166± 0.025
Method Reference Science Social Society Avg. rank

Proposed 0.157± 0.023 0.182± 0.004 0.127± 0.010 0.242± 0.007 1.21

GA 0.177± 0.022 0.215± 0.005 0.140± 0.011 0.257± 0.006 2.86

NSGA 0.171± 0.021 0.213± 0.006 0.136± 0.014 0.261± 0.008 2.43

MPSOFS 0.179± 0.022 0.215± 0.006 0.145± 0.011 0.317± 0.007 3.50

Table 6: Summary of the Friedman statistics FF (k = 4, N = 14) and
critical value in terms of each evaluation measure.

Evaluation measure FF Critical value (α = 0 05)
Multilabel accuracy 30.333

2.845
Hamming loss 65.642

Ranking loss 75.472

Normalized coverage 16.355

Table 4: Comparison results in terms of ranking loss.

Method Birds Enron Llog Mediamill Medical

Proposed 0.115± 0.017 0.100± 0.008 0.155± 0.023 0.060± 0.001 0.115± 0.026

GA 0.129± 0.015 0.133± 0.024 0.164± 0.023 0.066± 0.007 0.145± 0.026
NSGA 0.125± 0.017 0.149± 0.031 0.163± 0.023 0.067± 0.011 0.139± 0.026
MPSOFS 0.132± 0.017 0.194± 0.011 0.180± 0.021 0.159± 0.004 0.140± 0.024
Method TMC2007 Business Education Entertainment Health

Proposed 0.073± 0.001 0.062± 0.027 0.089± 0.003 0.111± 0.002 0.085± 0.028

GA 0.075± 0.002 0.070± 0.029 0.100± 0.004 0.140± 0.007 0.098± 0.027
NSGA 0.076± 0.002 0.067± 0.027 0.100± 0.003 0.137± 0.009 0.097± 0.028
MPSOFS 0.078± 0.002 0.096± 0.027 0.101± 0.003 0.153± 0.005 0.098± 0.028
Method Reference Science Social Society Avg. rank

Proposed 0.111± 0.023 0.118± 0.003 0.075± 0.010 0.135± 0.003 1.00

GA 0.130± 0.021 0.154± 0.007 0.088± 0.012 0.151± 0.008 2.86

NSGA 0.128± 0.025 0.150± 0.006 0.085± 0.011 0.153± 0.011 2.29

MPSOFS 0.140± 0.023 0.157± 0.004 0.097± 0.012 0.212± 0.005 3.86
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