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In this study, a novel easy-to-use meta-heuristic method for simultaneous identification of model structure and the associated
parameters for linear systems is developed. This is achieved via a constrained multidimensional particle swarm optimization
(PSO) mechanism developed by hybridizing two main methodologies: one for negating the limit for fixing the particle’s
dimensions within the PSO process and another for enhancing the exploration ability of the particles by adopting a cyclic
neighborhood topology of the swarm. This optimizer consecutively searches the dimensional optimum of particles and then the
positional optimum in the search space, whose dimension is specified by the explored optimal dimension. The dimensional
optimum provides the optimal model structure, while the positional optimum provides the optimal model parameters. Typical
numerical examples are considered for evaluation purposes, which clearly demonstrate that the proposed PSO scheme provides
novel and powerful impetus with remarkable reliability toward simultaneous identification of model structure and unknown
model parameters. Furthermore, identification experiments are conducted on a magnetic levitation system and a robotic
manipulator with joint flexibility to demonstrate the effectiveness of the proposed strategy in practical applications.

1. Introduction

One of the major research directions in modern control
theory has been directed at developing simple yet reli-
able control strategies to tackle the increasing complexity
of practical control problems. From this viewpoint, model-
based control has been widely accepted as a crucial tool for
achieving the target system’s precise control performance.
A major prerequisite in developing an advanced model-
based controller is therefore to obtain a highly reliable
dynamic model upon which the controller design procedure
will be based. Identification is a powerful technique for build-
ing a precise dynamic mathematical model of the target sys-
tem from input-output data corrupted by noises. It usually
involves the following three interrelated steps: design of an
experiment, construction of a candidate dynamic model
structure, and estimation of the model parameters from the
measurements [1].

The dynamic model is usually subject to uncertainties in
the parameters involved, and the performance of the devel-
oped model-based controller is sensitive to the associated
parameters’ values. Therefore, some well-known parameter
estimation schemes, which depend on the type of dynamic
model one is dealing with for system identification, have
gained widespread attention for developing model-based
controllers [2-6]. Although canonical estimation methodol-
ogy has been applied extensively and successfully, the typical
nonconvex nature of the criterion function with many local
minima, on which the parameter estimation algorithm
depends, may cause significant numerical search problems
[7]. Therefore, recently, an alternative research trend that
uses computing techniques including swarm intelligence for
parameter estimation has emerged [8]. For instance, [9]
recently proposed the hybrid particle swarm optimization
(PSO) and gravitational search algorithm for parameter esti-
mation of infinite impulse response (IIR) systems. Kumar
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and Rawat [10] introduced the cuckoo search algorithm to
estimate the optimal coefficients of finite impulse response-
fractional order differentiator models. Mostajabi et al. [11]
conducted a comparative study demonstrating that two
well-known population-based optimization techniques,
genetic algorithm and PSO, can perform better than the
recursive least square algorithm in parameter estimation
problems for IIR models. Pal et al. [12] examined the param-
eter estimation of a linear unstable system by using the
craziness-based PSO algorithm. Peng and Wang [13] pro-
posed a hybrid method combining the tissue P system and
artificial bee colony for IIR system identification. Alsmadi
et al. [14] examined some population-based solution approa-
ches—invasive weed optimization, firefly algorithm, GA,
and PSO—and their applicability to model order reduction
problems. Dhaliwal and Dhillon [15] employed the cat
swarm optimization algorithm with the incorporation of
oppositional learning strategy for designing an optimal and
stable digital IIR band-pass filter. These studies verified that
swarm-based optimization techniques can achieve good
performance in the target system’s parameter estimation
problems. Note, however, that all aforementioned methods
examine only the performance of parameter estimation in
case the model order and structure are assumed to be known
a priori.

In the system identification process, the construction of a
candidate dynamic model structure/order is clearly the most
important and most difficult step [4]. The model structure
selection may compromise the optimality properties [7].
The extensively used natural choice is to base the model on
physical insight or interpretation, which leads to the so-
called white-box model structure, which relates the laws of
physics with the corresponding physical parameters. If some
of these physical parameters are subject to uncertainties or
not well known, the so-called gray-box modeling approach
is usually adopted to preserve the physical meaning of the
uncertain model parameters. On the other hand, in control
applications, it usually suffices to adopt linear models that
do not necessarily refer to the underlying theoretical physical
knowledge of the target system. Such a model is usually called
the black-box model [4]. This viewpoint clearly indicates that
the aforementioned swarm-based methods [9-15] can be
categorized as the gray-box modeling technique. Note that
most other previously proposed swarm-based optimization
methods mainly focus on the estimation of unknown
parameters in case the model structure/order is fixed a priori,
which implies that these conventional methods are not
directly applicable to the black-box modeling problems.
The development of an eflicient black-box modeling meth-
odology, in which swarm-based optimization is incorpo-
rated, is thus necessary; however, until recently, very little
research has been conducted regarding the same. Mohd
Azmi et al. [16-18] and Ibrahim et al. [19] proposed the
identification methods using multiswarm-based optimiza-
tion techniques for simultaneously estimating the model
order and uncertain parameters involved. Their strategy is
described briefly as follows. Let the maximum order of the
appropriate mathematical models (transfer function models)
be N, which means that one best model is chosen among the
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models of orders (i.e., the order of denominators) from 1 to
N. Note that the nth-order transfer model consists of 7 types
of numerator structures. Therefore, N(N +1)/2 types of
models are examined for finding one that best matches the
response data. Then, their core strategy for black-box identi-
fication is one-to-one correspondence between multiswarm
optimizers consisting of N-independent swarms and model
sets classified by orders ranging from 1 to N. This simply
means that each swarm optimizer is assigned to examine
models that have an identical particular order, and then
multiple swarm optimizers run independently in parallel
to achieve their respective identification tasks. The above
scheme, however, may not be a refined one from the view-
point that its mechanism is equivalent to the methodology
such that a single swarm-based optimizer performs the
identification tasks consecutively from the Ist-order model
to the Nth-order model. To the best of our knowledge, no
existing study, except for the above ones [16-19], has yet
adequately addressed a complete method based on swarm-
based optimization techniques for black-box identification,
including optimal model structure estimation directly from
input-output data.

System identification is the procedure of deriving a math-
ematical model from input-output measurement data, and its
first step is model estimation, which is the procedure of fit-
ting a model with a specific model structure. The variation
in the orders of numerator and denominator polynomials,
which denotes the transfer function model structure varia-
tion, results in variation in the total number of uncertain
model parameters to be identified. Since the particles’ dimen-
sion in the PSO algorithm equals the total number of model
parameters, it should be variable according to a model struc-
ture to be evaluated in model estimation problems. However,
many conventional PSO algorithms have a critical drawback,
in that the particle dimensions remain fixed throughout
the iterations. Such a drawback impedes the application
of many PSO variants to model structure estimation studies
in the field of system identification. To deal with the above
difficulty, this study develops a novel constrained multidi-
mensional PSO (MD-PSO) with a cyclic network topology-
based neighborhood structure. The proposed optimization
scheme specialized for system identification hybridizes two
methodologies: one for negating the limit for fixing the parti-
cle dimensions within the PSO process and another for
enhancing the exploration ability of the particles by adopting
a cyclic network topology-based neighborhood structure.
This novel scheme modifies the original MD-PSO algorithm
of [20] so as to be compatible with the cyclic neighborhood
topology [21] and then to be ultimately applicable to the
simultaneous identification of the model structure and the
associated parameters for linear systems.

The key features of our hybridized PSO algorithm are as
follows. The introduced cyclic network topology-based
neighborhood structure of particles can effectively regulate
the particles’ exploration abilities and enable them to locate
a promising region in the hyperdimensional search space,
which was originally proposed by one of the authors of the
present paper [21]. Such an improved exploration ability of
the particles is essential to cope with the typical nonconvex
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nature of the criterion function with many local minima in
the process of system identification [7]. On the other hand,
our PSO algorithm searches both (i) the dimensional opti-
mum of particles within the preassigned dimension range
and (ii) the positional optimum in the hyperdimensional
search space, whose dimension is specified by the aforemen-
tioned optimal dimension of particles. Note that the dimen-
sional optimum provides the optimal orders of numerator
and denominator polynomials in the transfer function, while
the positional optimum provides the optimal values of such
numerator/denominator polynomials’ unknown parameters.
The overall PSO procedure for finding an optimal model
is briefly summarized as follows. First, the dimensional
optimum of particles is searched via the optimal model
structure-searching PSO algorithm. To apply this PSO mech-
anism to the model structure estimation problem, a candidate
model structure is labeled with a unique model identifier num-
ber in advance. This enables us to transform the problem of
searching the dimensional optimum of particles into that for
exploring the optimal model identifier number (Table 1).
Then, the optimal model structure-searching PSO process
moves a particle staying at a position providing a certain
model identifier number information to another position for
renewing the previous model identifier number. The speed
and position update formula in this PSO process follow the
particle swarm optimizer with cyclic neighborhood topology,
where each particle shares information through a fixed
nearby-neighbor interaction structure with a series of succes-
sively numbered particles. The unique orders of the numerator
and denominator polynomials of a candidate model are
extracted from the model identifier number that equals to
the renewed position of a particle used in the optimal model
structure-searching PSO algorithm. Such information about
the polynomials’ orders defines the total number of unknown
parameters to be identified, which enables one to set the parti-
cle dimensions for exploring the positional optimum (ie.,
optimal model parameters). Once the particle’s dimension
is determined, its positional optimum is searched using the
optimal model parameter-searching PSO algorithm. This
optimizer also adopts the cyclic neighborhood topology of
the swarm to effectively regulate the exploration abilities of
the particles in the hyperdimensional search space, whose
dimension is determined from the particle’s position
renewed via the optimal model structure-searching PSO
algorithm as a result. Next, the optimality of the particle’s
dimension (i.e., the estimated orders of numerator and
denominator polynomials) and position (i.e., the estimated
model parameters) obtained is evaluated using a criterion
function derived from the system identification viewpoint.
Finally, the two aforementioned consecutive optimizers, the
optimal model structure-searching and optimal model
parameter-searching PSO algorithms, are run iteratively until
the stopping criterion is reached. The proposed methodology
provides a novel tool for simultaneous model structure and
its parameter identification and enables one to easily over-
come difficulties such as over- and underestimation of a
model. The superior identification capability of the proposed
method is verified through simulation examples. In addition,
two experimental setups for the magnetic levitation system

and the robotic manipulator with joint flexibility are estab-
lished for system identification. The experimental results
for a simultaneous identification of both the model structure
and unknown model parameters demonstrate the superior
reliability and validity of the proposed method.

2. Problem Formulation

Assume that a finite-dimensional, linear time-invariant,
continuous-time plant to be identified is described in the
compact transfer function form y(t) =G*(p)u(t) with p
derivative operator (i.e., p*z(t) = (dz(t))/dt*), where y(¢)
and u(t) are, respectively, the noise-free response and the
excitation. Let G*(s) be a rational form in s, defined as

et (1)

where s is the Laplace transform variable, and A*(s) and B*
(s) are assumed to be coprime and
-2

A*(s)=s" +als" T +ais" P4 +al, (2)

B*(s)=bys™ +bis™ T+ b3S R+ bE L, (0> mY).
(3)

Let " denote the parameter vector, which includes
the dynamic plant model’s unknown parameters stacked
column-wise as

0" =[a},a;,...,a%, by, b, ..., bl ] € R (4)

A model structure is defined as a parameterized collec-
tion of models that describe the relations between the
input and output signals of the plant [7]. In several prac-
tical situations, no prior information of the plant model
structure is given, and thus, orders n* and m* for the numer-
ator and denominator polynomials of G*(s) are assumed to
be unknown. From this viewpoint, our system identification
for deriving a model from the measured input and output
data is composed of two procedures: (ID-1) model structure
estimation, which is the procedure of fitting a model form
G(s) with a specific structure G*(s), and (ID-2) model param-
eter estimation, which is the procedure through which the
parameters of a candidate model G(s) are updated by match-
ing the output data calculated from the model predictions
to the actual measurement data. Note that the model
structure estimation results in the problem of finding an
optimal order estimation (7,7) of (n*,m*). The model
parameter estimation results in the problem of finding an

optimal estimation 0, whose dimension depends on (7, i),
that is,

(7, i) = [al,az,... a b | eRPL O (5)

A set of candidate models (i.e.,, model structure) con-
structed to be used in the identification procedure is described
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as follows. Consider the 7ith-order transfer function model
with D, <7 <D, where D, and D, are assumed to
be given in advance. Since the model order is equal to the
order of the denominator polynomial, the 7ith-order model
has a total of 7 types of numerator polynomials, as shown in
Table 1. Let the model identifier number be denoted by

Afi-1) (Dpin — 1)

D_.
+m+ - 0 (6)

1dNo(7, fit) = ;

where 7, 0 < 1 < 7, is the order of the numerator polynomial.
The lowest and highest identifier numbers are, respectively,
IdNo(D,;,,0) and IdNo(D,, Dy — 1), and the total
number of candidate models to be evaluated equals to IdNo
(Dimax> Dinax — 1) —IdNo(D,;,,, 0) + 1. Therefore, the afore-
mentioned model structure estimation problem (ID-1)
becomes the problem of finding an optimal IdNo(7, 7). Then,

the 7ith-order transfer function model with order # of the
numerator polynomial is denoted as Gf(s, 8(7, 7i1)), where

0(7, ) = [@,, Ay ... » @z by, by, ..., by] € R ig a vector
of unknown parameters in the numerator and denominator
polynomials.

2.1. Criterion Functions for Fitting the Time-Domain Data. In
the case of time-domain identification, the criterion func-
tions (i.e., objective functions) used in the optimization pro-
cedure for continuous-time model structure/parameter
estimation directly from the sampled data are formulated as
follows. For a stable target plant, the input signal {u(t),
to<t<ty} is applied to the plant G*(p), which gives rise
to an output signal {y(t), t, <t <ty }. Assuming that (N + 1)
sampled measurements of the input-output signal u(t;) and
y(t,) =y(t;) + w(t,), where k=0,1,...,N and w(t,) is a
stochastic noise sequence with zero mean, are available.
For a stable plant G*(p), the criterion function intro-
duced for the open-loop time-domain estimation of both
the model structure G(p) and its uncertain parameter vector

6(ﬁ, m) from the sampled measurement data is then for-
mulated as

N ) 1/2
For-ame (00, m)) = (kZ (Fov-pane () = Yor-moaa (%) ) :
(7)

subject to
Re [/\max (G (p, o7, Frz)))} <0, (8)

where  yo 0 (f) = G"(p)u(t) + w(t) is the measured

output, yor moda(t) = G(p, 0(7, m))u(t) is the simulated
output, and A () denotes the pole with the greatest real
part. Note that (8) is the constraint condition for guarantee-
ing the model stability.

On the other hand, if the target plant has inherently
unstable nature, the usual open-loop identification method-
ology cannot be adopted. In such situations, experimental

data can only be obtained under closed-loop conditions,
and then, the criterion function for time-domain identifi-
cation becomes

N

J cL-time (6@ '71)) = (Z ()N/CL—plam(tk) _yCLmodel(tk))2> .

k=0
©)

Here, yoi model(t) and Jep_pan(t) are, respectively,

defined a5 yop moqa(f) = M(p,0(7, 7))u(t) and Ji iy
(t)=M"(p)u(t) + w(t), where the closed-loop systems

M(,, -) and M*(p) stabilized by an identical known
controller C(p) are defined as

G(p.6(7. ) Clp)
1+ G(p,ﬁ(ﬁ, ﬁﬁ))C(P)) (10)

G
M= T35 i)

Similarly to the case of an open-loop time-domain
identification problem, the following constraint condition
is introduced to guarantee the stability of the closed loop:

Re [y (313807 )] <. )

2.2. Criterion Functions for Fitting the Frequency-Domain
Data. Frequency-domain identification is another method-
ology for developing a dynamic model, which has the fol-
lowing key advantages [22]. First, the output measurement
noise does not bias the frequency response estimates, given
that the noise is uncorrelated with the control input. Sec-
ond, the frequency range used to fit each input-output
pair can be selected individually. Thus, only the most
accurate measurement data are involved in the identification
process. Third, selection of a specific frequency range can be
used as an effective tool for separating data that are relevant
for system identification from irrelevant data such as noise
and disturbances. Therefore, the frequency-domain tech-
nique enables the modeling of a continuous-time system
from the sampled data in a straightforward fashion for a cer-
tain class of band-limited excitation signals [23].

For a stable plant, the criterion function introduced for
the open-loop frequency-domain estimation of the model
structure/parameters becomes

N

_mH@@@m0=<Zu@mmvmw

k=0

1/2
. 12
- | YOL—model (]wk) ‘ >2> > ( )

Y L—moe(jw) T R Yo
% —G(]w,G(n, m)),



subject to the constraint condition (8). In (12), G*(jw)
denotes the frequency response function of the plant, G(jw,

0(7i,m)) is the estimated frequency response function, U
(jw) and Y(jw) are the Fourier transforms of the input
and output signals, and w; (k=0,1,...,N) are the given
discrete frequencies.

On the other hand, the criterion function for fre-
quency-domain closed-loop identification of an unstable
plant is formulated as

N

For-teq (80, )) = (Z (1M (jeo) U )|

k=0

12
- |YCL7model(jw) |>2> s (13)

YL—moe(jw)_" Y VP
% —M<]w,0(n, m)),

where the constraint condition is identical to (11).

3. Constrained MD-PSO with a Cyclic
Neighborhood Topology for
System Identification

Let the notations PS™® and PPAR be defined, respectively,
as follows: (i) PS™: the ith particle in the swarm used
for searching the optimal model structure (i.e., an optimal
model identifier number IdNo(7, 1)) and (i) PY4R: the ith
particle in the swarm used for identifying the optimal

parameters (i.e, an optimal estimation 0 ¢ R™™1) of the
model specified by IdNo(7, ).

3.1. Position xPAR (k) and Velocity vP*R (k) of PPAR. The posi-

tion of PPAR is denoted by xP4R (k) as

i

min’O))i(k)’ Xi[;lNo(Dmiml))i(k)’ cee

x; M (k) = {{XITdNo(D
B T
i min—l),i(k)} R {XIdNo(n,O),i(k)’
T
XITdNo(n,l),i(k)) 7X1T(1No(n,n_1),l-(k)} yeens
{XEiNo(Dm,o),i(k)> XITdNo(Dmax,l),i(k)’ )

T
T
XIdNo(Dm;.x,Dm—l),i(k)} }

T
X1dNo(DypypD

(14)

Vstr,i (k)’
C\s/teli [vstr,i(k)’ {Vfrtll;n’ Vfrtl;x}] = V:rtll;n’

str

Vmax’

elseif vy ;(k) <,

else vy, ;(k) > v
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where X (um),i (k) denotes the parameter vector of a model
specified by the identifier number IdNo(n, m) as follows:

Xtavognmyi(K) = {31 (K. 3 (k). .., 3, (K),

. L (15)
by(K), by (K), ..., bm(k)} e R,

where @,(k) and b, (k) denote, respectively, the estimates of
a; and by in (2)-(3) at the kth iteration. Next, the velocity
of PPAR is denoted by vAR(k), which has the same dimension
as that of xP*R(k), and the velocity corresponding to
XIdNo(n,m),i(k) is denoted by VIdNo(n,m),i(k) € ]Rn+m+1.

3.2. Position xg, ;(k) and Velocity vy, ;(k) of P{™. The posi-
tion of PS™® is denoted by x,,(k) € R, and its velocity is
denoted by v, ;(k) € R. Note that, for given D_;, and D,
the boundary condition of x ;(k) € R, Vkis derived as

(1=)IdNo(D,,,0)
< xstr,i(k) < IdNO(Dmax’ Dmax - 1)

| (: (OnePas 1) Do Do~ 1))) |

(16)

3.3. Positional Update Law for PS™®. The positional update of
PSR (ie., the update of model identifier number) is per-
formed for each particle i € {1, 1}, where n3" denotes the
total number of particles, as follows:

str,i

+ 6 (555 (k) = %0 (R)),

V(K + 1) = 65 (k) + A (BB (k) = 25(K)) )

xstr,i(k + 1) = xstr,i(k) + Cf/terl [Vstr,i(k + 1), {V::;n, vfrtlrax}:l s (18)
xstr,i(k + 1) « C;tgs [x (k + 1), {IdNO(D

IdNO(Dmax’ Dmax - 1)}]’

str,i min> 0)’

(19)

where CJi[, -] and Cj[, -] are the clamping operators

applied over the velocity component v ;(-) and positional

component x, ;(-), respectively. The inertia factor ", cogni-

tive scaling factor ¢}, and social scaling factor ¢5* in (17) are

specified by the designer. The random numbers 7{% and 5
are uniformly distributed in [0, 1] and represent the stochas-
tic behaviors of PSO. Note that the maximum and minimum

limits v3%  and v of the velocity serve as constraints to

max mi1
avoid explosion. The above two operators are applied in the

following two ways:

. str str
if Vnin < Vstr,i(k) =V

— “max’

str
min’

str
max’
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| *gri(k)|s  if IANO(Dpyin, 0) < Xy, ;(k) < TANO(D s Do = 1),
CIS;;S[ st (K)> {IANO (D1, 0), IANO(Dy 5 Doy = 1)} = € IdNo(D,;,,,0),  elseif x, ;(k) < IdNo (D, 0),
IdANO(Dypy00> Diax = 1) €lse xg, ;(k) > IANO (D05 Dy — 1)
(20)

where the notation |-| denotes the floor operator that is
introduced because x, ;(k) must be an integer.

In (17), x52%'(k) € R denotes the personal best position
of P}™® (ie., the best model identifier number that the
individual particle PiSTR has achieved so far), where “best”
means that the transfer function model with the parameter
Vector Xigno(nm),i(k) in (15) specified by the model identifier
number IdNo(n, m)(= xy,;(k)) minimizes the given fitness
function and is defined as follows:

{nPbest,i(k)’ meest,i(k)’ ngest,i(k) }
=arg min 4 (21)

IdNo(n,m)ex,;(£),1<t<k

: (XIdNo(n,m),i (2)) J

xftl;s;st(k) - nPbest,i(k)(n;best,i(k) B 1)

(22)

D, Dmin_l)

min (

+ meest,i(k) +1- P

where & (Xigno(nm)i(-)) denotes one of the criterion func-
tions previously defined as fio; e (Xiano(nm)i(*)) in (7),
fCL—time(XIdNo(n,m),i(')) in (9), fo]ffreq(XIdNo(n,m),,‘(’)) in (12),
and o1 _req (XiaNo(nm).i(+)) in (13). An illustrative representa-
tion of the procedure for the determination of x2>%'(k) is
shown in Figure 1 and is explained as follows: (i) identify
IdNo(n, m) that is identical to x (), where 0<¢<Kk,
(i) calculate the objective function & (Xigno(um),i(€)
|IdNo(n’m)(_xm(¢)), (iii) evaluate the objective function values
to find the pair of (n, m) that achieves the minimum of the
objective function value, and (iv) set x70<(k) as (22).

str,i

On the other hand, x3%" (k) is determined as

{nsbest,i(k)’ meest,i(k)’ ngest,i(k)’ijest,i(k)}

=ar

min
5 JE(IMET 12, i 2) (23)
. min Q(X (e )
D insn<D,,,0sm<n—1,1<e<k IdNO("’m)’J() ’

nSbest,i(k)(nSbest,i(k) - 1)
2
24
. 21
+ meest,i(k) +1-

bee§t ( k) s

str,i

min(Dmin - 1)
2

>

where even-numbered n5"( Sn;tr) is the number of neighbors

of PISTR and XIdNo(n,m),j(E) = xIdNo(n,m),{(j—l mod nsm)+1}(e) for
j<1lornd+1<j[24]. An illustrative representation of the
procedure for determining x525'(k), where nf" =2 (ie,
P$R and PYIR are the neighboring particles of PY™X), is shown
in Figure 2 and explained as follows: (i) calculate the objective
function values of all entries of x'R (k) in (14), (ii) find the
minimum entry of Z(x;**(k)) (e.g L (Xiqno(n, m,)i(k)) in
Figure 2), (iii) repeat the above processes (i) and (ii) for the
neighboring particles PSR and PSR (e.g, & (XtdNo(n, m, ),i-1
(k) and & (Xiano(n, m,),ir1(k)) are, respectively, the mini-
mum entries of x 4% (k) and xFAR (k) in Figure 2), (iv) evalu-
ate three minimum objective function values (ie., &
(XIdNo(nz,mz),i(k))’ g(XIdNo(nL,ml),i—l (k))’ and ;gi(xIdNo(nme,
ir1(K))) and - L (Xpano(nmj(8) with {7, 7m, j, €} — {ngeq;
(k - 1)’ meest,i(k - 1)’ijest,i(k - 1)’ €Sbest,i(k - 1)} to find a
(n, m) pair that achieves the minimum among the four objec-

tive function values, and (v) set xftbff‘( ) as (24).

3.4. Positional Update Law for PY*R. Once the position x, ;
(k+1) of P™R is updated as explained in the above section,
the pos1t10nal update of PPAR (ie., the update of xAR (k)
in (14)) is performed for each particle, i € {1,n," }, as fol-
lows. First, the model identifier number x ;(k + 1) in (19)
designates one of the entries in x'*R*(k) in (14) to be
updated via IdNo(n, m) < xy;(k + 1). The parameter vec-
tor, Xigno(nm),i(k)> of the model indexed by IdNo(n,m) is
then updated as follows:

VIclNo n,m) 1(k+ 1)

=co VidNo(n,m), i(k)

r_par 25

+ Cpa rrl)i (Xfc]lalflsot(n m), z(k> - XIdNo(n,m),i(k)> ( )
+c arrgazr( iti’lflsé(n,m),i(k) - XIdNo(n,m),i(k)>’

XIdNo (n,m) t(k+1) (26)

= XIdNo(n,m),i(k) + VIdNo n,m) z(k + 1)

where three factors ¢, ¢, and " are specified by

the designer, and r}; and r5; denote random numbers. In

Pb sb ;
(25), X480 m),i (K) and X3a5 () are updated at each iter-
ation as
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Particle Positional Iteration number
Component I=k-2 I=k-1 I=k
ps Xui D X (k=2) Xt (k=1) X i (k)
If it equals to IdNo (n;,m,),
x 0 *IdNo (1,,m,), i (k) is chosen.
1dNo (n1,m1-1), i = L 2
1dNo (1) i Lx oo o )
14N (1), ¢ If it equals to IdNo (11, m, — 1),
XIdNo (n,,m,+1), i (k) is chosen.
*an (npmp2 U] —
o (n2,mp-2),i I
xIdNo (nma-1),i (l) (xIdNo (ngma=1), i “ 1))
PR *iawo g+ ) If it equals to IdNo (n13,m3+1),
x i 0 XIdNo (n3,m5+1), i (k) is chosen.
1dNo (n3,m3), i 0 .
1dNo (n3m3+1), i L _
1dNo (n3,m3+2), i 0 (xIdNo (n3,m3+1), i ®=)
\—(—
X PAR (l) l
xBbest (k) <— arg min {....L (¥1dNo (1, m1),i (k - 2)), L (XIDNo (m3,m3+1), i (k - 1)), L (*1dNo(rma,ma-1), i (k))}
IdNo (n,m)
Ficure 1: Illustrative representation of the procedure for determining x5 (k).
Neighboring PAR PAR PAR
particles P p; P
*1dNo(D yin 0), i-1 (k) *1dNo(Dyy, 0), i(K) ¥IdNO(D i, 0), i + 1(k)
Positional PAR : : ‘ :
component | ¥i-1 (k)= *1dNo(rnymy), i-1 (K) YPAR (k)= xId:NO(”z’ my), i(k) TPAR (k)= :
*1dN0(Dppay, Dipax—1)5i-1(k) *1dNO(D a5 Dinax—1)» i(k) *1dNo(Dppay, Dinax—1)» i + 1(k)
LN (k) = L (k) = LR (k) =
Objective L(*1dNo(Dypy, 0), i1 (K)) L(1ANO(D i, 0), 1K) L(IdN0(Dyi, 0, 41(k))
function L(xI&No(nl,ml), i-1(k)) L(xIéINo(nz, m,), i(k)) L( TdNo(m, ms), i+1(k))
values : i : 0 :
L(*IdN0(Dy,0x Dipax—1)si-1(k)) L(*IdNo(D,,, D —1)si(k)) L(*IdNo(Dp,ox Dy —1)si + 1 (k))

L(*IdNo(#n,, m,), i-1(k)) is the minimum
among the entries of L (xl.PAlR (k)).

L(*IdNo(n,, m,), i(k)) is the minimum
among the entries of L (xl.PAR (k)).

L(*IdNo(n3, mj3), i+1(k)) is the minimum

among the entries of L (xi‘\lR(k)).

xSDet o) ¢ arg, , 1in ) {L*1dNo(ny,my), i-1 (K)), LFTdNo(nym,), i(k)), L(*TdNo(n5,ms), i+1(K)),

No(n,

L(*1aNo(n, m), j Dl my 1y « tnsbest, i (k=1), mSbest, i (k=1), jSbest, i (k=1), ISbest, i (k—1)P}

F1GURE 2: Tllustrative representation of the procedure for determining 3% (k).

Xfflffzt(n,m),i(k) =arg min? (XIdNo(n,m),i(e))’

1<e<k
Sbest _ ]
xIdNo(n,m),i(k) =arg arg je{i-nt 2 mlin 12 (27)
s 3eeeslyeeny '
' lrgr;g]:‘g (XIdNo(n,m),j(e)> .

Note that for IdNo(:, - ) # xg;(k + 1), Vigno(.)i(k +1)
- vIdNo(-,-),i(k) and XIdNo(-,~),i<k +1) XIdNo(~,»),i(k>'

The above two consecutive updates for P{™® and PPAR are
iteratively performed until the stopping criterion is reached.

Once the optimization process is terminated, the optimum

str,i

of xy.;(-) provides the information IdNo(n, m) about the
optimal orders of numerator and denominator polynomials
in the transfer function, and the optimum of Xjayo(m),i(*)
provides the optimal values of such numerator/denominator
polynomials’ unknown parameters.

Remark 1. The fitness of the candidate model structure
and its parameters explored by particles is evaluated based
on the criterion function defined in Section 2. For the fit-
ness evaluation, it necessarily introduces a technique that
can handle the constraint condition such as (8) or (11),
which are generally treated as hard constraints in system
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Figure 3: PRBS input signal (a) and measured behavior of y(#)
when NSR =10% (b) and NSR=50% (c).

identification problems. It is therefore crucial to account for
the given constraint conditions in any form within the PSO
framework in order to calculate the fitness value of each par-
ticle and, ultimately, find the optimal model structure/
parameters. The constraint-handling strategy utilized in this
study is adopted from Chun et al. [25]. This technique
enables the original criterion function subject to constraints
to be converted into a pseudofunction that ensures all parti-
cles move toward a feasible region of the search space at the
beginning stage of evolution and then explore the feasible
region to find an optimal solution. Note that, because of the
flexibility of PSO, such a redefinition of the criterion function
can be used without any problem arising, regardless of the
objective and constraint functions. Therefore, if the above
technique is applied to the system identification problems
considered in this study, a global optimal solution (or, at
least, a feasible solution) that guarantees the given con-
straints can be efficiently found, which is experimentally
demonstrated in the following sections.

Remark 2. Comparing to the conventional PSO-based
white- or gray-box modeling techniques, the additional
computational complexity mainly results from the optimi-
zation process of x (k) €R, since the dimension of
XiaNo(nsm)i(k) varies at each iteration according to x, (k)
updated at the same iteration. However, because xg (k)
is only a one-dimensional parameter, the associated com-
putational burden is not too high and further the conver-
gence speed of x,;(k) can be improved when D, ; and

9
TaBLE 2: Parameters for PSO algorithms.
Simulation Experimental studies
Parameters . Ball Flexible joint
studies o .
levitation manipulator
ol 1 1 1
ar, o 1.5389 1.5389 1.5389
v -5 -5 -15
v 5 5 15
Diin 1 1 1
Doy 10 10 10
& 0.7543 0.7543 0.7543
o o 1.5389 1.5389 1.5389
nstr nPaT
2, 1y 200 200 1000
ns, b 20 20 5
K kR 2000 4000 6000

D, .« are reasonably adopted. Therefore, the computational
complexity of the proposed method is comparable to that
of the existing PSO-based system identification techniques.

4. Numerical Simulation and Discussion

To appraise the performance of the proposed constrained
MD-PSO approach, a typical 4th-order nonminimal phase
transfer function model appearing often in the literature
(e.g., [26-29]) is considered.

B*(s) ~6400s + 1600

G*(s) = - .
()= 47(5) = 577 55 + 4085 + 4165 1 1600

(28)

The above continuous-time model is simulated using a
sampling time 7T,=0.00ls and a pseudorandom binary
sequence (PRBS) input shown in Figure 3(a). It is assumed
that only the contaminated outputs y(t;):=y(t;)+w(t;)
(t,=0,T,2T,,...,5000T,), where w(t,) is a stochastic noise
sequence with zero mean, are measurable. In what follows,
we adopt the measurable noises so that the noise-to-signal
ratio (NSR) becomes around 10% for Figure 3(b) and 50%
for Figure 3(c). The upper and lower bounds of order of the
denominator polynomial 7 are set to 1(=D,,,) <7 <10
(=D, ). This implies that 55(=IdNo(D,,,.» Dy — 1) — Id
No(D,,;,» 0) + 1) candidate models are evaluated for optimal
model structure identification. The values of various param-
eters for our PSO algorithm are shown in Table 2. The model
structure and its associated unknown parameters are identi-
fied by minimizing the criterion function (7) and (8) in Sec-
tion 2.1, using our constrained MD-PSO algorithm in
Section 3. For the case of NSR=10%, the optimal model
identifier number in (6) found via the algorithm in Section
3.3 is IdNo(#, M) =13 with 7=4 and i = 1. Figure 4(a)
shows the convergence characteristics of IdNo(7, ) for
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Ficure 5: Validation of the model identification results for NSR = 10% case.
ki =2000 iterations of 30 independent runs. Then, the  the model structure and parameter identification result in

identified optimal model is as follows:

G(S) ‘NSR:IO%
B —6430.441s+ 1611.574
T ¢4 +5.0035% + 407.941s2 + 416.009s + 1593.404
(29)

The convergence characteristics of the criterion function
values for all runs are shown in Figure 4(b). The comparative
validation performance is shown graphically in Figure 5.
Figure 5(a) shows a simulation run with the estimated model
G(s) in (29) and comparison with measurement j(t,). Note
that a MATLAB toolbox for system identification offers some
tools to assist in the task of model order selection. However,

(30) leads to a poor identification performance, which can
be verified from Figure 5(a).

—15.545+2.178

GO husmanxsron = 250 goots + 42617 0

To show the real performance, the true error |y(t;) —
G(P)Insre1004(ty)|(rather than the measured error [j(t,) —
G(P)Insre1004(ty)]) is illustrated in Figure 5(b). The plotted
error series reveal the advantage of the estimated model
G(s), that is, our identification approach is more robust
against unknown and unpredictable measurement noises
than the method using a MATLAB toolbox for system iden-
tification. Note that the Hankel norm is generally known to
be a sensible measure of the I/O characteristics of the system.
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FiGURE 6: Validation of the model identification results for NSR=50% case.

The Hankel norms of error systems, ||G* (s) = G(5) lxsro10% |11
and [|G*(s) — G(S) | \aTLAB.NSR=10% [l;p> are, respectively, 0.0867
and 2.0583. The calculated Hankel norms and Figure 5 show
that the model (29) developed via the proposed modeling
methodology shows a very good model fidelity.

On the other hand, our approach and the MATLAB
toolbox-based method are applied for developing the optimal
model when NSR=50% (Figure 3(c)), and the following
results are obtained:

G(S) ‘NSR:SO%
B 1.7635% — 6422.455s + 1598.403
54 +5.0075° +408.034s> + 420.2465 + 1616.024

(31)

-17.13

G(s) |MATLAB,NSR:50% T 513432 (32)

The behaviors of the outputs of G(s)|ysr_sps and G(s)
IMATLABNSR=50% are shown in Figure 6(a), where the simu-
lated output of G(s)|ysposps, Matches the measured data
y(t;) very well even in the presence of heavy measurement
noise. This fact can also be confirmed from Figure 6(b).
Note that the order of the numerator polynomial of the
estimated model G(s)|ysgoso, 1S different from that of the
target system G*(s). However, the Hankel norm of the
error system, ||G*(s) = G(s)|xsrson ;g is 0.2157. The above
facts again confirm that the estimated model G(s)|ysr_sov i
quite accurate.

5. Experimental Validations of Constrained
MD-PSO-Based System
Identification Method

The first experiment was conducted using the magnetic
levitation (maglev) system (model number 33-210 from
Feedback Instruments Ltd.) shown in Figure 7 to validate

FIGURE 7: Magnetic levitation experimental setup.

the performance of the proposed constrained MD-PSO-
based system identification method. Note that this maglev
setup serves as a simple model of practical devices whose
applications can be found in maglev trains and magnetic
bearings and which have achieved immense popularity
recently [30]. The overall maglev system consists of connec-
tion interface panels along with a mechanical-electrical part.
A coil is mounted on the mechanical part, and an infrared
sensor is also attached to this part. The sensor measures the
ball’s position which is converted to a corresponding sensor
voltage. The analog-to-digital (A/D) interface converts the
measured voltage to digital signal that is fed to the controller.
The control signal produced by the implemented controller is
then fed to digital-to-analog (D/A) interface which generates
analog control signal related to an equivalent coil current.
The flow of current in the coil finally produces the force
generated by the magnetic field that counterbalances the
gravitational pull of the ball [30]. The detailed experimental
setup has also been described in detail in Debdoot et al.
[31] and Pati et al. [32]. For the maglev system, the open-
loop identification method cannot be adopted because of
its inherently unstable nature. Therefore, the model of the
maglev system was identified in closed-loop operation after
the experimental system was stabilized about the operating
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FIGURE 8: Measurement of the maglev system and simulated
frequency responses of the identified models.

point with the PID controller C(s)=-0.1s*—2s—2/s,
where the gains were manually tuned. Furthermore, a
dynamic model was developed by applying the frequency-
domain identification method in this experimental study.
To achieve this aim, a set of frequency-domain measure-
ments was obtained by injecting a phase-shifted multisine
signal with frequency components of 0.01 — 30 (rad/s) and
a sampling frequency of 0.01 (rad/s) into the closed-loop
maglev system. The maglev system is manufactured for sam-
pling time T = 0.001s. The experimental frequency response
shown in Figure 8 was obtained via discrete Fourier trans-
form analysis of the measured time-domain response of the
closed-loop maglev system.

In Debdoot et al. [31], Swain et al. [30], and Pati et al.
[32], the linearized model structure in terms of ball position
and electromagnetic coil current, which was derived based
on theoretical physical knowledge of the maglev system,
was derived as follows:

~ —3518.85
Geonv1 (5) = 25750

(33)

On the other hand, Vinodh Kumar and Jerome [33]
introduced the following form of a linearized dynamic model
for a maglev system, whose nonlinear mathematical model
was derived from the first principle as follows:

i b,

GconvZ (S) (34)

=3 2 :
S +a;s?+asta,

After fixing the model structure as (34) (ie., D, =
D« =7=3 and m=0), only the parameter identification
methodology of Section 3 was applied for estimating uncer-
tain (7, m) = [a,, a,, a5, by] € R*. The criterion function
given in (13) was introduced for the frequency-domain

Complexity

closed-loop identification of the unstable maglev system.
The parameter estimation results were as follows: a, =
98.45, a,=-552.9, a;=-9.279x 10%, and b, =—1.348 x
10°. However, the poor agreement of the simulated fre-
quency response of G_,,,(s) to the experimental measure-
ment data can be confirmed from Figure 8. Thus, to obtain a
more accurate model, our MD-PSO-based identification
with 1<7 <10 and various PSO parameters in Table 2
was performed. The identified optimal model structure
and parameters were as follows:

& o —1.001 x 10°s — 4.465 x 10°
s) = .
maglev s+ +90.25553 + 5430.614s% — 2.215 x 10°s — 2.703 x 10°
(35)

Figure 8 compares the frequency responses produced
by the two models, G ,(s) in (34) and Gmaglev(s) in
(35), with that experimentally measured using the actual
maglev system. This figure shows that the response of
our fourth-order model Gmaglev(s) closely matches the
experimental data with an error level smaller than that
in the G, ,(s) case. Note that the simple second-order
model G, (s) in (33) cannot reflect the important prop-
erties of the frequency response of the maglev system.

On the other hand, the above fact may seem natural,
since increasing the order of the identified model can reduce
the modeling error due to unmodeled dynamics at high fre-
quencies. This means that if the modeling error is not ignor-
able, one should decide whether to increase the order of the
model, by considering the working frequency span of the tar-
get system [34]. However, the usual modeling methodology
using the information about the underlying dynamics (e.g.,
Gonen(5)) provides no knowledge concerning how much
the orders of numerator and denominator polynomials
should be increased. In such a case, the selection of a suitable
model structure can totally rely on experts’ personal experi-
ences, which may not ensure the optimality concerning the
model’s reliability and validity. Our identification method,
by contrast, provides a straightforward and systematic
approach for selecting an optimal model structure and the
associated parameters simultaneously to fit arbitrary fre-
quency response data to, without relying on an expert’s
knowledge. From the above viewpoint, the proposed identifi-
cation scheme can play a powerful role as a simple and prac-
tical tool for developing a model that optimally captures
some key dynamic characteristics of the target system.

The second experiment was conducted using a robotic
manipulator with joint flexibility (Quanser’s rotary single-
link flexible joint module). The experimental setup, shown
in Figure 9(a), comprises a Quanser QPIDe data acquisition
and control board, a Quanser VoltPAQ-X2 amp, a Quanser
SRVO02 plant, a Quanser rotary flexible joint module, and a
PC equipped with necessary software, including the Quanser
QUARC 2.5. This rotary single-link flexible joint module
consists of a rigid beam mounted on a flexible joint that
rotates via a dc motor, and the joint deflection is measured
using the implemented sensors. More details can be found
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FiGure 10: PRBS input signal (a) and measured output behavior (b)
of flexible joint manipulator.

in Quanser’s rotary flexible joint workbook. In this experi-
ment, a PRBS, whose amplitude switches between +1, was
used to excite the system. The input u and experimental out-
put y signals were sampled at a uniform sampling interval of
0.002s, over a period of 10s (N =5001 data points). The
input in Figure 10(a) is the voltage of the servomotor and
the output y (tip angular position) in Figure 10(b) is the sum-
mation of O (motor rotation angle) and & (deflection angle of
the flexible link), as shown in Figure 9(b).

Ahmad et al. [36], Talole et al. [37], and Kandroodi et al.
[35] described the modeling of the above flexible joint
manipulator system, where Euler-Lagrange formulation was
considered in characterizing the dynamic behavior of the sys-
tem. Then, the following linear model represented in a state-
space form was derived:

X, = X3

X, = Xy,

2 =Xy (36)
X3 = Ax, + Bx; + Cu,

x4 = Dx, + Ex; — Cu,

13
TABLE 3: System parameters of flexible joint manipulator.
Value
Symbol Quantity Ahmad et al. [36] and Quanser’s
Kandroodi et al. [35] workbook
Armature
R
" resistance (Q) 2.6 26
Motor back-EMF
K
" constant (V rad/s) 0.00767 0.00768
Motor torque
K
¢ constant (N M/A) 0.00767 0.00768
Total arm inertia
Jarm (kg m?) 0.0035 0.003616
Equivalent inertia
Jeq (kg m?) 0.0026 0.00208
K, High gear ratio 14:5 14:5
Kier Joint stiffness 1.2485 1.4467
Equivalent viscous
B, damping of motor 0.004 0.015
(N.M.S/rad)
un Gearbox efficiency 0.9 0.9
o Motor efficiency 0.69 0.69
HooqT .
where x=1[0,«,0,4] and A, B, C, D, and E are given as
A — KStiff
Jeq
_ _Wmﬂgkrkaf; + Bequ
J equ
Nl K K
C= dmig” "9 R ( 37)
J equ
D=— Kstiff (]eq + ]arm)
J eq] arm

2
E= r]mngktkag + Bequ )
]equ
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In their research, the values of the parameters in (37)
were defined as those in Table 3. For the model derived
in (36), the simulated output data, y=[1100]x, corre-
sponding to the PRBS input signal of Figure 10(a) is plot-
ted in Figure 11(a). This figure shows that the simulated
output of the model in (36) cannot match the measured
output data, which is also verified from the output error
plot in Figure 11(b). On the other hand, Quanser’s rotary
flexible joint workbook introduced an identical model
structure given in (36), but the system parameters were

Complexity

set differently to those of Ahmad et al. [36], Talole et al.
[37], and Kandroodi et al. [35], as shown in Table 3. How-
ever, such a model of Quanser’s workbook also cannot guar-
antee a sufficient model quality and accuracy, as shown
in Figure 11.

To identify a model of acceptable accuracy from the mea-
sured output data, the proposed MD-PSO-based identifica-
tion with 1 <% <10 and various PSO parameters in Table 2
was performed. The identified optimal model structure and
parameters are as follows:

_ 2.771 x 107s* + 8.665 x 108s + 1.888 x 108

G

(38)

The improvement achieved in the model quality is illus-
trated in Figure 11(a), which compares the simulated time
history response for the model (38) with the measured data.
The remarkable model accuracy became even more obvious
when the time history errors between the outputs of the three
models and actual measurement were compared, as demon-
strated in Figure 11(b).

Finally, the theoretical validity of our 5th-order model
structure in (38) is explained as follows. The state-space
model (36) introduced in Ahmad et al. [36], Talole et al.
[37], and Kandroodi et al. [35] was converted into the 4th-
order transfer function model. To obtain a dynamic model
of the underlying system using Lagrangian function, the
energy expression, which is the difference between the total
kinetic energy (T) and the total potential energy (V), is
derived as

1
~Kyeea®. (39)

1 -2 1 - \2
L=T-V=_J0 +§]arm(0+o¢> -3

The Lagrangian equations of motion are as follows:

0 (O0L\ oL .
(=) - =2 =T, u — Buibs
ot <ae) 00 output eq

0 /oL _8L__B .
AGE 3 link &%

where T, is the motor torque that serves as input to the

system and By, is the equivalent viscous damping coeflicient
of the link. The equation of motion is then obtained from
(39) and (40) as

(40)

]eqé + ]arm (6 + (X) = Toutput - Beq9> ]arm (6 + “) + Kstiff‘x
= _Blinkd'

(41)

Next, the electrical equation of the Quanser SRV02 plant
is derived using Kirchhoffs voltage law as follows:

v, -R,I, —LI —-K,0=0, (42)

. S)= .
manipultor () S5+ 3.777 x 100s% +5.417 x 10753 + 5.321 x 10852 + 1.842 x 1085 + 4.372 x 104

where V, (= u) is the motor input voltage, I, is the motor
current, and L, is the inductance. The torque Ty, in

(40) and (41) on the load from the motor is defined as
Touput = Wg”lmKtKgIm' (43)

Finally, the full linear model of the considered flexible

joint manipulator system can be formulated from (41),

(42), and (43) as follows: for x = [0, a, 0, &, Im]T,

X, =X,
Xy =Xy,
_ Kstiff _ Beq Blink ’/Igr]mKtKg
3= Xy — — X5+ X+ 20— xe,
qu ]eq ]eq ]eq
. K B
PORLE: YV . (44)
]eq]arm eq
Blink rlgrlmKtKg
- Jeq + Jarm ) X4 — —— X5,
]eq ]arm ( eq arm) 4 ]eq 5
K R 1
X ==Xy = X+ —
Lm Lm Lm

which is obviously transformed to the 5th-order transfer
function model. The above fact provides a concrete foun-
dation for the feasibility of our 5th-order model in (38)
identified successfully with no aforementioned theoretical
knowledge. Note that most studies including Ahmad et al.
[36], Talole et al. [37], and Kandroodi et al. [35] assumed that
the motor inductance L,, in (42) is much less than the
resistance R,,, and so, it can be ignored, which results in
the conventional model given in (36) and (37). In addi-
tion, the viscous damping coefficient of the link By, is
assumed to be negligible in most studies. However, the exper-
imental results plotted in Figure 11 clearly demonstrate the
insufficient numerator- and denominator-order identifica-
tion of the conventional 4th-order transfer function model
for capturing the dynamic behavior of the flexible joint
manipulator system.
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FIGURE 11: Measured and simulated outputs of the flexible joint manipulator system.

6. Conclusion

In this study, we investigated a novel, easy-to-use meta-
heuristic optimization scheme for simultaneous identifica-
tion of the model structure and the associated parameters
for linear systems. The main tool used in this scheme was
the PSO algorithm, which was developed by hybridizing
two main methodologies: one for negating the limit for fixing
the particle’s dimension within the PSO process and another
for enhancing the exploration ability of the particles by
adopting a cyclic neighborhood topology of the swarm. Their
key features are as follows. First, the cyclic network topology-
based neighborhood structure of particles can effectively reg-
ulate the particles’ exploration abilities and enable them to
locate a promising region in the hyperdimensional search
space. Such an improved exploration ability of the particles
is essential to cope with the typical nonconvex nature of the
criterion function with many local minima in the process of
system identification. Second, in contrast to the existing
PSO variants, our PSO algorithm can consecutively search
both (i) the dimensional optimum of particles and (ii) the
positional optimum in the hyperdimensional search space,
whose dimension is specified by the aforementioned optimal
dimension of particles. As a result, the dimensional optimum
provides the optimal orders of numerator and denominator
polynomials in the transfer function, while the positional
optimum provides the optimal values of such numerator/
denominator polynomials’ unknown parameters. This novel
PSO scheme features superior reliability and high-level
practicality and is easily implemented for an identification
procedure of simultaneously fitting a model with a specific
model structure and estimating unknown model parame-
ters. It was clearly demonstrated through typical numerical
examples that the proposed PSO scheme provides novel
and powerful impetus with remarkable reliability toward
simultaneous identification of the model structure and
unknown model parameters. The experiments conducted
on the magnetic levitation system and robotic manipulator

with joint flexibility validated the effectiveness of the pro-
posed strategy in practical applications. Future work will
focus on verifying the versatility of the developed PSO-
based scheme in the identification of the general class of
systems that may include linear time-varying, linear param-
eter-varying, and linear systems with time delay.
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