
Received August 19, 2018, accepted September 14, 2018, date of publication October 1, 2018, date of current version October 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2872794

A Hybrid Swapping Scheme Based On
Per-Process Reclaim for Performance
Improvement of Android Smartphones
(August 2018)
JUNYEONG HAN 1, SUNGEUN KIM1, SUNGYOUNG LEE1,
JAEHWAN LEE2, AND SUNG JO KIM2
1LG Electronics, Seoul 07336, South Korea
2School of Software, Chung-Ang University, Seoul 06974, South Korea

Corresponding author: Sung Jo Kim (sjkim@cau.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education under Grant 2016R1D1A1B03931004 and in part by the Chung-Ang University Research
Scholarship Grants in 2015.

ABSTRACT As a way to increase the actual main memory capacity of Android smartphones, most of them
make use of zRAM swapping, but it has limitation in increasing its capacity since it utilizes main memory.
Unfortunately, they cannot use secondary storage as a swap space due to the long response time and wear-out
problem. In this paper, we propose a hybrid swapping scheme based on per-process reclaim that supports
both secondary-storage swapping and zRAM swapping. It attempts to swap out all the pages in the working
set of a process to a zRAM swap space rather than killing the process selected by a low-memory killer, and
to swap out the least recently used pages into a secondary storage swap space. The main reason being is
that frequently swap- in/out pages use the zRAM swap space while less frequently swap-in/out pages use
the secondary storage swap space, in order to reduce the page operation cost. Our scheme resolves both
the response time and wear-out problems of secondary-storage swapping and zSWAP, and overcomes the
size limitation of the zRAM swap space. According to performance measurements, it also increased the
extension ratio of main memory by 15∼ 17% and 6∼ 17% and reduced the page operation cost by 9∼ 22%
and 18 ∼ 28%, respectively, compared with zRAM swapping and zSWAP.

INDEX TERMS zRAM swapping, zSWAP, hybrid swapping, extension of main memory, wear-out problem.

I. INTRODUCTION
Recently, as smartphone hardware performance has improved
dramatically, the performance of smartphones has become
similar to that of personal computers in terms of hard-
ware [1], [2]. This allows smartphone users to install dozens
or hundreds of high-demand applications similar to personal
computers.

Operating systems like Unix/Linux andWindows rely on a
swapping scheme which utilizes secondary storage as main
memory to extend its actual size. The secondary-storage
swapping scheme may extend the size, but may increase
system response time. Secondary storage may be inappro-
priate for a swap space, especially in a mobile environment,
due to slow system response time. Either eMMC [3] or
UFS [4] based on flash memory with a wear-out problem [5]

has been used as secondary storage; however, it cannot be
used as a swap space in a mobile environment because its
lifetime is shortened due to frequent swap operations. Since
secondary-storage swapping cannot be utilized in the mobile
environment, an application running in the background will
be terminated unlike the desktop environment. For example,
while a user is playing a mobile game on the Android smart-
phone, if he or she takes an incoming phone call, the game
may be terminated unintentionally.

To resolve these problems, this paper proposes a hybrid
swapping scheme based on per-process reclaim suitable for
mobile environment. Hybrid swapping addresses both the
slowdown in system response time and the flash memory
wear-out problem by using both secondary-storage swap-
ping and zRAM swapping [6] to extend main memory.

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

56099

https://orcid.org/0000-0001-9608-1383

J. Han et al.: Hybrid Swapping Scheme Based on Per-Process Reclaim

Hybrid swapping swaps out all of the pages that belong to
an application to be killed into zRAM swap space rather
than killing it so that it can be restarted quickly later. Our
scheme resolves both response time and wear-out problems
of secondary-storage swapping and zSWAP, and overcomes
the size limitation of zRAM swap space.

The rest of the paper is organized as follows: In Section 2,
we compare existing schemes proposed for extending main
memory by using swap space in mobile environments.
In Section 3, we propose a hybrid swapping scheme that
improves the extension ratio of main memory and system
performance, and solves the wear-out problem. In Section 4,
we compare the extension ratio of main memory and the page
operation cost of hybrid swapping with those of zRAM swap-
ping, respectively, and show that our scheme has virtually no
wear-out problem. Finally, Section 5 concludes this paper and
discusses future research directions.

II. RELATED WORKS
Since Android uses virtual memory and paging, it is not nec-
essary for program code and data to be simultaneously loaded
into main memory during program execution. A portion or
all of unreferenced program code and data will be saved on
secondary storage during program execution. The secondary-
storage swapping scheme utilizes secondary storage as main
memory in order to increase the effective main memory size
by using swap space on secondary storage.

The zRAM swapping scheme utilizes a certain area of
RAM as storage space in the same manner as the com-
pressedRAMblock device [7]. However, it is possible to store
the amount of data larger than the allocated RAM size by
compressing the data. According to the zRAM compression
ratio of Android smartphones using zRAM, zRAM saves
approximately a half of RAM space on average [6]. Various
Android smartphones have adopted zRAM swapping using
these zRAMs as swap space.

If swap-in and/or swap-out occur frequently when swap
space is used, the overall performance of the system should
degrade. To alleviate this performance degradation, swapping
schemes usually utilize a swap cache located between main
memory and secondary storage. Compressed cache swapping
schemes such as zSWAP [8] and zRAM DM-Cache [9] pro-
vide high-capacity compressed swap caches. Since zSWAP
uses zRAMas a swap cache, system performance degradation
can be reduced significantly compared to secondary-storage
swapping due to the increased cache hit ratio by increasing
the amount of swap cache while using only a small amount
of main memory. DM-Cache is a component of the Linux
kernel’s device mapper [10] used for mapping a block device
to a high-level virtual block device. For example, DM-Cache
improves read performance of a block device by mapping
a block device with a slow operation speed, such as a hard
disk or a flash memory, to a RAM block device. The zRAM
DM-Cache swapping scheme increases the swap-in/out oper-
ation speed of swap space of the secondary storage by map-
ping its swap space to the RAM block device through zRAM.

TABLE 1. Comparison of swapping schemes.

As shown in Table 1, pros and cons of secondary-storage
swapping, zRAM swapping, and compressed cache swap-
ping differ, depending on the types of the storage used for
swap space. Comparing with secondary-storage swapping
and zRAM swapping, compressed cache swapping has lower
system performance and wear-out problem since the cache hit
rate decreases as swap space becomes larger. In amobile envi-
ronment, system performance should not be degraded due
to paging operations since the response time is very crucial.
Therefore, in themobile environment, only considered are the
zRAMswapping scheme and the compressed cache swapping
scheme; the former has minimal performance degradation
while the extension ratio of main memory is limited, and the
latter has limitation in increasing the swap space size.

Liu et al. [14] proposed a scheme called HybridSwap,
which integrates a hard disk with a solid state disk (SSD)
for virtual memory management in order to extend the
main memory size; however, this scheme is inappropri-
ate to mobile environments because Android smartphones
are not equipped either with SSDs or with hard disks.
Chae et al. [15] suggested CloudSwap as a swap mech-
anism for mobile devices by utilizing remote storage as
a swap space. Since accessing remote storage increases
power consumption dramatically, it is inappropriate to apply
this scheme to commercial smartphones. Zhang et al. [16]
proposed MemFlex as a shared memory swapper in order
to enhance swapping performance in virtualized systems.
Zhang et al. [17] also proposed MemLego, which relies
on a shared memory based swapping facility called Mem-
Swap in virtualized systems. These schemes cannot be used
for Android smartphones because they are designed espe-
cially for high-performance server environments that sup-
port virtual machines. Another schemes [18], [19] utilizing
fast and byte-addressable non-volatile memory (NVM) as
a swap space have been proposed. Because NVM is more
expensive than DRAM and requires extra mounting space on

56100 VOLUME 6, 2018

J. Han et al.: Hybrid Swapping Scheme Based on Per-Process Reclaim

smartphone PCBs, and there is no affordable way to embed
NVM in multi-chip package for now, it is more appropriate
to increase the size of DRAM than to adopt NVM. Finally,
Zhu et al. [20] proposed SwapBench to evaluate various
swapping schemes, especially in terms of two performance
metrics such as application launch and switch on Android
smartphones. We enhance this framework to overcome such
limitation that it cannot accurately evaluate swapping perfor-
mance when it repeatedly appraises 10 or more applications
based on different user scenarios.

III. HYBRID SWAPPING
We propose hybrid swapping that uses both secondary-
storage swapping and zRAM swapping. In our scheme, pages
are swapped out from main memory to either swap space in
secondary storage or zRAM swap space, depending on their
reference patterns. To be specific, infrequently swap-in/out
pages are swapped out to secondary storage swap space,
while frequently swap-in/out pages are swapped out to zRAM
swap space using per-process reclaim [21] to avoid killing
processes for getting free memory. In this way, hybrid swap-
ping addresses the performance degradation and wear-out
problems that occur with secondary-storage swapping and
compressed cache swapping, while extending the available
main memory size.

After defining the extension ratio of main memory, the cost
of page operation, and no wear-out period of the hybrid
swapping scheme in Section A, we calculate the maximum
extension ratio of main memory and the cost of page oper-
ation for each swapping scheme in Section B, and describe
how to implement hybrid swapping in Section C.

A. RELATED DEFINITIONS
When a program is invoked, its code and data are loaded
into main memory from secondary storage. Read operations
are executed when loading program code and data into main
memory. During program execution, one or more pages are
allocated in main memory for data processing, and are man-
aged as ‘‘anonymous pages.’’

If a page of an executable and data file called ‘‘file page’’
not in main memory is referenced when there is no free page
frame, the file page is loaded intomainmemory after reclaim-
ing one or more page frames that are not referenced for a
certain period of time. In addition, when a new anonymous
page is to be allocated when no page frames are available,
it is also allocated in main memory after reclaiming one
or more page frames. A memory management system will
discard file pages from main memory in the absence of swap
space, while anonymous pages remain ‘‘pinned’’ in main
memory. On the other hand, if there is swap space available,
it logically extends the size of main memory by storing the
anonymous pages in swap space. To summarize, the page
operation requires read and discard operations of file pages,
and swap-in/out operations of anonymous pages.

The extension ratio of main memory is defined as the
ratio of the size of the logical main memory (physical main

memory+ swap space) to the size of the physical main mem-
ory. Because the overhead for discarding file pages during
page operations is negligible, the page operation cost can be
defined as the sum of the costs necessary for reading and
swapping in/out file pages.

FIGURE 1. Hybrid swapping.

Fig. 1 shows how hybrid swapping works. Parameters
related to hybrid swapping are defined in Table 2.

TABLE 2. Definition of parameters related to swapping system.

Prior to initiating execution of a program, its code to be
executed and data are read from secondary storage in the
hybrid swapping system of Fig. 1. As time elapses, the num-
ber of programs that are running simultaneously increases,
the swap space will be eventually exhausted. In order for a

VOLUME 6, 2018 56101

J. Han et al.: Hybrid Swapping Scheme Based on Per-Process Reclaim

new program to run when both main memory and swap space
being exhausted, one or more currently running programs
must be killed.

When multiple programs are running simultaneously in a
hybrid swapping system, if a page to be referenced is not in
mainmemory and not swapped out to secondary storage swap
space or zRAM swap space, it will be loaded into the main
memory from the program repository on secondary storage
using fi. On the other hand, if the referenced page is swapped
out to secondary storage swap space, it is swapped in main
memory through si. If the referenced page is swapped out to
the zRAM swap space, it is swapped in the main memory
through zi. If no free page frame is available in the main
memory at this time, swapped out is an anonymous page
that is not referenced for the longest time through so or zo
to the secondary storage swap space or zRAM swap space,
respectively.

Since the number of pages referenced increases while
executing a program, the cost of page operations can be
calculated using Equation (1) over the time span t from t1
to tn when the number of pages referenced by fi, si, so, zi,
and zo is denoted by 1FI(tk), 1SI(tk), 1SO(tk), 1ZI(tk),
and 1ZO(tk), respectively:

O (t) =
∑tn

t=t1
[fic ·1FI (tk)+ sic ·1SI (tk)

+ soc ·1SO (tk)+zic ·1ZI (tk)+ zoc ·1ZO (tk)] ,

where k = 1, 2, . . . , n (1)

If write operations are repeated more than a certain number
of times at a specific address in the flash memory, NAND
flash wear-out may occur. In case of flash memory-based
secondary storage such as eMMC or UFS, an internal flash
translation layer (FTL) is used to mitigate its wear-out by
changing the address to be written in the flash memory.
In order to ensure that NAND flash wear-out does not occur,
we need to know the maximum number of pages that can be
written to eMMC or UFS devices, which guarantees no wear-
out pages, called GP. GP can be defined by Equation (2),
where 1FO(tk) is the number of pages written by Android
file output operations

GP =
∑tn

t=t1
[1SO (tk)+1FO (tk)],

where k = 1, 2, ..., n (2)

B. MAXIMUM EXTENSION RATIO OF MAIN MEMORY AND
COST OF PAGE OPERATIONS FOR SWAPPING SYSTEMS
In this section, we calculate the maximum extension ratio
of main memory and page operation cost of each swapping
system through formulas and compare them with each other.
fit , sit , sot , zit , and zot depend on the speeds of I/O

operations between main memory and secondary storage,
and the CPU speed. According to performance metrics of
LPDDR2 memory and eMMC v5.1 which have been used
for main memory and secondary storage by the Qualcomm
MSM8952 chipset [22], the speeds of page read and write
operations are 20MB/s and 10MB/s, respectively, for the

secondary storage, and are 100MB/s and 50MB/s, respec-
tively, for the zRAM. Since the Linux’s default page size
is 4KB, fit , sit , sot , zit , and zot can be calculated by using
Equation (3) ∼ (6), respectively.

fit = sit =
1s

20MB
=

1s
5120pages

=
0.1953ms

page
(3)

sot =
1s

10MB
=

1s
2560pages

=
0.3906ms

page
(4)

zit =
1s

100MB
=

1s
25600pages

=
0.0390ms

page
(5)

zot =
1s

50MB
=

1s
12800pages

=
0.0781ms

page
(6)

We now derive the maximum extension ratio of main
memory(ME) and the cost of page operation at time t(O(t))
for each type of swapping schemes as below:

1) NO SWAPPING

ME =
M
M
= 1 (7)

O (t) =
∑tn

t=t1

[
0.1953

(
ms
page

)
·1FI (tk)

]
,

where k = 1, 2, . . . , n (8)

2) SECONDARY-STORAGE SWAPPING

ME =
M+ S
M

(9)

O (t) =
∑tn

t=t1

[
0.1953

(
ms
page

)
·1FI (tk)

+ 0.1953
(

ms
page

)
·1SI (tk)

+ 0.3906
(

ms
page

)
·1SO (tk)

]
,

where k = 1, 2, . . . , n (10)

3) ZRAM SWAPPING
Assuming that the average compression ratio(C) of zRAM

is 2 [6], ME and O(t) can be given by Equation (11) and
Equation (12), respectively:

ME =
M+ Z · (C− 1)

M
=

M+ Z
M

(11)

O (t) =
∑tn

t=t1

[
0.1953

(
ms
page

)
·1FI (tk)

+0.0390
(

ms
page

)
·1ZI (tk)

+ 0.0781
(

ms
page

)
·1ZO (tk)

]
,

where k = 1, 2, . . . , n (12)

4) ZSWAP

ME =
M+ S
M

(13)

O (t) =
∑tn

t=t1

[
0.1953

(
ms
page

)
·1FI (tk)

56102 VOLUME 6, 2018

J. Han et al.: Hybrid Swapping Scheme Based on Per-Process Reclaim

+ 0.0390
(

ms
page

)
·1ZI (tk)+0.0781

(
ms
page

)
·1ZO (tk)+(0.1953+ 0.0781)

(
ms
page

)
·1SI (tk)

+ (0.0390+0.3906)
(

ms
page

)
·1SO (tk)

]
,

where k = 1, 2, . . . , n (14)

If the number of swap pages in zSWAP is smaller than U ,
the page operation cost of zRAM swapping and zSWAP are
equal because there are no si, so operations. However, if it
becomes greater than U , the cache hit rate gets worse and
the page operation cost becomes higher than those of zRAM
swapping and secondary-storage swapping.

5) HYBRID SWAPPING

ME =
M + S + Z

M
(15)

O (t) =
∑tn

t=t1

[
0.1953

(
ms
page

)
·1FI (tk)

+ 0.1953
(

ms
page

)
·1SI (tk)+ 0.3906

(
ms
page

)
·1SO (tk)+0.0390

(
ms
page

)
·1ZI (tk)

+ 0.0781
(

ms
page

)
·1ZO (tk)

]
,

where k = 1, 2, . . . , n (16)

When both secondary-storage swapping and zRAM swap-
ping are utilized, since M < M + S < M + S + Z or
M < M + Z < M + S + Z , the hybrid swapping scheme
provides the largest main memory extension ratio. As can be
seen from (12)< (8)< (10), the secondary-storage swapping
increase the page operation costs, while the zRAM swap-
ping reduces them. Therefore, if both secondary-storage
swapping and zRAM swapping are utilized simultaneously,
the page operation cost can be reduced more compared to uti-
lizing only secondary-storage swapping, but becomes higher
than the case where only zRAM swapping is utilized.

C. IMPLEMENTATION OF HYBRID SWAPPING
The terms

∑tn
t=t1 1FI(tk),

∑tn
t=t1 1SI(tk),

∑tn
t=t1 1SO(tk),∑tn

t=t1 1ZI(tk), and
∑tn

t=t1 1ZO(tk) are the number of pages
referenced by each operation in (16) of which values increase
over time. If frequently referenced pages are swapped out
to zRAM swap space, the extension ratio of main memory
increases along with lower page operation cost. On the other
hand, in order not to increase the page operation cost as long
as possible, least frequently references pages are swapped out
to secondary storage swap space. It also makes it possible
to increases the guaranteed non-wear-out time because it
decreases

∑tn
t=t1 1SO(tk). Therefore, hybrid swapping can

be implemented by swapping out frequently used pages to
zRAM swap space and the least frequently used pages to
secondary storage swap space.

Fig. 2 shows a block diagram, which shows how hybrid
swapping works. As shown in its upper left corner, there are
two memory reclamation techniques: direct page reclaim and
kernel swap daemon(kswapd).When there is no enough phys-
ical memory to allocate, the former technique will be useful.
On the other hand, in order to ensure as much free memory as
its watermark set by Linux, the latter is periodically invoked.

As shown on the left side of Fig. 2, function
shrink_zone()[23], which is the main entry point for mem-
ory reclamation in Linux, relocates pages in the active list
to the inactive list, using the LRU algorithm in function
shrink_active_list()[23]. The active list is a group of the
most recently referenced pages, and the inactive list is a
group of pages which have not been recently referenced.
Then, function shrink_inactive_list()[23] sends pages in the
inactive list to the shrink list using the LRU algorithm.
Finally, while function shrink_page_list()[23] reclaims pages
in the shrink list, file pages are discarded while anonymous
pages are swapped out to swap space.

Linux relies on the LRU algorithm to select a page to
be swapped out to secondary storage, since it will not be
swapped in or out frequently. This will also increase the guar-
anteed non-wear-out time because it reduces the number of
read and write operations from/to secondary storage. Swap-
in/out of pages by periodic invocation of kswapd may be
delayed because it is less time critical than a case when a page
should be swapped out due to memory reclaims directly by
memory allocator. Therefore, in hybrid swapping, as shown
in ¬ of Fig. 2, pages chosen by the LRU algorithm for
swapping are to be swapped out to the secondary storage swap
space by kswapd. However, since direct memory reclaims
are performed in a very urgent situation where there is no
memory to allocate immediately, delay caused by swap-out
cannot be tolerated. Therefore, in the situation where direct
memory reclaim is required, pages in the shrink list [23] are
swapped out to zRAM swap space, as shown in of Fig. 2.

Function shrink_slab() [23] is invoked when free
memory cannot be reclaimed anymore through function
shrink_zone()[23]. If the reclamation fails, free memory
can be obtained by killing a process that the Linux out-of-
memory(OOM) killer [24] regards as being unimportant.
Usually in Android, one process runs in foreground while

the others run in the background. Users repeatedly execute
several to dozens of preferred processes alternatively. Since
each process utilizes tens to hundreds of Mbytes of mem-
ory, it is necessary to allocate and deallocate several tens
to hundreds of Mbytes of memory when running new pro-
cess. Because of this usage characteristics, Android invokes
Android Low Memory Killer(LMK) [25] instead of OOM
killer to kill a process in order to reclaim free memory space.

As shown in the right part of Fig. 2, LMK is executed as
a call back function of function shrink_slab() and selects the
process with the largest resident set size(RSS) among a group
of processes residing in foreground. When a user initiates a
new process, the time taken to invoke it must be very short,
since the response times that the user experiences matter.

VOLUME 6, 2018 56103

J. Han et al.: Hybrid Swapping Scheme Based on Per-Process Reclaim

FIGURE 2. Block diagram for hybrid swapping.

Since the process selected by LMK is a process that has been
running in foreground, it is more likely to be executed in
foreground again later by the user, so it may be better to swap
out and swap in later rather than killing it immediately.

Two conditions must be satisfied in order to free up main
memory by swapping out all anonymous pages of a process
instead of killing the process itself. One condition is that it
should not take long to swap out the pages because available
memory is insufficient for the normal operation of the process
when LMK is triggered. The other is that it should be possible
to ensure tens or hundreds of Mbytes of free memory by
swapping out the process. In order to satisfy these conditions,
hybrid swapping swaps out all pages belonging to the process
selected by LMK to zRAM swap space as shown in ő of
Fig. 2 so that a large amount of free memory can be ensured
as quickly as possible.

A program’s working set [26] W(t, T) at time t is the set
of distinct pages that have been recently referenced in the
last T virtual time units. All the pages inW(t, T) are loaded
together into main memory, and also swapped out together.

Because Android usually runs one process in foreground,
processes in background selected by LMK will not run for a
while. Therefore, the cost of page operations can be reduced
because pages in W(t, T) belonging to the processes in
background will not be swapped in for a while once they
swapped out.

As the number of processes to be executed increases,
the total size of the pages used by the processes will exceed
the size of (the main memory + secondary storage swap
space + zRAM swap space), in which case some processes
must be killed. In hybrid swapping, pages belonging to pro-
cesses to be killed by LMK are swapped out to zRAM swap
space. The zRAM swap space may become full due to these
swap-outs. In order to resolve this problem, LMK can swap
out pages of a process to the secondary storage swap space or
kill the process itself. If it is killed, the number of file pages
to be read from the secondary storage may increase because
it may re-invoked later by user. However, since the cost of
read operations for these pages is less than the cost of swap-
in/out to the secondary storage swap space, hybrid swapping

56104 VOLUME 6, 2018

J. Han et al.: Hybrid Swapping Scheme Based on Per-Process Reclaim

kills the process rather than swapping out even if there is free
swap space on the secondary storage after zRAM swap space
becomes full.

As shown in the legend of Fig. 2, in order to imple-
ment hybrid swapping, function Per_Process_Reclaim() [21]
is added to general memory reclaim procedure of Linux,
and function Reclaim_Efficiency_Estimator() is also added to
LMK to determine whether to kill a process or swap it out to
zRAM swap space.

Function Per_Process_Reclaim() accepts two parameters
such as structure task_struct and the number of pages to
be reclaimed using function reclaim_task_file_anon(). This
function retrieves file pages and anonymous pages of the
process specified by the first argument, task_struct, reclaims
as many file and anonymous pages as the number specified
by the second parameter, and returns reclaimed page number.
Note that file pages are discarded while anonymous pages are
swapped out to zRAM swap space.

Function Reclaim_Efficiency_Estimator() determines
whether it is more appropriate to swap out a process
selected by LMK to zRAM swap space or to kill it. This
function obtains its RSS and the number of pages that
have been swapped out to the swap space (Swapped_RSS).
As Swapped_RSS gets larger, the number of pages to
be reclaimed will be dwindled because RSS gets smaller.
If (Swapped_RSS – RSS)< 0, since greater than 50% pages of
the original resident set of the process can be still reclaimed
from main memory, the process selected by LMK is swapped
out as shown in ő in Fig. 2; otherwise, since there is little
chance that more pages can be reclaimed, it is killed as shown
in ŕ in Fig. 2.

IV. PERFORMANCE EVALUATION
It is necessary to increase the extension ratio of main memory
to ensure that multiple applications can run simultaneously
and to provide the fast response times. In order to measure
the extension ratio and the cost of page operations of the
hybrid swapping scheme proposed in this paper, we installed
as many high-demand applications as possible to use up all
the swap space on a smartphone due to frequent swapping in
and out of code and data to the swap space.

For performance evaluation, we utilized three models of
LG Android smartphones like LG Stylo 4, LG G7 and
LGV35. The LG Stylo 4 [27] was equipped with of the Qual-
comm Snapdragon SDM450 chipset, 2GB LPDDR3, and
eMMC v5.1. We have installed the six most popular mobile
games on Google Play in Korea at the time of performance
evaluation such as ‘‘Clash Royale,’’ ‘‘Lineage 2 Revolution,’’
‘‘Asphalt 8 Airbone,’’ ‘‘Raven,’’ ‘‘Anypang3 for Kakao,’’ and
‘‘ FIFA Online 4M ,’’ and 10 frequently-used web browsers,
utilities and multimedia applications for Android, as shown
in Table 3.

Upon triggering one application, we returned to the home
screen by hitting home key button to trigger another appli-
cation. We repeatedly triggered each of 16 applications and
returned from it. We call this batch of 16 triggering of

TABLE 3. The list of test applications.

applications as a ‘‘turn.’’ In order to measure performance,
we performed 16 turns, and the order of triggering 16 appli-
cations was changed randomly for each turn. For perfor-
mance comparison of hybrid swapping, zRAM swapping,
and zSWAP, we measured the memory usage and the entry
time of each application in the identical test environment.

The LG G7 [28] and the LG V35 [29] were equipped
with 4GB DRAM and 6GB DRAM, respectively. We mea-
sured the extended size of main memory for the two models
using 60 applications instead of 16 applications to exhaust
available system memory quickly. The 60 applications
consists of 9 Google Mobile Services (GMS) applications,
5 LG default applications like Q memo+, file manager, and
30most downloadedGoogle Play applications like Facebook,
Instagram, Netflix, etc in 2018, including 16 applications
in Table 3.

A. EXTENSION RATIO OF MAIN MEMORY
Table 4 shows the average extended sizes of main mem-
ory and the extension ratios for three swapping schemes.
In case of LG Stylo 4, the extension ratio of hybrid swapping
was improved by 17% over that of zRAM swapping and
zSWAP. It was also improved by 15% and 6% over that of
zRAM swapping and zSWAP, respectively, in case of LG G7,
and 15%, and 12%, respectively, in case of LG V35.

B. COST OF PAGE OPERATION
In this section, we compared the average times to trig-
ger 16 applications for hybrid swapping, zRAM swapping
and zSWAP. When an application is invoked, its entry time
includes the cost of page operations needed to acquire main
memory to bring virtual pages into main memory. Since three
swapping schemes were evaluated under the identical execu-
tion environment, the average entry time of each application
was mainly affected by the cost of page operations. Thus,
it is enough to compare their costs of page operations for
comparison of average entry times of applications.

VOLUME 6, 2018 56105

J. Han et al.: Hybrid Swapping Scheme Based on Per-Process Reclaim

TABLE 4. Comparison of average main memory usage.

TABLE 5. Average entry times of applications in LG stylo 4.

Table 5 shows the average entry times of three swap-
ping schemes in LG Stylo 4. Hybrid swapping reduced
them by 22% and 28% over zRAM swapping and
zSWAP, respectively. When hybrid swapping was utilized,
the entry times of applications were reduced except ‘‘Asphalt
8 Airbone’’ in the game category. For this application, func-
tion Reclaim_Efficiency_Estimator() estimated that the cost
to kill it was cheaper than the cost of its page swap-in/outs.
Since zSWAP has the highest page operation cost, the average
entry time of applications should be the longest.

The numbers of swap-in/out pages are 219,892 and
265,444 for zSWAP, respectively, and are 56,492 and 81,002
for hybrid swapping, respectively, in LGStylo 4. This demon-
strates that hybrid swapping can differentiate frequently and
infrequently referenced pages more accurately than zSWAP.

Table 6 shows the average entry times of applications of
three swapping schemes in LGG7with 4GB of RAM.Hybrid
swapping reduced them by 9% and 18% over zRAM swap-
ping and zSWAP, respectively. In case of hybrid swapping,
the entry times of applications were reduced except ‘‘Google
Map,’’ ‘‘Naver,’’ ‘‘Camera,’’ and ‘‘Gallery’’ due to the same
reason as mentioned in LG Stylo 4.

The numbers of swap-in/out pages are 1,396,442 and
1,886,562 for zSWAP, respectively, and are 220,442 and
256,562 for hybrid swapping, respectively, in LG G7.

TABLE 6. Comparison of average entry times of applications in LG G7.

Those of LG G7 are much larger than LG Stylo 4 since it
runs 60 test applications as mentioned before.

TABLE 7. Comparison of average entry times of applications in LG V35.

Table 7 shows the average entry times of three swap-
ping schemes in LG V35 with 6GB of RAM. Hybrid swap-

56106 VOLUME 6, 2018

J. Han et al.: Hybrid Swapping Scheme Based on Per-Process Reclaim

ping reduced them by 13% and 19% over zRAM swapping
and zSWAP, respectively. Note that the average entry time of
hybrid swapping in G7 with 4GB DRAM is almost identical
with that of zRAM swapping in V35 with 6GB DRAM.

The numbers of swap-in/out pages are 1,047,354 and
1,489,475 for zSWAP, respectively, and are 117,166 and
128,773 for hybrid swapping, respectively in LG V35. Those
of LG V35 are smaller than LG G7 since the main memory
size of LG V35 is larger than that of LG G7.

C. A MEASURE OF GUARANTEED NON-WEAR-OUT TIME
According to a report [30] by SK Hynix, a man-
ufacturer of eMMC memory used by the LG Stylo
4 Android smartphone, GP(guaranteed non wear-out pages)
of eMMC is 9Tbyte/4Kbyte pages since it guarantees
writing up to 9Tbytes. We measured the total numbers
of pages swapped out into the secondary storage swap
space by repeatedly executing 60 applications to obtain∑tn

t=t1 [1SO (tk)+1FO (tk)] , (k = 1, 2, . . . , n) per unit
time t for hybrid swapping and zSWAP. The total number
of pages swapped out into eMMC swap space and written
by Android file output operations was 4.5Gbytes/4Kbytes
pages and 29Gbytes/4Kbytes pages, respectively, for hybrid
swapping and zSWAP, where t = 48 hours.

We calculated guaranteed non wear-out time (GT) of
hybrid swapping and zSWAP using Equation (2), which is the
time taken to write allGP pages into NAND flash.GTs of the
former and the latter are roughly 4,096 days and 635 days,
respectively. Consequently, we can expect that there will
be virtually no wear-out in case of hybrid swapping since
wear-out problem may not occur during almost 11 years.

V. CONCLUSION
The requirements for memory of an Android smartphone
in capacity and speed have been continuously increasing
recently since users tend to install applications with a higher
demand for main memory. To lower the requirement, smart-
phone developers have recently made many efforts to extend
its main memory with zRAM swapping. However, since
zRAM swapping utilizes main memory, there is a limit to
extend its size. On the other hand, an Android smartphone
cannot adopt secondary-storage swapping using secondary
storage as swap space due to long response time and wear-out
problem. To overcome these limitations, we proposed hybrid
swapping that supports both secondary-storage swapping and
zRAM swapping.

Hybrid swapping improved the extension ratio of main
memory by using zRAM swapping, which has been widely
used in mobile environment, and by using secondary-storage
swapping, which have not been used due to performance
degradation and wear-out problem. It also reduced the cost
of page operations by swapping out pages to different swap
space based on their reference patterns and by swapping out
all the pages in the working set of a process into zRAM
swap space using per-process reclaim rather than killing that
process.

According to our performance evaluation, hybrid swap-
ping increased the extension ratio of main memory
by 15 ∼ 17% and 6 ∼ 17% and reduced the page operation
cost by 9 ∼ 22% and 18 ∼ 28%, respectively, compared to
zRAM swapping and zSWAP for 16 real-world applications.
It also showed that the wear-out problem of flash memory
will not occur for almost 11 years by drastically reducing
the number of swap-in/outs from/to the secondary storage
swap space.

Hybrid swapping determined whether to swap out pages
of a process to the secondary storage swap space or zRAM
swap space, or to kill the process, depending on the prob-
ability of referencing the pages. As a future work, we will
investigate a technique to improve the performance of hybrid
swapping by predicting the reference probabilities of pages
more accurately. We will also investigate how to enhance the
performance of our scheme by utilizing NVM if it becomes
cost-effective and can be embedded in multi-chip package.

REFERENCES
[1] PassMark Software. Surry Hills, NSW, Australia. (2018). CPU Bench-

marks. [Online]. Available: https://www.cpubenchmark.net/
[2] PassMark Software. Surry Hills, NSW, Australia. (2018). Android Bench-

marks. [Online]. Available: https://www.androidbenchmark.net/
[3] Embedded Multi-Media Card (eoMMC), Electrical Standard (5.1), Stan-

dard JESD84-B51, Feb. 2015.
[4] Universal Flash Storage (UFS) Unified Memory Extension, Version 1.1,

Standard JESD220-1A, Mar. 2016.
[5] Y. Pan, G. Dong, and T. Zhang, ‘‘Exploiting memory device wear-out

dynamics to improve NAND flash memory system performance,’’ in Proc.
9th USENIX Conf. File Storage Technol. (FAST), San Jose, CA, USA,
Feb. 2011, p. 18.

[6] N. Gupta. zram: Compressed RAM Based Block Devices. Linux Foun-
dation, San Francisco, CA, USA. [Online]. Available: https://www.
kernel.org/doc/Documentation/blockdev/zram.txt

[7] M. Johnson, ‘‘An introduction to block device drivers,’’ Linux J., Jan. 1995.
[Online]. Available: https://www.linuxjournal.com/article/2890

[8] S. Jennings. zSwap. Linux Foundation, San Francisco, CA, USA. [Online].
Available: https://www.kernel.org/doc/Documentation/vm/zswap.txt

[9] J. Thornber, H. Mauelshagen, and M. Snizer. dm-cache. Linux
Foundation, San Francisco, CA, USA. [Online]. Available:
https://www.kernel.org/doc/Documentation/device-mapper/cache.txt

[10] A. Kergon, N. Brown, M. Broz, and L. Torvalds. Device-Mapper. Linux
Foundation, San Francisco, CA, USA. [Online]. Available: https://www.
kernel.org/doc/Documentation/device-mapper/

[11] TrendForce Corp. Taipei, Taiwan. (2018).Price Trend. [Online]. Available:
https://www.trendforce.com/price

[12] PassMark Software. Surry Hills, NSW, Australia. (2018). RAM Bench-
marks. [Online]. Available: https://www.memorybenchmark.net/

[13] PassMark Software. Surry Hills, NSW, Australia. (2018). Hard Drive
Benchmarks. [Online]. Available: https://www.harddrivebenchmark.net/

[14] K. Liu, X. Zhang, K. Davis, and S. Jiang, ‘‘Synergistic coupling of SSD
and hard disk for QoS-aware virtual memory,’’ in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw., 2013, pp. 24–33.

[15] D. Chae et al., ‘‘CloudSwap: A cloud-assisted swap mechanism for mobile
devices,’’ in Proc. IEEE/ACM Int. Symp. Cluster, Cloud, Grid Comput.,
2016, pp. 462–472.

[16] Q. Zhang, L. Liu, G. Su, and A. Iyengar, ‘‘MemFlex: A shared memory
swapper for high performance VM execution,’’ IEEE Trans. Comput.,
vol. 66, no. 9, pp. 1645–1652, Sep. 2017.

[17] Q. Zhang, L. Liu, C. Pu, W. Cao, and S. Sahin, ‘‘Efficient shared memory
orchestration towards demand driven memory slicing,’’ in Proc. IEEE Int.
Conf. Distrib. Comput. Syst., Jul. 2018, pp. 1212–1223.

[18] K. Zhong, D. Liu, L. Long, J. Ren, Y. Li, and E. H.-M. Sha, ‘‘Building
NVRAM-aware swapping through code migration in mobile devices,’’
IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 11, pp. 3089–3099,
Nov. 2017.

VOLUME 6, 2018 56107

J. Han et al.: Hybrid Swapping Scheme Based on Per-Process Reclaim

[19] D. Liu, K. Zhong, X. Zhu, Y. Li, L. Long, and Z. Shao, ‘‘Non-volatile mem-
ory based page swapping for building high-performance mobile devices,’’
IEEE Trans. Comput., vol. 66, no. 11, pp. 1918–1931, Nov. 2017.

[20] X. Zhu, D. Liu, L. Liang, K. Zhong, M. Qiu, and E. H.-M. Sha, ‘‘Swap-
Bench: The easy way to demystify swapping in mobile systems,’’ in
Proc. IEEE Int. Conf. High Perform. Comput. Commun., Aug. 2015,
pp. 497–502.

[21] M. Kim. (Apr. 25, 2013). Per Process Reclaim. LWM.net. [Online]. Avail-
able: https://lwn.net/Articles/548431/

[22] Qualcomm, San Diego, CA, USA. (2015). Qualcomm
Snapdragon 617 Processor. [Online]. Available: https://www.
qualcomm.com/documents/snapdragon-617-processor-product-brief

[23] L. Torvalds. (1994). VMSCAN. Linux Foundation, San Francisco,
CA, USA. [Online]. Available: https://git.kernel.org/pub/scm/linux/kernel/
git/stable/linux-stable.git/tree/mm/vmscan.c

[24] R. van Riel and D. Rientjes. (2010). Out of Memory Killer.
Linux Foundation, San Francisco, CA, USA. [Online]. Available:
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/mm/
oom_kill.c

[25] S. Mehat, A. Hjønnevåg, D. Rientjes, G. Kroah-Hartman, and D. Walker.
(2008). Lowmemorykiller.c. Google, Inc., Mountain View, CA, USA.
[Online]. Available: https://android.googlesource.com/kernel/common.
git/+/android-4.4-o-release/drivers/staging/android/lowmemorykiller.c

[26] P. J. Denning, ‘‘The working set model for program behavior,’’ Commun.
ACM, vol. 11, no. 5, pp. 323–333, May 1968.

[27] LG Electronics. Seoul, South Korea. (2018). LG Stylo 4. [Online]. Avail-
able: http://www.lg.com/us/cell-phones/lg-Q710MS-MetroPCS-stylo-4

[28] LG Electronics. Seoul, South Korea. (2018). LG G7 ThinQ. [Online].
Available: http://www.lg.com/us/cell-phones/g7-thinq

[29] LG Electronics. Seoul, South Korea. (2018). LG V35 ThinQ. [Online].
Available: http://www.lg.com/us/cell-phones/lg-V350AWM-v35-thinq-att

[30] Endurance 14nm_32GB_eMMC51_12nm_2GB_LG_Stylo4_170731_r2,
SK Hynix Inc., Icheon, South Korea, 2017.

JUNYEONG HAN received the B.S. and M.S.
degrees in computer engineering from the
School of Computer Science and Engineer-
ing, Chung-Ang University, Seoul, South Korea,
in 2006 and 2008, respectively.

He is currently with LG Electronics, Seoul, as a
Principal Research Engineer. He has been working
to improve the performance of the Linux Kernel
for Android smartphone. His research interests
include Linux systems and machine learning for
mobile systems.

SUNGEUN KIM received the B.S. and M.S.
degrees in electronic engineering from the
School of Electronic Engineering, Korea Uni-
versity, Seoul, South Korea, in 1997 and 2000,
respectively.

He was with Samsung Electronics, Seoul, as a
Linux Kernel Developer, from 2000 to 2005.
Since 2008, he has been developing the
Linux-based operating system and frameworks for
consumer electronic products at LG Electronics,
Seoul.

SUNGYOUNG LEE received the B.S. and M.S.
degrees in computer science from Korea Uni-
versity, Seoul, South Korea, in 1994 and 1996,
respectively.

He has been with LG Electronics, Seoul, as a
Research Fellow, since 1996. He holds three
domestic patents and one U.S. patents. He is cur-
rently developing mobile system software, embed-
ded systems, and embedded Linux systems. His
research interests include Linux memory manage-

ment and machine learning for mobile memory management optimization
depending on user’s usage pattern at the mobile.

JAEHWAN LEE received the B.S. degree in com-
puter engineering from the School of Computer
Science and Engineering, Chung-Ang Univer-
sity, Seoul, South Korea, in 2015, where he is
currently pursuing the Ph.D. degree in software
engineering.

His research interests include mobile operating
systems, embedded systems, and Linux systems.

SUNG JO KIM received the B.S. degree in
applied mathematics from Seoul National Univer-
sity, Seoul, South Korea, in 1975, the M.S. degree
in computer science from KAIST, Seoul, in 1977,
the Ph.D. degree in computer engineering from
The University of Texas at Austin, Austin, TX,
USA, in 1987.

Since 1987, he has been a Professor with the
School of Software, Chung-AngUniversity, Seoul.
He served as the 24th President of the Korean

Institute of Information Scientists and Engineers from 2009 to 2010. He is
the author of five books and over 210 articles, and he holds over 21 patents.
His research interests include cyber-physical systems, context-aware smart
home, and powermanagement of mobile operating systems such as Android.

Dr. Kim was a recipient of the 13th Haedong Award in 2017, which has
been given to a personwho had contributed to significant innovations in engi-
neering education in South Korea by the National Academy of Engineering
of Korea since 2005.

56108 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORKS
	HYBRID SWAPPING
	RELATED DEFINITIONS
	MAXIMUM EXTENSION RATIO OF MAIN MEMORY AND COST OF PAGE OPERATIONS FOR SWAPPING SYSTEMS
	IMPLEMENTATION OF HYBRID SWAPPING

	PERFORMANCE EVALUATION
	EXTENSION RATIO OF MAIN MEMORY
	COST OF PAGE OPERATION
	A MEASURE OF GUARANTEED NON-WEAR-OUT TIME

	CONCLUSION
	REFERENCES
	Biographies
	JUNYEONG HAN
	SUNGEUN KIM
	SUNGYOUNG LEE
	JAEHWAN LEE
	SUNG JO KIM

