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In this paper, we consider the regularity problem of the solutions to the axisymmetric, inviscid, and incompressible Hall-
magnetohydrodynamics (Hall-MHD) equations. First, we obtain the local-in-time existence of sufficiently regular solutions to
the axisymmetric inviscid Hall-MHD equations without resistivity. Second, we consider the inviscid axisymmetric Hall equations
without fluids and prove that there exists a finite time blow-up of a classical solution due to the Hall term. Finally, we obtain some
blow-up criteria for the axisymmetric resistive and inviscid Hall-MHD equations.

1. Introduction

Magnetohydrodynamics is the study of the dynamics of
the electrically conducting fluids. The dynamics of the
fluids can be described by the Navier-Stokes equations
and the dynamics of the magnetic field can be described
by the Maxwell equations for a perfect conductor. The
Hall-magnetohydrodynamics (Hall-MHD) equations differ
from the standard incompressible MHD equations by the
Hall term ∇ × ((∇ × 𝐵) × 𝐵), which plays an impor-
tant role in the study of the magnetic reconnection in
the case of the large magnetic shear (see [1, 2]). In [3],
Hall-MHD equations have been formally derived from
using the generalized Ohm’s law instead of the usual
simplified Ohm’s law. The Cauchy problem for three-
dimensional incompressible Hall-MHD equations reads as
follows:

𝜕𝑡𝑢 + (𝑢 ⋅ ∇) 𝑢 + ∇𝑝 = (∇ × 𝐵) × 𝐵 + ]Δ𝑢,
∇ ⋅ 𝑢 = 0, in R

3 × (0,∞) ,
𝜕𝑡𝐵 − ∇ × (𝑢 × 𝐵) + ∇ × ((∇ × 𝐵) × 𝐵) = 𝜅Δ𝐵,
(𝑢 (0, 𝑥) , 𝐵 (0, 𝑥)) = (𝑢0 (𝑥) , 𝐵0 (𝑥)) , in R

3,
(1)

where 𝑢,𝐵, and𝑝 represent three-dimensional velocity vector
field, the magnetic field, and scalar pressure, respectively. The
initial data 𝑢0 and 𝐵0 satisfy

∇ ⋅ 𝑢0 = ∇ ⋅ 𝐵0 = 0. (2)

Note that if ∇ ⋅ 𝐵0 = 0, then the divergence free condition is
propagated by (1)3. We only consider R3 for a spatial domain
with vanishing at infinity condition for simplicity.

TheHallmagnetohydrodynamicswere studied systemati-
cally by Lighthill [2].TheHall-MHD is important, describing
many physical phenomena, e.g., space plasmas, star for-
mation, neutron stars, and geo-dynamo (see [1, 4–8] and
references therein).

The Hall-MHD equations have been mathematically
investigated in several works. In [9], Acheritogaray, Degond,
Frouvelle, and Liu derived the Hall-MHD equations from
either twofluids’model or kineticmodels in amathematically
more rigorous way. In [10], the global existence of weak
solutions to (1) and the local well-posedness of classical
solution are established when ], 𝜅 > 0. Also, a blow-up
criterion for smooth solution to (1) and the global existence
of smooth solution for small initial data are obtained (see
[10, Theorem 2.2 and 2.3]). Some of the results have been
refined by many authors (see [11–13] and references therein).
Recently, temporal decay for the weak solution and smooth
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solution with small data to Hall-MHD are also established in
[14]. Spatial and temporal decays of solutions to (1) have been
investigated in [15].

Using vector identity, we can rewrite (1) as follows:

𝜕𝑡𝑢 + (𝑢 ⋅ ∇) 𝑢 + ∇(𝑝 + |𝐵|22 ) = (𝐵 ⋅ ∇) 𝐵 + ]Δ𝑢,
∇ ⋅ 𝑢 = 0,

in R
3 × (0,∞) ,

𝜕𝑡𝐵 + (𝑢 ⋅ ∇) 𝐵 + ∇ × ((∇ × 𝐵) × 𝐵) = (𝐵 ⋅ ∇) 𝑢 + 𝜅Δ𝐵,
(𝑢 (0, 𝑥) , 𝐵 (0, 𝑥)) = (𝑢0 (𝑥) , 𝐵0 (𝑥)) ,

in R
3.

(3)

Note that a weak solution (𝑢, 𝐵) to (1) satisfies the following
energy inequality (see [10]):

‖𝑢 (𝑡)‖2𝐿2 + ‖𝐵 (𝑡)‖2𝐿2
+ 2∫𝑡

0
] ‖∇𝑢 (⋅, 𝜏)‖2𝐿2 + 𝜅 ‖∇𝐵 (⋅, 𝜏)‖2𝐿2 𝑑𝜏

≤ 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩𝐵0󵄩󵄩󵄩󵄩2𝐿2 ,
(4)

for almost every 𝑡 ∈ [0,∞).
Next we consider the mathematical setting for the

axisymmetric Hall-MHD equations. Introducing the cylin-
drical coordinates

𝑟 = √𝑥21 + 𝑥22,
𝜃 = arctan𝑥2𝑥1 ,
𝑧 = 𝑥3,

(5)

and standard basis vectors for the cylindrical coordinates

𝑒𝑟 = (cos 𝜃, sin 𝜃, 0) ,
𝑒𝜃 = (− sin 𝜃, cos 𝜃, 0) ,
𝑒𝑧 = (0, 0, 1) ,

(6)

we set

𝑢 = 𝑢𝑟 (𝑟, 𝑧, 𝑡) 𝑒𝑟 + 𝑢𝑧 (𝑟, 𝑧, 𝑡) 𝑒𝑧,
𝐵 = 𝐵𝜃 (𝑟, 𝑧, 𝑡) 𝑒𝜃. (7)

It is well-known that the local-in-time classical solutions to
axisymmetric Navier-Stokes equations without swirl persist
to any time (see [16, 17]). But the global well-posedness for the
axisymmetric Navier-Stokes equations with swirl component
is widely open and has been one of the most fundamental
open problems in the Navier-Stokes equations.

The axisymmetric MHD equations can be written as
follows:

𝜕𝑡𝑢𝑟 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) 𝑢𝑟 − ] (𝜕2𝑟 + 1𝑟 𝜕𝑟 + 𝜕2𝑧 − 1𝑟2 )𝑢𝑟
+ 𝜕𝑟𝑃 = −(𝐵𝜃)2𝑟 ,

𝜕𝑡𝑢𝑧 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) 𝑢𝑧 − ] (𝜕2𝑟 + 1𝑟𝜕𝑟 + 𝜕2𝑧)𝑢𝑧
+ 𝜕𝑧𝑃 = 0,

𝜕𝑟𝑢𝑟 + 𝑢𝑟𝑟 + 𝜕𝑧𝑢𝑧 = 0,
𝜕𝑡𝐵𝜃 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) 𝐵𝜃 − 𝑢𝑟𝐵𝜃𝑟

− 𝜅 (𝜕2𝑟 + 1𝑟 𝜕𝑟 + 𝜕2𝑧 − 1𝑟2) 𝐵𝜃 = 0.

(8)

Lei [18] proved the global well-posedness of classical solu-
tions to system (8) when 𝜅 ≥ 0.

Then axisymmetric Hall-MHD equations are reduced to
the following:

𝜕𝑡𝑢𝑟 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) 𝑢𝑟 − ](𝜕2𝑟 + 1𝑟 𝜕𝑟 + 𝜕2𝑧 − 1𝑟2) 𝑢𝑟
+ 𝜕𝑟𝑃 = −(𝐵𝜃)2𝑟 ,

𝜕𝑡𝑢𝑧 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) 𝑢𝑧 − ](𝜕2𝑟 + 1𝑟 𝜕𝑟 + 𝜕2𝑧) 𝑢𝑧
+ 𝜕𝑧𝑃 = 0,

𝜕𝑟𝑢𝑟 + 𝑢𝑟𝑟 + 𝜕𝑧𝑢𝑧 = 0,
𝜕𝑡𝐵𝜃 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) 𝐵𝜃 − 𝑢𝑟𝐵𝜃𝑟

− 𝜅 (𝜕2𝑟 + 1𝑟 𝜕𝑟 + 𝜕2𝑧 − 1𝑟2 )𝐵𝜃 = 𝜕𝑧((𝐵𝜃)2𝑟 ) .

(9)

For axisymmetric Hall-MHD equations, the global well-
posedness of the axisymmetric solutions to the viscous
case (], 𝜅 > 0) was first established by Fan, Huang, and
Nakamura [19]. Recently, Chae and Weng [20] showed that
the incompressible Hall-MHD system without resistivity is
not globally in time well-posed in any Sobolev space𝐻𝑚(R3)
with𝑚 > 7/2. But local-in-time existence of smooth solution
to (1) is totally open when 𝜅 ≡ 0. Compared with the work in
[18], it seems very surprising that Hall term plays a dominant
role for the occurrence of the singularity and even for the local
well-posedness of the partially viscous Hall-MHD problems.
In this paper, we intend to investigate the blow-up problem
for the solutions to the partially viscous axisymmetric Hall-
MHD equations and local-in-time existence of solutions to
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such solution with the axisymmetry. Setting 𝜔𝜃 = 𝜕𝑧𝑢𝑟−𝜕𝑟𝑢𝑧,Ω = 𝜔𝜃/𝑟, and Π = 𝐵𝜃/𝑟, (9) are equivalent to the following
equations:

𝜕Ω𝜕𝑡 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧)Ω + 2Π𝜕𝑧Π
= ] (𝜕2𝑟 + 3𝑟 𝜕𝑟 + 𝜕2𝑧)Ω,

𝜕Π𝜕𝑡 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧)Π − 2Π𝜕𝑧Π
= 𝜅(𝜕2𝑟 + 3𝑟 𝜕𝑟 + 𝜕2𝑧)Π.

(10)

First, we consider the local well-posedness of the axisymmet-
ric Hall MHD equations with ] ≡ 0 and 𝜅 ≡ 0, and (10) can
be rewritten as the equations

𝜕𝑡Π + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) Π = 2Π𝜕𝑧Π (11)

𝜕𝑡Ω + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧)Ω = −2Π𝜕𝑧Π. (12)

Theorem 1. Let (𝑢0, 𝐵0, 𝐵0/𝑟, curl 𝑢0/𝑟) ∈ 𝐻𝑚(R3) ×𝐻𝑚(R3) × 𝐻𝑚(R3) × 𝐻𝑚−1(R3) with integer 𝑚 > 9/2 be
axisymmetric initial data. There exist 𝑇0 > 0 and classical and
axisymmetric solution (Π,Ω) to (11)–(12) such that

curl 𝑢𝑟 = Ω,
𝐵𝑟 = Π,

Ω (𝑡) ∈ 𝐶 ([0, 𝑇0) ;𝐻𝑚) ∩ Lip ([0, 𝑇0) ;𝐻𝑚−1) and 𝑢 (𝑡) , 𝐵 (𝑡) , Π (𝑡) ∈ 𝐶 ([0, 𝑇0) ;𝐻𝑚) ∩ Lip ([0, 𝑇0) ;𝐻𝑚−1) .
(13)

Remark 2. Since the local-in-time regularity of solution to
(1) is necessary to preserve the axisymmetry of the Hall-
MHDequations locally in time,Theorem 1 cannot resolve the
open question raised from [20]. We remark that the relation
between (11)–(12) and (1) cannot be justified without local
well-posedness of solution to (1) (𝜅 = ] ≡ 0).

Next, we consider the local well-posedness/blow-up
problem for the axisymmetric Hall equations with zero fluid
velocity and 𝜅 = 0.We rewrite theHall equation forΠ = 𝐵𝜃/𝑟:

𝜕𝑡Π = −2Π𝜕𝑧Π,
Π (𝑥, 0) = Π0 (𝑥) . (14)

The above equation has similar features to the inviscid
Burgers equation.

Theorem 3. Assume Π0 ∈ 𝐻𝑚(R3) for any integer 𝑚 > 5/2.
Then there exist𝑇0 > 0 and a classical solution to (14) such that

Π (𝑡) ∈ 𝐶 ([0, 𝑇0) ;𝐻𝑚 (R3))
∩ Lip ([0, 𝑇0) ;𝐻𝑚−1 (R3)) . (15)

Furthermore, for anyΠ0 ̸= 0, there exists 𝑇∗ > 0 such that the
above local solutionΠ(𝑡) has singularity at a finite time 𝑡 = 𝑇∗.

Remark 4. In [20], the authors showed that if the initial
data Π0 satisfies 𝜕𝑧Π0(0, 0) ≥ 104𝐶2

∗ for some constant𝐶∗ and Π0(0, 0) > 0, then the singularity of Π and Ω to
axisymmetric inviscid Hall-MHD equations happens in a
finite time.Theorem 3 implies that the singularity ofΠwhich
is a solution to (14) happens in a finite time without any
restriction of the initial data.

Finally, we consider the incompressible Hall-MHD equa-
tions with zero fluid viscosity, for simplicity, assuming that
] ≡ 0 and 𝜅 ≡ 1.

For the solutions to (10), global a priori bounds can be
obtained; that is,

‖Π‖𝐿∞(0,𝑇;𝐿∞) + ‖Ω‖𝐿∞(0,𝑇;𝐿2) < ∞ for all 𝑇 > 0. (16)

We assume that our initial data (𝑢0, 𝐵0) is axisymmetric and
satisfies

(𝑢0, 𝐵0, Ω0, Π0) ∈ 𝐻𝑚 (R3)4 with 𝑚 > 52,
∇ ⋅ 𝑢0 = ∇ ⋅ 𝐵0 = 0. (17)

The local-in-time existence of a smooth solution to (1) was
already obtained by Chae, Wan, and Wu [21]. We obtain the
following blow-up criterion for the local-in-time solutions to
the Hall-MHD equations with ] ≡ 0 and 𝜅 ≡ 1.
Theorem5. Let (𝑢, 𝐵, 𝑝) be a local-in-time classical solution to
the axisymmetric Hall-MHD equations (9) with ] = 0, 𝜅 = 1.
Then, for the first blow-up time𝑇∗ < ∞ of the classical solution
to (9), it holds that

lim sup
𝑡↗𝑇∗

(‖𝑢 (𝑡)‖2𝐻𝑚 + ‖𝐵 (𝑡)‖2𝐻𝑚 + ‖Ω (𝑡)‖2𝐻𝑚
+ ‖Π (𝑡)‖2𝐻𝑚) = ∞, (18)

if and only if one of the following conditions holds:
(i)

∫𝑇∗

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑢𝑟+𝑟

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(R3\𝐶𝑅) 𝑑𝑡 + ∫𝑇∗

0

󵄩󵄩󵄩󵄩𝑟𝑢𝑟+󵄩󵄩󵄩󵄩𝐿∞(𝐶𝑅) 𝑑𝑡 = ∞. (19)
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(ii)

∫𝑇∗

0

󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩4𝐿2(R3\𝐶𝑅) 𝑑𝑡 = ∞. (20)

In the above,𝐶𝑅 denotes the inside of infinite cylinder such that𝐶𝑅 = {(𝑥, 𝑦, 𝑧) | 𝑥2 + 𝑦2 < 𝑅2} for any 𝑅 > 0 and 𝑓+(𝑥) is
defined bymax{𝑓(𝑥), 0}.
Remark 6. For the usual MHD equations, Lei [18] proved
the global well-posedness for the axisymmetric MHD equa-
tions even for the case that ] ≡ 1 and 𝜅 ≡ 0. For Hall-
MHD equations, even local well-posedness is widely open
for this zero resisitivity case due to the Hall term (see [20]).
Theorem5 indicates that if there exists a finite time singularity
to the axisymmetric equations with ] ≡ 0 and 𝜅 ≡ 1, then
some norms of velocity and vorticity should approach infinity
even for the outside of any infinite cylinder.

For simplicity, we denote 𝐶 for the harmless constant
which changes from line to line, and ‖ ⋅ ‖𝑚 for𝐻𝑚-norm.

2. Proof of Theorem 1:
Local-in-Time Existence

In this section, we consider the local-in-time existence of
regular solution to (11)–(12). Even if this problem does
not seem complicated, we have a few technical difficulties
raised from the axisymmetry; e.g., mollifying equations do
not preserve the axial symmetry. We briefly explain some
steps to prove Theorem 1: First, we consider system (21)
without giving any symmetry. We can obtain the regularized
system (25) by using standard mollifier. Then we can obtain
various estimates and local-in-time existence of a solution
for (21). Finally, we consider the initial data which is axial
symmetry and axisymmetry is also preserved by (21) and this
argument gives a proof of local-in-time existence of solution
to (11)–(12).

We consider the equations

𝜕𝑡𝜔 + (u ⋅ ∇) 𝜔 = 𝑢𝑟Ω − 2𝐵𝜕𝑧Π,
𝜕𝑡𝐵 + (u ⋅ ∇) 𝐵 = 𝑢𝑟Π + 2𝐵𝜕𝑧Π,
𝜕𝑡Π + (u ⋅ ∇)Π = 2Π𝜕𝑧Π,
𝜕𝑡Ω + (u ⋅ ∇)Ω = −2Π𝜕𝑧Π,

(21)

where 𝜔, 𝐵, Π, and Ω are assumed to be independent scalar
valued functions without assuming symmetry for a while,
and the divergence free velocity field u = 𝑢𝑟(𝑟, 𝜃, 𝑧)𝑒𝑟 +𝑢𝑧(𝑟, 𝜃, 𝑧)𝑒𝑧 is assumed to be obtained from the equation

−Δu = ∇ × (𝜔𝑒𝜃) . (22)

Thus, we have

u (𝑥) = Φ ∗ (∇ × (𝜔𝑒𝜃)) , where Φ (𝑥) = 14𝜋 |𝑥| . (23)

If𝜔 ∈ 𝐻1(R3)∩𝐶(R3), then the divergence theoremand trace
theorem induce the following estimates:

|u (𝑥)| ≤ ‖Φ‖𝐿2(𝐵(0;1)) ‖∇𝜔‖𝐿2(R3)
+ ‖∇Φ‖𝐿2(R3\𝐵(0;1)) ‖𝜔‖𝐿2(R3)
+ ∫

𝜕𝐵(0;1)
Φ (𝑦) 𝜔 (𝑥 − 𝑦) 𝑑𝑆

≤ ‖Φ‖𝐿2(𝐵(0;1)) ‖∇𝜔‖𝐿2(R3)
+ ‖∇Φ‖𝐿2(R3\𝐵(0;1)) ‖𝜔‖𝐿2(R3)
+ 𝐶(∫

𝜕𝐵(0;1)

󵄨󵄨󵄨󵄨𝜔 (𝑥 − 𝑦)󵄨󵄨󵄨󵄨2 𝑑𝑆)1/2
≤ ‖Φ‖𝐿2(𝐵(0;1)) ‖∇𝜔‖𝐿2(R3)

+ ‖∇Φ‖𝐿2(R3\𝐵(0;1)) ‖𝜔‖𝐿2(R3) + 𝐶 ‖𝜔‖𝐻1(R3)
≤ 𝐶 ‖𝜔‖𝐻1(R3) .

(24)

We define a regularized system of (21) as follows:

𝜕𝑡𝜔𝜖 +J𝜖 (J𝜖u ⋅ ∇)J𝜖𝜔𝜖
= J𝜖 (J𝜖𝑢𝑟𝜖J𝜖Ω𝜖) − 2J𝜖 (J𝜖𝐵𝜖𝜕𝑧J𝜖Π𝜖) ,

𝜕𝑡𝐵𝜖 +J𝜖 (J𝜖u ⋅ ∇)J𝜖𝐵𝜖
= J𝜖 (J𝜖𝑢𝑟𝜖J𝜖Π𝜖) + 2J𝜖 (J𝜖𝐵𝜖𝜕𝑧J𝜖Π𝜖) ,

𝜕𝑡Π𝜖 +J𝜖 (J𝜖u ⋅ ∇)J𝜖Π𝜖 = 2J𝜖 (J𝜖Π𝜖𝜕𝑧J𝜖Π𝜖) ,
𝜕𝑡Ω𝜖 +J𝜖 (J𝜖u ⋅ ∇)J𝜖Ω𝜖 = −2J𝜖 (J𝜖Π𝜖𝜕𝑧J𝜖Π𝜖) ,

(25)

where J𝜖 is a standard mollifier as in [22]. Next, we obtain
apriori estimates to derive a time 𝑇0 which does not depend
on 𝜖 > 0. Then we prove that (25) have a local-in-
time solution 𝑆𝜖 = (𝜔𝜖, 𝐵𝜖, Π𝜖, Ω𝜖) ∈ 𝐶1(0, 𝑇0; 𝐻𝑚) ×𝐶1(0, 𝑇0; 𝐻𝑚)×𝐶1(0, 𝑇0;𝐻𝑚+1)×𝐶1(0, 𝑇0; 𝐻𝑚) space for each𝜖 > 0.
Proposition 7. Let

󵄩󵄩󵄩󵄩𝑆𝜖󵄩󵄩󵄩󵄩𝑋𝑚 (𝑡) fl 󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚 + 󵄩󵄩󵄩󵄩𝐵𝜖󵄩󵄩󵄩󵄩𝑚 + 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚+1 + 󵄩󵄩󵄩󵄩Ω𝜖

󵄩󵄩󵄩󵄩𝑚 (26)

where 𝑋𝑚 = 𝐻𝑚(R3) × 𝐻𝑚(R3) × 𝐻𝑚+1(R3) × 𝐻𝑚(R3) with
an integer 𝑚 > 5/2. Then, for some positive constant 𝐶0 and𝑇 < 1/𝐶0𝑆0 with 𝑆0 = ‖𝑆𝜖(0)‖𝑋𝑚 , we have

sup
0<𝑡<𝑇

󵄩󵄩󵄩󵄩𝑆𝜖󵄩󵄩󵄩󵄩𝑋𝑚 (𝑡) ≤ 𝑆01 − 𝐶0𝑆0𝑇,
sup
0<𝑡<𝑇

󵄩󵄩󵄩󵄩𝜕𝑡𝑆𝜖󵄩󵄩󵄩󵄩𝑋𝑚−1 (𝑡) ≤ ( 𝑆01 − 𝐶0𝑆0𝑇)2 . (27)
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Proof. For 𝑚 > 5/2 and 1 ≤ 𝑠 ≤ 𝑚, we have the following
inequality by the calculus inequality and Hölder’s inequality:

12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝑠𝜔𝜖󵄩󵄩󵄩󵄩2𝐿2
≤ ∫

R3

󵄨󵄨󵄨󵄨J𝜖∇𝑠𝜔𝜖󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨∇𝑠−1 (J𝜖∇u𝜖 ⋅J𝜖∇𝜔𝜖)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
+ ∫

R3

󵄨󵄨󵄨󵄨J𝜖∇𝑠𝜔𝜖󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨∇𝑠 (J𝜖𝑢𝑟𝜖J𝜖Ω𝜖)󵄨󵄨󵄨󵄨 𝑑𝑥
+ ∫

R3

󵄨󵄨󵄨󵄨J𝜖∇𝑠𝜔𝜖󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨∇𝑠 (J𝜖𝐵𝜖𝜕𝑧J𝜖Π𝜖)󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚
⋅ (󵄩󵄩󵄩󵄩∇u𝜖󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩∇𝑠𝜔𝜖󵄩󵄩󵄩󵄩𝐿2 + 󵄩󵄩󵄩󵄩∇𝑠u𝜖

󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇𝜔𝜖󵄩󵄩󵄩󵄩𝐿∞)
+ 󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚 (󵄩󵄩󵄩󵄩𝑢𝑟𝜖󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩∇𝑠Ω𝜖

󵄩󵄩󵄩󵄩𝐿2 + 󵄩󵄩󵄩󵄩Ω𝜖
󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩∇𝑠𝑢𝑟𝜖󵄩󵄩󵄩󵄩𝐿2)

+ 2 󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚 (󵄩󵄩󵄩󵄩𝐵𝜖󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩󵄩∇𝑠+1Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿2
+ 󵄩󵄩󵄩󵄩∇Π𝜖

󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩∇𝑠𝐵𝜖󵄩󵄩󵄩󵄩𝐿2) ≤ 𝐶 󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚 (󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚−1 󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚
+ 󵄩󵄩󵄩󵄩Ω𝜖

󵄩󵄩󵄩󵄩𝑚 󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚 + 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚+1 󵄩󵄩󵄩󵄩𝐵𝜖󵄩󵄩󵄩󵄩𝑚) .

(28)

Similarly, for𝑚 > 5/2 and 1 ≤ 𝑠 ≤ 𝑚, we can obtain

12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝑠𝐵𝜖󵄩󵄩󵄩󵄩2𝐿2 ≤ 󵄩󵄩󵄩󵄩𝐵𝜖󵄩󵄩󵄩󵄩𝑚 (󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚−1 󵄩󵄩󵄩󵄩𝐵𝜖󵄩󵄩󵄩󵄩𝑚
+ 󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩𝑚 + 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚+1 󵄩󵄩󵄩󵄩𝐵𝜖󵄩󵄩󵄩󵄩𝑚) ,

(29)

and 1 ≤ 𝑠 ≤ 𝑚 + 1,
12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝑠Π𝜖

󵄩󵄩󵄩󵄩2𝐿2
≤ 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩𝑚+1 (󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚+1 + 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩2𝑚+1) .
(30)

For an integer 𝑚 > 5/2 and all integers 1 ≤ 𝑠 ≤ 𝑚, we have

12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝑠 (Π𝜖 + Ω𝜖)󵄩󵄩󵄩󵄩2𝐿2 ≤ 󵄩󵄩󵄩󵄩Π𝜖 + Ω𝜖
󵄩󵄩󵄩󵄩2𝑚 󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚−1 . (31)

Hence, we conclude that, for𝑚 > 5/2,
𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑆𝜖󵄩󵄩󵄩󵄩𝑋𝑚 (𝑡)

≤ 12𝐶0 (󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩2𝑚 + 󵄩󵄩󵄩󵄩𝐵𝜖󵄩󵄩󵄩󵄩2𝑚 + 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩2𝑚+1 + 󵄩󵄩󵄩󵄩Π𝜖 + Ω𝜖

󵄩󵄩󵄩󵄩2𝑚)
≤ 𝐶0

󵄩󵄩󵄩󵄩𝑆𝜖󵄩󵄩󵄩󵄩2𝑋𝑚 (𝑡) .
(32)

Inequality (32) implies that (27) holds true.

Proposition 8. Assume 𝐶0 and 𝑆0 are the same as in Propo-
sition 7. Let 𝑇0 = 3/4𝐶0𝑆0. Then for given initial data𝜔0, 𝐵0, Ω0 ∈ 𝐻𝑚(R3), and Π0 ∈ 𝐻𝑚+1(R3) with an integer𝑚 > 5/2, there exists a unique solution (𝜔𝜖, 𝐵𝜖, Π𝜖, Ω𝜖) to
regularized system (25) such that 𝜔𝜖, 𝐵𝜖, Ω𝜖 ∈ 𝐶1(0, 𝑇0;𝐻𝑚),Π𝜖 ∈ 𝐶1(0, 𝑇0; 𝐻𝑚+1).

Proof. We set

𝐹1𝜖 (𝜔𝜖, 𝐵𝜖, Π𝜖, Ω𝜖) = −J𝜖 (J𝜖u𝜖 ⋅ ∇)J𝜖𝜔𝜖
+J𝜖 (J𝜖𝑢𝑟𝜖J𝜖Ω𝜖)
− 2J𝜖 (J𝜖𝐵𝜖𝜕𝑧J𝜖Π𝜖) ,

𝐹2𝜖 (𝜔𝜖, 𝐵𝜖, Π𝜖, Ω𝜖) = −J𝜖 (J𝜖u𝜖 ⋅ ∇)J𝜖𝐵𝜖
+J𝜖 (J𝜖𝑢𝑟𝜖J𝜖Π𝜖)
+ 2J𝜖 (J𝜖𝐵𝜖𝜕𝑧J𝜖Π𝜖) ,

𝐹3𝜖 (𝜔𝜖, Π𝜖) = −J𝜖 (J𝜖u𝜖 ⋅ ∇)J𝜖Π𝜖

+ 2J𝜖 (J𝜖Π𝜖𝜕𝑧J𝜖Π𝜖) ,
𝐹4𝜖 (𝜔𝜖, Π𝜖, Ω𝜖) = −J𝜖 (J𝜖u𝜖 ⋅ ∇)J𝜖Ω𝜖

− 2J𝜖 (J𝜖Π𝜖𝜕𝑧J𝜖Π𝜖) .

(33)

First, we show that 𝐹1𝜖 is Lipschitz continuous on𝐻𝑚 space.
We estimate for 𝜖 < 1,𝑚 ≥ 3󵄩󵄩󵄩󵄩󵄩𝐹1𝜖 (𝜔𝜖, 𝐵𝜖, Π𝜖, Ω𝜖) − 𝐹1𝜖 (𝜔̃𝜖, 𝐵𝜖, Π𝜖, Ω𝜖)󵄩󵄩󵄩󵄩󵄩𝑚

≤ 󵄩󵄩󵄩󵄩(J𝜖 (u𝜖 − ũ𝜖) ⋅ ∇)J𝜖𝜔𝜖󵄩󵄩󵄩󵄩𝑚
+ 󵄩󵄩󵄩󵄩(J𝜖ũ𝜖 ⋅ ∇) (J𝜖𝜔𝜖 −J𝜖𝜔̃𝜖)󵄩󵄩󵄩󵄩𝑚
+ 󵄩󵄩󵄩󵄩J𝜖 (𝑢𝑟𝜖 − 𝑢̃𝑟𝜖)J𝜖Ω𝜖

󵄩󵄩󵄩󵄩𝑚
≤ 𝐶𝜖 (󵄩󵄩󵄩󵄩u𝜖 − ũ𝜖

󵄩󵄩󵄩󵄩𝐿∞ + 󵄩󵄩󵄩󵄩𝜔𝜖 − 𝜔̃𝜖󵄩󵄩󵄩󵄩𝑚−1)
⋅ (󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚 + 𝜖 󵄩󵄩󵄩󵄩Ω𝜖

󵄩󵄩󵄩󵄩𝑚) + 𝐶𝜖 (󵄩󵄩󵄩󵄩ũ𝜖󵄩󵄩󵄩󵄩𝐿∞ + 󵄩󵄩󵄩󵄩𝜔̃𝜖󵄩󵄩󵄩󵄩𝑚−1)
⋅ 󵄩󵄩󵄩󵄩𝜔𝜖 − 𝜔̃𝜖󵄩󵄩󵄩󵄩𝑚 ≤ 𝐶𝜖 (󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚 + 󵄩󵄩󵄩󵄩Ω𝜖

󵄩󵄩󵄩󵄩𝑚 + 󵄩󵄩󵄩󵄩𝜔̃𝜖󵄩󵄩󵄩󵄩𝑚−1)
⋅ 󵄩󵄩󵄩󵄩𝜔𝜖 − 𝜔̃𝜖󵄩󵄩󵄩󵄩𝑚 .

(34)

By the similar estimates as in (34), we obtain󵄩󵄩󵄩󵄩󵄩𝐹1𝜖 (𝜔𝜖, 𝐵𝜖, Π𝜖, Ω𝜖) − 𝐹1𝜖 (𝜔𝜖, 𝐵𝜖, Π𝜖, Ω𝜖)󵄩󵄩󵄩󵄩󵄩𝑚
≤ 2 󵄩󵄩󵄩󵄩󵄩(J𝜖𝐵𝜖 −J𝜖𝐵𝜖) 𝜕𝑧J𝜖Π𝜖

󵄩󵄩󵄩󵄩󵄩𝑚
≤ 𝐶 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩𝑚+1 󵄩󵄩󵄩󵄩󵄩𝐵𝜖 − 𝐵𝜖󵄩󵄩󵄩󵄩󵄩𝑚 ,
(35)

󵄩󵄩󵄩󵄩󵄩𝐹1𝜖 (𝜔𝜖, 𝐵𝜖, Π𝜖, Ω𝜖) − 𝐹1𝜖 (𝜔𝜖, 𝐵𝜖, Π̃𝜖, Ω𝜖)󵄩󵄩󵄩󵄩󵄩𝑚
≤ 2 󵄩󵄩󵄩󵄩󵄩J𝜖𝐵𝜖 (𝜕𝑧J𝜖Π𝜖 − 𝜕𝑧J𝜖Π̃𝜖)󵄩󵄩󵄩󵄩󵄩𝑚
≤ 𝐶 󵄩󵄩󵄩󵄩𝐵𝜖󵄩󵄩󵄩󵄩𝑚 󵄩󵄩󵄩󵄩󵄩Π𝜖 − Π̃𝜖

󵄩󵄩󵄩󵄩󵄩𝑚+1 ,
(36)

󵄩󵄩󵄩󵄩󵄩𝐹1𝜖 (𝜔𝜖, 𝐵𝜖, Π𝜖, Ω𝜖) − 𝐹1𝜖 (𝜔𝜖, 𝐵𝜖, Π𝜖, Ω̃𝜖)󵄩󵄩󵄩󵄩󵄩𝑚
≤ 󵄩󵄩󵄩󵄩󵄩J𝜖𝑢𝑟𝜖 (J𝜖Ω𝜖 −J𝜖Ω̃𝜖)󵄩󵄩󵄩󵄩󵄩𝑚
≤ 𝐶 󵄩󵄩󵄩󵄩𝜔𝜖󵄩󵄩󵄩󵄩𝑚−1 󵄩󵄩󵄩󵄩󵄩Ω𝜖 − Ω̃𝜖

󵄩󵄩󵄩󵄩󵄩𝑚 .
(37)
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By the virtue of properties of mollifier, Lipschitz continuity
of the remaining functions 𝐹𝑗𝜖 , 𝑗 = 2, 3, 4, can be obtained
with constant 𝐶/𝜖. Thus, we can deduce the following for ‖ ⋅‖𝑋𝑚 , ‖̃⋅‖𝑋𝑚 ≤ 𝑅,

󵄩󵄩󵄩󵄩𝐹𝜖 (⋅) − 𝐹𝜖 (̃⋅)󵄩󵄩󵄩󵄩𝑋𝑚 ≤ 𝐶𝜖 𝑅 ‖⋅ − ⋅̃‖𝑋𝑚 (38)

with 𝑚 ≥ 3 and 𝐹𝜖 = (𝐹1𝜖 , 𝐹2𝜖 , 𝐹3𝜖 , 𝐹4𝜖 ). Now we use the Picard
theorem with domain 𝑋𝑚. By picking any initial data 𝑆𝜖(0) ∈𝑋𝑚 and choosing 𝑇0 = 3/4𝐶0𝑆0, we have, for 𝑅 = 𝑆0/(1 −𝐶0𝑇0𝑆0) = 4𝑆0,

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩𝑆𝜖󵄩󵄩󵄩󵄩𝑋𝑚 (𝑡) = 𝐹𝜖 (𝑆𝜖 (𝑡)) ,
󵄩󵄩󵄩󵄩󵄩𝐹𝜖 (𝑆𝜖) − 𝐹𝜖 (𝑆𝜖)󵄩󵄩󵄩󵄩󵄩𝑋𝑚 ≤ 4𝐶𝑆0𝜖 󵄩󵄩󵄩󵄩󵄩𝑆𝜖 − 𝑆𝜖󵄩󵄩󵄩󵄩󵄩𝑋𝑚

(39)

where ‖𝑆𝜖‖𝑋𝑚 ,‖𝑆𝜖‖𝑋𝑚 ≤ 4𝑆0. Therefore, the Picard theorem
implies that, for each 0 < 𝜖 < 1, there exists a unique solution𝑆𝜖(𝑡) ∈ 𝐶1(0, 𝑇𝜖; 𝑋𝑚) for a fixed time𝑇𝜖 > 0. For simplicity, let𝑇𝜖 be the maximal existence time of such solution. Suppose
that, for some 0 < 𝜖 < 1, we have 𝑇𝜖 < 𝑇0. Then by
Proposition 7, for arbitrarily small 𝛿 > 0, we have

󵄩󵄩󵄩󵄩𝑆𝜖󵄩󵄩󵄩󵄩𝑋𝑚 (𝑇𝜖 − 𝛿) ≤ 𝑆01 − 𝐶0𝑆0𝑇𝜖 < 4𝑆0. (40)

If we apply the standard continuation argument, then we
can have local-in-time solution 𝑆𝜖 at least until 𝑇0. This
contradicts the assumption that 𝑇𝜖 < 𝑇0. Hence we prove
that, for any 0 < 𝜖 < 1, there is a unique solution 𝑆𝜖(𝑡)
with a uniform time 𝑇0, such that 𝑆𝜖(𝑡) ∈ 𝐶1(0, 𝑇0; 𝑋𝑚). This
completes the proof.

Proposition 9. For an integer𝑚 > 7/2, the solutions obtained
in Proposition 8 form the Cauchy sequences in the following
spaces:

{𝑆𝜖} ∈ 𝐶 (0, 𝑇0; 𝑋1) ,
{𝜕𝑡𝑆𝜖} ∈ 𝐶 (0, 𝑇0; 𝑋0) . (41)

Proof. Taking 𝜕𝑖 operator (𝑖 = 1, 2, 3) on both sides of (25)1
and multiplying 𝜕𝑖𝜔𝜖, we deduce that

12 𝜕𝜕𝑡 󵄨󵄨󵄨󵄨𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)󵄨󵄨󵄨󵄨2
= 𝜕𝑖 (𝐹1𝜖 (𝜔𝜖, 𝐵𝜖, Π𝜖, Ω𝜖) − 𝐹1𝜖󸀠 (𝜔𝜖󸀠 , 𝐵𝜖󸀠 , Π𝜖󸀠 , Ω𝜖󸀠))
⋅ 𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠) = 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 + 𝐴5 + 𝐴6,

(42)

where𝐴1

= ((J𝜖 −J𝜖󸀠) 𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖𝜕𝑖u𝜖 ⋅ ∇)J𝜖𝜔𝜖
+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) ((J𝜖 −J𝜖󸀠) 𝜕𝑖u𝜖 ⋅ ∇)J𝜖𝜔𝜖
+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖󸀠𝜕𝑖 (u𝜖 − u𝜖󸀠) ⋅ ∇)J𝜖𝜔𝜖
+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖󸀠𝜕𝑖u𝜖󸀠 ⋅ ∇) (J𝜖 −J𝜖󸀠) 𝜔𝜖
+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖󸀠𝜕𝑖u𝜖󸀠 ⋅ ∇)J𝜖󸀠 (𝜔𝜖 − 𝜔𝜖󸀠) ,

(43)

𝐴2

= ((J𝜖 −J𝜖󸀠) 𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖u𝜖 ⋅ ∇)J𝜖𝜕𝑖𝜔𝜖
+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) ((J𝜖 −J𝜖󸀠)u𝜖 ⋅ ∇)J𝜖𝜕𝑖𝜔𝜖
+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖󸀠 (u𝜖 − u𝜖󸀠) ⋅ ∇)J𝜖𝜕𝑖𝜔𝜖
+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖󸀠u𝜖󸀠 ⋅ ∇) (J𝜖 −J𝜖󸀠) 𝜕𝑖𝜔𝜖
+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖󸀠u𝜖󸀠 ⋅ ∇)J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠) ,

(44)

𝐴3

= ((J𝜖 −J𝜖󸀠) 𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖𝜕𝑖𝑢𝑟𝜖J𝜖Ω𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖 −J𝜖󸀠) 𝜕𝑖𝑢𝑟𝜖J𝜖Ω𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠𝜕𝑖 (𝑢𝑟𝜖 − 𝑢𝑟𝜖󸀠)J𝜖Ω𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠𝜕𝑖𝑢𝑟𝜖󸀠 (J𝜖 −J𝜖󸀠)Ω𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠𝜕𝑖𝑢𝑟𝜖󸀠J𝜖󸀠 (Ω𝜖 − Ω𝜖󸀠) ,

(45)

𝐴4

= ((J𝜖 −J𝜖󸀠) 𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖𝑢𝑟𝜖J𝜖𝜕𝑖Ω𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖 −J𝜖󸀠) 𝑢𝑟𝜖J𝜖𝜕𝑖Ω𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠 (𝑢𝑟𝜖 − 𝑢𝑟𝜖󸀠)J𝜖𝜕𝑖Ω𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠𝑢𝑟𝜖󸀠 (J𝜖 −J𝜖󸀠) 𝜕𝑖Ω𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠𝑢𝑟𝜖󸀠J𝜖󸀠𝜕𝑖 (Ω𝜖 − Ω𝜖󸀠) ,

(46)

𝐴5

= ((J𝜖 −J𝜖󸀠) 𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖𝜕𝑖𝐵𝜖J𝜖𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖 −J𝜖󸀠) 𝜕𝑖𝐵𝜖J𝜖𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠𝜕𝑖 (𝐵𝜖 − 𝐵𝜖󸀠)J𝜖𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠𝜕𝑖𝐵𝜖󸀠 (J𝜖 −J𝜖󸀠) 𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠𝜕𝑖𝐵𝜖󸀠J𝜖󸀠𝜕𝑧 (Π𝜖 − Π𝜖󸀠) ,

(47)
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𝐴6

= ((J𝜖 −J𝜖󸀠) 𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖𝐵𝜖J𝜖𝜕𝑖𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠)) (J𝜖 −J𝜖󸀠) 𝐵𝜖J𝜖𝜕𝑖𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠 (𝐵𝜖 − 𝐵𝜖󸀠)J𝜖𝜕𝑖𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠𝐵𝜖󸀠 (J𝜖 −J𝜖󸀠) 𝜕𝑖𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖 (𝜔𝜖 − 𝜔𝜖󸀠))J𝜖󸀠𝐵𝜖󸀠J𝜖󸀠𝜕𝑖𝜕𝑧 (Π𝜖 − Π𝜖󸀠) .

(48)

𝐴1, . . . , 𝐴6 can be estimated as follows:

∫
R3

󵄨󵄨󵄨󵄨𝐴1
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩(J𝜖𝜕𝑖u𝜖 ⋅ ∇)J𝜖𝜔𝜖󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇u𝜖󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩∇𝜔𝜖󵄩󵄩󵄩󵄩𝐿∞
+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩2𝐿2 󵄩󵄩󵄩󵄩∇𝜔𝜖󵄩󵄩󵄩󵄩𝐿∞
+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇u𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇𝜔𝜖󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩2𝐿2 󵄩󵄩󵄩󵄩∇u𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ ,

(49)

∫
R3

󵄨󵄨󵄨󵄨𝐴2
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩(J𝜖u𝜖 ⋅ ∇)J𝜖𝜕𝑖𝜔𝜖󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇u𝜖󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩∇2𝜔𝜖󵄩󵄩󵄩󵄩󵄩𝐿∞
+ 2 󵄩󵄩󵄩󵄩𝜔𝜖 − 𝜔𝜖󸀠󵄩󵄩󵄩󵄩21 󵄩󵄩󵄩󵄩󵄩∇2𝜔𝜖󵄩󵄩󵄩󵄩󵄩𝐿2
+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩u𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2𝜔𝜖󵄩󵄩󵄩󵄩󵄩1 ,

(50)

∫
R3

󵄨󵄨󵄨󵄨𝐴3
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩J𝜖𝜕𝑖𝑢𝑟𝜖J𝜖Ω𝜖
󵄩󵄩󵄩󵄩1

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇u𝜖󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩Ω𝜖
󵄩󵄩󵄩󵄩𝐿∞

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩2𝐿2 󵄩󵄩󵄩󵄩Ω𝜖
󵄩󵄩󵄩󵄩𝐿∞

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇u𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩Ω𝜖
󵄩󵄩󵄩󵄩1

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇u𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩Ω𝜖 − Ω𝜖󸀠
󵄩󵄩󵄩󵄩𝐿2 ,

(51)

∫
R3

󵄨󵄨󵄨󵄨𝐴4
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩J𝜖𝑢𝑟𝜖J𝜖𝜕𝑖Ω𝜖
󵄩󵄩󵄩󵄩1

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇u𝜖󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇Ω𝜖
󵄩󵄩󵄩󵄩𝐿∞

+ 󵄩󵄩󵄩󵄩𝜔𝜖 − 𝜔𝜖󸀠󵄩󵄩󵄩󵄩21 󵄩󵄩󵄩󵄩∇Ω𝜖
󵄩󵄩󵄩󵄩𝐿2

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩u𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇Ω𝜖
󵄩󵄩󵄩󵄩1

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩u𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩∇ (Ω𝜖 − Ω𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 ,
(52)

∫
R3

󵄨󵄨󵄨󵄨𝐴5
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩J𝜖𝜕𝑖𝐵𝜖J𝜖𝜕𝑧Π𝜖
󵄩󵄩󵄩󵄩1

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇𝐵𝜖󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩∇Π𝜖
󵄩󵄩󵄩󵄩𝐿∞

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇ (𝐵𝜖 − 𝐵𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇Π𝜖
󵄩󵄩󵄩󵄩𝐿∞

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇𝐵𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇Π𝜖
󵄩󵄩󵄩󵄩1

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇𝐵𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩∇ (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 ,

(53)

∫
R3

󵄨󵄨󵄨󵄨𝐴6
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩J𝜖𝐵𝜖J𝜖𝜕𝑖𝜕𝑧Π𝜖
󵄩󵄩󵄩󵄩1

+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩𝐵𝜖󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿∞
+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩𝐵𝜖 − 𝐵𝜖󸀠󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿∞
+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩𝐵𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖

󵄩󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩𝐵𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 .

(54)

Similarly, we can obtain the estimates for Π.
12 𝑑𝑑𝑡 󵄨󵄨󵄨󵄨󵄨𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)󵄨󵄨󵄨󵄨󵄨2

= 𝜕𝑖𝜕𝑗 (𝐹3𝜖 (𝜔𝜖, Π𝜖) − 𝐹3𝜖󸀠 (𝜔𝜖󸀠 , Π𝜖󸀠)) 𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)
= 𝐵1 + 𝐵2 + 𝐵3 + 𝐵4 + 𝐵5 + 𝐵6

(55)

where

𝐵1 = ((J𝜖 −J𝜖󸀠) 𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖𝜕𝑖𝜕𝑗u𝜖 ⋅ ∇)
⋅J𝜖Π𝜖 + (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))
⋅ ((J𝜖 −J𝜖󸀠) 𝜕𝑖𝜕𝑗u𝜖 ⋅ ∇)J𝜖Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖󸀠𝜕𝑖𝜕𝑗 (u𝜖 − u𝜖󸀠) ⋅ ∇)
⋅J𝜖Π𝜖 + (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖󸀠𝜕𝑖𝜕𝑗u𝜖󸀠 ⋅ ∇)
⋅ (J𝜖 −J𝜖󸀠) Π𝜖 + (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))
⋅ (J𝜖󸀠𝜕𝑖𝜕𝑗u𝜖󸀠 ⋅ ∇)J𝜖󸀠 (Π𝜖 − Π𝜖󸀠) ,

(56)

𝐵2 = ((J𝜖 −J𝜖󸀠) 𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖𝜕𝑖u𝜖 ⋅ ∇)
⋅J𝜖𝜕𝑗Π𝜖 + (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))
⋅ ((J𝜖 −J𝜖󸀠) 𝜕𝑖u𝜖 ⋅ ∇)J𝜖𝜕𝑗Π𝜖
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+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖󸀠𝜕𝑖 (u𝜖 − u𝜖󸀠) ⋅ ∇)
⋅J𝜖𝜕𝑗Π𝜖 + (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖󸀠𝜕𝑖u𝜖󸀠 ⋅ ∇)
⋅ (J𝜖 −J𝜖󸀠) 𝜕𝑗Π𝜖 + (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))
⋅ (J𝜖󸀠𝜕𝑖u𝜖󸀠 ⋅ ∇)J𝜖󸀠𝜕𝑗 (Π𝜖 − Π𝜖󸀠) ,

(57)

𝐵3 = ((J𝜖 −J𝜖󸀠) 𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖u𝜖 ⋅ ∇)
⋅J𝜖𝜕𝑖𝜕𝑗Π𝜖 + (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))
⋅ ((J𝜖 −J𝜖󸀠) u𝜖 ⋅ ∇)J𝜖𝜕𝑖𝜕𝑗Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖󸀠 (u𝜖 − u𝜖󸀠) ⋅ ∇)
⋅J𝜖𝜕𝑖𝜕𝑗Π𝜖 + (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖󸀠u𝜖󸀠 ⋅ ∇)
⋅ (J𝜖 −J𝜖󸀠) 𝜕𝑖𝜕𝑗Π𝜖 + (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))
⋅ (J𝜖󸀠u𝜖󸀠 ⋅ ∇)J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠) ,

(58)

𝐵4 = ((J𝜖 −J𝜖󸀠) 𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))J𝜖𝜕𝑖𝜕𝑗Π𝜖J𝜖𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖 −J𝜖󸀠) 𝜕𝑖𝜕𝑗Π𝜖J𝜖𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)J𝜖𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))J𝜖󸀠𝜕𝑖𝜕𝑗Π𝜖󸀠 (J𝜖 −J𝜖󸀠) 𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))
⋅J𝜖󸀠𝜕𝑖𝜕𝑗Π𝜖󸀠J𝜖󸀠𝜕𝑧 (Π𝜖 − Π𝜖󸀠) ,

(59)

𝐵5 = ((J𝜖 −J𝜖󸀠) 𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))J𝜖𝜕𝑖Π𝜖J𝜖𝜕𝑗𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖 −J𝜖󸀠) 𝜕𝑖Π𝜖J𝜖𝜕𝑗𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))J𝜖󸀠𝜕𝑖 (Π𝜖 − Π𝜖󸀠)J𝜖𝜕𝑗𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))J𝜖󸀠𝜕𝑖Π𝜖󸀠 (J𝜖 −J𝜖󸀠) 𝜕𝑗𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))
⋅J𝜖󸀠𝜕𝑖Π𝜖󸀠J𝜖󸀠𝜕𝑗𝜕𝑧 (Π𝜖 − Π𝜖󸀠) ,

(60)

𝐵6 = ((J𝜖 −J𝜖󸀠) 𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))J𝜖Π𝜖J𝜖𝜕𝑖𝜕𝑗𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠)) (J𝜖 −J𝜖󸀠) Π𝜖J𝜖𝜕𝑖𝜕𝑗𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))J𝜖󸀠 (Π𝜖 − Π𝜖󸀠)J𝜖𝜕𝑖𝜕𝑗𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))J𝜖󸀠Π𝜖󸀠 (J𝜖 −J𝜖󸀠) 𝜕𝑖𝜕𝑗𝜕𝑧Π𝜖

+ (J𝜖󸀠𝜕𝑖𝜕𝑗 (Π𝜖 − Π𝜖󸀠))
⋅J𝜖󸀠𝜕𝑖Π𝜖󸀠J𝜖󸀠𝜕𝑖𝜕𝑗𝜕𝑧 (Π𝜖 − Π𝜖󸀠) .

(61)

These 𝐵1, . . . , 𝐵6 can be estimated similarly.

∫
R3

󵄨󵄨󵄨󵄨𝐵1󵄨󵄨󵄨󵄨 𝑑𝑥
≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩(J𝜖𝜕𝑖𝜕𝑗u𝜖 ⋅ ∇)J𝜖Π𝜖

󵄩󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2u𝜖

󵄩󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩∇Π𝜖
󵄩󵄩󵄩󵄩𝐿∞

+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇ (𝜔𝜖 − 𝜔𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇Π𝜖
󵄩󵄩󵄩󵄩𝐿∞

+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩∇2u𝜖󸀠
󵄩󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇Π𝜖

󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠

󵄩󵄩󵄩󵄩22 󵄩󵄩󵄩󵄩󵄩∇2u𝜖󸀠
󵄩󵄩󵄩󵄩󵄩𝐿∞ ,

(62)

∫
R3

󵄨󵄨󵄨󵄨𝐵2󵄨󵄨󵄨󵄨 𝑑𝑥
≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩(J𝜖𝜕𝑖u𝜖 ⋅ ∇)J𝜖𝜕𝑗Π𝜖

󵄩󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇u𝜖󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿∞
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩𝜔𝜖 − 𝜔𝜖󸀠󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿∞
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇u𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖

󵄩󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩2𝐿2 󵄩󵄩󵄩󵄩∇u𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ ,

(63)

∫
R3

󵄨󵄨󵄨󵄨𝐵3󵄨󵄨󵄨󵄨 𝑑𝑥
≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩(J𝜖u𝜖 ⋅ ∇)J𝜖𝜕𝑖𝜕𝑗Π𝜖

󵄩󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇u𝜖󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩∇3Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿∞
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩𝜔𝜖 − 𝜔𝜖󸀠󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩󵄩∇3Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿2
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩u𝜖󸀠󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇3Π𝜖

󵄩󵄩󵄩󵄩󵄩1 ,

(64)

∫
R3

󵄨󵄨󵄨󵄨𝐵4󵄨󵄨󵄨󵄨 𝑑𝑥
≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩J𝜖𝜕𝑖𝜕𝑗Π𝜖J𝜖𝜕𝑧Π𝜖

󵄩󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖

󵄩󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩∇Π𝜖
󵄩󵄩󵄩󵄩𝐿∞

+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩2𝐿2 󵄩󵄩󵄩󵄩∇Π𝜖
󵄩󵄩󵄩󵄩𝐿∞

+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖󸀠
󵄩󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇Π𝜖

󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩(Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩22 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖󸀠

󵄩󵄩󵄩󵄩󵄩𝐿∞ ,

(65)

∫
R3

󵄨󵄨󵄨󵄨𝐵5󵄨󵄨󵄨󵄨 𝑑𝑥
≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩J𝜖𝜕𝑖Π𝜖J𝜖𝜕𝑗𝜕𝑧Π𝜖

󵄩󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩∇Π𝜖

󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿∞
+ 󵄩󵄩󵄩󵄩(Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩22 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿∞
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+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇Π𝜖󸀠
󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2Π𝜖

󵄩󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩2𝐿2 󵄩󵄩󵄩󵄩∇Π𝜖󸀠

󵄩󵄩󵄩󵄩𝐿∞ ,
(66)

∫
R3

󵄨󵄨󵄨󵄨𝐵6󵄨󵄨󵄨󵄨 𝑑𝑥
≤ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩J𝜖Π𝜖J𝜖𝜕𝑖𝜕𝑗𝜕𝑧Π𝜖

󵄩󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩󵄩∇3Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿∞
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩22 󵄩󵄩󵄩󵄩󵄩∇3Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿∞
+ 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩Π𝜖󸀠

󵄩󵄩󵄩󵄩𝐿∞ (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩󵄩∇3Π𝜖

󵄩󵄩󵄩󵄩󵄩1 .

(67)

The other terms 𝐵 and Π + Ω can be estimated similarly, so
we omit the details. Then we have

12 𝑑𝑑𝑡 ‖𝑆‖𝑋1 (𝑡) fl 12 𝑑𝑑𝑡 (󵄩󵄩󵄩󵄩𝜔𝜖 − 𝜔𝜖󸀠󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝐵𝜖 − 𝐵𝜖󸀠󵄩󵄩󵄩󵄩1
+ 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠

󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩(Π𝜖 + Ω𝜖) − (Π𝜖󸀠 + Ω𝜖󸀠)󵄩󵄩󵄩󵄩1)
≤ ((𝜖 + 𝜖󸀠) + ‖𝑆‖𝑋1 (𝑡)) (󵄩󵄩󵄩󵄩󵄩∇3Π𝜖

󵄩󵄩󵄩󵄩󵄩𝐿∞ + 󵄩󵄩󵄩󵄩󵄩∇2𝜔𝜖󵄩󵄩󵄩󵄩󵄩𝐿∞
+ 󵄩󵄩󵄩󵄩󵄩∇2𝐵𝜖󵄩󵄩󵄩󵄩󵄩𝐿∞ + 󵄩󵄩󵄩󵄩󵄩∇2 (Π𝜖 + Ω𝜖)󵄩󵄩󵄩󵄩󵄩𝐿∞) ≤ 𝐶 ((𝜖 + 𝜖󸀠)
+ ‖𝑆‖𝑋1 (𝑡)) ,

(68)

for𝑚 > 7/2. Gronwall’s inequality gives us
sup
0≤𝑡≤𝑇0

‖𝑆‖𝑋1 (𝑡) ≤ (𝜖 + 𝜖󸀠) 𝑒𝐶𝑇0 , (69)

which implies that {𝑆𝜖} ∈ 𝐶([0, 𝑇0],𝑋1) and this information
completes the proof.

Proof of Theorem 1. With the bounds in Proposition 7, if we
use the Sobolev inequality, then we can obtain the higher
order convergence, i.e., 𝑆 ∈ 𝐶(0, 𝑇0; 𝑋𝑠) for all 𝑠 < 𝑚 by the
following inequality

sup
0≤𝑡≤𝑇0

󵄩󵄩󵄩󵄩𝑆𝜖󸀠 − 𝑆𝜖󵄩󵄩󵄩󵄩𝑋𝑠 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑆𝜖󸀠 − 𝑆𝜖󵄩󵄩󵄩󵄩1−𝑠/𝑚𝑋1
󵄩󵄩󵄩󵄩𝑆𝜖󸀠 − 𝑆𝜖󵄩󵄩󵄩󵄩𝑠/𝑚𝑚 . (70)

Now, to show 𝑆 ∈ 𝐶(0, 𝑇0; 𝑋𝑚) ∩Lip(0, 𝑇0; 𝑋𝑚−1) where 𝑆
satisfies our equations in classical sense almost every time,
we begin the process of obtaining the right continuity at𝑡 = 0 first. Because 𝑋𝑚 is a reflexive Banach space, by
Proposition 7, there exist a subsequence and limit functions𝑆(𝑡) ∈ 𝐿∞(0, 𝑇0;𝐻𝑚)which satisfies 𝜕𝑡𝑆(𝑡) ∈ 𝐿∞(0, 𝑇0; 𝐻𝑚−1)
for any 0 ≤ 𝑡 ≤ 𝑇0, 𝑆𝜖𝑛(𝑡) ⇀ 𝑆(𝑡) in 𝑋𝑚 and 𝜕𝑡𝑆𝜖𝑛(𝑡) ⇀𝜕𝑡𝑆(𝑡) in 𝑋𝑚−1. This implies that ‖𝑆(𝑡)‖𝑋𝑚 ≤ 𝑆0/(1 − 𝐶0𝑆0𝑡),‖𝜕𝑡𝑆(𝑡)‖𝑋𝑚−1 ≤ (𝑆0/(1 − 𝐶0𝑆0𝑡))2. Thus we have

lim sup
𝑡󳨀→0+

‖𝑆‖𝑋𝑚 (𝑡) ≤ 𝑆0. (71)

If we use the above result, 𝑆(𝑡) ∈ 𝐶(0, 𝑇0; 𝑋𝑠) for any 𝑠 < 𝑚,
then 𝑆 ∈ 𝐶𝑤(0, 𝑇0; 𝑋𝑚) is obtained by the following estimate.

For arbitrary 𝛿 > 0 and 𝜑 ∈ 𝑋−𝑚, there exists 𝜑 ∈ 𝑋−𝑠 such
that ‖𝜑 − 𝜑‖𝑋−𝑚 ≤ 𝛿/8𝑆0,󵄨󵄨󵄨󵄨[𝜑, 𝑆𝜖 − 𝑆]𝑋𝑚 󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝜑 − 𝜑󵄩󵄩󵄩󵄩𝑋−𝑚 󵄩󵄩󵄩󵄩𝑆𝜖 − 𝑆󵄩󵄩󵄩󵄩𝑋𝑚

+ 󵄨󵄨󵄨󵄨[𝜑, 𝑆𝜖 − 𝑆]𝑋𝑠 󵄨󵄨󵄨󵄨
≤ 𝛿 + 󵄨󵄨󵄨󵄨[𝜑, 𝑆𝜖 − 𝑆]𝑋𝑠 󵄨󵄨󵄨󵄨 ,

(72)

where [⋅, ⋅]𝑋𝑘 is a dual pairing on𝑋−𝑘 × 𝑋𝑘. If we choose 𝜑 =∇2𝑚𝜔0 ∈ 𝐻−𝑚, then by the weak continuity,󵄨󵄨󵄨󵄨[𝜑, 𝜔0]𝐻𝑚 󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨[𝜑, 𝜔 (𝑡) − 𝜔0]𝐻𝑚 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨[𝜑, 𝜔 (𝑡)]𝐻𝑚 󵄨󵄨󵄨󵄨
≤ 𝛿 + 󵄨󵄨󵄨󵄨[𝜑, 𝜔 (𝑡)]𝐻𝑚 󵄨󵄨󵄨󵄨 , (73)

󵄩󵄩󵄩󵄩∇𝑚𝜔0󵄩󵄩󵄩󵄩2𝐿2 ≤ 𝛿 + 󵄩󵄩󵄩󵄩∇𝑚𝜔 (𝑡)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇𝑚𝜔0󵄩󵄩󵄩󵄩𝐿2
≤ 𝛿 + 󵄩󵄩󵄩󵄩∇𝑚𝜔 (𝑡)󵄩󵄩󵄩󵄩2𝐿22 + 󵄩󵄩󵄩󵄩∇𝑚𝜔0󵄩󵄩󵄩󵄩2𝐿22 . (74)

Similarly, we have

lim inf
𝑡󳨀→0+

‖𝑆‖𝑋𝑚 (𝑡) ≥ 𝑆0. (75)

By inequalities (71) and (75), we have the right continuity
of 𝑆(𝑡) at 𝑡 = 0. If we apply the standard time translation
invariant property and the time reversal techique, we also
have 𝑆(𝑡) ∈ 𝐶(0, 𝑇0; 𝐻𝑚) without any difficulty. Lipschitz
continuity also can be obtained by󵄩󵄩󵄩󵄩𝑆 (𝑡1) − 𝑆 (𝑡2)󵄩󵄩󵄩󵄩𝑋𝑚−1 ≤ 𝛿 + 󵄩󵄩󵄩󵄩𝑆𝜖 (𝑡1) − 𝑆𝜖 (𝑡2)󵄩󵄩󵄩󵄩𝑋𝑚−1

≤ 𝛿 + 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡1

𝑡2

𝜕𝑡𝑆𝜖 (𝜏) 𝑑𝜏󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋𝑚−1
≤ 𝛿

+ 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨 sup
0≤𝜏≤𝑇0

󵄩󵄩󵄩󵄩𝜕𝑡𝑆𝜖 (𝜏)󵄩󵄩󵄩󵄩𝑋𝑚−1
≤ 𝛿 + (4𝑆0)2 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨 ,

(76)

which means 𝑆 ∈ 𝐶(0, 𝑇0; 𝑋𝑚) ∩ Lip(0, 𝑇0; 𝑋𝑚−1). Hence it is
a classical solution to (21) almost every time.

Next we assume that the initial data (u0, 𝐵0, Π0, Ω0) is
axisymmetric. Then the axisymmetry of a classical solution
to (21) is preserved and (𝜔, 𝐵, Π,Ω) is axisymmetric solution
to (21). Now we go back to (9) with ] = 𝜅 = 0, and set

𝑢0 ∈ 𝐻𝑚 (R3) ,
curl 𝑢0𝑟 ∈ 𝐻𝑚−1 (R3) ,

𝐵0 ∈ 𝐻𝑚 (R3) ,
𝐵0𝑟 ∈ 𝐻𝑚 (R3) ,

𝑚 > 92 .

(77)
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Then for

𝜔0 = curl 𝑢0,
Ω0 = 𝜔0𝑟 ,
Π0 = 𝐵0𝑟 ,

(78)

we know that there exists a unique solution (𝜔, 𝐵, Ω) ∈𝐶(0, 𝑇0;𝐻𝑚−1) ∩ Lip(0, 𝑇0; 𝐻𝑚−2), Π ∈ 𝐶(0, 𝑇0; 𝐻𝑚) ∩
Lip(0, 𝑇0; 𝐻𝑚−1). But if we replaceΩwith𝜔/𝑟 andΠwith𝐵/𝑟,
then 𝜔, 𝐵, 𝜔/𝑟, 𝐵/𝑟 also satisfy (21) with the initial data. So by
the uniqueness, Ω = 𝜔/𝑟 in𝐶(0, 𝑇0; 𝐻𝑚−1) ∩Lip(0, 𝑇0; 𝐻𝑚−2)
andΠ = 𝐵/𝑟 in 𝐶(0, 𝑇0; 𝐻𝑚) ∩Lip(0, 𝑇0;𝐻𝑚−1). Next, we can
show that u = Φ ∗ curl𝜔 ∈ 𝐶(0, 𝑇0; 𝐻𝑚) ∩ Lip(0, 𝑇0; 𝐻𝑚−1).
By the Poincaré lemma, curlu = 𝜔 satisfies the 𝜔 equation
of (9). Then we can deduce that u and 𝐵 satisfy (9) almost
every time by finding the axisymmetric scalar pressure 𝑝.
Then the energy inequality (4) implies that 𝑢 ∈ 𝐿∞(0, 𝑇0; 𝐿2)
and, almost every time,󵄩󵄩󵄩󵄩𝑢 (𝑡1) − 𝑢 (𝑡2)󵄩󵄩󵄩󵄩𝐿2(R3) ≤ 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨

⋅ ∫𝑡1

𝑡2

󵄩󵄩󵄩󵄩𝜕𝑡𝑢 (𝑡1) − 𝜕𝑡𝑢 (𝑡2)󵄩󵄩󵄩󵄩𝐿2(R3) (𝑡) 𝑑𝑡 ≤ 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨
⋅ sup
0≤𝑡≤𝑇0

󵄩󵄩󵄩󵄩𝜕𝑡𝑢󵄩󵄩󵄩󵄩𝐿2 ≤ 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨 sup
0≤𝑡≤𝑇0

(‖𝑢‖𝐿∞ ‖∇𝑢‖𝐿2
+ ‖(∇ × 𝐵) × 𝐵‖𝐿2 + 󵄩󵄩󵄩󵄩∇𝑝󵄩󵄩󵄩󵄩𝐿2) ≤ 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨
⋅ sup
0≤𝑡≤𝑇0

(‖𝜔‖21 + ‖𝐵‖22) < 𝐶 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨 ,

(79)

which implies u ∈ 𝐶(0, 𝑇0; 𝐻𝑚) ∩ Lip(0, 𝑇0; 𝐻𝑚−1). The
uniqueness of u can be obtained from the standard tech-
niques and we omit the details. Finally we can show that𝐵 ∈ 𝐶(0, 𝑇0; 𝐻𝑚) ∩ Lip(0, 𝑇0; 𝐻𝑚−1). Almost every time, we
can rewrite the 𝐵 equation with

𝜕𝑡𝐵 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) 𝐵 = 𝑢𝑟Π + 2Π𝜕𝑧𝐵, (𝐵𝑟 = Π) . (80)

Then we can obtain the conclusion through the standard 𝐻𝑚

estimate with Gronwall’s inequality.

3. Proof of Theorem 3: Blow-Up of
Axisymmetric Hall Equations

The proof of Theorem 3 is split into two propositions: local-
in-time existence of a regular solution to (14) and the finite
time blow-up of the local-in-time solution.

Proposition 10. The equation

𝜕𝑡Π = −2Π𝜕𝑧Π
Π (𝑥, 0) = Π0 (𝑥) ∈ 𝐻𝑚, 𝑚 > 52

(81)

has a unique local-in-time solution.

Proof. First, we find the global solution to the following reg-
ularized equation of (14) without assuming the axisymmetry,

𝜕𝑡Π𝜖 = −2J𝜖 (J𝜖Π𝜖 ⋅ 𝜕𝑧J𝜖Π𝜖)
Π (𝑥, 0) = Π0 (𝑥) , Π0 ∈ 𝐻𝑚, 𝑚 > 52

(82)

Before proceeding further, we note that the divergence
theorem can be applicable due to the mollifier. Let

𝐹 (Π𝜖) = −2J𝜖 (J𝜖Π𝜖 ⋅ 𝜕𝑧J𝜖Π𝜖) . (83)

Hence, the image of the function 𝐹 defined on𝐻𝑚 is included
in𝐻𝑚 for𝑚 > 3/2.

To use the Picard theorem on 𝐻𝑚 space (𝑚 > 5/2), we
first obtain that 𝐹 is Lipschitz continuous on𝐻𝑚, i.e.,󵄩󵄩󵄩󵄩󵄩𝐹 (Π1

𝜖) − 𝐹 (Π2
𝜖)󵄩󵄩󵄩󵄩󵄩𝑚

≤ 2 󵄩󵄩󵄩󵄩󵄩J𝜖 {J𝜖Π1
𝜖 (𝜕𝑧J𝜖Π1

𝜖 − 𝜕𝑧J𝜖Π2
𝜖)}󵄩󵄩󵄩󵄩󵄩𝑚

+ 2 󵄩󵄩󵄩󵄩󵄩J𝜖 {(J𝜖Π1
𝜖 −J𝜖Π2

𝜖) 𝜕𝑧J𝜖Π2
𝜖}󵄩󵄩󵄩󵄩󵄩𝑚

≤ 2 󵄩󵄩󵄩󵄩󵄩J𝜖Π1
𝜖

󵄩󵄩󵄩󵄩󵄩𝑚 󵄩󵄩󵄩󵄩󵄩𝜕𝑧J𝜖 (Π1
𝜖 − Π2

𝜖)󵄩󵄩󵄩󵄩󵄩𝑚
+ 2 󵄩󵄩󵄩󵄩󵄩J𝜖 (Π1

𝜖 − Π2
𝜖)󵄩󵄩󵄩󵄩󵄩𝑚 󵄩󵄩󵄩󵄩󵄩𝜕𝑧J𝜖Π2

𝜖

󵄩󵄩󵄩󵄩󵄩𝑚
≤ 𝐶𝜖𝑚+1 (󵄩󵄩󵄩󵄩󵄩Π1

𝜖

󵄩󵄩󵄩󵄩󵄩𝐿2 + 󵄩󵄩󵄩󵄩󵄩Π2
𝜖

󵄩󵄩󵄩󵄩󵄩𝐿2) 󵄩󵄩󵄩󵄩󵄩Π1
𝜖 − Π2

𝜖

󵄩󵄩󵄩󵄩󵄩𝑚 .

(84)

𝐹 is a Lipschitz continous function on a bounded open set𝑂 in 𝐻𝑚. Now we can apply Picard theorem. For each 𝜖 >0, there exist a unique solution Π𝜖 and a finite time 𝑇𝜖, such
that Π𝜖 ∈ 𝐶1(0, 𝑇𝜖 : 𝐻𝑚). Following the standard process
of constructing local-in-time solution, we obtain an implicit
form of the solution

Π𝜖 (𝑡) = Π0 + ∫𝑡

0
𝐹 (Π𝜖 (𝑠)) 𝑑𝑠, 0 ≤ 𝑡 < 𝑇𝜖. (85)

Since 𝐹(0) = 0, we have
󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩𝑚 (𝑡) ≤ 󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝑚 + ∫𝑡

0

󵄩󵄩󵄩󵄩𝐹 (Π𝜖 (𝑠))󵄩󵄩󵄩󵄩𝑚 𝑑𝑠
≤ 󵄩󵄩󵄩󵄩Π0

󵄩󵄩󵄩󵄩𝑚 + ∫𝑡

0
𝐶𝑚,𝜖

󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝐿2 (𝑠) 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩𝑚 (𝑠) 𝑑𝑠,
0 ≤ 𝑡 < 𝑇𝜖.

(86)

Since the above regularized equation satisfies an energy
estimate, we deduce that

𝑑𝑑𝑡 ∫R3 Π2
𝜖𝑑𝑥 = −23 ∫

R3
𝜕𝑧 (J𝜖Π𝜖)3 𝑑𝑥 = 0, (87)

and hence 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝐿2 (𝑡) = 󵄩󵄩󵄩󵄩Π0

󵄩󵄩󵄩󵄩𝐿2 . (88)

For the higher order norm, Gronwall’s inequality implies󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚 (𝑡) ≤ 󵄩󵄩󵄩󵄩Π0

󵄩󵄩󵄩󵄩𝑚 𝑒𝐶𝑚,𝜖‖Π0‖𝐿2(R3)𝑡, 0 ≤ 𝑡 < 𝑇𝜖. (89)
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The above inequality justifies that each solution Π𝜖 is a global
solution to regularized equation, and

Π𝜖 ∈ 𝐶1 (0,∞ : 𝐻𝑚) , for all Π0 ∈ 𝐻𝑚 (90)

Second,we show that, for somefinite time𝑇, the sequence{Π𝜖}𝜖>0 is a Cauchy sequence in 𝐶(0, 𝑇; 𝐿2). We note that, for𝑇 < 1/𝐶𝑚‖Π0‖𝑚,
sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚 (𝑡) ≤ 11 − 𝐶𝑚𝑇 󵄩󵄩󵄩󵄩Π0

󵄩󵄩󵄩󵄩𝑚 ,
sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝜕𝑡Π𝜖
󵄩󵄩󵄩󵄩𝑚−1 (𝑡) ≤ 𝐶( 11 − 𝐶𝑚𝑇 󵄩󵄩󵄩󵄩Π0

󵄩󵄩󵄩󵄩𝑚)2 .
(91)

By the standard energy estimates, we have, for 0 ≤ 𝑠 ≤ 𝑚,

12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝑠Π𝜖
󵄩󵄩󵄩󵄩2𝐿2

= −∫
R3

∇𝑠 {𝜕𝑧 (J𝜖Π𝜖)2} ∇𝑠 (J𝜖Π𝜖) 𝑑𝑥
= −∫

R3
𝜕𝑧 {∇𝑗 (J𝜖Π𝜖) ∇𝑠−𝑗 (J𝜖Π𝜖)} ∇𝑠 (J𝜖Π𝜖) 𝑑𝑥.

(92)

If 𝑗 ̸= 0 or 𝑗 ̸= 𝑠, then we obtain easily that

12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝑠Π𝜖
󵄩󵄩󵄩󵄩2𝐿2

≤ ∫
R3

󵄨󵄨󵄨󵄨󵄨∇𝑗+1 (J𝜖Π𝜖)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨∇𝑠−𝑗 (J𝜖Π𝜖)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨∇𝑠 (J𝜖Π𝜖)󵄨󵄨󵄨󵄨 𝑑𝑥
≤ 𝐶 󵄩󵄩󵄩󵄩∇Π𝜖

󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩2𝑚 ≤ 𝐶 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩3𝑚 .
(93)

If 𝑗 = 0 or 𝑗 = 𝑠, then we obtain

12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩∇𝑠Π𝜖
󵄩󵄩󵄩󵄩2𝐿2

= ∫
R3

(J𝜖Π𝜖) ⋅ 𝜕𝑧∇𝑠 (J𝜖Π𝜖) ⋅ ∇𝑠 (J𝜖Π𝜖) 𝑑𝑥
= ∫

R3
(J𝜖Π𝜖) 𝜕𝑧 (∇𝑠 (J𝜖Π𝜖))2 𝑑𝑥

= −∫
R3

𝜕𝑧 (J𝜖Π𝜖) 󵄨󵄨󵄨󵄨∇𝑠 (J𝜖Π𝜖)󵄨󵄨󵄨󵄨2 𝑑𝑥
≤ 󵄩󵄩󵄩󵄩𝜕𝑧Π𝜖

󵄩󵄩󵄩󵄩𝐿∞(R3) 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩2𝑚 ≤ 𝐶 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩3𝑚 .

(94)

Combining the above inequalities (93) and (94), we have

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚 ≤ 𝐶𝑚

󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩2𝑚 . (95)

The above inequality gives us

󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚 (𝑡) ≤ 󵄩󵄩󵄩󵄩Π0

󵄩󵄩󵄩󵄩𝑚1 − 𝑡𝐶𝑚
󵄩󵄩󵄩󵄩Π0

󵄩󵄩󵄩󵄩𝑚
for 0 ≤ 𝑡 ≤ 𝑇 < 1𝐶𝑚

󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝑚 ,

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚 (𝑡) ≤ 11 − 𝐶𝑚𝑇 󵄩󵄩󵄩󵄩Π0

󵄩󵄩󵄩󵄩𝑚
for 𝑇 < 1𝐶𝑚

󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝑚 .

(96)

By applying 𝐻𝑚−1 𝑛𝑜𝑟𝑚 at the regularized equation, we
deduce that

󵄩󵄩󵄩󵄩𝜕𝑡Π𝜖
󵄩󵄩󵄩󵄩𝑚−1 = 󵄩󵄩󵄩󵄩𝐹 (Π𝜖)󵄩󵄩󵄩󵄩𝑚−1 ≤ 𝐶󸀠

𝑚
󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩𝑚−1 󵄩󵄩󵄩󵄩𝜕𝑧Π𝜖
󵄩󵄩󵄩󵄩𝑚−1

≤ 𝐶󸀠
𝑚
󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩2𝑚 (𝑡)
≤ 𝐶󸀠

𝑚 ( 11 − 𝐶𝑚𝑇 󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝑚)2

for 𝑇 < 1𝐶𝑚
󵄩󵄩󵄩󵄩Π0

󵄩󵄩󵄩󵄩𝑚 .
(97)

Nowwe are ready to show that {Π𝜖} ⊂ 𝐶(0, 𝑇; 𝐿2) is a Cauchy
sequence (as a sequence for 𝜖𝑛 󳨀→ 0), where 𝑇 is chosen as
above.

12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠
󵄩󵄩󵄩󵄩2𝐿2(R3)

= −∫
R3

{J𝜖𝜕𝑧 (J𝜖Π𝜖)2 −J𝜖󸀠𝜕𝑧 (J𝜖󸀠Π𝜖󸀠)2}
⋅ (Π𝜖 − Π𝜖󸀠) 𝑑𝑥 = −∫J𝜖 (Π𝜖 − Π𝜖󸀠)
⋅ 𝜕𝑧 (J𝜖Π𝜖)2 + ∫J𝜖󸀠 (Π𝜖 − Π𝜖󸀠) 𝜕𝑧 (J𝜖󸀠Π𝜖󸀠)2
= −2∫ (J𝜖 −J𝜖󸀠) (Π𝜖 − Π𝜖󸀠)J𝜖Π𝜖𝜕𝑧J𝜖Π𝜖

− 2∫J𝜖󸀠 (Π𝜖 − Π𝜖󸀠) (J𝜖Π𝜖 −J𝜖󸀠Π𝜖) 𝜕𝑧 (J𝜖Π𝜖)
− 2∫ {J𝜖󸀠 (Π𝜖 − Π𝜖󸀠)}2 𝜕𝑧 (J𝜖Π𝜖)
− 2∫J𝜖󸀠 (Π𝜖 − Π𝜖󸀠)J𝜖󸀠Π𝜖󸀠𝜕𝑧 (J𝜖Π𝜖 −J𝜖󸀠Π𝜖)
− ∫J𝜖󸀠Π𝜖󸀠𝜕𝑧 {J𝜖󸀠 (Π𝜖 − Π𝜖󸀠)}2

(98)
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By the properties of regularizer J𝜖, for𝑚 > 5/2, we have
12 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠

󵄩󵄩󵄩󵄩2𝐿2(R3) ≤ 𝐶 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠
󵄩󵄩󵄩󵄩𝐿2 (𝜖 + 𝜖󸀠)

⋅ (󵄩󵄩󵄩󵄩𝜕𝑧Π𝜖
󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝜕𝑧Π𝜖
󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩𝐿∞) + 𝐶 (𝜖
+ 𝜖󸀠) 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩1 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠
󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩𝜕𝑧Π𝜖

󵄩󵄩󵄩󵄩𝐿∞ + 𝐶 󵄩󵄩󵄩󵄩Π𝜖

− Π𝜖󸀠
󵄩󵄩󵄩󵄩2𝐿2 󵄩󵄩󵄩󵄩𝜕𝑧Π𝜖

󵄩󵄩󵄩󵄩𝐿∞ + 𝐶 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠

󵄩󵄩󵄩󵄩𝐿2
⋅ 󵄩󵄩󵄩󵄩Π𝜖󸀠

󵄩󵄩󵄩󵄩𝐿∞ + 𝐶 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠
󵄩󵄩󵄩󵄩2𝐿2 󵄩󵄩󵄩󵄩𝜕𝑧Π𝜖󸀠

󵄩󵄩󵄩󵄩𝐿∞ ≤ 𝐶 (𝜖
+ 𝜖󸀠) 󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩𝑚 󵄩󵄩󵄩󵄩Π𝜖󸀠
󵄩󵄩󵄩󵄩𝑚 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠

󵄩󵄩󵄩󵄩𝐿2 + 𝐶 (󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚

+ 󵄩󵄩󵄩󵄩Π𝜖󸀠
󵄩󵄩󵄩󵄩𝑚) 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠

󵄩󵄩󵄩󵄩2𝐿2 ≤ 𝐶 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠
󵄩󵄩󵄩󵄩𝐿2

⋅ {(𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚 󵄩󵄩󵄩󵄩Π𝜖󸀠

󵄩󵄩󵄩󵄩𝑚
+ 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠

󵄩󵄩󵄩󵄩𝐿2 (󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚 + 󵄩󵄩󵄩󵄩Π𝜖󸀠

󵄩󵄩󵄩󵄩𝑚)}

(99)

In summary, we have

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠
󵄩󵄩󵄩󵄩𝐿2(R3)

≤ 𝐶 (𝜖 + 𝜖󸀠) 󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚 󵄩󵄩󵄩󵄩Π𝜖󸀠

󵄩󵄩󵄩󵄩𝑚
+ 𝐶 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠

󵄩󵄩󵄩󵄩𝐿2 (󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑚 + 󵄩󵄩󵄩󵄩Π𝜖󸀠

󵄩󵄩󵄩󵄩𝑚)
(100)

By Gronwall’s inequality, we can conclude that {Π𝜖} is a
Cauchy sequence in the 𝐶(0, 𝑇; 𝐿2) space. And by 𝐻𝑚

boundness, if we apply the interpolation inequality, then we
can see that {Π𝜖} is a cauchy sequence in 𝐶(0, 𝑇;𝐻𝑠), ∀𝑠 < 𝑚.
So we have the limit function Π ∈ 𝐶(0, 𝑇;𝐻𝑠). And {𝜕𝑡Π𝜖}
is also a cauchy sequence in the 𝐶(0, 𝑇; 𝐿2) space by the
following estimates:

󵄩󵄩󵄩󵄩𝜕𝑡Π𝜖 − 𝜕𝑡Π𝜖󸀠
󵄩󵄩󵄩󵄩𝐿2

≤ 2 󵄩󵄩󵄩󵄩J𝜖 (J𝜖Π𝜖𝜕𝑧J𝜖Π𝜖) −J𝜖󸀠 (J𝜖󸀠Π𝜖󸀠𝜕𝑧J𝜖󸀠Π𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2
≤ 2 󵄩󵄩󵄩󵄩(J𝜖 −J𝜖󸀠) (J𝜖Π𝜖𝜕𝑧J𝜖Π𝜖)󵄩󵄩󵄩󵄩𝐿2

+ 2 󵄩󵄩󵄩󵄩(J𝜖 −J𝜖󸀠) Π𝜖𝜕𝑧J𝜖Π𝜖
󵄩󵄩󵄩󵄩𝐿2

+ 2 󵄩󵄩󵄩󵄩J𝜖󸀠 (Π𝜖 − Π𝜖󸀠) 𝜕𝑧J𝜖Π𝜖
󵄩󵄩󵄩󵄩𝐿2

+ 2 󵄩󵄩󵄩󵄩J𝜖󸀠Π𝜖󸀠 (J𝜖 −J𝜖󸀠) 𝜕𝑧Π𝜖
󵄩󵄩󵄩󵄩𝐿2

+ 2 󵄩󵄩󵄩󵄩J𝜖󸀠Π𝜖󸀠J𝜖󸀠𝜕𝑧 (Π𝜖 − Π𝜖󸀠)󵄩󵄩󵄩󵄩𝐿2
≤ 6 (𝜖 + 𝜖󸀠) (󵄩󵄩󵄩󵄩Π𝜖

󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩Π𝜖󸀠
󵄩󵄩󵄩󵄩2𝑠)

+ 4 (󵄩󵄩󵄩󵄩Π𝜖
󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩Π𝜖󸀠

󵄩󵄩󵄩󵄩𝑠) 󵄩󵄩󵄩󵄩Π𝜖 − Π𝜖󸀠
󵄩󵄩󵄩󵄩1

(101)

For 5/2 < 𝑠 < 𝑚, we have the limit function 𝜕𝑡Π ∈𝐶(0, 𝑇;𝐻𝑠−1).
Finally, we can show that Π ∈ 𝐶(0, 𝑇;𝐻𝑚) ∩ Lip(0,𝑇;𝐻𝑚−1). By the Banach Alaoglu theorem, we have Π ∈𝐿∞(0, 𝑇0;𝐻𝑚) and 𝜕𝑡Π ∈ 𝐿∞(0, 𝑇0; 𝐻𝑚−1), because we know

that, for any 𝑠 < 𝑚, Π ∈ 𝐶(0, 𝑇;𝐻𝑠). It implies Π ∈𝐶𝑤(0, 𝑇;𝐻𝑚) by the following estimate:

[𝜑, Π𝜖 − Π] ≤ 󵄩󵄩󵄩󵄩𝜑 − 𝜑󵄩󵄩󵄩󵄩𝐻−𝑚 󵄩󵄩󵄩󵄩Π𝜖 − Π󵄩󵄩󵄩󵄩𝐻𝑚
+ [𝜑, Π𝜖 − Π] ≤ 𝛿 + [𝜑, Π𝜖 − Π]

≤ 2𝛿
(102)

for any given 𝜑 ∈ 𝐻−𝑚, for some 𝜑 ∈ 𝐻−𝑠, 𝑠 < 𝑚. Now we
show that

lim inf
𝑡󳨀→0+

‖Π (𝑡)‖𝑚 = lim sup
𝑡󳨀→0+

‖Π (𝑡)‖𝑚 = 󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝑚 . (103)

By the weak continuity, for any 𝛿 > 0, there exists 𝑟 > 0 such
that if 0 < 𝑡 < 𝑟, then−𝛿 < [Π(𝑡)−Π0, 𝜑] < 𝛿, for all𝜑 ∈ 𝐻−𝑚.
Choose 𝜑 = ∇2𝑠Π0 with 𝑠 ≤ 𝑚. Then it gives us

󵄩󵄩󵄩󵄩∇𝑠Π0
󵄩󵄩󵄩󵄩2𝐿2 − 𝛿 ≤ 󵄩󵄩󵄩󵄩∇𝑠Π (𝑡)󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩∇𝑠Π0

󵄩󵄩󵄩󵄩𝐿2
≤ 󵄩󵄩󵄩󵄩∇𝑠Π (𝑡)󵄩󵄩󵄩󵄩2𝐿22 + 󵄩󵄩󵄩󵄩∇𝑠Π0

󵄩󵄩󵄩󵄩2𝐿22 . (104)

Also we have

󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩2𝑚 ≤ ‖Π (𝑡)‖2𝑚 + 2𝑚+1𝛿, (105)

which implies that

lim inf
𝑡󳨀→0+

‖Π (𝑡)‖𝑚 ≥ 󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝑚 (106)

By the 𝐻𝑚 boundness with weak convergence, it is deduced
that

‖Π (𝑡)‖𝑚 ≤ 󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝑚1 − 𝑡𝐶𝑚
󵄩󵄩󵄩󵄩Π0

󵄩󵄩󵄩󵄩𝑚 , 0 ≤ 𝑡 ≤ 𝑇 (107)

which implies

lim sup
𝑡󳨀→0+

‖Π (𝑡)‖𝑚 ≤ 󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝑚 . (108)

Thuswe have the time continuity ofΠ at 0. For any 𝑡0 ≤ 𝑇 and
initial valueΠ(𝑡0), we can obtain a right continuity at 𝑡0 by the
time translation invariant property. By the fact thatΠ(−𝑥, 𝑡0−𝑡) is also a solution to the euqation for 0 ≤ 𝑡 ≤ 𝑡0, we have a
left continuity at 𝑡0. Of course by the above process, the left
continuity at𝑇 also can be obtained. We have proved thatΠ ∈𝐶(0, 𝑇;𝐻𝑚).
Proposition 11. Let Π be an axisymmetric global classical
solution to

𝜕𝑡Π + 2Π𝜕𝑧Π = 0. (109)

Then Π ≡ 0.
Proof. Define 𝜙𝑟0(𝑡) : [0,∞) 󳨀→ R which satisfies the
equation 𝜙󸀠𝑟0(𝑡) = Π(𝑟0, 2𝜙𝑟0(𝑡), 𝑡). By our assumption, Π ∈𝐶([0,∞);𝐻𝑚(R3)) ∩ Lip([0,∞);𝐻𝑚−1(R3)) for 𝑚 > 5/2,
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𝜙󸀠󸀠𝑟0(𝑡) = 0 almost every time. So we can find the explicit form
of it by

𝜙𝑟0 (𝑡) = 𝑡Π0 (𝑟0, 2𝜙𝑟0 (0)) + 𝜙𝑟0 (0) . (110)

Now we choose initial values 𝜙𝑟0(0) and 𝜙𝑟0(0) such that𝜙𝑟0(0) ≤ 𝜙𝑟0(0). Then it satisfies

Π0 (𝑟0, 2𝜙𝑟0 (0)) ≤ Π0 (𝑟0, 2𝜙𝑟0 (0)) . (111)

Because if we suppose that Π0(𝑟0, 2𝜙𝑟0(0)) > Π0(𝑟0, 2𝜙𝑟0(0)),
then by the explicit form of 𝜙, for some 𝑡0 > 0, we have𝜙𝑟0(𝑡0) = 𝜙𝑟0(𝑡0) which makes a contradiction. Hence,Π0(𝑟0, 𝑧) is a nondecreasing funcion with respect to 𝑧. Since
this process is independent of the choice of 𝑟0, we can find
that Π0 ≡ 0 by the continuity and 𝐿2 boundness.
4. Proof of Theorem 5: Blow-Up Criterion

In this section, we provide the proof ofTheorem5 which is the
blow-up criterion for the axisymmetric Hall-MHD equations
with ] = 0 and 𝜅 = 1:

𝜕Ω𝜕𝑡 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧)Ω + 2Π𝜕𝑧Π = 0, (112)

𝜕Π𝜕𝑡 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) Π − 2Π𝜕𝑧Π
= (𝜕2𝑟 + 3𝑟 𝜕𝑟 + 𝜕2𝑧)Π, (113)

whereΩ = 𝜔𝜃/𝑟 and Π = 𝐵𝜃/𝑟.
Known blow-up criterion for the partial viscous Hall-

MHD equations (1) without symmetry (] = 0 and 𝜅 = 1)
is as follows (see [13]).

Proposition 12. Assume that (𝑢0, 𝐵0) ∈ 𝐻𝑚(R3),𝑚 ≥ 3 with∇ ⋅ 𝑢0 = ∇ ⋅ 𝐵0 = 0. Let (𝑢, 𝐵) be a smooth solution to (1) (] = 0
and 𝜅 = 1) for 0 ≤ 𝑡 < 𝑇. If (𝑢, 𝐵) satisfies

∫𝑇

0
(‖∇ × 𝑢 (𝑡)‖𝐿∞ + ‖∇ × 𝐵 (𝑡)‖2𝐿∞) 𝑑𝑡 < ∞, (114)

then the solution (𝑢, 𝐵) can be extended beyond 𝑡 = 𝑇.
With the axial symmetry, we can derive the following

apriori estimates.

Proposition 13. If (Ω, Π) is a solution to (112)–(113) satisfying(Ω,Π) ∈ 𝐶([0, 𝑇);𝐻𝑚), with𝑚 ≥ 3 then it holds that

‖Π‖𝐿∞(0,𝑇;𝐿𝑝(R3)) ≤ 𝐶 (Π0) ,
‖∇Π‖2𝐿2(0,𝑇;𝐿2(R3)) ≤ 󵄩󵄩󵄩󵄩Π0

󵄩󵄩󵄩󵄩2𝐿2 ,
‖Ω‖𝐿∞(0,𝑇;𝐿2) ≤ 𝐶 (󵄩󵄩󵄩󵄩Ω0

󵄩󵄩󵄩󵄩𝐿2 , 󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝐿2) < ∞.

(115)

Proof. We first consider 𝑝 = 2𝑛 with 𝑛 ∈ N. Taking scalar
product of (113) with Π𝑝−1, we deduce that1𝑝 𝑑𝑑𝑡 ‖Π (𝑡)‖𝑝𝐿𝑝

− 2𝜋∫∞

−∞
∫∞

0
((𝜕2𝑟 + 3𝑟𝜕𝑟 + 𝜕2𝑧)Π) ⋅ Π𝑝−1𝑟𝑑𝑟𝑑𝑧

= 2𝑝 + 1 ∫
R3

𝜕𝑧 (Π)𝑝+1 𝑑𝑥
− ∫

R3
(𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧)Π ⋅ Π𝑝−1𝑑𝑥.

(116)

From the divergence free condition and the decay conditions
like

lim
𝑟󳨀→∞

Π (𝑟, 𝑧, 𝑡) = lim
|𝑧|󳨀→∞

Π (𝑟, 𝑧, 𝑡) = 0, (117)

(116) can be reduced to

1𝑝 𝑑𝑑𝑡 ‖Π (𝑡)‖𝑝𝐿𝑝 + 4 (𝑝 − 1)𝑝2 ∫
R3

󵄨󵄨󵄨󵄨󵄨𝜕𝑟Π𝑝/2󵄨󵄨󵄨󵄨󵄨2
+ 󵄨󵄨󵄨󵄨󵄨𝜕𝑧Π𝑝/2󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥 = 0.

(118)

It implies that

‖Π (𝑡)‖𝑝𝐿∞(0,𝑇;𝐿𝑝) ≤ 󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝑝𝐿𝑝 . (119)

For any 𝑅 > 0, we have
(∫

𝐵𝑅

󵄨󵄨󵄨󵄨Π0 (𝑥)󵄨󵄨󵄨󵄨2𝑛 𝑑𝑥)1/2𝑛 ≤ 𝐶 󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝐿∞ 𝑅3/2𝑛. (120)

As 𝑛 󳨀→ ∞, we have ‖Π‖𝐿∞(0,𝑇;𝐿∞) ≤ 𝐶‖Π0‖𝐿∞ . If 𝑝 ∈(2𝑛, 2(𝑛 + 1)), then we have

‖Π‖𝑝𝐿∞(0,𝑇;𝐿𝑝) ≤ 󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩𝑛(2𝑛+2−𝑝)𝐿2𝑛

󵄩󵄩󵄩󵄩Π0
󵄩󵄩󵄩󵄩(𝑛+1)(𝑝−2𝑛)𝐿2(𝑛+1)

. (121)

Taking 𝐿2 scalar product of (112) with Ω, we have12 𝑑𝑑𝑡 ‖Ω‖2𝐿2 = −2∫
R3

Π𝜕𝑧ΠΩ𝑑𝑥
≤ 2 ‖Π‖𝐿∞ 󵄩󵄩󵄩󵄩𝜕𝑧Π󵄩󵄩󵄩󵄩𝐿2 ‖Ω‖𝐿2

(122)

Then we have‖Ω‖𝐿∞(0,𝑇;𝐿2) ≲ 󵄩󵄩󵄩󵄩Ω0
󵄩󵄩󵄩󵄩𝐿2

+ ∫𝑇

0
‖Π (𝑡)‖2𝐿∞ + 󵄩󵄩󵄩󵄩𝜕𝑧Π (𝑡)󵄩󵄩󵄩󵄩2𝐿2 𝑑𝑡 (123)

This completes the proof.

From the energy estimates of the velocity and magnetic
fields, we have󵄩󵄩󵄩󵄩𝑢𝑟󵄩󵄩󵄩󵄩2𝐿∞(0,𝑇;𝐿2) + 󵄩󵄩󵄩󵄩𝑢𝑧󵄩󵄩󵄩󵄩2𝐿∞(0,𝑇;𝐿2) + 󵄩󵄩󵄩󵄩󵄩𝐵𝜃󵄩󵄩󵄩󵄩󵄩2𝐿∞(0,𝑇;𝐿2)

+ ∫𝑇

0

󵄩󵄩󵄩󵄩󵄩𝜕𝑟𝐵𝜃󵄩󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩󵄩𝜕𝑧𝐵𝜃󵄩󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐵
𝜃

𝑟
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐿2
𝑑𝑡

≤ 󵄩󵄩󵄩󵄩𝑢𝑟0󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩𝑢𝑧0󵄩󵄩󵄩󵄩2𝐿2 + 󵄩󵄩󵄩󵄩󵄩𝐵𝜃0󵄩󵄩󵄩󵄩󵄩2𝐿2 .
(124)
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Proof of Theorem 5. First, we assume that assumption (19)
holds. If we consider the equation of the vorticity 𝜔𝜃, then
we have

𝜕𝑡𝜔𝜃 + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) 𝜔𝜃 = 𝑢𝑟𝑟 𝜔𝜃 − 2(𝐵𝜃𝑟 ) 𝜕𝑧𝐵𝜃. (125)

Taking 𝐿2 scalar product of (125) with 𝜔𝜃, we have

𝑑𝑑𝑡 󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩2𝐿2 ≤ ∫
R3

𝑢𝑟+𝑟 (𝜔𝜃)2 𝑑𝑥
+ 2∫

R3

󵄨󵄨󵄨󵄨󵄨𝜕𝑧𝐵𝜃󵄨󵄨󵄨󵄨󵄨 |Π| 󵄨󵄨󵄨󵄨󵄨𝜔𝜃󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑟+𝑟
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(R3\𝐶𝑅)

󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩2𝐿2(R3\𝐶𝑅)
+ 󵄩󵄩󵄩󵄩𝑟𝑢𝑟+󵄩󵄩󵄩󵄩𝐿∞(𝐶𝑅) ‖Ω‖2𝐿2(𝐶𝑅)
+ 2 󵄩󵄩󵄩󵄩󵄩𝜕𝑧𝐵𝜃󵄩󵄩󵄩󵄩󵄩𝐿2 ‖Π‖𝐿∞ 󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩𝐿2 .

(126)

Using Gronwall’s inequality, we have

󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿2) ≤ (󵄩󵄩󵄩󵄩󵄩𝜔𝜃
0

󵄩󵄩󵄩󵄩󵄩𝐿2 + ∫𝑇

0

󵄩󵄩󵄩󵄩𝑟𝑢𝑟+󵄩󵄩󵄩󵄩𝐿∞(𝐶𝑅) 𝑑𝑡 + 𝐶)
⋅ exp(∫𝑇

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑢𝑟+𝑟

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(R3\𝐶𝑅) 𝑑𝑡 + 𝐶) . (127)

Hence we have 𝜔𝜃 ∈ 𝐿∞(0, 𝑇; 𝐿2) if we assume (19).
If we consider the equations for ∇̃Π (∇̃ = (𝜕𝑟, 𝜕𝑧)), then

we obtain

𝜕𝑡𝜕𝑧Π + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) 𝜕𝑧Π
+ (𝜕𝑧𝑢𝑟𝜕𝑟 + 𝜕𝑧𝑢𝑧𝜕𝑧) Π = (Δ + 2𝑟 𝜕𝑟) 𝜕𝑧Π + 𝜕2𝑧Π2

𝜕𝑡𝜕𝑟Π + (𝑢𝑟𝜕𝑟 + 𝑢𝑧𝜕𝑧) 𝜕𝑟Π + (𝜕𝑟𝑢𝑟𝜕𝑟 + 𝜕𝑟𝑢𝑧𝜕𝑧) Π
+ 2𝑟2 𝜕𝑟Π = (Δ + 2𝑟 𝜕𝑟) 𝜕𝑟Π + 𝜕𝑟𝜕𝑧Π2

(128)

Via an interpolation inequality and Young’s inequality, we
have

󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩𝐿2(R3) 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩𝐿6(R3) 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩𝐿3(R3)
≤ 󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩𝐿2(R3) 󵄩󵄩󵄩󵄩󵄩∇̃2Π󵄩󵄩󵄩󵄩󵄩3/2𝐿2(R3)

󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩1/2𝐿2(R3)

≤ 𝐶 󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩4𝐿2(R3) 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩2𝐿2(R3) + 12 󵄩󵄩󵄩󵄩󵄩∇̃2Π󵄩󵄩󵄩󵄩󵄩2𝐿2(R3) .
(129)

Taking scalar product of (128) with ∇̃Π, we deduce that
12 𝑑𝑑𝑡 ∫R3 󵄨󵄨󵄨󵄨󵄨∇̃Π󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥 + ∫

R3

󵄨󵄨󵄨󵄨󵄨∇̃2Π󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
+ ∫

R3

2𝑟2 󵄨󵄨󵄨󵄨𝜕𝑟Π󵄨󵄨󵄨󵄨2 𝑑𝑥
≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩𝐿6 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩𝐿3
+ ∫

R3

1𝑟 𝜕𝑟 (󵄨󵄨󵄨󵄨󵄨∇̃Π󵄨󵄨󵄨󵄨󵄨2) 𝑑𝑥 + ∫
R3

󵄨󵄨󵄨󵄨𝜕𝑧Π󵄨󵄨󵄨󵄨3 𝑑𝑥
+ 𝐶 󵄩󵄩󵄩󵄩󵄩∇̃2Π󵄩󵄩󵄩󵄩󵄩𝐿2 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩𝐿2 ‖Π‖𝐿∞
+ ∫

R3

󵄨󵄨󵄨󵄨𝜕𝑟Π󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝜕𝑧Π󵄨󵄨󵄨󵄨 𝑑𝑥) ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩4𝐿2 + 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩2𝐿2
+ ‖Π‖2𝐿∞) 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩2𝐿2 + 12 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩2𝐿2 .

(130)

In the above, we used the fact that (1/𝑟)𝜕𝑟(|𝜕𝑟Π|2 + |𝜕𝑧Π|2) ∈𝐿1(R3) when 𝑡 < 𝑇∗. Gronwall’s inequality again gives us

∇̃Π ∈ 𝐿∞ (0, 𝑇; 𝐿2) ,
∇̃2Π ∈ 𝐿2 (0, 𝑇; 𝐿2) . (131)

Multiplying both sides of (112) with |Ω|4Ω and integrating
over R3, we have

16 𝑑𝑑𝑡 ‖Ω‖6𝐿6(R3) ≤ 2∫
R3

󵄨󵄨󵄨󵄨𝜕𝑧Π󵄨󵄨󵄨󵄨 |Π| |Ω|5 𝑑𝑥
≤ 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩𝐿6 ‖Π‖𝐿∞ ‖Ω‖56 .

(132)

Then it is immediate that Ω ∈ 𝐿∞(0, 𝑇; 𝐿6).
Following the ideas in [18], we introduce the angular

stream function 𝜓𝜃 such that

−(𝜕2𝑟 + 1𝑟 𝜕𝑟 − 1𝑟2 + 𝜕2𝑧)𝜓𝜃 = 𝜔𝜃. (133)

For all 1 < 𝑝 < ∞, we have

∫ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∇2𝜓𝜃

𝑟
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 𝑑𝑥 ≤ 𝐶∫ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔

𝜃

𝑟
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 𝑑𝑥. (134)

By the interpolation inequality ‖𝑓‖𝐿∞ ≤ 𝐶‖∇𝑓‖1/2
𝐿2

‖∇𝑓‖1/2
𝐿6

, we
have

∫𝑇

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢
𝑟

𝑟
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞ 𝑑𝑡

≤ ∫𝑇

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∇𝜕𝑧 (
𝜓𝜃

𝑟 )󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1/2

𝐿2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∇𝜕𝑧 (
𝜓𝜃

𝑟 )󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1/2

𝐿6
𝑑𝑡

≤ sup
𝑡

‖Ω‖1/2
𝐿2

∫𝑇

0
‖Ω‖1/2

𝐿6
𝑑𝑡.

(135)
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Therefore, we have 𝑢𝑟/𝑟 ∈ 𝐿1(0, 𝑇; 𝐿∞). Also we can have𝑢𝑟/𝑟 ∈ 𝐿𝑝(0, 𝑇; 𝐿∞) for all 𝑝 < ∞.
If we multiply (𝐵𝜃)2𝑛−1 on the both sides of (9)4 and

integrate over R3, then we have

12𝑛 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩󵄩𝐵𝜃󵄩󵄩󵄩󵄩󵄩2𝑛𝐿2𝑛 + (2𝑛 − 1)𝑛2 󵄩󵄩󵄩󵄩󵄩󵄩∇̃ 󵄨󵄨󵄨󵄨󵄨𝐵𝜃󵄨󵄨󵄨󵄨󵄨𝑛󵄩󵄩󵄩󵄩󵄩󵄩2𝐿2 +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝐵𝜃)𝑛𝑟

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐿2

= ∫
R3

𝑢𝑟𝑟 (𝐵𝜃)2𝑛 𝑑𝑥
+ 2𝜋∫∞

0
∫∞

−∞
𝜕𝑧 (𝐵𝜃)2 (𝐵𝜃)2𝑛−1 𝑑𝑧𝑑𝑟

≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢
𝑟

𝑟
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩󵄩𝐵𝜃󵄩󵄩󵄩󵄩󵄩2𝑛𝐿2𝑛 .

(136)

Hence we deduce that

󵄩󵄩󵄩󵄩󵄩𝐵𝜃󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿2𝑛) ≤ 󵄩󵄩󵄩󵄩󵄩𝐵𝜃0󵄩󵄩󵄩󵄩󵄩𝐿2𝑛 exp(∫𝑇

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢
𝑟

𝑟
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞ 𝑑𝑡) . (137)

Similarly, we have ‖𝐵𝜃‖𝐿∞(0,𝑇;𝐿∞) ≤ ‖𝐵𝜃0‖𝐿2𝑛exp(∫𝑇0 ‖𝑢𝑟/𝑟‖𝐿∞𝑑𝑡).
Setting B = 𝐵𝜃𝑒𝜃, we have

𝜕𝑡B + (𝑢 ⋅ ∇)B − ΔB = 𝑢𝑟𝑟 B + 2𝜕𝑧BΠ. (138)

By the maximal inequality, we have

‖ΔB‖4𝐿4,4𝑥,𝑡(R3×(0.𝑇)) ≤ 𝐶(󵄩󵄩󵄩󵄩B0
󵄩󵄩󵄩󵄩4𝑊2,4

+ ‖𝑢‖4𝐿6,∞𝑥,𝑡 (R3×(0.𝑇)) ‖∇B‖4𝐿12,4𝑥,𝑡 (R3×(0.𝑇))
+ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢

𝑟

𝑟
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
4

𝐿∞,4𝑥,𝑡 (R
3×(0.𝑇))

‖B‖4𝐿4,∞𝑥,𝑡 (R3×(0.𝑇))
+ ‖Π‖4𝐿∞,∞𝑥,𝑡 (R3×(0.𝑇)) ‖∇B‖4𝐿4,4𝑥,𝑡(R3×(0.𝑇))) .

(139)

By the Gagliardo-Nirenberg inequality

‖∇B‖𝐿12 ≤ 𝐶 ‖B‖2/5𝐿∞ ‖ΔB‖3/5
𝐿4

,
‖∇B‖𝐿4 ≤ 𝐶 ‖B‖4/5𝐿∞ ‖ΔB‖1/5

𝐿4
, (140)

(139) can be reduced to

‖ΔB‖4𝐿4,4𝑥,𝑡(R3×(0.𝑇)) ≤ 𝐶(󵄩󵄩󵄩󵄩B0
󵄩󵄩󵄩󵄩4𝑊2,4 + ‖B‖4𝐿4,∞𝑥,𝑡 (R3×(0.𝑇))

+ ‖B‖8/5
𝐿∞,4𝑥,𝑡 (R

3×(0.𝑇))
‖ΔB‖12/5

𝐿4,4𝑥,𝑡(R
3×(0.𝑇))

+ ‖B‖16/5
𝐿∞,4𝑥,𝑡 (R

3×(0.𝑇))
‖ΔB‖4/5

𝐿4,4𝑥,𝑡(R
3×(0.𝑇))

) ≤ 𝐶 (1

+ ‖B‖4𝐿4,∞𝑥,𝑡 (R3×(0.𝑇)) + ‖B‖4𝐿∞,4𝑥,𝑡 (R3×(0.𝑇)))
+ 12 ‖ΔB‖4𝐿4,4𝑥,𝑡(R3×(0.𝑇)) .

(141)

Since the last term in the above can be absorbed in the left
hand side, we have

ΔB ∈ 𝐿4 (0, 𝑇; 𝐿4) ,
∇B ∈ 𝐿4 (0, 𝑇; 𝐿∞) . (142)

Then, from (125), we have, for all 1 < 𝑝 < ∞,

1𝑝 𝑑𝑑𝑡 󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩𝑝𝐿𝑝 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢
𝑟

𝑟
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞ 󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩𝑝𝐿𝑝

+ 2 ‖Π‖𝐿∞ 󵄩󵄩󵄩󵄩󵄩∇𝐵𝜃󵄩󵄩󵄩󵄩󵄩𝐿𝑝 󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩𝑝−1𝐿𝑝
.

(143)

By Gronwall’s inequality, we have

󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿𝑝) ≤ (󵄩󵄩󵄩󵄩󵄩𝜔𝜃
0

󵄩󵄩󵄩󵄩󵄩𝐿𝑝 + 2∫𝑇

0
‖Π‖𝐿∞ 󵄩󵄩󵄩󵄩󵄩∇𝐵𝜃󵄩󵄩󵄩󵄩󵄩𝐿𝑝 𝑑𝑡)

⋅ exp(∫𝑇

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢
𝑟

𝑟
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞ 𝑑𝑡) .

(144)

If we let 𝑝 󳨀→ ∞, we obtain 𝜔𝜃 ∈ 𝐿∞(0, 𝑇; 𝐿∞). Hence,
for any 𝑇 < ∞, we obtain that 𝜔𝜃, ∇B ∈ 𝐿2(0, 𝑇; 𝐿∞) and
conclude that there does not exist a finite time blow-up if we
assume (19).

Next, we assume that condition (20) holds. If we apply
(129) to (128), we obtain

12 𝑑𝑑𝑡 ∫R3 󵄨󵄨󵄨󵄨󵄨∇̃Π󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥 + ∫
R3

󵄨󵄨󵄨󵄨󵄨∇̃2Π󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
+ ∫

R3

2𝑟2 󵄨󵄨󵄨󵄨𝜕𝑟Π󵄨󵄨󵄨󵄨2 𝑑𝑥 ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩4𝐿2(R3) 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩2𝐿2(R3)
+ 12 󵄩󵄩󵄩󵄩󵄩∇̃2Π󵄩󵄩󵄩󵄩󵄩2𝐿2(R3) + ∫

R3

1𝑟 𝜕𝑟 (󵄨󵄨󵄨󵄨𝜕𝑟Π󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜕𝑧Π󵄨󵄨󵄨󵄨2) 𝑑𝑥
+ ∫

R3

󵄨󵄨󵄨󵄨𝜕𝑧Π󵄨󵄨󵄨󵄨3 𝑑𝑥 + ∫
R3

󵄨󵄨󵄨󵄨󵄨𝜕2𝑧Π󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜕𝑧Π󵄨󵄨󵄨󵄨 |Π| 𝑑𝑥
+ ∫

R3

󵄨󵄨󵄨󵄨𝜕𝑟Π󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝜕𝑧Π󵄨󵄨󵄨󵄨 𝑑𝑥 + ∫
R3

󵄨󵄨󵄨󵄨󵄨∇̃2Π󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜕𝑟Π󵄨󵄨󵄨󵄨 |Π| 𝑑𝑥)

(145)

Using an inequality

󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩4𝐿2(R3) ≤ 2 󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩4𝐿2(R3\𝐶𝑅) + 2𝑅4 ‖Ω‖4𝐿2(𝐶𝑅) , (146)
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we have

12 𝑑𝑑𝑡 ∫R3 󵄨󵄨󵄨󵄨󵄨∇̃Π󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥 + ∫
R3

󵄨󵄨󵄨󵄨󵄨∇̃2Π󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
+ ∫

R3

2𝑟2 󵄨󵄨󵄨󵄨𝜕𝑟Π󵄨󵄨󵄨󵄨2 𝑑𝑥
≤ 𝐶 (󵄩󵄩󵄩󵄩󵄩𝜔𝜃󵄩󵄩󵄩󵄩󵄩4𝐿2(R3\𝐶𝑅) + 𝑅4 ‖Ω‖4𝐿2(𝐶𝑅)) 󵄩󵄩󵄩󵄩󵄩∇̃Π󵄩󵄩󵄩󵄩󵄩2𝐿2(R3)

+ 12 󵄩󵄩󵄩󵄩󵄩∇̃2Π󵄩󵄩󵄩󵄩󵄩2𝐿2(R3)
+ ∫

R3

1𝑟 𝜕𝑟 (󵄨󵄨󵄨󵄨𝜕𝑟Π󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜕𝑧Π󵄨󵄨󵄨󵄨2) 𝑑𝑥
+ ∫

R3

󵄨󵄨󵄨󵄨𝜕𝑧Π󵄨󵄨󵄨󵄨3 𝑑𝑥 + ∫
R3

󵄨󵄨󵄨󵄨󵄨𝜕2𝑧Π󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜕𝑧Π󵄨󵄨󵄨󵄨 |Π| 𝑑𝑥
+ ∫

R3

󵄨󵄨󵄨󵄨𝜕𝑟Π󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝜕𝑧Π󵄨󵄨󵄨󵄨 𝑑𝑥
+ ∫

R3

󵄨󵄨󵄨󵄨󵄨∇̃2Π󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜕𝑟Π󵄨󵄨󵄨󵄨 |Π| 𝑑𝑥.

(147)

By Gronwall’s inequality, we conclude that

∇̃Π ∈ 𝐿∞ (0, 𝑇; 𝐿2) ,
∇̃2Π ∈ 𝐿2 (0, 𝑇; 𝐿2) . (148)

The estimate ofΩ, 𝑢𝑟/𝑟, B, and ∇̃Π can be obtained similarly
to the proof of the condition of (19).This completes the proof.
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