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In this paper, we consider the regularity problem of the solutions to the axisymmetric, inviscid, and incompressible Hall-
magnetohydrodynamics (Hall-MHD) equations. First, we obtain the local-in-time existence of sufficiently regular solutions to
the axisymmetric inviscid Hall-MHD equations without resistivity. Second, we consider the inviscid axisymmetric Hall equations
without fluids and prove that there exists a finite time blow-up of a classical solution due to the Hall term. Finally, we obtain some

blow-up criteria for the axisymmetric resistive and inviscid Hall-MHD equations.

1. Introduction

Magnetohydrodynamics is the study of the dynamics of
the electrically conducting fluids. The dynamics of the
fluids can be described by the Navier-Stokes equations
and the dynamics of the magnetic field can be described
by the Maxwell equations for a perfect conductor. The
Hall-magnetohydrodynamics (Hall-MHD) equations differ
from the standard incompressible MHD equations by the
Hall term V x ((V x B) x B), which plays an impor-
tant role in the study of the magnetic reconnection in
the case of the large magnetic shear (see [, 2]). In [3],
Hall-MHD equations have been formally derived from
using the generalized Ohm’s law instead of the usual
simplified Ohm’s law. The Cauchy problem for three-
dimensional incompressible Hall-MHD equations reads as
follows:

ou+ (u-V)u+Vp=(VxB)xB+vAu,
V-u=0, in R3><(0,oo),

1
0,B—V x (uxB)+Vx((VxB)xB) =«AB,

(u(0,x),B(0,x)) = (uy (x),B, (x)), inR>,

where u, B, and p represent three-dimensional velocity vector
field, the magnetic field, and scalar pressure, respectively. The
initial data u, and B, satisfy

V-u,=V-B,=0. )

Note that if V - B, = 0, then the divergence free condition is
propagated by (1);. We only consider R? for a spatial domain
with vanishing at infinity condition for simplicity.

The Hall magnetohydrodynamics were studied systemati-
cally by Lighthill [2]. The Hall-MHD is important, describing
many physical phenomena, e.g., space plasmas, star for-
mation, neutron stars, and geo-dynamo (see [1, 4-8] and
references therein).

The Hall-MHD equations have been mathematically
investigated in several works. In [9], Acheritogaray, Degond,
Frouvelle, and Liu derived the Hall-MHD equations from
either two fluids’ model or kinetic models in a mathematically
more rigorous way. In [10], the global existence of weak
solutions to (1) and the local well-posedness of classical
solution are established when »,x > 0. Also, a blow-up
criterion for smooth solution to (1) and the global existence
of smooth solution for small initial data are obtained (see
[10, Theorem 2.2 and 2.3]). Some of the results have been
refined by many authors (see [11-13] and references therein).
Recently, temporal decay for the weak solution and smooth
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solution with small data to Hall-MHD are also established in
[14]. Spatial and temporal decays of solutions to (1) have been
investigated in [15].

Using vector identity, we can rewrite (1) as follows:

2
atu+(u-V)u+V(p+%):(B-V)B+vAu,

V-u=0,

in R* x (0,00), (3)
0,B+(u-V)B+V x ((VxB)xB)=(B-V)u+«AB,
((0,x),B(0,x)) = (19 (x), By (%)),
in R’.

Note that a weak solution (u, B) to (1) satisfies the following
energy inequality (see [10]):

lu ()17 + 1B @117
t
+2 | VIVu GOl + R IVl dr (@)
0

< Juollz2 + [Bollz

for almost every ¢ € [0, c0).
Next we consider the mathematical setting for the
axisymmetric Hall-MHD equations. Introducing the cylin-

drlcal C()()I‘dlnates
V 1 2’

x
0 = arctan=2, (5)
X1

Z = X3,
and standard basis vectors for the cylindrical coordinates

e, = (cos6,sin6,0),
eg = (—sin b, cos 0,0), (6)
e, =(0,0,1),

we set

u=u (r,z,t)e, +u° (r,z,t)e,,

(7)
B=8 (r,z,t) eg.

It is well-known that the local-in-time classical solutions to
axisymmetric Navier-Stokes equations without swirl persist
to any time (see [16,17]). But the global well-posedness for the
axisymmetric Navier-Stokes equations with swirl component
is widely open and has been one of the most fundamental
open problems in the Navier-Stokes equations.

Advances in Mathematical Physics

The axisymmetric MHD equations can be written as
follows:

ou +(Wo, +u"0,)u —» <8T2 + 18, +07 — é) u
r r

072
+8,P=—(B) )
-

Q" + (u'd, +ud,)u —v (32 + L 2 )u
r

+9,P =0, (8)

u
ou’ + — +0,u° =0,
r

u'B?
r

0,B” + (w0, +ud,) B -

1 1
—K<af+;a,+a§—r—2)39=o.

Lei [18] proved the global well-posedness of classical solu-
tions to system (8) when « > 0.

Then axisymmetric Hall-MHD equations are reduced to
the following:

o+ (w3, +ud)u — (2} + L lz) o
r T

o\2
+arP=—(B) R
.

0 + (u'd, + 0, u —v (32 + L %)
r

0.P=0,
T )

ur
ou +—+0,u° =0,
r

u'B?
r

62
1 1 (87)
—x(o?+ Lo az——>39=a .
K<r+rr+z T,Z z r

For axisymmetric Hall-MHD equations, the global well-
posedness of the axisymmetric solutions to the viscous
case (v,k > 0) was first established by Fan, Huang, and
Nakamura [19]. Recently, Chae and Weng [20] showed that
the incompressible Hall-MHD system without resistivity is
not globally in time well-posed in any Sobolev space H™(R?)
with m > 7/2. But local-in-time existence of smooth solution
to (1) is totally open when x = 0. Compared with the work in
[18], it seems very surprising that Hall term plays a dominant
role for the occurrence of the singularity and even for the local
well-posedness of the partially viscous Hall-MHD problems.
In this paper, we intend to investigate the blow-up problem
for the solutions to the partially viscous axisymmetric Hall-
MHD equations and local-in-time existence of solutions to

0,8’ + ('3, +ud,) B’ -
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such solution with the axisymmetry. Setting w’ = 8,u" —0,7,
Q= we/r, and IT = Bg/r, (9) are equivalent to the following
equations:

aa—(: +(u'0, + u®0,) Q + 2110,11

=3 +29,+22) 0,
' (10)
o1l

=t (u'0, + u®0,) I1 - 2T10,11

=3+ 20,4021
r

1
cur u:Q,
r
B
g
r

First, we consider the local well-posedness of the axisymmet-
ric Hall MHD equations with » = 0 and x = 0, and (10) can
be rewritten as the equations

o1+ (u'0, + u®0,) I1 = 2110, 11 (11)
0,Q+ (u'0, + u®0,) Q = —2I19,I1. (12)
Theorem 1. Let (uy, By, By/r,curl uy/r) € H™R?) x
H™R?) x H™(R?) x H™ ' (R®) with integer m > 9/2 be

axisymmetric initial data. There exist Ty, > 0 and classical and
axisymmetric solution (I1, Q) to (11)-(12) such that

(13)

Q) € C([0,Ty); H™) nLip ([0, T,); H™ ") and u(t),B(t),11(£) € C([0,Ty)s H™) nLip ([0, Ty) s H™ ™).

Remark 2. Since the local-in-time regularity of solution to
(1) is necessary to preserve the axisymmetry of the Hall-
MHD equations locally in time, Theorem 1 cannot resolve the
open question raised from [20]. We remark that the relation
between (11)-(12) and (1) cannot be justified without local
well-posedness of solution to (1) (x = v = 0).

Next, we consider the local well-posedness/blow-up
problem for the axisymmetric Hall equations with zero fluid

velocityand « = 0. We rewrite the Hall equation for IT = B?/r:

0,IT = —-2I10,11,
(14)
I1(x,0) =11, (x)..

The above equation has similar features to the inviscid
Burgers equation.

Theorem 3. Assume I1; € Hm([R3)for any integer m > 5/2.
Then there exist T,y > 0 and a classical solution to (14) such that

(1) € C([0,T,); H" (R%)) -
15
NLip ([0, T,); H™ ' (R%)).

Furthermore, for any I1, # 0, there exists T > 0 such that the
above local solution T1(t) has singularity at a finite timet = T".

Remark 4. In [20], the authors showed that if the initial
data TI, satisfies 0,I1,(0,0) > 10*°C? for some constant
C, and II,(0,0) > 0, then the singularity of IT and Q to
axisymmetric inviscid Hall-MHD equations happens in a
finite time. Theorem 3 implies that the singularity of IT which
is a solution to (14) happens in a finite time without any
restriction of the initial data.

Finally, we consider the incompressible Hall-MHD equa-
tions with zero fluid viscosity, for simplicity, assuming that
y=0andx = 1.

For the solutions to (10), global a priori bounds can be
obtained; that is,

"H”LOO(O,T;LOO) + "Q”LOO(O’T;Lz) < 00 fOI‘ aH T > 0. (16)

We assume that our initial data (i, By) is axisymmetric and
satisfies
m 3\* . 5
(149 By, 0, TTy) € H™ (R) with m > =,
17)
V-u,=V-B,=0.

The local-in-time existence of a smooth solution to (1) was
already obtained by Chae, Wan, and Wu [21]. We obtain the
following blow-up criterion for the local-in-time solutions to
the Hall-MHD equations with v = 0 and x = 1.

Theorem 5. Let (u, B, p) be a local-in-time classical solution to
the axisymmetric Hall-MHD equations (9) with v = 0,k = 1.
Then, for the first blow-up time T* < 0o of the classical solution
to (9), it holds that

lim sup ([l ()7 + 1B ®) 70 + 12 ()7
t2T* (18)

+ T ()l ) = oo,
if and only if one of the following conditions holds:
(i)

™
JO

*

T
dHL|Wmﬂwﬂzm.(m
)

,
%

T llLemivc,



(ii)

4

LR\ dt = oo. (20)

-
J, I

w
0

In the above, Cy denotes the inside of infinite cylinder such that
Cr = 1, 9,2) | X¥* +y* < R*} forany R > 0 and f,(x) is
defined by max{ f(x), 0}.

Remark 6. For the usual MHD equations, Lei [18] proved
the global well-posedness for the axisymmetric MHD equa-
tions even for the case that ¥ = 1 and x = 0. For Hall-
MHD equations, even local well-posedness is widely open
for this zero resisitivity case due to the Hall term (see [20]).
Theorem 5 indicates that if there exists a finite time singularity
to the axisymmetric equations with v = 0 and x = 1, then
some norms of velocity and vorticity should approach infinity
even for the outside of any infinite cylinder.

For simplicity, we denote C for the harmless constant
which changes from line to line, and || - |,,, for H”-norm.

2. Proof of Theorem 1:
Local-in-Time Existence

In this section, we consider the local-in-time existence of
regular solution to (11)-(12). Even if this problem does
not seem complicated, we have a few technical difficulties
raised from the axisymmetry; e.g., mollifying equations do
not preserve the axial symmetry. We briefly explain some
steps to prove Theorem 1: First, we consider system (21)
without giving any symmetry. We can obtain the regularized
system (25) by using standard mollifier. Then we can obtain
various estimates and local-in-time existence of a solution
for (21). Finally, we consider the initial data which is axial
symmetry and axisymmetry is also preserved by (21) and this
argument gives a proof of local-in-time existence of solution
to (11)—(12).
We consider the equations

o,w+ (u-V)w=uQ-2Bo,II,
9,B+ (u-V)B=uTI+2BoI,

(21)
9,11+ (u-V)II = 2113, 11,

0,0+ (u- V) Q = —2IT0,I1,
where w, B, I1, and Q) are assumed to be independent scalar
valued functions without assuming symmetry for a while,
and the divergence free velocity field u = u'(r,0,2)e, +
u*(r,0, z)e, is assumed to be obtained from the equation

—Au =V x (weg) . (22)

Thus, we have

u(x) =+ (Vx (wep)), where @ (x) = fm (23)
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Ifw € HY(R*>)NC(R?), then the divergence theorem and trace
theorem induce the following estimates:
[u(x)| < "(D”LZ(B(o;l)) ||Vw||L2(R3)

+ VOl 22\ 5(o1)) 0l 2w
+J O(y)w(x-y)dS
0B(0;1)

< Pl sy IVl 2@y

+ VOl 2 m2\5(0;1)) 0l 2w2) (24)

1/2
+C<J |w(x—y)|2d8>
3B(0;1)

< N Pll2 o,y IVl 2@y
+ VO 2 ma\50,1)) 1@l 2 w3y + C lloll g ey

< Cllwlg sy -
We define a regularized system of (21) as follows:

O + J (Feu- V) J .

=Je (Jau J Q) - 27 (7 B2, S IL,),
0B+ J.(Fu-V) 7B,

=Je (Jau J ) + 27 (7B J L),
oIl + 7 (Fou V) 7 I =27 (7110, 7.11),
3,0+ 7. (Fu-V) 7.Q.=-27.(71.0,7]11),

(25)

where 7, is a standard mollifier as in [22]. Next, we obtain
apriori estimates to derive a time T,, which does not depend
on € > 0. Then we prove that (25) have a local-in-
time solution S, = (w,B,II,Q,) € C'(0,T;H™) x
C'(0,Ty; H™)xC' (0, To; H™')xC' (0, Ty; H™) space for each
€>0.

Proposition 7. Let
[Scllxn @) = el + 1Bl + Il iy + 12, 26)

where X™ = H™(R®) x H™(R?) x H™(R?) x H™(R?) with
an integer m > 5/2. Then, for some positive constant C, and
T < 1/C,S, with Sy = |IS.(0)|| xn, we have

Sl (i) e — S0
sup el 0 = =0 7

(27)

S 2
3,8 s () < —°> .
b 125l ()<<1—COSOT
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Proof. Form > 5/2and 1 < s < m, we have the following
inequality by the calculus inequality and Holder’s inequality:

2 el

V' (FVu, - 7 Ve,

<[ vally
+ JRS 17 Vo | |V (7ot 7.0,)| dx

o 17allv (7B o s ) d <,
R® (28)

(V0o [V:@e] 2+ 97012 [Veoe o)

el (el 1Vl + 1921 V] 2)
+ 2], (1Bl |V

+ VI |V°B ) < © llwellm (lellos el
Qe Neoell + I1TTel1 1B )

Similarly, for m > 5/2 and 1 < s < m, we can obtain

S 1B s I G I
el 1l + 10,1,

andl <s<m+1,

L en;

STl (el 17Tl # I ) -

For an integer m > 5/2 and all integers 1 < s < m, we have

(30)

1d 2 2
55 “VS (He * Qe)"L2 s "He * QE“m ““’e"m-l : (31)
Hence, we conclude that, for m > 5/2,

d
@I @

1
< = Co (el + 1BlZ, + I,y + 1 + ) G2
< Co [ISe]3en (1)
Inequality (32) implies that (27) holds true. (I

Proposition 8. Assume C, and S, are the same as in Propo-
sition 7. Let T, = 3/4C,S,. Then for given initial data
Wy Byy Qy € H™(R?), and T1, € H™'(R®) with an integer
m > 5/2, there exists a unique solution (w,, B, 1., Q.) to
regularized system (25) such that w,, B,,Q, € C'(0,Ty; H™),
II, € C1(0, Ty; H™?).

Proof. We set

F! (w0 Bo T, Q) = 7 (Fou - V) J o,
+ Je (Feur T Q)
-27.(7.B.0,7.11.),
~J(Feu.-V) 7B,
+ Fe (Feu S ,)
+27.(7.B0, 7 I1.),
~J(Feu.-V) FLI1,
+2J(F 10,7 11,),
~Fe(Feu. V) 7Q,
—2J (F 10,7 IL,).

P€2 (we’ BE’ HE’ QE) =
(33)

E] (w0, 11,) =
F: (wE’ HE’ QE) =

First, we show that Fe1 is Lipschitz continuous on H” space.
We estimate fore < 1,m > 3

“Pel (we’ Be’ He’ Qe) - Pel ((’T)e’ Be’ He’ Qe) m
< |(Fe (v - 0) - V) T,
+ "(feﬁe : V) (fewe - je‘r)e “m
+ "fe (“Z - ﬁg) feQe"m

“m 1) (34)

< S (ol + o, -

C _
el + el Q) + = (oo + @],

e = @, < % (leoell + 19l + 1@l
’ "we - CT’e"m :

By the similar estimates as in (34), we obtain

el (we’ B, IL, Qe) - Fel (we’ Ee’ HE’QE) m

Sz"(jeBe_jeEe) zd etle

(35)

>

< O[],

el (we’ B, IL, Qe) - Fel (we’ B, ﬁe’Qe) m

<2 ||jeBe (azjene - azjeﬁe)”m (36)

<C|B, [T -1I

€llm+1’

Fel (we’ Be’ He’ Qe) - Fel (we’ Be’ He’ﬁe) m

e (£ - 70,

(37)

< Cl@d,, o -

€llm *



By the virtue of properties of mollifier, Lipschitz continuity
of the remaining functions F/, j = 2,3,4, can be obtained
with constant C/e. Thus, we can deduce the following for | -

s Pl < R,
B0 -F Ol < SRE-Tee— G9)

withm >3 and F, = (Fel, Fez, Fg, F:). Now we use the Picard
theorem with domain X™. By picking any initial data S.(0) €
X" and choosing T, = 3/4C,S,, we have, for R = §,/(1 —
CoT,Sy) = 45y,

_ s,
€

(39)

S-S

Fe (Se)_Fe(ge) xm

€ €

xm

where [|S,|| Xm,||§5|| xm < 4S,. Therefore, the Picard theorem
implies that, for each 0 < € < 1, there exists a unique solution
S.(t) € C'(0,T.; X™) for a fixed time T > 0. For simplicity, let
T. be the maximal existence time of such solution. Suppose
that, for some 0 < € < 1, we have T, < T,. Then by
Proposition 7, for arbitrarily small § > 0, we have

“Se“xm (T.-9) < < 4S,. (40)

_ S
1-CyS,T.

If we apply the standard continuation argument, then we
can have local-in-time solution S, at least until Tj. This
contradicts the assumption that T, < T,. Hence we prove
that, for any 0 < e < 1, there is a unique solution S_()
with a uniform time T}, such that S_(¢) € cYo, Ty; X™). This
completes the proof. O

Proposition 9. For an integer m > 7/2, the solutions obtained

in Proposition 8 form the Cauchy sequences in the following
spaces:

{s.}ec(0,Ty:x"),

{0,S.} € C(0, Ty X°).

(41)

Proof. Taking 0; operator (i = 1,2,3) on both sides of (25),
and multiplying 0;w,, we deduce that

177e>

2
2 at |a e~ o)l

= ai (Fel (we’ Be’

O (we—wa)=A+ A, + A+ A+ As + Ag,

M, 0,) - F (00, Bou T, Q) 42
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where
Ay

= ((fe _je’)ai (we we’)) (feaiue : V) fewe

+ (je’ai (we - we’)) ((je - je’)aiue ) V)
(43)
+ (fe’ai (we we’)) (je’ai (ue - ue’) ' V) jewe
+ (je’ai (we - we')) (je azue’ V) (je - je’) We
+ (je’ai (we - we’)) (je azue' V) je’ (we - we’) >
AZ
= ((fe _je’)ai (we we’)) (feue ! V) feaiwe
+(je’ai(we_we’))((j j )11 V)jez We
(44)
+ (fe’ai (we we’)) (je’ (ue - ue’) : V) jeaiwe
+ (je’ai (we - we')) ( g Uel V) (je - je’) aiwe
+ (je’ai (we we’)) (je’ue’ : V) je’ai (we - we’) >
A3
= ((fe _je’)ai (we we’)) feaiuzjeﬂe
+ (je’ai (we - we')) (je - je’) aiu:jege
(45)
+ (fe’ai (we we’)) je’ai (“Z - ug’)feﬂe
+ (je’ai (we - we’))je azue’ (je - je’) Qe
+ (je’ai (we we’)) je’aiu;je’ (‘Qe - Qe’) >
A4
= ((je _je’)ai (we - we’)) jeuzjeazge
+(je’ai( we’))(j j )uje
(46)
+ (fe’a (we we’)) (“Z - u;’) jeaiﬂe
+ (fe’a (we we’)) 'ug’ (je - je’)aiﬂe
+ (fe’a (we we’)) e’uz’fe’ai (Qe - Qe’) >
AS
= ((fe - fe’) ai (we we’)) jeaiBefeazHe
+ (fe’ai ( we’)) (je - fe’) aiBefeazHe (47)
+ (j a (we we’))je’ai (Be - Be’)jeazne
+ (j a (we we’))je’aiBe’ (je _fe’)azne
+ (je (we we’)) je’aiBe’je’az (He - He’) >
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As [V (@ = @) Jue o (e +€) [V,
= ((Fe = Fe) 0 (we — wa)) J B 00,11 + |V (@ = @)z ue o0 IV (R = Q)] 2
+(Ferd; (0~ w0)) (Fe = T ) BeF 0,11, ) (52)
+ (700 (€, - w)) F (B~ By) 70,211, jRZ |As| dx
Fenlecmea) Jebel e a0 < (e + )V (0o o)l 17.28.7.8.1,
et zaon M) VG-l (e ) B e
Apve. Ag can be estimated as follows: 19 (@, = w00l 19 (B, = Bl VT
J A ds [ (we = @e)[ 2 [VBe [ (€ +€) [ VIL],
a + IV (@ = @)l 2 VB [ |V (T = Te) 2
< (e+€) IV (0. - @)l (£ D - V) oo [ ladds
.
vl el (rOMedIvode g () -l 77200,
I G w9 LR A CER I Y L PR
IV (@ = 02 [Vue ] (e +€) Ve, 419 (@ = w0)s |Be = Bl [V1L
+ [V (@ = @) [ Vuer oo » 4 19 (@ = w0y 1Belle (e + €) VP
J,. 14l 19 (= @) fBe e |92 (T - 11

Similarly, we can obtain the estimates for IT.

= (6 + 6’) "V (we - “)6’)"L2 "(jeue : V) jeaiwenl

1d 2
|V (@ 00): (e + &) [Vuls [P, GO 57109 (=Tl
2], - wu]? [V | = 9,9, (F (0 I1,) - B (g, 11,1)) 33, (11, - 11,) %)
IV (@ = @)l oo (e +€) [V =B+ Byt Byt Byt Bs+ Be

where
B, = ((J. - £)99; (1, - T1)) (F.09;u, - V)
- I+ (F000; (1, - 1))
(51) ((Fe= Fe) 0. -V) JI,
+ (7009, (M.-11,)) (£0,0; (u.—uy)- V) (56)
- T+ (F00,0; (T - T1,)) (Fo00;u, - V)

' (je - je’)ne + (je'aiaj (He - Hs’))

JRS |45 dx
< (6 + 6,) "V (we - we’)"L2 "jeai”gjeﬂe"l
[V (@ - @)l (e +€) [Vae, Q]
* “V (we - we’)“iz “‘QEHL""
[V (@~ @)z Vel (e + €') ],

+ “V (we - we')“L2 “VUE’“L"O "Qe - Qu "L2 >

JRS |A4| dx : (je’aiajue’ ! V) je’ (He - He’) >
< (e+€) V(0 = w2 |l 7 0,0, B, = ((f. - 7)00; (1, - 11,)) (7.0, - V)
+ [V (w0, - o) 2 (6 + 6,) Vue] 2 VO] o - J O + (fs’aiaj (T - He’))

+ “we - Wy "f “VQe"L2 ' ((fe a je’) ou, - V) jeajne



+ (je’aiaj (He - He’)) (je’ai (ue - ue’) ’ V)
jea]H€+(j 86 ( /)) (jeraiuel V)
’ (je - je’)ajne + (je’aiaj (He - He'))

(Feug V) 20, (T, — 1),

(57)

B; = ((je _]e’)aiaj (He - He’)) (jeue ’ V)

- 0,011, + (F.0,9; (11, - I1,,))

((Fe=Fe)ue - V) 700,11,

+(F200; (T, - o)) (o (v~ ug) - V) (58)

- F 001, + (F299; (T - 1)) (Forug - V)
(Fe= Fo) 001, + (0,0, (1T, - T1))
(F e V) F0,0; (T, - T ),

By=((F.- F0)00; (I, - 11,)) 7.0,0,11.7.0.11,

+ (7209, (11, - T - ) 09,117 9,11,

J0,0; (I, ~Ty) 70,11,

)
+ jela,-aj (He - HEI)
(59)

)

)

( )7
( )
+(F0,0; (1T, - T1y)) F0,9,11, (F, - Fur)0,
+(£009; (11, - T1,))
- J 0,011, 70, (T, — T1,),
By = (.- 7o) 99, (11, —H'))fe

+ jelaiaj (He - He

3T1,.7.9,0.11,
)OIL,.7,.0.0,11

eYjYz e

J o0, (T, - T1,1) 7.9,9,T1,

)
+ (7090 (11, - T1,1)
(60)

)

)

( )(7
( )
+(F000; (T, - 1)) L3I, (F, - Fo) 3;0.11,
+(F 20,0, (I, - T1,1))
(I, - TL.),
M.)) 7 1,.7.8,0;0.11,

- Fo)10, 70,00, 11,

- F 0011, 7 20,0,
6= ((F.- 7o)
+ -(HE - T,

o) J.0,0,0,11,

))

+(F 20,0, (I, ~ T, ))fe
| (61)
)

(7o

(

+(F 00,0, (I, - 1)) F Tl (F — Fo) 0,0,0,11,
+(7000; (11, - T0,))

7201, 7 99,0, (I, - TL,)).

€ 7177€
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These By, ..., Bg can be estimated similarly.
JRS |B, | dx
st AN aapv) 70,
+ |V (- 1) . (e +€') "
@)z V] o
[0 01 - 1) Ve (64 ) ol
+ 0, - T
JRS |B,| dx
¢ Mgz [ 0ive )feajﬂe
+|V? (0 - 1) (e +€) [Vuel, o
e~ e
el (
el
J |Bs| dx
< (e+ &) v (e -1,
+ |V? (0 - 1) (e + € )||Vu€||L2 (64)
P - 1) -
|2 (11, - 11 e e e+ €)
J . |B,| dx
e+e)l
+ |v* (. - 1) ( -

Lo (e + e') [VIL|,

+ (1 - 1) | v?

j IB,| dx
R3

< (e+e')

+ “Vz (He - He’)

!
L(e+e)

(- )3
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+ [V (11, = 1) 9T e (e €) 92T
+ |9 (1 = T, 9T
(66)
,[Rs |Bg| dx
< (e + e’) "V2 (I, - I1,1) 12 jel'lefeaiajazneul
o (- 1) (e+ ) i), VP, (67
v (- )} v ..
+ [V (1 = 1) | [T e (e €) V1L

The other terms B and IT + Q can be estimated similarly, so
we omit the details. Then we have

1d 1d
577 IS ) = 5 (lee = @l + |Be - B[,

0 =Tl ], + (T + Q) = (T + Qu),)

<((e+€)+ 1S @) (|1 o + V20| oo (6®)
+|[V?B| o + [V (T + Q)] o) < C((e +€")
+ 1Sl @),
for m > 7/2. Gronwall’s inequality gives us
sup ISl (1) < (e+¢€") e, (69)

0<t<T;

which implies that {S,.} € C([0, T,], X 1Y and this information
completes the proof. O

Proof of Theorem 1. With the bounds in Proposition 7, if we
use the Sobolev inequality, then we can obtain the higher
order convergence, i.e., S € C(0,T,; X*) for all s < m by the
following inequality

—s/m s/m
sup “Se’ - SEHXS <C “SE’ - Se"jxl "Se’ - Se“m - (70)

0<t<T,

Now, to show S € C(0, To; X™) N Lip(0, Ty; X" 1) where §
satisfies our equations in classical sense almost every time,
we begin the process of obtaining the right continuity at
t = 0 first. Because X™ is a reflexive Banach space, by
Proposition 7, there exist a subsequence and limit functions
S(t) € L™(0, Ty; H™) which satisfies 9,S(t) € L™(0, Ty; H™ ")
forany 0 < t < T, S, (t) — S(t) in X" and 9,8, (1) —
0,5(t) in X!, This implies that [[S(t)[lx» < Sy/(1 — CySpt),
10, S(t)l xm-1 < (So/(1 - COSOt))Z. Thus we have

lim sup [|S]|xm (t) < S,. (71)

t—0+

If we use the above result, S(t) € C(0,T,; X*) for any s < m,
then S € C,,(0,T,; X™) is obtained by the following estimate.

For arbitrary § > 0 and ¢ € X ™™, there exists § € X * such
that [l — @llx-n < 8/8S,,

|- Se = S]nl < 19 = @ll xn [ISe = Sl o
+ l[@ Se - S]xS' (72)
<8+|[@.S. -]

>

X5

where [+, -]« is a dual pairing on X * x X*. If we choose ¢ =
V¥"w, € H™™, then by the weak continuity,

|[‘P’w0]Hm| < |[go,w(t) - wO]H"‘| + |[(P’w(t)]Hm|

73)
<0 +|lg0®]p,
[V w0l = 8+ 970 )]« 19"
m 2 m 2 (74)
cos V'@l Vel
2 2
Similarly, we have
litn_1)iorif ISl xm () = S, (75)

By inequalities (71) and (75), we have the right continuity
of S(t) at t = 0. If we apply the standard time translation
invariant property and the time reversal techique, we also
have S(t) € C(0,T,; H") without any difficulty. Lipschitz
continuity also can be obtained by

IS (t1) = S (£2) ][ < 8+ |Se (£1) = Se ()| ot

t
J 0,8, (1) dt
t

2

<6+

xm-1

<d (76)

+ |ty — 1] Ojug 0:Se ()] o

<8+ (48,)’ |t - 1],

which means S € C(0, Ty; X™) N Lip(0, Tp; X™1). Hence it is
a classical solution to (21) almost every time.

Next we assume that the initial data (u,, By, IT;, ) is
axisymmetric. Then the axisymmetry of a classical solution
to (21) is preserved and (w, B, I, Q2) is axisymmetric solution
to (21). Now we go back to (9) with » = x = 0, and set

u, € H" ([R3) ,
curl u, /3
—— e H"(R),
BO cH" (R3) , (77)
B

0 3
— e H"(R’),
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Then for

w, = curl u,

(78)

p
B
I, = =2,

p

we know that there exists a unique solution (w,B,Q) ¢
C(0, Ty; H™™") n Lip(0, Ty; H™ ), I € C(0,Ty; H™) N
Lip(0, Ty; H™ ™). Butif we replace Q) with w/r and IT with B/r,
then w, B, w/r, B/r also satisfy (21) with the initial data. So by
the uniqueness, Q = w/r in C(0, T| s H™ N Lip(0, T, s H™ )
and I = B/r in C(0, Ty; H™) N Lip(0, To; H™ ). Next, we can
show that u = @ = curlw € C(0, Ty; H™) N Lip(0, Tp; H™M.
By the Poincaré lemma, curlu = w satisfies the w equation
of (9). Then we can deduce that u and B satisfy (9) almost
every time by finding the axisymmetric scalar pressure p.
Then the energy inequality (4) implies that u € L (0, T,; L*)
and, almost every time,

e (21) = 4 (£2)] 2oy < 12 — 2]
tl
: J; “at” (tl) - at” (tz)"LZ(RS) (t) dt < |t1 - tzl

- sup ||atu||L2 < |t1 - t2| sup (Jlullpe Vel 2 (79)

0<t<T, 0<t<T,
+|(VxB) x Bll2 + |Vp|2) < |t — 13

- sup (llolf + 1BI3) < Clt; -1,

0<t<T,
which implies u € C(0,Ty; H™) N Lip(0, Ty; H™ ™). The
uniqueness of u can be obtained from the standard tech-
niques and we omit the details. Finally we can show that
B € C(0,Ty; H™) N Lip(0, Ty H™1). Almost every time, we
can rewrite the B equation with

3,B+ (', +u7d,) B =u'Tl + 2110,B, (§ - n) . (80)
r

Then we can obtain the conclusion through the standard H™
estimate with Gronwall’s inequality. O

3. Proof of Theorem 3: Blow-Up of
Axisymmetric Hall Equations

The proof of Theorem 3 is split into two propositions: local-
in-time existence of a regular solution to (14) and the finite
time blow-up of the local-in-time solution.

Proposition 10. The equation

0,T1 = —2I10,11

(81)

(x,0) =11, (x) e H", m> 3

has a unique local-in-time solution.
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Proof. First, we find the global solution to the following reg-
ularized equation of (14) without assuming the axisymmetry,
atHe =-27. (jene : azfene)

s (82)

(x,0) =11, (x), I,e€H", m> 3

Before proceeding further, we note that the divergence
theorem can be applicable due to the mollifier. Let

F (He) = _zfe (jene : azjene) . (83)

Hence, the image of the function F defined on H" is included
in H” for m > 3/2.

To use the Picard theorem on H™ space (m > 5/2), we
first obtain that F is Lipschitz continuous on H", i.e.,

| (1) - F (1)),
<27 {ral (o700 -0, 7)),
r2|7 (L - £ TE) 0.7 112}

1 RN
<2|r.1.

0,7, (1 -1’
'z (e €

] .

+2||j€ (m} -112)

0.7

ol
C
s em+l1 (‘H L2)|

F is a Lipschitz continous function on a bounded open set
O in H™. Now we can apply Picard theorem. For each € >
0, there exist a unique solution II, and a finite time T, such
that IT, € C'(0,T, : H™). Following the standard process
of constructing local-in-time solution, we obtain an implicit
form of the solution

1
€

2
+ 1L

1 2
12 | I, - 1IT

m

t
I, (t) =TI, + J F(I.(s))ds, 0<t<T. (85
0
Since F(0) = 0, we have

t
I, @ < I, + | 1F @), ds

! 86
<ol + J, Cone i1 @ 0L, s,

0<t<T,.

Since the above regularized equation satisfies an energy
estimate, we deduce that

d 2 2 3
- == = 87
= JRS Idx 3sz 3, (7L dx=0, (87)

and hence
[Tl @) = o] 2 - (88)
For the higher order norm, Gronwall’s inequality implies

I, &) < |||, eomMolzest, o<t <T.  (89)
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The above inequality justifies that each solution II, is a global
solution to regularized equation, and

I, € C' (0,00 : H™), forall I, € H" (90)

Second, we show that, for some finite time T', the sequence
{I1.}.., is a Cauchy sequence in C(0, T; L?). We note that, for

1
e, ) € ——=—777—>
OssltlfT T, () 1-C,T ||,
) 91
1
el O < C\ Ty )
OZIE)T " t e"m—l () < 1-C,T “Honm

By the standard energy estimates, we have, for 0 < s < m,

14
2dt

_ JRS V{3, (7.1} V (£.00,) dx (92)

VI

= JRS o {V/ (7.11) V¥ (7.10,)} V¥ (7.10,) dx.

If j # 0 or j # s, then we obtain easily that

14
2 dt

<] v

VI

v (7 L) [V (7.00) dx (93)

< CIVIL e L], < ClTL,

If j =0or j = s, then we obtain

= JW (FIL)-0,V° (F.IL,) - V* (£ .I1.) dx
= J (7.011,)0, (V¢ (£.11,)) dx (94)
RS

= JR3 az (jene) lvs (fene)|2 dx
2 3
<[0T o ey ITTelf < C T, -

Combining the above inequalities (93) and (94), we have

d
E "He"m <G, "He"fn . (95)

11
The above inequality gives us
I
He m (t) < b Ylim
I O e, I,
1
for 0<t <T < ———,
o [ Dol
(96)
1
II ) —————
S R TN
for T < ;
Con [Tl

By applying H™ ' norm at the regularized equation, we
deduce that

19Tl = I (T, < G Ty 10T

< Cp, T [2, (1)

2
< 1 (97)
© "\ 1-C, T ],

1

for T < ———.
Con |5,

Now we are ready to show that {II.} ¢ C(0, T; LY)isa Cauchy
sequence (as a sequence for €, — 0), where T' is chosen as
above.

1d

2
Edt "He =g ||L2(R3)

== | 7oy - 7o, (7omyY

(M- ) dx = - [ 7.1, - 1)

0, (Fe) + | 7o (- T1)a, (7.11,)°

] ARG AR A
“2| 7o (- 1) (A1, - 7o) 2. (£01)

-2 [ {70 (- n)F o, ()

-2 70 (M- T) FomL, (701, - £01L)

- Jje’ne’az {je’ (He - He’)}2
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By the properties of regularizer 7., for m > 5/2, we have
1d
2dt

(o1 e T, + 0T, Tl ) + € (e

“He — I "iz(u@) <C "He -1 “LZ (6 + el)

+ &) I, L, = T 0.1 e + €[,

~ Tl 0.1 o + C (e + €) UL, [T~ T
el + €I =T oo < C (e O
+ &) ], I, 0 - s + € (),

+ ) I, - T < C i, - T

Ale+ N, Il

+ I, ~ s (I, + e,

In summary, we have

d
E "He - H6’||L2(R3)

100
<C(e+€) [, 0, (100)

+ C T, = e |2 (T, + [TTer],)

By Gronwall’s inequality, we can conclude that {IL.} is a
Cauchy sequence in the C(0,T;L*) space. And by H™
boundness, if we apply the interpolation inequality, then we
can see that {I1} is a cauchy sequence in C(0, T; H®), Vs < m.
So we have the limit function IT € C(0,T; H®). And {0,I1.}
is also a cauchy sequence in the C(0,T; LZ) space by the
following estimates:

lo.1L - 3,11 2
<2 F (L0, F L) = F o (FeTla0, T Tl )| 2
<2|(Fe = Fo) (F IO, L) 12
+2||(Fe - Fo) 0.7 L 2
+2[| 70 (T = T ) 0, 7 I1 | 12 (101)
+2|F el (Fe = o) 0,10 2
+ 2] f ol 700, (T ~ L) -
<6(ere!) (LI + )
w4 (L, + ) I - )
For 5/2 < s < m, we have the limit function 9,II €
C(0, T; H™).
Finally, we can show that IT € C(0,T;H™) n Lip(0,

T; Hm_l). By the Banach Alaoglu theorem, we have IT €
L0, Ty; H™) and 9,11 € L0, Ty; H™ "), because we know
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that, for any s < m, II € C(0,T;H"). It implies II €
C,(0,T; H™) by the following estimate:

(9. 1L =11 < [l = @y [T = 1T
+[@ I, -] <8+ (@I -]  (102)

<28

for any given ¢ € H™™, for some ¢ € H*, s < m. Now we
show that

lim inf [T ()Il,, = lim sup [TT (), = |TLo]l,,, - (103)
t—0+ t—0+

By the weak continuity, for any & > 0, there exists # > 0 such
thatif0 < t < r,then -6 < [I1(¢)-11,¢] < &, forallp € H™.

Choose ¢ = V*TI,, with s < m. Then it gives us

[V = 8 < VI @] 2 [V -

S v o). N ||VSH0||;_ (104)
2 2
Also we have
I, |2, < ITT @)1, + 2™, (105)
which implies that
lim inf |IL(®)]l, > I, . (106)

By the H™ boundness with weak convergence, it is deduced
that

II
" O"m 0<t<T (107)

IOl < — = 0=
R O )

which implies

lim sup |ITL ()], < [|TT,],, - (108)
t—0+

Thus we have the time continuity of ITat 0. For any ¢, < T'and
initial value I(t,), we can obtain a right continuity at t, by the
time translation invariant property. By the fact that IT(—x, t,—
t) is also a solution to the euqation for 0 < t < ¢, we have a
left continuity at t,. Of course by the above process, the left
continuity at T' also can be obtained. We have proved that IT €
C(0,T; H™). O

Proposition 11. Let II be an axisymmetric global classical
solution to

0,11 + 211911 = 0. (109)
Then 11 = 0.

Proof. Define gb,o(t) : [0,00) — R which satisfies the
equation gbio(t) = H(r0,2¢,0(t),t). By our assumption, IT €
C([0,00); H™(R?)) N Lip([0, 00); H™ ' (R?)) for m > 5/2,
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(/)i(')(t) = 0 almost every time. So we can find the explicit form
of it by

¢y, (t) = T, (10, 26, (0)) + ;. (0). (110)

Now we choose initial values ¢, (0) and ‘Eru (0) such that
$,,(0) < (5,0(0). Then it satisfies

10, (rp, 2¢,, (0)) < I, (rp, 26, (0)). (1)
Because if we suppose that I1y(rg, 2¢, (0)) > I1y(r,, 2$,0(0)),
then by the explicit form of ¢, for some #, > 0, we have
¢, (o) (E,O(to) which makes a contradiction. Hence,
I1,(ry, z) is a nondecreasing funcion with respect to z. Since
this process is independent of the choice of r,, we can find
that IT, = 0 by the continuity and L*> boundness. O

4. Proof of Theorem 5: Blow-Up Criterion

In this section, we provide the proof of Theorem 5 which is the
blow-up criterion for the axisymmetric Hall-MHD equations
withv=0andx = 1:

%_(: + (40, +u*0,) Q + 2T10,11 = 0, (112)

ot + (40, + u0,) 1 - 210,11

15}
113)

= <Bf + E8T+8§>H
r

where Q = we/r and IT = Be/r.

Known blow-up criterion for the partial viscous Hall-
MHD equations (1) without symmetry (v = 0 and x = 1)
is as follows (see [13]).

Proposition 12. Assume that (uy, B,) € H™(R?), m > 3 with

V-uy,=V-B, = 0. Let (1, B) be a smooth solution to (1) (v = 0
andx = 1) for 0 < t < T. If (u, B) satisfies

T
[, (195w + 1V BOE)de <co,  (19)

then the solution (u, B) can be extended beyondt =T

With the axial symmetry, we can derive the following
apriori estimates.

Proposition 13. If (Q,I1) is a solution to (112)-(113) satisfying
(Q,1I) € C([0,T); H™), with m > 3 then it holds that

||H||L°° 0,T;LP(R3)) <C (Ho)
”VH”iZ(O,T;Lz(W)) s “Houiz > (115)

12 o072y < C ([ Q|2 > [Tol2) < o0

13

Proof. We first consider p = 2n with n € N. Taking scalar
product of (113) with IT?~*, we deduce that

1d
—— [
pdt

—sz J ((22+ 20, +22 ) ) - 117" e
—-00 JO r

B 2
Cp+1

I,

(116)

j 3, (IP* dx
RS

- J (10, + u*0,) 1 - 1P dx.
RS

From the divergence free condition and the decay conditions
like

Jim TI(r, z,£) = lim II(r, 2,t) = 117)

|z]—00

(116) can be reduced to

4(p-1
1; ITT@OIL, + 1) - ) j o,
t e (118)
+ [0, dx = 0.
It implies that
IO 01520y < ITTo 75 - (119)
For any R > 0, we have
1/2n
(j I, ) dx) <M. B>, (120
Bg

Asn — oo, we have [[IT]| ooy < Clylle. If p €
(2n,2(n + 1)), then we have

)2 < T2 P g | e 2

L®(0,T;LP) —

Taking L? scalar product of (112) with Q, we have

1d .,
ST Q7> = -2 JRS I10,T1Qdx

(122)
< 2|l e [0 1T] 2 12,2
Then we have
120, 122) S |2
. (123)
o [ IO+ ool a
This completes the proof. O

From the energy estimates of the velocity and magnetic
fields, we have

2 2
"” ||L°°(0,T;L2) + “”Z“LOO(O,TL2 “BGHL"O 0,T:L%)

T
+J’
0

< Juglza + gl +

2
Bl w29

12

612 012
B+ 0B +
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Proof of Theorem 5. First, we assume that assumption (19)
holds. If we consider the equation of the vorticity wg, then
we have

o o_U o Be
o,w + (U0, +u’d,) w’ = —w - 0,B’.  (125)
Taking L? scalar product of (125) with «’, we have
d ur 0 2
Gl = [ 5 W)
+2 | [o.5[1m |6 dx
E o112 (126)
ol 2 P | eorc
+ "m:“Lch) ||Q||iz(cR)
B’ 2 Ml "w6 o
Using Gronwall’s inequality, we have
0 T r
0 P {1 S % P )
(127)

r
+

T\u
- exp J
0

dt + C) .
Tl mivcy)

Hence we have o’ ¢ L®(0,T; L?) if we assume (19).
If we consider the equations for VII (V = (9,,0,)), then
we obtain

0,011 + (u'0, + u°0,) 0,11

+ (@70, + 0,470, T = (A + Ea,) 3,11 + 011
r

(128)
0,0,I1+ (u'9, + u®d,) 3,11 + (0,u’0, + 0,u°d,) I1

+ 20,1 = (a ga,)a,n +2,0,T
T r

Via an interpolation inequality and Young’s inequality, we
have

VI VI

0
w
" L2(R?) LS(R?) L3(R?)

3/2
L*(R3

1/2

o P el e el e (129)

< C oL 711+ 5 19701

L*(R3) L*(R3)”
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Taking scalar product of (128) with VII, we deduce that

1d [ - _
% sz 711 dx + JRS 0] dx

2
+ JRS 2 o d
< (1o’ [¥m . |71,

+JR3 ;a(

+C|vn , [V, i

(130)

*dx + J o, dx

4 JRS 0,11 o.11] dx) < |

LTES] i P

In the above, we used the fact that (1/r)0,(|9, P2 + |0, %) e
L'(R*) when t < T*. Gronwall’s inequality again gives us

VIl e L% (0,T; L),
(131)
Ve L7 (0, T;L%).

Multiplying both sides of (112) with |Q]*Q and integrating

over R?, we have

||Q||L6 Re) < 2J |o, 10| |T1] | dax

<[V

1o [Tl zes 11205 -
Then it is immediate that Q € L*(0, T; L°).

Following the ideas in [18], we introduce the angular
stream function y? such that

—(af —a—— 2)y = (133)

Forall 1 < p < 0o, we have

0P 4
j v dxgcj O dx, (134)
r
By the interpolation inequality || f|l;« < C[IVf ||1/ : IVf IIiéz,
have
T r
J o
0 r L>®
T 9 1/2 9 1/2
SJ vaz<"’—) vaz("’—) e (135)
0 r 12 r 6

T
<sup I} [ 1 de.
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Therefore, we have u'/r € L'(0,T;L*®). Also we can have
u'[r € LP(0, T; L™) for all p < oo.

If we multiply (BG)Z”_1 on the both sides of (9), and
integrate over R3, then we have

2

“ B (2” (Bg)n
ant e rol,
L
= [ ()"
ROT (136)
R 912 2n-1
vom| | o () (8)" dadr
r 2n
L

Hence we deduce that

5] <[5

T
€X
" p < JO

Similarly, we have |BY| [o0TI®) S
7l zeodt).
Setting B = 3689, we have

i dt) . (137)
oo

r

L®(0,T;L*")

T r
1Bl nexp( [, 1/

7

9,B+ (u-V)B—AB = =B+ 20,BIL (138)
r

By the maximal inequality, we have

||AB”L“(R3 x(0.T)) (“Bollw“

+ ||u||Lm(R3 «(0.1) ||VB||L124 (R3%(0.T))
. (139)

4
”B"Li’,oto(Rsx(O‘T))

r

r

+

LYAR3%(0.1))
+[|TIIl; IVBI;
L2 (R*%(0.T)) L¥(R%(0.7)) | *

By the Gagliardo-Nirenberg inequality

IVB.. < CBIS |1AB]PY,
L L

(140)

IVBIl« < CIIBIIfk [AB]},

(139) can be reduced to

4 4 4
||AB"L‘§3(R3><(0.T)) <C <||B0||Wz,4 + ||B||L‘§3°(RS><(0.T))

IAB| 12

8/5
+ IBJ! Lo

L (R3x(0.1))

16/5 4/5
+ B sy OB o m) <c(1

15

4
+ 1Bl oo ooy * ||B||L°°4(R3 (0. T)))

1 4
3 IABI 24 g2 (0.1 -

(141)

Since the last term in the above can be absorbed in the left
hand side, we have

AB e L*(0,T; L),

(142)
VB e L*(0,T;L™).
Then, from (125), we have, forall 1 < p < co,
0 u o||P
— w
Sl <[] W, .
#2le [V, o]
By Gronwall’s inequality, we have
0 ! 0
O (P L By
(144)

r

u
-exp(J
0

r

dt).
LOQ

If we let p — 00, we obtain o’ € L0, T;L). Hence,
for any T < 00, we obtain that W, VB € L*(0,T;L®) and
conclude that there does not exist a finite time blow-up if we
assume (19).

Next, we assume that condition (20) holds. If we apply
(129) to (128), we obtain

1d [ - _
S JRS 911 dx + JRS 920" dx

+ j Sl dx < C("w v 71,

+= ||V HHLZ . JRS %a, (]o.11]" + 0,11 ) dx  (145)

+ j 10,11f dx + j ERVICRVENER
R3 R3

+ j 10,11 |0, T1] dx + j |11 o,11] 11 x
R3 R}
Using an inequality

o < 2107y 2R 10Uy > (146)

L2 (R3) L*(R3\CR)
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we have

lij
2.dt Jr3

2 2
N JRS = oo d

ﬁzﬂ'zdx

§H|2 dx + J

RS

4
LX(R*\Cp)

2

=C (“we L3(R®)

+ R QU ) 711

2

1~
+ 2 ||V2HHL2(R3)
(147)

1 2 2
+JR3 =3, (o111 + .11 )
+ J 10,11f dx + J o201 |o,11] 111 dx
R3 R3
+j 10,11* [0, 11| dx
RS

+ J [7211{3,11) 1] dix.
R3
By Gronwall’s inequality, we conclude that

VIl e L (0,T;L7),
(148)
VI e L7 (0, T; ).

The estimate of Q, 4" /r, B, and VII can be obtained similarly
to the proof of the condition of (19). This completes the proof.
O
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