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Scaffold protein FHL2 facilitates MDM2-mediated
degradation of IER3 to regulate proliferation of cervical
cancer cells
H Jin1, K Lee2, Y-H Kim3, HK Oh4, Y-I Maeng4, T-H Kim5, D-S Suh6 and J Bae1

The expression of immediate early response 3 (IER3), a protein with a short half-life, is rapidly induced by various cellular stimuli.
We recently reported that IER3 induces the apoptosis of cervical cancer cells and that its expression is downregulated in patients
with cervical cancer. However, the molecular mechanism involved in the rapid degradation of IER3 remains unknown. Here, we
demonstrate that MDM2 is an E3 ligase that interacts with IER3 and promotes its ubiquitination, followed by proteasomal degradation.
Polyubiquitination of the conserved lysine 60 of IER3 is essential for its degradation. In addition, four and a half LIM domains protein 2
(FHL2) binds to both IER3 and MDM2, allowing for efficient MDM2-mediated IER3 degradation by facilitating an association between
MDM2 and IER3. Moreover, IER3 induces cell cycle arrest in cervical cancer cells and its activity is further enhanced in cells in
which FHL2 or MDM2 was silenced, thereby preventing IER3 degradation. The E6 and E7 oncoproteins of human papilloma virus 18
regulated IER3 expression. FHL2 expression was significantly higher in the squamous epithelium of cervical carcinoma tissues than in
non-cancerous cervical tissues, whereas cervical carcinoma expression of IER3 was downregulated in this region. Thus, we determined
the molecular mechanism responsible for IER3 degradation, involving a ternary complex of IER3, MDM2 and FHL2, which may
contribute to cervical tumor growth. Furthermore, we demonstrated that FHL2 serves as a scaffold for E3 ligase and its substrate
during the ubiquitination reaction, a function that has not been previously reported for this protein.
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INTRODUCTION
Regulation of protein degradation is a fundamental homeostasis
mechanism that controls protein levels in cells.1 In eukaryotes,
intracellular protein degradation is achieved by ubiquitin-mediated
proteasomal destruction and lysosome-mediated proteolysis.2 The
ubiquitin-proteasomal pathway constitutes a selective process in
which the concerted actions of an ubiquitin-activating enzyme (E1),
ubiquitin-conjugating enzyme (E2) and ubiquitin-protein ligase (E3)
lead to the attachment of ubiquitin to the lysine residues of substrate
proteins, and the product is then recognized by the 26S proteasome.3,4

During this process, E3 ligases play a central role as they recognize
specific protein substrates and catalyze ubiquitin transfer.5 MDM2 is a
RING finger family E3 ubiquitin ligase proto-oncogene known for
mediating the degradation of the tumor-suppressor p53.6,7

The expression of immediate early response gene 3 (IER3) is rapidly
induced by various cellular stimuli such as DNA damage, growth
factors, cytokines and viral infection.8,9 IER3 regulates cellular apoptosis,
proliferation, DNA repair, differentiation and inflammation.10–14

We recently reported that IER3 induces apoptosis in cervical
cancer cells and its expression is downregulated in tissues from
patients with cervical carcinoma.15 IER3 is known to have a short
half-life and its degradation can be prevented by a proteasomal
inhibitor.16 However, the molecular mechanism involved in the
regulation of IER3 degradation remains unknown.
Four and a half LIM domains protein 2 (FHL2), also known as

DRAL, belongs to the four and a half LIM domains protein family.17,18

FHL2 is a multifunctional protein involved in a wide range of cellular
processes, including the regulation of gene expression, cell survival,
proliferation, differentiation, adhesion and motility.19–21 Because of
its structural nature, FHL2, consisting of multiple LIM motifs that
serve as protein-binding sites, interacts with diverse types of
proteins and assembles multi-protein complexes.20,22

Cervical cancer is the second leading cause of cancer-related death
in women worldwide.23 Infection with human papilloma viruses
(HPVs), including HPV 16 and 18, is the major etiology for cervical
malignancy.24,25 Viral E6 and E7 from high-risk HPVs are two critical
oncoproteins for cervical cancer development by deregulation of cell
proliferation, apoptosis and genome instability.26 Although little is
known regarding the role of FHL2 in cervical cancer, its interaction
with E6 and E7 oncoproteins has been reported.27,28

In this study, we revealed the signaling mechanism involved
in IER3 degradation. We demonstrated that IER3 undergoes
MDM2-mediated polyubiquitination followed by proteasomal
degradation, in which FHL2 acts as a scaffold that facilitates the
association of MDM2 to IER3. In addition, we found that IER3
induces cell cycle arrest in cervical carcinoma cells, which is further
increased in either FHL2- or MDM2-depleted cells. Furthermore,
a significant upregulation of FHL2 and downregulation of IER3 in
the squamous epithelium of cervical carcinoma tissues suggest
that the FHL2-mediated IER3 degradation could be implicated in
the development of cervical carcinoma.
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RESULTS
FHL2 interacts with IER3
To understand the intracellular molecular mechanism involved in
the regulation of IER3, yeast two-hybrid screening of a human
ovarian cDNA library was performed using the full-length human
IER3 as the bait. Among isolated interacting clones, three were
identified as FHL2 and the specific interaction between IER3 and
FHL2 was confirmed in the yeast two-hybrid system (Figure 1a).
The in vivo interaction of these two proteins was verified by
immunoprecipitation followed by western blot analysis after
overexpression in 293T cells (Figures 1b and c). In addition, the
association of endogenous FHL2 and IER3 proteins was observed
in HeLa cervical carcinoma cells (Figure 1d). Immunofluorescence
confocal microscopic analysis showed that endogenous FHL2 and
IER3 were co-localized in the cytoplasm of HeLa cells (Figure 1e).

The association of FHL2 and IER3 is mediated by LIM3 and 4 domains
and the PEST (proline, glutamic acid, serine, threonine)-rich region
To define the binding domain that mediates the interaction
of FHL2 and IER3, we generated plasmids encoding HA-tagged
full-length and deleted mutant forms of FHL2 (Figure 2a). These
constructs were co-transfected with glutathione sepharose (GST)-
tagged IER3 into HeLa cells and then immunoprecipitated.
As shown in Figure 2b, FHL2 mutants lacking the LIM4 and/or
LIM3 domains at the C-terminal end (ΔC1 and ΔC2) failed to bind
to IER3, indicating that the these LIM domains are involved
for their association. We also produced plasmids encoding GST-
tagged full-length and serially deleted mutants of IER3 (Figure 2c).
The IER3 mutant with deleted sequences from amino acid 26 to 50
(Δ2) did not interact with FHL2, suggesting that this PEST-rich region
mediates the binding to FHL2 (Figure 2d). Furthermore, we

generated additional mutants of FHL2 (ΔN3 and ΔN4) and IER3
(PEST) to determine whether the minimal binding motives mapped
from Figures 2b and d are sufficient for their interaction. As shown in
Figure 2e, the LIM 3 and 4 domains of FHL2 and the PEST-rich region
(amino acids 26–55) of IER3 were sufficient for their association.

FHL2 stimulates ubiquitination-mediated proteasomal
degradation of IER3
To investigate the functional role of the association between FHL2
and IER3, these two proteins were overexpressed in HeLa cells.
The IER3 protein level was decreased by FHL2 overexpression
(Figure 3a). FHL2 knockdown using specific small interfering RNAs
(siRNAs) increased the levels of endogenous IER3 (Figure 3b and
Supplementary Figure 1a) as well as its stability (Figure 3c). In
contrast, the IER3 mRNA level was not affected by the modulation
of FHL2 expression, as determined by quantitative real-time PCR
analysis (Supplementary Figure 2). Cellular proteins are mainly
degraded via the ubiquitin-mediated proteasomal and lysosomal
pathways.2 Thus, we determined the degradation pathway involved
in FHL2-induced downregulation of IER3 expression using inhibitors
of the two degradation pathways. FHL2-induced downregulation of
IER3 was completely blocked by the proteasomal inhibitor, MG132,
but not by the lysosomal inhibitor, chloroquine (Figure 3d). In
addition, IER3 underwent ubiquitination, which was augmented by
FHL2 overexpression, whereas the FHL2 mutant lacking IER3-binding
capacity (ΔC2) failed to increase IER3 ubiquitination (Figure 3e).
The attenuation of IER3 ubiquitination in FHL2-depleted cells
further supports that FHL2 stimulates IER3 polyubiquitination in
cells (Figure 3f). A decrease in endogenous IER3 ubiquitination was
also confirmed in FHL2 knockdown HeLa cells (Figure 3g).
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Figure 1. Identification of FHL2 as a novel interacting protein of IER3. (a) Yeast growth was demonstrated in colonies expressing both
FHL2 and IER3 fused to the GAL4 DNA activation and binding domains, respectively. (b, c) 293T cells were co-transfected with Myc-FHL2
and FLAG-IER3 (b) or HA-FHL2 and FLAG-IER3 (c). After 24 h of incubation, cell lysates were prepared and immunoprecipitated with anti-FLAG
(b) or anti-HA (c) antibodies. Immunoblot analyses were performed using the indicated antibodies. (d) The interaction between endogenous
FHL2 and IER3 proteins was determined in HeLa cells after immunoprecipitation with control IgG or an anti-IER3 antibody. For all immunoblot
images presented throughout this manuscript, the membrane was cut into pieces according to the estimated molecular weight of the
proteins of interest and probed with the indicated antibodies. All cropped blots were run under the same experimental conditions.
(e) Intracellular co-localization of endogenous FHL2 and IER3 proteins in HeLa cells was assessed by fluorescence confocal microscopy.
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Lysine (K) 60 residue is the primary ubiquitination site on IER3
Human IER3 possesses only two lysine residues. Comparative
sequence analysis of IER3 orthologs in mammalian species revealed
two conserved lysine residues at the amino-acid positions 60 and 84
(Figure 4a). We generated two IER3 mutants in which the K residues
were replaced with arginine (R) residues, K60R and K84R, and

compared their protein stabilities. Although the levels of both wild-
type (WT)-IER3 and the K84R mutant increased in the presence of
MG132, the K60R mutant protein was present at a higher basal level,
which was not affected by the proteasome inhibitor (Figure 4b).
Accordingly, the levels of WT and K84R IER3 were clearly increased
by FHL2 knockdown, whereas the level of the K60R mutant did
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Figure 2. Mapping of the binding regions for the interaction between FHL2 and IER3. (a) Structures of the plasmids encoding HA-tagged full-length and
truncated mutants of FHL2 are illustrated. (b) HeLa cells were co-transfected with each HA-tagged FHL2 construct and GST-IER3. Twenty-four hours after
transfection, cell lysates were prepared and immunoprecipitated with GST beads. Arrows indicate expected positions of FHL2 proteins. GAPDH was
included as a loading control. (c) Structures of GST-tagged full-length and deletion mutants of IER3 are illustrated. (d) Immunoprecipitation was
performed as described in b following transfection with GST-IER3 constructs andMyc-FHL2 into HeLa cells. Arrows indicate IER3 proteins. (e) Transfection
and immunoprecipitation were performed as described in b with indicated DNA constructs. Arrows indicate expected sizes of FHL2 mutants.
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not change (Figure 4c). Moreover, FHL2 overexpression failed to
decrease the level of K60R IER3 (Figure 4d). Consistently, K60R IER3
was resistant to ubiquitination, even after forced expression of FHL2
(Figure 4e). This lack of ubiquitination was not a consequence of the
inability of IER3 to interact with FHL2, as these proteins showed
efficient binding (Figure 4e).

IER3 is a novel substrate of MDM2 E3 ligase
To identify the specific E3 ubiquitin ligase targeting IER3, the
interaction of E3 ligases with IER3 was examined by immuno-
precipitation. We found that IER3 associated with MDM2, but not
with other E3 ligases such as SKP2 and β-TrCP (Figure 5a).
Immunoblot analysis of HeLa cell lysates also showed that
MDM2 overexpression prominently decreased the IER3 level
(Figure 5a). A direct interaction between IER3 and MDM2 was also

demonstrated by immunoprecipitation using purified recombi-
nant proteins (Figure 5b and Supplementary Figure 3a). To
determine the binding region, truncated MDM2 mutants were
generated (Figure 5c). Immunoprecipitation results shows that the
ring domain of MDM2 mediated its interaction with IER3, as the
ΔC1 and ΔC2 mutants failed to associate with IER3 (Figure 5d).
MDM2 knockdown increased the level of endogenous IER3

without affecting the level of FHL2 (Figure 5e and Supplementary
Figure 1b). This upregulation of IER3 upon the knockdown of either
FHL2 or MDM2 was also observed in different cervical carcinoma
cells, SiHa cells (Supplementary Figure 4). MDM2 overexpression did
not decrease the level of the ubiquitination-resistant K60R mutant
(Figure 5f). Enhanced production of polyubiquitinated IER3
following MDM2 overexpression (Figure 5g) and attenuated
ubiquitination of endogenous IER3 in MDM2-silenced HeLa cells
(Figure 5h) were confirmed. Moreover, an in vitro ubiquitination
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Figure 3. Regulation of IER3 stability by FHL2 via the promotion of ubiquitination-mediated proteasomal degradation. (a) HeLa cells were
transfected with FLAG-IER3 in the presence or absence of HA-FHL2. The pEGFP plasmid (300 ng) was co-transfected as an internal control of
transfection efficiency. Twenty-four hours after transfection, cell lysates were prepared and subjected to SDS–polyacrylamide gel
electrophoresis. The IER3 level was determined by western blot analysis. (b) Immunoblot (IB) results from HeLa cells after knockdown of FHL2
by FHL2 siRNA (100 and 200 nM) transfection are shown. (c) Twenty-one hours after transfection of HeLa cells with FHL2 siRNA, the cells were
incubated with cycloheximide (CHX; 100 μg/ml), harvested at the indicated time points and analyzed by IB. Quantitative analysis of IER3 levels
from three independent experiments is presented (lower panel). Asterisks indicate statistically significant differences (Po0.05). (d) HeLa cells
were co-transfected with FLAG-IER3 and HA-FHL2 or the pCMV-HA empty vector. Twelve hours after transfection, the cells were treated with
dimethylsulphoxide (0.1%), MG132 (50 μM) or chloroquine (50 μM) for 12 h. The cell lysates were subjected to IB analysis. (e, f) HeLa cells were
transfected with FLAG-IER3 and HA-ubiquitin together with HA-FHL2 or HA-FHL2ΔC2 (e), or FHL2 siRNA (f). Twelve hours after transfection,
the cells were incubated with MG132 (50 μM) for 12 h followed by immunoprecipitation (IP) and IB analysis. Arrows indicate the expected
position of mono-, di- and tri-ubiquitinated IER3. (g) HeLa cells were transfected with siRNA for FHL2. Twelve hours after transfection, the cells
were incubated with MG132 (50 μM) for 12 h followed by IP and IB analysis.
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assay using recombinant IER3 and MDM2 proteins also demonstrated
the induction of IER3 ubiquitination by MDM2 (Figure 5i).

FHL2 stimulates MDM2-mediated ubiquitination of IER3 by
forming a ternary complex
Next, we investigated the inter-regulatory mechanism that pro-
motes IER3 degradation by FHL2 and MDM2. FHL2-mediated
downregulation of IER3 was prevented by silencing of MDM2
(Figure 6a), indicating that the stimulating effect of FHL2 on IER3
proteasomal degradation involves the action of MDM2. Similarly,
MDM2 failed to downregulate IER3 when FHL2 was silenced
(Figure 6b), suggesting that FHL2 is necessary for MDM2 activity to
degrade IER3. We found that FHL2 also directly interacts with MDM2
as determined by the in vitro pull-down assay using recombinant
FHL2 and GST-MDM2 proteins (Figure 6c). Their interaction was
mediated by the LIM2 domain of FHL2 (Figure 6d) and the region
(amino acids 101–234) between the p53-binding motif and
acidic domain of MDM2 (Figure 6e). This ternary complex formation
by endogenous proteins was further confirmed in a two-step
immunoprecipitation experiment (Supplementary Figure 5a).

To address how FHL2 stimulates MDM2-induced IER3 degra-
dation, the effect of FHL2 on the binding capacity of MDM2
to IER3 was determined by immunoprecipitation. FHL2 over-
expression enhanced the interaction between MDM2 and IER3
by more than 2.5-fold, whereas overexpression of the FHL2
mutant lacking the ability to bind IER3 (ΔC2) did not affect the
strength of the MDM2–IER3 interaction (Figure 6f). In addition,
the interaction between MDM2 and IER3 was decreased in FHL2
knockdown HeLa cells (Figure 6g), indicating that FHL2 allows
for the efficient binding of MDM2 to IER3. In addition, the
formation of an endogenous ternary complex of FHL2-IER3-
MDM2 in HeLa cells (Figure 6h and Supplementary Figure 5b)
and a clearly increased in vitro association between MDM2
and IER3 in the presence of FHL2 recombinant protein (Figure 6i
and Supplementary Figure 3b) were confirmed. Furthermore,
the in vitro ubiquitination assay results confirmed that
MDM2-mediated ubiquitination of IER3 was augmented by
the addition of FHL2 protein (Figure 6j), and ubiquitinated IER3
was decreased by knockdown of either FHL2 or MDM2
(Supplementary Figure 6).
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Figure 4. Identification of IER3 lysine 60 as the ubiquitin acceptor site. (a) The alignment of amino-acid sequences of mammalian IER3 proteins
encompassing two lysines, K60 and K84 (red), is shown. (b) The stability of the GST-tagged IER3 wild-type (WT) and substitution mutants was
determined after transfection of HeLa cells with the respective plasmids. Twelve hours after transfection, the cells were incubated with MG132
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Figure 5. Identification of MDM2 as the E3 ubiquitin ligase for IER3. (a) The interaction of IER3 with different E3 ubiquitin ligases was determined by
immunoprecipitation (IP) in HeLa cells. The arrows indicate the expected positions of the proteins. (b) In vitro, a direct interaction between IER3 and
MDM2 was determined by IP using recombinant GST-IER3 (1 μg) and MDM2 (0.5 μg) proteins. (c) Structures of GST-tagged full-length and truncated
mutants of MDM2 are illustrated. (d) HeLa cells were co-transfected with each GST-tagged MDM2 construct and FLAG-IER3. Twenty-four hours after
transfection, cell lysates were prepared and IP with GST beads. The arrows indicate the expected positions of MDM2 proteins. (e) MDM2 was knocked
down in HeLa cells using MDM2 siRNA (100 and 200 nM) and the cell lysates were analyzed by immunoblotting (IB). (f) HeLa cells were transfected with
the indicated plasmids and changes in the stability of IER3 proteins induced by MDM2 were determined by IB analysis. Green fluorescent protein (GFP)-
expressing plasmid was included as an internal control of transfection efficiency. (g) Degrees of IER3 ubiquitination (Ub) were determined by IP after
HeLa cells were transfected with GST-IER3 and HA-ubiquitin together with the MDM2 plasmid. Twelve hours after transfection, the cells were incubated
with MG132 (50 μM) for 12 h followed by IP and IB analysis. (h) MDM2 was knocked down using a siRNA against MDM2 in HeLa cells. Twelve hours
after transfection, the cells were incubated with MG132 (50 μM) for 12 h followed by IP and IB analysis. (i) In vitro Ub of IER3 by MDM2 was assessed by
the incubation of recombinant IER3 protein (1 μg) in Ub buffer containing MDM2 protein (0.3 μg). The western blot results are shown.
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FHL2 and MDM2 regulate IER3-induced anti-proliferative activity
FHL2 overexpression promoted cell cycle progression to the S and
G2/M phases, whereas the overexpression or knockdown of IER3
induced G0/G1 phase arrest or cell cycle progression, respectively
(Figures 7a and b). In addition, the knockdown of either FHL2 or
MDM2, which increases IER3 stability, decreased the cell popula-
tion in the S phase. The IER3-induced inhibitory activity on the

cell cycle progression to S phase was further increased in FHL2- or
MDM2-silenced cells (Figure 7c). Simultaneously, consistent effects
on cell proliferation were also observed by measuring 5′-bromo-
2′-deoxyuridine-positive cells (Supplementary Figures 7a and b).
Moreover, the regulatory roles of MDM2 and FHL2 on IER3 was
further determined using mouse knockout cells of MDM2+/+/p53− /−

and MDM2− /−/p53− /−. As shown in Figure 7d, FHL2 overexpression
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efficiently stimulated IER3 degradation in MDM2+/+/p53− /− cells but
not inMDM2− /−/p53− /− cells. Accordingly, the anti-proliferative activity
of IER3 was inhibited by FHL2 expression in MDM2-expressing cells
but not in MDM2-null cells (Figure 7e).
Interestingly, MDM2 retained its ability to downregulate IER3 in

p53-null cells (MDM2+/+/p53− /− vs MDM2− /−/p53− /−; Figure 7d).
Accordingly, IER3 was still able to inhibit the proliferation of
these p53-null cells (Figure 7e). This p53-independent regula-
tion of IER3 was further confirmed in p53-knockdown HeLa
cells (Supplementary Figure 7c), in which MDM2-mediated IER3
expression and the anti-proliferative function of IER3 was
dependent on MDM2 but independent of p53.
As the E6 and E7 oncoproteins are critical in cervical cancer

development, E6 and E7 were knocked down in HeLa cells, and
the levels of IER3, FHL2 and MDM2 were assessed. As shown in
Figures 7f and g, E6 knockdown resulted in the upregulation
of MDM2 with concomitant downregulation of IER3 protein,

whereas E7 knockdown induced the downregulation of
IER3 without affecting the MDM2 level. The results of quantita-
tive real-time PCR analysis suggest that E7 knockdown-induced
IER3 downregulation occurs at the transcriptional level
(Supplementary Figure 8).

The squamous epithelium of cervical carcinoma tissues exhibits
inverse expression profiles for FHL2 and IER3
We further examined the expression profile of FHL2, IER3 and
MDM2 in human cervical carcinoma tissues. For this purpose, a
tissue microarray (TMA) containing cervical carcinoma and non-
cancerous cervical tissues was constructed (Supplementary Table 1).
Analysis of the FHL2 immunostaining of the TMA indicated a higher
proportion of positive cells and stronger staining intensity in
squamous epithelial cells of cervical carcinoma tissues relative to
that observed in the non-cancerous cervical tissues (Figure 8a and
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Supplementary Figures 9a and d). The opposite expression pattern
was observed when analyzing the IER3 immunostaining (Figure 8a
and Supplementary Figures 9b and d). In contrast, no significant
difference was observed in term of MDM2 expression between the
two groups (Figure 8a and Supplementary Figures 9c and d).
Representative images of IHC of each protein in higher magnifica-
tion are presented in Supplementary Figure 9d. The receiver
operating characteristic (ROC) curve analysis of FHL2 immunostain-
ing showed perfect specificity (1.0) and sensitivity (1.0) to cervical
carcinoma tissues in the TMA training set (Figure 8b and
Supplementary Table 2). In addition, the ROC for IER3 immunostain-
ing showed a good specificity (0.92) and sensitivity (0.86–0.78) to
discriminate normal cervix and cervical carcinoma tissues, whereas
MDM2 immunostaining exhibited no meaningful value (Figure 8b
and Supplementary Table 2). ROC curve analysis of the proportion
score (PS), intensity score (IS) and total scores of the TMA assay
results, calculated as the sum of the PS (0–5) of positive cells and the
IS (0–3 scales) of immunostaining, yielded area under the curves
similar to those determined from the percentage of positive cells

(Supplementary Table 2). Based on our findings, we proposed that
the molecular regulation of IER3 degradation involves the interac-
tion of FHL2 and MDM2 proteins, leading to the ubiquitination-
mediated proteasomal degradation of IER3 (Figure 8c).

DISCUSSION
Considering that IER3 is an immediate early response protein
having a short half-life, cells must possess a specific and rapid
degradation machinery capable of such a tight control of IER3
expression. However, mechanisms underlying IER3 degradation
remain unknown. Here, for the first time, we demonstrate that
IER3 degradation is regulated by a multimeric protein complex
that incorporates FHL2, MDM2 and IER3. The ubiquitin-mediated
proteasome pathway mediates the targeted degradation of most
short-lived proteins in eukaryotic cells by tagging proteins on
lysine residues with ubiquitin.2 In this study, we identified MDM2
is the E3 ligase for IER3 and demonstrated that IER3 undergoes
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MDM2-mediated ubiquitination on the highly conserved K60
residue followed by proteasomal degradation.
The LIM domain consists of two zinc finger motifs, which

mediate protein–protein interactions.22 FHL2 pleiotropic functions
are likely attributable to the presence of multiple LIM domains.
Here, we identified two novel FHL2-interacting proteins, IER3 and
MDM2, which form a ternary complex. Of particular interest, FHL2
was necessary for the interaction of MDM2 ligase with IER3. Thus,
we defined a unique and critical role of FHL2 in the regulation
of IER3 protein degradation in which FHL2 is likely facilitating the
efficient ubiquitination of IER3 through positioning IER3 and
MDM2 in close proximity by binding to both proteins. These
observations indicate that FHL2 functions as a scaffold or an
adaptor protein required to convey the effective signal transduc-
tion involved in IER3 degradation.
The transforming activity of HPV infection is largely mediated by

the HPV-derived E6 and E7 oncoproteins that dysregulate crucial

signaling pathways.24,29 The E6 protein binds to E6-associated
protein and degrades p53, a well-known tumor suppressor, leading
to increased cell cycle progression and inhibited apoptosis followed
by the accumulation of DNA-damaged cells.29,30 The E7 protein
inactivates the tumor-suppressor family of retinoblastoma proteins,
inducing uncontrolled activation of E2F transcriptional factor,
consequently stimulating cell cycle progression.31–33 In the present
study, we found that both E6 and E7 regulate IER3 expression in
HPV-infected cells. IER3 downregulation induced by E6 depletion is
likely the outcome of robust expression of MDM2, which facilitates
IER3 degradation, whereas its downregulation by E7 depletion is
likely associated with the transcriptional regulation of IER3 mRNA.
Although additional studies exploring the precise mechanism are
required, this finding further supports the tumor-suppressive role of
IER3 in HPV-mediated carcinogenesis.
We previously reported that the p53 family member TAp73β is a

specific transcriptional activator of IER3 in cervical cancer cells and
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defective expression of TAp73β in cervical carcinoma contributes
to the downregulation of IER3 transcription.15 The current findings
showing the FHL2-mediated enhanced IER3 protein degradation
in cervical cancer cells and the inverse expression profiles of FHL2
and IER3 in cervical cancer tissues indicate the presence of an IER3
downregulation machinery at its protein level as well. Taken
together, deficient expression of IER3 in cervical carcinoma and its
critical role as an effective inducer of both apoptotic cell death15

and cell cycle arrest in cervical carcinoma cells (Figure 7) imply
that IER3 is a crucial molecule, which possibly functions as a tumor
suppressor during cervical cancer development. Therefore, based
on these observations, we postulate that the inhibition of IER3
activity, resulting from IER3 downregulation at both the transcrip-
tional and post-translational level, likely contributes to the growth
of cervical carcinoma. In addition, our study demonstrates that
IER3 expression is under a tight regulatory control to maintain
cellular homeostasis and its perturbation may be linked to cervical
tumor development and progression.
Cumulative evidence suggests that FHL2 function depends on

the cell type and the interacting proteins.34 FHL2 expression profile
also varies depending on the cancer type, it can be overexpressed
or downregulated.34 In addition, FHL2 opposite activities, that is, the
induction or inhibition of apoptosis and proliferation, have been
reported in different cell types.35–39 Likewise, dual proapoptotic and
antiapoptotic functions of IER3 that depend on the cellular context
and contrasting IER3 expression profiles have been reported
depending on the cancer type.40 Although the underlying cellular
mechanism that accounts for these differences is still elusive, the
interplay between FHL2 and IER3 may be implicated in these cell
context-dependent contrasting outcomes.
Disturbed protein degradation is involved in multiple pathophy-

siological conditions, including cancer.41,42 Proteasome inhibitors
such as bortezomib have emerged as new chemotherapeutic
agents.43,44 Targeting and intervening with cell-type-specific mole-
cules that regulate proteasomal degradation such as FHL2 would be
an attractive and beneficial strategy to minimize side effects and,
thus, the future application of FHL2 modulatory approaches is
warranted. In addition, FHL2 immunostaining can serve as a good
diagnostic tool for cervical cancer as it showed perfect specificity
and sensitivity in the TMA (Figure 8b). In summary, we demon-
strated a molecular network involved in the proteasome-mediated
IER3 degradation, involving the ternary complex, FHL2–MDM2–IER3.
This protein complex, where FHL2 has a key intermediary role, may
be implicated in the development of cervical carcinoma.

MATERIALS AND METHODS
Mammalian cell culture and reagents
HeLa (American Type Culture Collection, Manassas, VA, USA), SiHa (Korean
Cell Line Bank, Seoul, South Korea) and 293T (American Type Culture
Collection) cells were cultured in Dulbecco's modified Eagle medium
containing 10% fetal bovine serum and 1% penicillin–streptomycin. Cells
were grown in an incubator at 37 °C with 5% CO2. Reagents used for cell
culture were purchased from Caisson (Caisson, North Logan, UT, USA).
MDM2+/+/p53− /− and MDM2− /−/p53− /− MEF cells were generous gifts from
Dr Guillermina Lozano (University of Texas MD Anderson Cancer Center).
The proteasome inhibitor MG132 was purchased from BioVison (Mountain
View, CA, USA). Bis(sulfosuccinimidyl)suberate (BS3), a crosslinker, was
purchased from Thermo Scientific (Rockford, IL, USA). Other agents,
including chloroquine, cycloheximide and thrombin were purchased from
Sigma-Aldrich (St Louis, MO, USA) unless otherwise indicated.

Plasmid constructs
The FHL2 WT and mutant plasmids were produced by PCR amplification
using the following primers: FHL2 WT-F (5′-ACGGAATTCAAATGACTGAGCG
CTTTGAC-3′) with FHL2 WT-R (5′-TTACTCGAGTCAGATGTCTTTCCCACA
GT-3′); FHL2 WT-F with FHL2 nC1-R (5′-CATCTCGAGTTAGTCACAGAAGCAG
TTCAGGCA-3′); FHL2 WT-F with FHL2 nC2-R (5′-CATCTCGAGTTATTTCTCAT
AGCAGGGCACACA-3′); FHL2 nN1-F (5′-ACGGAATTCAAATGTTCGCCAACAC

CTGCGAG-3′) with FHL2 WT-R; FHL2 nN2-F (5′-ACGGAATTCAAATGGAGTA
CTCATCCAAGTGC-3′) with FHL2 WT-R; FHL2 nN3-F (5′-ACGGAATTCAAATG
CAACATGCCATGCAGTGC-3′) with FHL2 WT-R and FHL2 nN4-F (5′- GCAGA
ATTCAAATGAACTGCTTCTGTGACTT-3′) with FHL2 WT-R. PCR products were
digested with EcoRI and XhoI (Enzynomics, Seoul, Korea) and ligated into
the pCMV-HA or pCMV-Myc empty vectors (Invitrogen, Carlsbad, CA,
USA). The pGEX4T1-FHL2 plasmid was cloned using the following primers:
FHL2 WT-F (5′-ACGGAATTCATGACTGAGCGCTTTGAC-3′) with FHL2 WT-R.
Generation of the pCDNA3 FLAG-tagged or HA-tagged IER3, pCMV-HA
Ubiquitin and pCDNA3-MDM2 encoding plasmids were described in
previous studies.15,45,46 E3 ligase-coding plasmids were generous gifts from
Dr In Kyoung Lim (Ajou University; Flag-SKP2) and Dr Kang Yell Choi
(Yonsei University; Flag-β-TrCP). The pCDNA4 6xHis-Ub plasmid was a
generous gifts from Dr Chin Ha Chung (Seoul National University). Utilizing
pCDNA3 HA-IER3 as a template, we generated HA-tagged IER3 mutants
plasmids using the following primers: pCDNA3-F (5′-CAAGCTGGCTAGCGTT
TAAAC-3′) with IER3 n1-R (5′-CCCGCCGGGGAGCATAATCTGGAACATC
AT-3′) and IER3 n1-F (5′-AGATTATGCTCCCCGGCGGGGCTCCGGTCC-3′)
with IER3 WT-R (5′-GCAGAATTCTTAGAAGGCGGCCGGGTGTTG-3′); IER3
WT-F (5′-CTAGGATCCATGTATCCATATGATGTTCCAGATTATGCTTGTCACTCT
CGCAGCTGC-3′) with IER3 n2-R (5′-AGGCGCTGGGTCCCGGGATGGTGGAG
GGGG-3′) and IER3 n2-F (5′-CATCCCGGGACCCAGCGCCTCTCGCGGGCA-3′)
with IER3 WT-R; IER3 WT-F with IER3 n3-R (5′-GTTCCTCGACGCGCCCGGCA
GGGGCCGCTG-3′) and IER3 n3-F (5′-TGCCGGGCGC GTCGAGGAACCGAAC
CCAGC-3′) with IER3 WT-R; IER3 WT-F with IER3 n4-R (5′-CACCCTCTTCTGG
CAGCTGGCGCCGGACCA-3′) and IER3 n4-F (5′-CCAGCTGCCAGAAGAGGGT
GTGCCGGCGCC-3′) with IER3 WT-R; IER3 WT-F with IER3 n5-R (5′-CGAGGA
CGGGAGCCATCAGGATCTGGCAGA-3′) and IER3 n5-F (5′-CCTGATGGCTCCC
GTCCTCGAGCCCTTTAA-3′) with IER3 WT-R; IER3 WT-F with IER3 n6-R (5′-G
CAGAATTCTTAGGACACAGGGGTGGGCGCCA-3′); IER3 WT-F with IER3 K60R-
R (5′-TGCGGCTGCGCCGTCGGTGC-3′); and IER3 K60R-F (5′-CGCGGGCACCG
ACGGCGCAG-3′); IER3 WT-F with IER3 K84R-R (5′-AGAAGCCTTCGGGCTGG
GTT-3′) and IER3 K84R-F (5′-AACCCAGCCCGAAGGCTTCT-3′); IER3 PEST-F
(5′-GCAGGATCCATGGGACCCCGGCGGGGC-3′) with IER3 PEST-R (5′-GCAGA
ATTCTTAAGAGGCGCTGGG-3′). All HA-IER3 WT and mutant plasmids were
subcloned into the modified pCDNA3.1 empty vector, which contained a
GST tag by NcoI and HindIII restriction enzyme sites. The pCDNA3-GST-
MDM2 WT and mutant plasmids were produced by PCR amplification
using the following primers: MDM2 WT-F (5′- GCTGAATTCATGGTGAGGAGC
AGGCAA-3′) with MDM2 WT-R (5′-GCTCTCGAGCTAGGGGAAATAAGTT-3′);
MDM2 WT-F with MDM2 nC1-R (5′-GCTCTCGAGCTAAGTTGATGGCTGA
GA-3′); MDM2 WT-F with MDM2 nC2-R (5′-GCTCTCGAGCTACTCATCATCTT
CATCT-3′); MDM2 nN1-F (5′-GCTGAATTCATGGAGCACAGGAAAATAT-3′)
with MDM2 WT-R and MDM2 nN2-F (5′-GCTGAATTCATGAGTGAACATTCA
GGT-3′) with MDM2 WT-R. PCR products were digested with EcoRI and XhoI
and ligated into the modified pCDNA3-GST empty vector, in which a GST
tag was introduced between KpnI and BamHI restriction enzyme sites.

Yeast two-hybrid assay
Yeast two-hybrid screening was performed according to a previous
study.47

Immunoprecipitation and immunoblot analysis
HeLa cells were transfected with the indicated plasmids as well as with
small interference nucleotides (siRNAs) using Lipofectamine 2000 (Invitro-
gen) according to the manufacturer’s instructions. Twenty-four hours
after transfection, cell lysates were prepared for immunoprecipitation
with GST (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) beads or
Dynabeads protein G (Invitrogen) according to manufacturer's instructions.
After incubation, the samples were boiled and subjected to SDS–
polyacrylamide gel electrophoresis for immunoblotting with the respective
antibodies. The protein signal on the membranes was detected using
a ChemiDoc XRS+ System Imager (Bio-Rad Laboratories, Hercules, CA, USA)
and the intensity of each band was quantified using Quantity One software
(Bio-Rad Laboratories). The following antibodies were used in this study:
mouse anti-FHL2 (11-134; MBL International, Woburn, MA, USA), mouse
anti-c-Myc (631206; Clontech), rabbit anti-HA (H6908) and mouse anti-
FLAG M2 (F1804; Sigma-Aldrich), mouse anti-ubiquitin (sc-8017), rabbit
anti-IER3 (sc-33171), mouse anti-MDM2 (sc-965), mouse anti-HPV18 E6
(sc-365089), mouse anti-HPV18 E7 (sc-365035), mouse anti-p53 (sc-126),
rabbit anti-GFP (sc-8334) and rabbit anti-GAPDH (sc-25778; all from Santa
Cruz Biotechnology, Santa Cruz, CA, USA), mouse anti-GST (2624) and
rabbit anti-FLAG (2638) antibodies (Cell Signaling, Danvers, MA, USA).
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Immunofluorescence analysis
The immunofluorescence analysis was performed as previously described.48

RNA interference
Small-interfering RNA (siRNA) target sequences against FHL2, MDM2, IER3,
p53, HPV18 E6 and HPV18 E7 were 5′-AACUGCUUCUGUGACUUGU-3′
(FHL2 #1), 5′-CGAAUCUCUCUUUGGCAAG-3′ (FHL2 #1), 5′-GAAGUUAUUAA
AGUCUGUU-3′ (MDM2 #2), 5′-CCAGCCAAAAGGCUUCUCUUU-3′ (IER3 #1),
5′-UUCACCUUCGACCCUCUCC-3′ (IER3 #2), 5′-CACUACAACUACAUGUGU
A-3′ (p53), 5′-CUAACUAACACUGGGUUAU-3′ (HPV18 E6) and 5′-CCACCAAC
GUCACACAAUGU-3′ (HPV18 E7). MDM2 siRNA (#1) was purchased from
Bioneer (Daejeon, South Korea). The control siRNA sequence used was
5′-CCUACGCCACCAAUUUCGU-3′. The sense and antisense oligonucleo-
tides were annealed in the presence of the annealing buffer (Bioneer).

RNA extraction and real-time PCR
RNA was extracted from transfected HeLa cells using TRIzol reagent
(Invitrogen). The extracted RNA was analyzed by real-time PCR as
described previously.15 The nucleotide sequences of primers used for
real-time PCR (Bioneer) were IER3-F (5′-CAGCCGCAGGGTTCTCTAC-3′), IER3-
R (5′-GATCTGGCAGAAGACGATGGT-3′), GAPDH-F (5′-AGGGGCCATCCACAG
TCTT-3′) and GAPDH-R (5′- AGCCAAAAGGGTCATCATCTCT-3′).

Ubiquitination assay
The in vivo and in vitro ubiquitination assays were performed as previously
described.46,49

Recombinant protein purification
The pGEX4T1-FHL2 plasmid was expressed in Rosetta 2 (DE3) competent
cells, a derivative strain of Escherichia coli strain BL21 (EMD Millipore,
Billerica, MA, USA). Cells were cultured in Luria-Bertani medium and
selected with ampicillin (100 μg/ml) and chloramphenicol (34 μg/ml). The
cells were grown in a shaking incubator at 37 °C until OD600 = 0.5–0.6 and
then supplemented with 100 μM isopropyl β-D-thiogalactoside (Sigma-
Aldrich) dissolved in the Luria-Bertani medium for 2 h at 23 °C. Thereafter,
the cells were harvested and washed twice with cold PBS, resuspended
in PBS containing a protease inhibitor cocktail and lysed by sonication.
The separated supernatant from lysates was linked to GST beads and
incubated overnight at 4 °C. Beads were washed and the GST-bound
proteins were eluted with 10 mM reduced glutathione. GST-IER3 was
purified from mammalian cells through transfection of 293T cells with
pCDNA3.1 GST-IER3 plasmids. Twenty-four hours after the transfection, the
cells were lysed in radio-immunoprecipitation assay buffer containing
1 mM Na3VO4, 10 mM NaF and protease inhibitor cocktail. The supernatant
was then separated from 293T cell lysates and incubated with GST beads
overnight at 4 °C. Beads were washed and GST-bound proteins were eluted
with 10 mM reduced glutathione in 50 mM Tris (pH 8.0). The GST tag from
the GST-MDM2 and GST-FHL2 proteins were removed by incubation with
100 U/ml thrombin for 16 h at 4 °C.

Two-step co-immunoprecipitation
Ten dishes of HeLa cells (4–5× 106 cells/100-mm dish) were lysed with
NP-40 lysis buffer and centrifuged. The supernatant was incubated with
BS3-crosslinked anti-IER3-Dynabeads protein G overnight at 4 °C. The first
immunoprecipitated samples were washed with precooled PBS-T three
times, and the IER3-linked protein complex was eluted with 0.1 M glycine
buffer (pH 2.0) for 1–2 min and immediately neutralized in 1 M Tris buffer
(pH 10.0). The second round of immunoprecipitation was performed by
incubation of the first elute with crosslinked anti-MDM2-Dynabeads
protein G overnight at 4 °C.

Analysis of cell cycle by flow cytometry
The cell cycle analysis was performed as previously described.50

5′-Bromo-2′-deoxyuridine cell proliferation assay
The 5′-bromo-2′-deoxyuridine cell proliferation assay was performed using
the 5′-bromo-2′-deoxyuridine labeling and detection kit III (Roche)
according to the manufacturer’s instructions.

Human tissue sampling and TMA construction
The TMA was constructed with duplicate 1-mm cores of archival paraffin
material from 20 patients diagnosed with cervical cancer at Daegu Catholic
University Medical Center (DCUMC), Daegu, Republic of Korea, between
2011 and 2014 (Supplementary Table 1). The median age of the patients
was 52.5 years, with the ages ranging from 31 to 75 years. The control
group included duplicate cores of paraffin-embedded samples of
normal cervical tissues obtained from 20 patients (median= 46.5 years,
range= 42–69 year), who were diagnosed with other non-cancerous
diseases at the same hospital during the same period, 2011 to 2014. All
tissues used were reexamined after hematoxylin and eosin staining by
pathologists, before TMA construction using 5-μm-thin section of paraffin-
embedded cores. The present study was reviewed and approved by the
DCUMC Institutional Review Board. Informed consent was received from all
participating patients.

Immunohistochemical analysis
Immunohistochemical staining for IER3, FHL2 and MDM2 was performed on
the TMA slides. The procedures were carried out using the Bond Polymer
Intense Detection System (Leica Microsystems, Mount Waverley, VIC,
Australia) according to the manufacturer’s instruction with minor modifica-
tions as previously described.51 After image acquisition, the proportion of
positive cells was determined by a strong immunostaining intensity of
squamous cell carcinoma relative to other morphological regions of the
cervix, and the proportion and ISs were determined by a modified Allred
scoring method. The PS of less than 1% positive cells was equal to zero, and
1–100% positive cells were scored from 1 to 5 using a 20-percent scale. The
IS was scaled from 0 to 3 with the nucleus staining nonspecifically ‘0’, weakly
‘1’, moderately ‘2’ or strongly ‘3’. For the ROC analysis, the proportion and ISs
were then summed to produce total scores of 0–8.

ROC curve
Optimal cutoff values for target antigens in squamous cell carcinoma of
the cervix were obtained by the ROC analysis in the experimental sets of
the TMA assay. A strong relationship of a selected antigen with cervical
cancer was validated by the ROC analysis-generated cutoff values in the
TMA set.

Statistical analysis
Multiple comparisons of values were performed by the Student–Newman–
Keuls test using SAS version 9.2 (SAS Institute, Cary, NC, USA), whereas the
Student’s t-test was used for comparisons with control values. The data are
presented as the mean± s.e.m. and differences were considered to be
significant if Po0.05. For the immunostaining analysis of human cervical
tissues, P-values derived from t-tests are two-sided and Po0.05 was considered
statistically significant. Statistical analyses were performed using SPSS v. 17.0
(SPSS, Inc., Chicago, IL, USA) and SigmaPlot (Systat Software, San Jose, CA, USA).
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