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Abstract

Phosphatidylcholine (PPC) formula has been therapeutically used to reduce areas of local-

ized fat. However, no single research has been carried out on its effect on a variety of cells

in adipose and muscle tissues. Herein, the current study aimed to explore the activity of

PPC on different cells in adipose and muscle tissues and to investigate the molecular mech-

anisms contributing to the effects of PPC on lipolysis and apoptosis. mRNA expression lev-

els of various genes were measured by quantitative real-time PCR. Protein expression

levels were observed through Western blotting and cell viability was measured by MTT

assay. Lipolysis and caspase 3 activity assay were performed using commercial kits. PPC

induces lipolysis and apoptosis in adipocytes (3T3-L1), but not in the other tested cells,

including skeletal muscle cells (C2C12 myocytes), endothelial cells (HUVEC), and fibro-

blasts (BJ). The possible role of TNFα and IL-1β-mediated pathways on the effects of PPC

was also revealed. We confirmed that treatment with PPC caused lipolysis and apoptosis in

a dose-dependent manner (only in 3T3-L1 adipocytes). The effect of PPC observed in 3T3-

L1 adipocytes was not evident in C2C12 myocytes, HUVEC, and fibroblasts. PPC also

increased TNFα and IL-1β expression and release in 3T3-L1 adipocytes in a dose-depen-

dent fashion, but not in C2C12 myocytes, HUVEC, and BJ. Suppression of TNFα or IL-1β
reversed PPC-induced lipolysis and apoptosis in 3T3-L1 adipocytes, suggesting that PPC

could promote adipocyte-specific lipolysis and apoptosis through TNFα and IL-1β-mediated

signaling. We conclude that the specific activity of PPC on adipocyte in adipose without

other tissue damages can be an effective approach for melting lipid.
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Introduction

Mesotherapy is a non-surgical, minimally invasive technique of drug delivery into the meso-

derm to treat local regions [1]. The major function of this system is to increase the dose of a

drug and exhibits strong therapeutic effects on many infirmities, such as fat embolism, hyper-

lipidemia, local pain, and hepatic problems [2]. Phosphatidylcholine (PPC) is a lecithin-

derived phospholipid naturally found in egg yolk, soybeans, and milk [3]. This component

suppresses lipid accumulation and ameliorates hepatic disorders resulted from hepatic lipid

accumulation, myocardial ischemia, and dementia [3–5]. Currently, PPC-based formula has

been used for treatment of local lipid accumulation via regulation of fat lipolysis [6]. Moreover,

the size of lipoma is reduced after intralesional injection of PPC [7].

Bile salts, such as sodium deoxycholate (SD), have been used to improve of the hydrophilic-

ity of PPC [8] before being used in open label clinical trials [9]. Alternative to liposuction,

PPC-based formulation has been used to reduce partial fat tissue as a non-surgical method

[10]. Previously, several studies have demonstrated that subcutaneous injection of PPC-based

formula could result in fat dissolution [11, 12]. However, owing to its surfactant characteris-

tics, SD causes severe pain (through necrosis and inflammation) and stimulates fat degradation

in a non-specific way [13]. In our previous study, we have reported the effect of PPC-based for-

mulation without SD together with its lipolytic activity in 3T3-L1 adipocytes via TNFα-medi-

ated pathway [14]. It has to be noted that the selectivity of PPC-based formulation without SD

to various cell types remains unclear, although it was revealed that a formula comprising PPC

specifically affects adipocytes and has less effect on preadipocyte viability [15].

Taken together the present study was designed to elucidate the effects of a formula compris-

ing PPC without SD on the expression of lipolytic cytokines, including tumor necrosis factor

alpha (TNFα), interleukin 1 beta (IL-1β), and interferon gamma (IFNγ), and apoptosis in vari-

ous cell types (adipocytes, myocytes, vascular endothelium, and fibroblast cells). We further

explored the role of TNFα and IL-1β in PPC-mediated lipolysis and apoptosis in adipocytes.

Materials and methods

Cell cultures and reagents

3T3-L1 fibroblast cells (ATCC, Manassas, VA, USA) were cultured in Dulbecco‘s modified

eagle medium (DMEM) (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine

serum (FBS; Invitrogen), 100 U/mL penicillin, and 100 μg/mL streptomycin (Invitrogen) [14,

16]. For differentiation, cells were grown to confluence for 3–5 days without changing the

medium. At this point (considered as day zero), 3T3-L1 preadipocytes were differentiated by

incubation in culture medium containing 2 μg/mL insulin, 400 μM methyl-isobutyl-xanthine,

and 200 nM dexamethasone. Cells were cultured 72 h later with culture medium supplemented

with 1 μg/mL insulin, and then every 48 h with fresh culture medium. 3T3-L1 adipocytes are

kept in culture medium containing insulin until day 6 and then fed with normal medium with-

out insulin every 48 h. Experiments were performed on day 10 and 13 of differentiation (S1

Fig). The mouse skeletal muscle cell line C2C12 (ATCC) was cultured in DMEM (Invitrogen)

supplemented with 10% FBS (Invitrogen), 100 U/mL penicillin, and 100 μg/mL streptomycin

(Invitrogen). C2C12 were boosted with 2% horse serum for myocyte differentiation. Human

umbilical vein endothelial cells (HUVEC; ATCC) were cultured on 0.2% gelatin-coated culture

plates in M200PRF medium (Invitrogen) with a low serum growth supplement (Invitrogen).

Normal foreskin fibroblast cells (BJ) were grown in ATCC-formulated Eagle’s Minimum

Essential Medium (ATCC) supplemented with 10% FBS (Invitrogen), 100 U/mL penicillin,

and 100 μg/mL streptomycin (Invitrogen). Cells were cultured in a humidified atmosphere of
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5% CO2 at 37˚C. PPC (LIPOID S-100, Lipoid GmbH, Ludwigshafen, Germany) was conju-

gated to 0.8% bovine serum albumin (BSA, fatty acid free grade; Sigma, St. Louis, MO, USA)

dissolved in serum free culture media [14]. Lipoid S-100 (> 94% purity), a highly purified PPC

from soybean, is clearly dissolved in ethanol at 20˚C. In all experiments, cells were treated with

PPC-BSA complex for 24 h and vehicle-0.8% BSA was set as a control.

Western blotting analysis and antibodies

Proteins from 3T3-L1 adipocytes were extracted by lysis buffer (PRO-PREP; Intron Biotech-

nology, Seoul, Republic of Korea) for 90 min at 4˚C. Protein samples (30 μg) were loaded to

10% SDS-PAGE, transferred to a nitrocellulose membrane (Amersham Bioscience, Westbor-

ough, MA, USA), and probed with primary antibody followed by secondary antibody conju-

gated with horse radish peroxidase (Santa Cruz Biotechnology). The samples were detected

with enhanced chemoluminescence (ECL) kits [14, 16]. Anti-TNFα (1:1000), anti-IL-1β
(1:1000), anti-NFκB (1:1000), and anti-β-actin (1:3000) (Santa Cruz Biotechnology, Santa

Cruz, CA, USA) were used.

Total RNA extraction and quantitative real-time PCR

Total RNAs from 3T3-L1 adipocytes were extracted using TRIzol reagent (Invitrogen). RNAs

were transcribed to cDNA at 40˚C for 60 min in a 20-μL cocktail containing 5× reverse tran-

scriptase (RT) buffer, 15 mM dNTPs (300 U), Maloney murine leukemia virus reverse tran-

scriptase (MMLV-RT) (Promega, Madison, WI, USA) and 100 pmol oligo-dT primer. cDNA

concentration was estimated by the quantitative RT-PCR method using 2× iQTM SYBR

Green Supermix (Bio-Rad, Hercules, CA, USA), to measure the mRNA levels of each gene.

Amplification was performed using a CFX Connect Real-Time PCR Detection System (Bio-

Rad) under the following conditions: 94˚C for 5 min, 40 cycles at 94˚C for 20 s, and 58˚C for

35 s. Melting-curve analysis was used to verify the specificity of the PCR products. The com-

parative threshold method was used to calculate the relative amounts of mRNA in the experi-

mental samples compared to the controls. Gene expression was normalized to the expression

levels of β-actin. The relative fold-change of each gene was calculated using the method of

delta-delta cycle threshold (ddCT). The following PCR conditions were used: 94˚C for 5 min,

94˚C for 10 s and 60˚C for 2 min for 40 cycles. Primers were designed using Primer Express.

Mouse TNFα (Mm00443258_m1), IL-1β (Mm00434228_m1), and β-actin (Mm02619580_g1)

primers were purchased from Applied Biosystems (Lincoln Centre Drive Foster City, CA,

USA)

MTT assay

3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) was dissolved in phos-

phate buffered saline (PBS; Invitrogen) to prepare a working solution of 2 mg/mL; 100 μL

MTT was added to each well. Cells were incubated at 37˚C, 5% CO2, 95% air, and 100%

humidity. After 3 h, the MTT solution was replaced with 100 μL of DMSO. For thorough mix-

ing, the plates were incubated at room temperature for 10 min, and the optical density (OD)

was measured using a multi-plate reader at a test wavelength of 570 nm and a reference wave-

length of 630 nm.

Caspase 3 activity assay

Caspase 3 activity assay was performed according to the manufacturer‘s protocol using Cas-

pase 3 Assay Kit (Colorimetric) (Abcam, San Jose, CA, USA).
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Enzyme linked immunosorbent assay (ELISA)

Cell secreted TNFα (Cat. No.: MTA00B), IL-1β (Cat. No.: DY401-05), and IFNγ (Cat. No.:

MIF00) levels were measured using the corresponding ELISA kits (R&D Systems, Minneapo-

lis, MN, USA) following the manufacturer’s instructions.

Gene silencing using siRNAs

Small interfering (si) RNA oligonucleotides (0–20 nmol/L) targeting TNFα, IL-1β, and NFκB

were purchased from Santa Cruz Biotechnology and transfected to suppress gene expression.

Transfection using lipofectamine 3000 (Invitrogen) was performed according to the manufac-

turer‘s directions

Lipolysis assay

Lipolysis using colorimetric assay was performed using Abcam lipolysis assay kit following the

manufacturer‘s guidelines.

Statistical analysis

All statistical analyses were performed using SPSS/PC statistical program (version 13.0 for

Windows; SPSS, Chicago, IL, USA). Results are presented as the fold of the highest values

(means ± SEM). All experiments were conducted in triplicates. Student‘s t test or one-way

ANOVA were used for statistical analysis.

Results

The effects of PPC on apoptosis in various cell types

To evaluate the effects of PPC on apoptosis in various cell types, we treated 3T3-L1 adipocytes,

C2C12 myocytes, HUVEC, and fibroblasts with PPC (0–10 mg/mL, 24 h). Cell viability was

measured using MTT assay. PPC-based formula decreased 3T3-L1 cell viability and aug-

mented caspase 3 activities in a dose-dependent manner. Interestingly, PPC treatment did not

affect both cell viability and caspase 3 activities in C2C12 myocytes, HUVEC, and fibroblasts

(Fig 1).

The role of TNFα and IL-1β in PPC-induced lipolysis and apoptosis in

3T3-L1 adipocytes

The three cytokines; TNFα [17, 18], IL-1β [19, 20], and IFNγ [21, 22] are known to contribute

to lipolysis and apoptosis. Thus, we examined the expression of these cytokines in various cell

types. There were no changes of secretion of these cytokines in C2C12 myocytes, HUVEC, and

fibroblasts. However, we found that treatment of 3T3-L1 adipocytes with PPC augmented the

expression and secretion of TNFα and IL-1β in a dose-dependent manner (Fig 2A–2D). PPC-

based formula did not influence the expression and secretion levels of IFNγ mRNA (Fig 2E).

In line with our previous results [14], treatment of 3T3-L1 adipocytes with PPC stimulated

lipolysis in a dose-dependent manner (Fig 3A). Subsequently, we investigated the role of

TNFα and IL-1β in PPC-induced lipolysis and apoptosis. Suppression of TNFα [14] or IL-1β
by each siRNA suppressed the PPC-induced lipolysis and apoptosis in 3T3-L1 adipocytes (Fig

3B–3D).
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PPC-mediated induction of TNFα and IL-1β expression via NFκB-

dependent pathway

Since TNFα [23] and IL-1β [24] promoter regions contain NFκB binding sites, we next exam-

ined the role of NFκB in PPC-induced TNFα and IL-1β expression. Nuclear translocation of

NFκB was increased in 3T3-L1 adipocytes treated with PPC in a dose-dependent manner (Fig

4A). siRNA targeting NFκB mitigated the effects of PPC on TNFα and IL-1β mRNA expres-

sion in 3T3-L1 adipocytes (Fig 4B). Furthermore, suppression of NFκB by siRNA abrogated

the effects of PPC on lipolysis and apoptosis (S2 Fig).

Discussion

Non-surgical treatment for localized lipid accumulation via chemical lipolysis has received

much attention [25], owing to its economic efficiency [26]. Injection of various PPC-based

Fig 1. PPC induces apoptosis in adipocytes, but not in non-adipocytes. 3T3-L1 adipocytes, C2C12 myocytes, HUVEC, and fibroblast cells were treated with different

concentrations (0–10 mg/mL) of PPC for 24 h. Cells were assessed by MTT assay to determine viability (A) and caspase 3 activity (B). Means ± SEM were calculated

from three independent experiments. ��� P< 0.001, ��P< 0.01, and �P< 0.05 compared to culture control.

https://doi.org/10.1371/journal.pone.0214760.g001
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Fig 2. PPC specifically induces TNFα and IL-1β secretion and expression in adipocytes, but not in non-adipocytes. 3T3-L1 adipocytes, C2C12 myocytes, HUVEC,

and fibroblast cells were treated with different concentrations (0–10 mg/mL) of PPC for 24 h. Culture media were used to measure TNFα (A) and IL-1β (B) secretion.

TNFα and IL-1β mRNA expression was determined by quantitative real-time PCR analysis (C). Cell extracts were analyzed by Western blotting to determine TNFα and

IL-1β expression (D). Culture media were used to measure IFNγ (E) secretion. Means ± SEM were calculated from three independent experiments. ��� P< 0.001,
��P< 0.01, and �P< 0.05 compared to culture control.

https://doi.org/10.1371/journal.pone.0214760.g002
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Fig 3. TNFα and IL-1β contribute to PPC-mediated lipolysis and apoptosis in adipocytes. (A) 3T3-L1 adipocytes were treated with different concentrations (0–10

mg/mL) of PPC for 24 h. Cells were assessed by lipolysis assay. Scramble and TNFα or IL-1β siRNAs-transfected 3T3-L1 adipocytes were treated with PPC (10 mg/mL)

for 24 h. Cell extracts were measured by lipolysis assay (B), MTT assay to determine cell viability (C), and caspase 3 activity (D). Means ± SEM were calculated from

three independent experiments. ���P< 0.001 compared to control 3T3-L1 adipocytes. !P< 0.001 and !!P< 0.01 compared to the levels in 3T3-L1 adipocytes treated

with PPC.

https://doi.org/10.1371/journal.pone.0214760.g003
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formula has been used for treatment of localized fat deposits [9]. A PPC formulation incorpo-

rate both PPC and SD [9]. SD serves as a detergent and shows a strong lipolytic activity [27].

The most common adverse effects, including swelling, bruising, and sensitizing treated skin

have been reported for PPC-based formulation [6]. As SD causes severe inflammation and

necrosis in human lipoma [27], it is thus believed that the side effect profiles of PPC formula-

tions are attributed to SD not to PPC itself. It has been proposed that SD causes necrosis and

inflammation in a non-specific manner [28–31]. It was also reported that PPC alone without

SD could induce lipolysis and apoptosis in adipocytes [14, 32]. In the present study, MTT and

Fig 4. PPC regulates TNFα and IL-1β expression through NFκB nuclear translocation. (A) 3T3-L1 adipocytes were treated with different concentrations (0–10 mg/

mL) of PPC for 24 h. Cell extracts were analyzed by Western blot. (B) Scramble and NFκB siRNAs-transfected 3T3-L1 adipocytes were treated with PPC (10 mg/mL) for

24 h. Cell extracts were analyzed by Western blotting. Means ± SEM were calculated from three independent experiments. ���P< 0.001 and ��P< 0.01 compared to

control level in 3T3-L1 adipocytes. !!!P< 0.001 and !!P< 0.01 compared to the levels in 3T3-L1 adipocytes treated with PPC.

https://doi.org/10.1371/journal.pone.0214760.g004
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caspase 3 activity assays indicated that PPC induced apoptosis in 3T3-L1 adipocytes, but not in

C2C12 myocytes, HUVEC, and fibroblast cells. In line to previous reports [14, 25, 32], our cur-

rent results are limited; PPC shows the possibility of destroying only adipose tissue without

damaging other tissues. However, further in vivo studies are necessitated to reflect the effects

of PPC on the viability of other non-adipocytes.

TNFα, a cytokine produced primarily from mature adipocytes and macrophages, plays a

pivotal role in glucose and lipid metabolism [33, 34]. Treatment of TNFα increases lipolytic

activity in adipocytes [33] and induces apoptosis in human adipocytes, rat brown adipocytes,

and mouse white adipocytes [18, 35, 36]. Moreover, Zhao et al. have reported that TNFα could

contribute to apoptosis in 3T3-L1 preadipocytes and mouse preadipocytes through SOC3-de-

pendent signaling [37]. Recently, Jung et al. have also found that PPC could promote adipocyte

lipolysis and apoptosis through TNFα-mediated pathway [14]. On the other hand, IL-1β, a

proinflammatory cytokine produced by monocytes, macrophages [38], and adipocytes [39],

Fig 5. Schematic diagram for the effect of PPC on lipolysis and apoptosis in 3T3-L1 adipocytes.

https://doi.org/10.1371/journal.pone.0214760.g005
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suppresses expression of adipogenesis-associated genes and stimulates lipolysis in human pri-

mary adipocytes [19]. Furthermore, IL-1β modulated by TNFα in mouse adipocytes has been

reported to cause hepatic insulin resistance [40]. Here, we demonstrated that PPC augmented

TNFα [14] and IL-1β expression and release in 3T3-L1 adipocytes, but not in C2C12 myocytes,

HUVEC, and fibroblast cells. We previously reported that NFκB participates in PPC-induced

TNFα expression [14] and increased IL-1β expression through NFκB-mediated pathway.

Thence, suppression of TNFα and IL-1β expression attenuated PPC-mediated lipolysis and

apoptosis in 3T3-L1 adipocytes. These results suggest that NFκB-regulated TNFα and IL-1β,

play a pivotal role in PPC-mediated lipolysis and apoptosis in adipocytes. To explore other

mechanisms of lipolysis and apoptosis in 3T3-L1 adipocytes after PPC treatment, we further

examined the effect of PPC on mRNA expression of IFNγ that was involved in lipolysis in adi-

pocytes [22] and apoptosis [41]. Unexpectedly, PPC did not affect IFNγ mRNA expression,

showing that PPC promotes lipolysis and induces apoptosis independent of IFNγ. Further

studies for TNFα and IL-1β in null mice are required to verify the mechanism of action of PPC

mediated through the TNFα and IL-1β-pathways. Moreover, non-adipose tissue of experimen-

tal mice should be injected to determine whether inflammation and apoptosis could occur fol-

lowing PPC injection. To clarify the reason why PPC selectively acts on adipocytes, it is

important to find specific PPC receptors that exist only in adipocytes. Therefore, we are going

to conduct a protein-protein interaction assay and receptor targeted DNA micro array.

However, Palumbo et al. have reported that PPC ameliorated SD-induced lipolysis in

human primary adipocytes [42]. This discrepancy may be due to experimental conditions,

such as culture condition, adipocyte differentiation levels, and species specificity. Further stud-

ies should be undertaken to interpretate these different results.

Conclusions

PPC augmented TNFα and IL-1β expression, leading to lipolysis and apoptosis in 3T3-L1 adi-

pocytes (Fig 5), but not in non-adipocytes (skeletal muscle, endothelial, and fibroblast cells).

The current findings suggest that PPC alone can promote adipose tissue-specific reduction via

the TNFα and IL-1β pathways without damage to other tissues. Based on the current results,

we could propose the development of various substances that can selectively destroy adipose

tissue either at the level of adipocyte-specific receptors or intracellular proteins for treatment

of local obesity.

Supporting information

S1 Fig. Differentiation of 3T3-L1 cells.

(TIF)

S2 Fig. PPC promotes lipolysis and apoptosis via NFκB-mediated signaling in adipocytes.

Scramble and NFκB siRNA-transfected 3T3-L1 adipocytes were treated with PPC (10 mg/mL)

for 24 h. Cell extracts were measured by lipolysis assay (A), MTT assay to determine cell viabil-

ity (B), and caspase 3 activity (C). Means ± SEM were calculated from three independent

experiments. ���P< 0.001 and ��P< 0.01 compared to control 3T3-L1 adipocytes. !!P< 0.01

compared to the levels in 3T3-L1 adipocytes treated with PPC.

(TIF)
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