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The objective of this study was to investigate the virulence factors, genetic relationship,
antibiotic resistance profile and the biofilm formation ability of Vibrio parahaemolyticus
isolates on shrimp and mussel surfaces at 30◦C. In this study, eight (n = 8)
V. parahaemolyticus isolated from mussel were examined. We used the polymerase
chain reaction (PCR) to examine the distribution of different genes, and Repetitive
Extragenic Palindromic-PCR (REP-PCR) to compare the genetic relationship. Disk
diffusion technique was used to assess antibiotic and multiple-antibiotic resistance.
The biofilm formation assay, and field emission scanning electron microscopy (FE-SEM)
were used to evaluate biofilm formation ability. Transmission Electron Microscope (TEM)
was used to observe the morphological structure of bacterial cell. Our results indicated
that the biofilm-associated genes, 16S rRNA, toxR, and tdh, were present in all the
tested V. parahaemolyticus isolates (n = 8). Approximately, 62.5% (5 isolates among
8 isolates) isolates showed strong multiple-antibiotic resistance index with an average
value of 0.56. All isolates (n = 8) showed strong genetic relationship and significant
biofilm formation ability on shrimp and mussel surfaces. This study demonstrated that
the presence of virulence factors, high multiple antibiotic resistance index (MARI) values,
and effective biofilm formation ability of V. parahaemolyticus isolates could be a great
threat to human health and economic values in future. It was also suggested that a
high resistance rate to antibiotic could be ineffective for treating V. parahaemolyticus
infections. The continuous monitoring of V. parahaemolyticus antibiotic, molecular and
biofilm characteristics is needed to increase seafood safety.
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INTRODUCTION

Seafood is recognized as a nutritious and healthy food choice,
and is accepted by increasing numbers of consumers worldwide
(Hellberg et al., 2012). Every year, above 100.2 million metric
tons of seafood are caught and consumed in the world (Cisneros-
Montemayor et al., 2016). In 2014, the value of imported
seafood in Korea, China, and the United States were 4.16,
1.12 billion, and 222 million, respectively (Mizan et al., 2018).
However, the main obstacles in the consumption of seafood are
their high perishability and health risk due to contamination
by pathogens (Reyhanath and Kutty, 2014). Therefore, seafood
safety is considered as necessary to maintain public health and
seafood processing (Jahan, 2012; Machado and Gram, 2015).

In the aquaculture industry, black tiger shrimp (Penaeus
monodon) plays an important role in the economic aspect
and cultured in both inland and marine (Szuster, 2006).
Vibrio parahaemolyticus is the most prevalent shrimp pathogen
encountered in aquaculture, causes in shrimp Vibriosis with
the potential for severe health crisis (Mohammad et al., 2005;
Kleter et al., 2009; Sani et al., 2013; Zhang et al., 2014). In
China, shrimp contaminated with V. parahaemolyticus has been
accompanied with outbreaks of food borne illnesses (Peng
et al., 2010). In Australia two outbreaks of gastroenteritis
occurred between 1990 and 1992 due to the consumption of
V. parahaemolyticus contaminated cooked shrimps imported
from Indonesia (Sumner, 2011). The mussel is valued worldwide
for its sensory and nutritional qualities. Spain is the main
supplier of mussel to the European market, coming 98% of this
production from Galicia (Garrido-Maestu et al., 2016). During
1997 to 2010, Global production of mussels has increased up to
1.9 million tons worldwide. This represented 95% of the world
mussel production, in comparison to 83% in 1997 (Ferreira et al.,
2014). In recent years, Galicia has been recognized as the largest
producers of mussels, accounting for the 15 to 25% of the world’s
annual mussel production (Miguez et al., 2009; Costas-Rodríguez
et al., 2010; Caballero-Miguez et al., 2012). But several studies
have demonstrated the presence of pathogenic species of the
genus Vibrio in the Galician Rias (Lozano-León et al., 2003;
Martinez-Urtaza et al., 2004, 2008; Rodriguez-Castro et al., 2010).
As mussel is a good vehicle for Vibrio species, V. parahaemolyticus
can survive in mussel with potential contamination (Mannas
et al., 2014). Therefore, V. parahaemolyticus constitute a potential
risk to consumers for having improperly processed shellfish
(FDA BAM, 2004). Several post-harvest processes, including low-
temperature pasteurization and irradiation have been developed
for reducing Vibrios in aquaculture but they are expensive
(Chae et al., 2009).

Vibrio infections occurred due to the presence of virulence
factor. The strains of V. parahaemolyticus contain virulence
factor, including adhesins (Type I pilus), toxR, biofilm,
thermostable direct hemolysin (tdh), TDH-related hemolysin
(TRH) encoded by trh gene, VPaI-2, VPaI-3, VPaI-6, type III
secretion systems (T3SS), and type VI secretion systems (T6SS)
(Chao et al., 2009, 2010; Broberg et al., 2011; Salomon et al.,
2013: Letchumanan et al., 2014). In the United States, more
than 80% of gastroenteritis and 90% of septicemia infections

happened during 1988 to 1997, due to the consumption of oysters
(Daniels and Shafaie, 2000). It was also reported in 2006 that
V. parahaemolyticus was responsible for 177 cases due to having
raw shellfish in the United States (Yoon et al., 2008). Therefore
the consumption of V. parahaemolyticus contaminated seafood
is one of the greatest source of infection in America as well as in
Asia (Hongping et al., 2011).

The other problem associated with V. parahaemolyticus is
due to the prevalence of antibiotic resistance in aquaculture.
The extensive use of antibiotics for the treatment of infections
caused by V. parahaemolyticus, has increased the incidence of
antibiotic-resistant strains (Cabello et al., 2013; Yano et al., 2014;
Letchumanan et al., 2015; Xie et al., 2017: Yang Y. et al., 2017; Lee
et al., 2018). V. parahaemolyticus has shown resistant property
against numerous antibiotics including ampicillin, ciprofloxacin,
cephazolin, streptomycin, cefotaxime, and cefuroxime sodium
(Al-Othrubi et al., 2014; Jiang et al., 2014; Sudha et al., 2014; Yano
et al., 2014). The multidrug resistance of V. parahaemolyticus is
also increasing gradually due to the excessive use of antibiotics
in the fields of agriculture and aquaculture (Kang et al., 2017).
Antibiotic-resistant bacteria may represent a potential threat
to human health via direct transmission through the food
chain or the transfer of resistance genes to other human
(Duran and Marshall, 2005; Guglielmetti et al., 2009; Ma
et al., 2018). In aquaculture farming, an appropriate policy
is essential for using antibiotics (Odeyemi and Stratev, 2016).
Moreover, the monitoring of antibiotic resistance patterns of
V. parahaemolyticus in seafood is also important (Odeyemi and
Stratev, 2016), because it is a high concern for human health
(Xie et al., 2017). This emerging incidence of antibiotic resistance
in V. parahaemolyticus has generated a growing interest in
identifying new strategies for preventing infections related to
V. parahaemolyticus biofilms (Su and Liu, 2007; Lopatek et al.,
2018; Silva et al., 2018; Jiang et al., 2019).

Bacterial biofilms are architecturally complex assemblies
of microorganisms that adhere to biotic or abiotic surfaces
and are attached within a matrix of extracellular polymeric
substances (Costerton et al., 1999; Hall-Stoodley et al.,
2004; Flemming and Wingender, 2010; Mizan et al., 2015).
Bacteria in biofilms can be 1,000-fold more resistant to
environmental stress than planktonic cells are (Brooun et al.,
2000). V. parahaemolyticus is able to produce adherence
factors, to adhere to surfaces for biofilm formation (Donlan,
2002). Biofilm cells are more resistant to disinfectants
and antibacterial agents than the same bacteria in a free-
swimming state, so the environmental survival, infectivity and
transmission are enhanced due to strong biofilm formation
ability of this pathogen (Kadam et al., 2013; Elexson et al.,
2014a). In our knowledge, this is the first study to check
the biofilm formation ability of V. parahaemolyticus isolates
on mussel surface.

Based on the epidemiological importance of
V. parahaemolyticus and the concern of eating undercooked
shellfish, the present study was design to verify the genetic
relationship, virulence factors, antibiotic resistance profile and
biofilm formation ability of V. parahaemolyticus isolated from
mussel from the west coast area of Korea.
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TABLE 1 | The information about regions, season, sources, and water temperature of V. parahaemolyticus isolates used in this study.

Isolates Source of isolation Area (Island) Latitude/longitude Date Year, 2016 Water Temp. (◦C)

NIFS18 Sea mussel Seungbong 34◦55′26′′N/128◦26′24′′E 05, September, 25.67

NIFS24 Sea mussel Seungbong 34◦55′20′′N/ 128◦30′04′′E 06, September, 26.28

NIFS25 Sea mussel Daeijak 34◦51′35′′N/ 128◦04′29′′E 18, October 22.19

NIFS26 Sea mussel Soijak 34◦55′33′′N/127◦57′17′′E 26, October 19.57

NIFS27 Sea mussel Daeijak 34◦50′25′′N /128◦05′06′′E 18, October 22.01

NIFS28 Sea mussel Soya 34◦44′21′′N/127◦29′13′′E 25, October 17.20

NIFS29 Sea mussel Soya 34◦28′29′′N/ 127◦26′18′′E 12, October 22.20

NIFS30 Sea mussel Daeijak 34◦55′33′′N /127◦57′17′′E 26, October 19.57

Temp. = Temperature; NIFS = National Institute of Fisheries Science.

TABLE 2 | The primers used in the current study.

Primer Sequence (5′ to 3′) Target gene Amplicon size (bp) Reference

VparaF VparaR GCTGACAAAACAACAATTTATTGTT 16S rRNA 170 Rojas et al., 2011

GGAGTTTCGAGTTGATGAAC

toxRS/old-F toxRS/old-R TAATGAGGTAGAAACG toxRS sequence of
theold O3:K6 clone

651 Okura et al., 2003

ACGTAACGGGCCTACG

toxR-F toxR-R GTCTTCTGACGCAATCGTTG toxR 368 Kim et al., 1999

ATACGAGTGGTTGCTGTCATG

L-tdh R-tdh GTAAAGGTCTCTGACTTTTGGAC Thermostable direct
hemolysin

269 Nishibuchi and Kaper,
1995

TGGAATAGAACCTTCATCTTCACC

L-trh R-trh TTGGCTTCGATATTTTCAGTATCT TDR-related hemolysin
(TRH)

500 Rojas et al., 2011 Silva
et al., 2018

CATAACAAACATATGCCCATTTCCG

VP0950-F VP0950-R GCCAAACTTCTCAAACAACA Biofilm 298 Chao et al., 2010

ATGAAACGCAATTTACCATC

VP0952-F VP0952-R TATGATGGTGTTTGGTGC 276

TGTTTTTCTGAGCGTTTC

VP0962-F VP0962-R GACCAAGACCCAGTGAGA 358

GGTAAAGCCAGCAAAGTT

VP0634-F VP0634-R AGATGTCTTTGTTCACCCT VPaI-2 473 Chao et al., 2010

CGAAGTCGGCTTTGTAGTT

VP0636-F VP0636-R TGAAAGTGACGGCTCCAATC VpaI-2 207

CTGCGTTCAGTTCCACATCG

VP1094-F VP1094-R GATTCAAGGTGGATTTCG VpaI-3 219

ATAAGCGGGTTCTTCGTC

VP1253-F VP1253-R GTCCCTCAATCTGTGCTT VpaI-6 898

GCTGACAATCTTCGCTCT

VP1263-F VP1263-R TCGTGGACAACTATGAAGC VpaI-6 293

AAGTAGGAACTGACGGAAAC

VP1409-F VP1409-R TGTTGCTTTCTATTGCGAC T6SS 869

CCATAACGACTTTTCTTTC

VP1418-F VP1418-R AAACCAGCCTCAGCAACAAG T6SS 308

TAATAGCGGCGATAAATCCA

VP1510-F VP1510-R TTCAGGTTTCAGGGTTC Type I pilus 511

GCTTGCTCATAGTTGGC

VP1506-F VP1506-R CCGAACATTTAGAAGGC Type I pilus 399

AGCGAGAAAGCAGAACA

VP1677-F VP1677-R TAGTCAGATAGCAACCAACA T3SS1 548 Chao et al., 2009

CATCAGCGAAATGAGAAACA

VP1690-F VP1690-R CACCAATGTGAGCCAAAAAG T3SS1 384

ATAAACACCGATGCCGAAGC
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MATERIALS AND METHODS

Bacterial Strains, Growth Conditions,
and Preparation of Bacterial
Suspensions
A total of 10 V. parahaemolyticus strains, were included in
this study. Among 10 V. parahaemolyticus strains, two (n = 2)
were reference strains (ATCC17802 and ATCC27969), and
eight (n = 8) were environmental isolates (Table 1) from sea
mussel. These environmental isolates were obtained from the
National Institute of Fisheries Science (NIFS), South Korea.
V. parahaemolyticus isolates were elementary identified as blue-
green colored colonies using thiosulfate citrate bile salts sucrose
agar (TCBSA, Difco Laboratories, Sparks, MD, United States).
Isolates were transferred onto nutrient agar (Difco Laboratories)
and cultivated at 30◦C for 24 h. Biochemical tests were directed
using a VITEK 2 compact system (bioMerieux, Grenoble, France)
to assure the phenotypical identity of the isolates. Prior to
each experiment, the strains were activated by transferring
from stocks which stored at -80◦C to CHROMagar Vibrio
plates (CHROMagar, Paris, France) and incubated overnight
at 30◦C. After 18–24 h incubation a single colony was
taken from each plate and inoculated into 5 ml Luria-
Bertani (LB) broth (2% NaCl; Difco Laboratories), and then
incubated overnight at 30◦C in a shaking incubator (Vision
Scientific, VS-8480, South Korea) at 220 rpm. Subsequently,
the V. parahaemolyticus cultures were centrifuged (11,000 × g
at 4◦C for 10 min), and then washed and resuspended
in peptone water (PW; BD diagnostics, Franklin Lakes, NJ,
United States), and made a target concentration (CFU/ml) for the
final experiment.

Polymerase Chain Reaction
In the present study, a single polymerase chain reaction (PCR)
assay was performed to test virulence factor. The nineteen
oligonucleotide primer pairs (Table 2) were considered to
evaluate the presence and absence of one specific primer for
16S rRNA, two pandemic clone genes, one toxR gene, TDH-
related hemolysin trh gene, three biofilm genes, two VPaI-2 open
reading frames (ORFs), one VPaI-3 ORFs, two VPaI-6 ORFs,
two T6SS genes, two type I pilus genes, and two T3SS1 genes.
All of the primers selected in this study were synthesized by
the Bioneer Corporation (Daejeon, South Korea). The Tissue
Kit and DNeasy Blood (QIAGEN, Venlo, Netherlands) were
used to purify total DNA according to the instructions of
manufacturer. The PCR reactions (25 µl) contained 14 µl
of PCR mix (Solutions for Genetic Technologies, Daejeon,
South Korea), 2 µl of each of the primers (10 µM), 2 µl of
the DNA template, and milli-Q water. The reactions were as
follows: an initial denaturation step at 95◦C for 3 min, 40 cycles
of 95◦C for 30 s, 40–57◦C (depending on product annealing
temperature) for 30 s, and 72◦C for 1 min, followed by a
final incubation at 72◦C for 5 min. PCR amplification was
performed in triplicate for genomic DNA from each of the
strains. The products were identified using electrophoresis on a
1.5% agarose gel and Safe View Classic staining (0.008%, v/v)

(Applied Biological Materials Inc., Richmond, Canada). A 100-
bp ladder (BioFACT, Daejeon, South Korea) was selected as the
molecular weight marker.

Repetitive Extragenic Palindromic-PCR
(REP-PCR)
REP-PCR, used for chromosomal comparisons of
V. parahaemolyticus isolates, was conducted using two primers:
REP-1D, 5’-NNN RCG YCG NCA TCM GGC-3’; and REP-
2D, 5’-RCG YCT TAT CMG GCC TAC-3’ (where M is A
or C, R is A or G, Y is C or T, and N is any nucleotide) as
reported previously (Wong and Lin, 2001). The experiment was
performed followed by Mizan et al. (2017), and a digital image
was captured through a charge coupled device camera (Gel Doc
XR system, Bio-Rad). The resulting fingerprints were analyzed
using FPQuest software (Bio-Rad Laboratories, Inc., Hercules,
CA, United States). Similarities between digitized profiles were
counted using Pearson’s correlation, and an average linkage
(unweighted pair group method with arithmetic mean, UPGMA)
dendrogram was obtained.

Antibiotic Susceptibility Testing
The antibiotic susceptibility of V. parahaemolyticus isolates was
determined using the disk diffusion technique (NCCLS, 2003).
For testing antibiotic susceptibility, selective media were used
with slight modifications as previously described (Temmerman
et al., 2003; McLain et al., 2016; Vandeplassche et al., 2017).
Eleven antibiotics were tested in this study (Table 3). The
10 V. parahaemolyticus isolates were spread on CHROMagar
plates onto which antibiotic disks were then placed. The plates
were incubated at 30◦C for 18–24 h under aerobic conditions.
The zones of inhibition were measured according to the
guidelines of Clinical and Laboratory Standards Institute (CLSI,
2010). The multiple-antibiotic resistance (MAR) index of the
isolates was defined as x/y, where x represents the number of
antibiotics to which a particular isolate was resistant, and y
represents the number of antibiotics to which the isolate was
susceptible (Krumperman, 1983). Tetracycline and ciprofloxacin
are recommended antibiotics to treat V. parahaemolyticus
illnesses (Park et al., 2018). Previous reports performed in

TABLE 3 | Antibiotics used in this study.

Serial number Antibiotic name Reference

01 Erythromycin (E; 15 µg) Kang et al., 2017

02 Vancomycin (VA; 30 µg)

03 Kanamycin (K; 30 µg)

04 Chloramphenicol (C; 30 µg)

05 Streptomycin (S; 10 µg)

06 Ampicillin (AM; 10 µg)

07 Ciprofloxacin (CIP; 5 µg)

08 Gentamicin (GM; 10 µg)

09 Tetracyclin (TE; 30 µg)

10 Clindamycin (CC; 2 µg),) García-Hernández et al., 2016

11 Penicillin (G; 10 µg) Tan et al., 2017

Frontiers in Microbiology | www.frontiersin.org 4 March 2019 | Volume 10 | Article 513

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00513 March 18, 2019 Time: 15:22 # 5

Ashrafudoulla et al. Pathogenic Evaluation of Vibrio parahaemolyticus

South Korea showed the antibiotic susceptibility profile of
V. parahaemolyticus isolates in seawater samples and found
that 3.0–12.2% of isolates were resistant to tetracycline and
ciprofloxacin, respectively (Son et al., 2005; Kim et al.,
2014). Other studies reported using different antibiotics against
V. parahaemolyticus for detecting antibiotic susceptibility (Han
et al., 2012; Yang J. H. et al., 2017; Park et al., 2018).
Most of the antimicrobials tested in this study are using in
agriculture and aquaculture fields (Kim S. et al., 2016; Kang
et al., 2017), as well as in the treatment of vibrio infections
(Shaw et al., 2014).

Preparation of Inoculum for Food
Samples
The cultures in LB containing 2% NaCl were centrifuged
(10,000g for 12 min at 4◦C) and the pellets were washed with
sterile phosphate-buffered saline (PBS, pH 7.2). The pellets were
resuspended in the same amount of PBS. These inocula were used
to form biofilm on shrimp and mussel surfaces.

Preparation of Shrimp and Mussel
Surfaces, Biofilm Formation, and
Detachment Population
Black tiger shrimp (P. monodon) and mussel (Mytilus coruscus)
were purchased from a native grocery store in Anseong,
South Korea. Surface preparation, biofilm formation, and
detachment procedure were performed followed by Han et al.
(2016) with minor modifications. Using a scalpel, the shrimp
head surface and mussel cover surface were aseptically cut into
2 × 2 cm2 that were then washed with sterile distilled water to
remove the flesh. Prior to inoculation with V. parahaemolyticus,
the surfaces were placed in an open sterile petri dish and subjected
to ultraviolet-C treatment for 30 min on each side to minimize
the background flora. Preliminary experiments confirmed that
a UV-C treatment time of 30 min was sufficient to remove
the background microbiota below the detection level cultured
on Trypticase Soy Agar (TSA) plates (Han et al., 2016; Jahid
et al., 2019). The incubated bacterial cultures were centrifuged
(10,000 × g at 4◦C for 12 min). The resulting pellets were
washed three times using PBS, and resuspended into LB to
attain the final concentration of bacterial cells (105 CFU/ml),
and then used to form biofilm on shrimp and mussel surfaces.
Each surface was completely submerged into 10 ml LB in 50-ml
Falcon tubes (SPL Life Sciences Co., Ltd., Pocheon, South Korea).
Each isolate (105 CFU/ml) was added to a Falcon tube and
incubated for 24 h without shaking. After biofilm formation,
the shrimp and mussel surfaces were removed from the Falcon
tube and washed at least three times with PBS to remove
planktonic bacteria, and transferred into a sterile stomacher bag
containing 10 ml peptone water (PW; BD Diagnostics, Franklin
Lakes, NJ, United States), and processed using a Stomacher
(Bag Mixer; Interscience, Saint Nom, France) at the highest
speed of 4 for 2 min to release the biofilm-forming bacteria
cells from shrimp and mussel surfaces. Enumeration of each
V. parahaemolyticus isolate was obtained by serial dilutions and
spread onto CHROMagar Vibrio plates. After incubation at 30◦C TA
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FIGURE 1 | Repetitive extragenic palindromic sequence-based PCR (REP-PCR) results for the 10 Vibrio parahaemolyticus isolates and reference strains Escherichia
coli ATCC43894 and Vibrio harveyi BB170.

TABLE 5 | Antibiotics resistance profiles of Vibrio parahaemolyticus isolates.

Antibiotics Concentration (µg) Number of percentage (%)

Sensitive (%) Intermediate (%) Resistant (%)

Erythromycin (E) 15 3/8 (37.5) 3/8 (37.5) 2/8 (25)

Vancomycin (VA) 30 8/8 (100)

Kanamycin (K) 30 1/8 (12.5) 2/8 (25) 5/8 (62.5)

Chloramphenicol (C) 30 5/8 (62.5) 3/8 (37.5)

Streptomycin (S) 10 1/8 (12.5) 3/8 (37.5) 4/8 (50)

Ampicillin (AM) 10 1/8 (12.5) 3/8 (37.5) 4/8 (50)

Ciprofloxacin (CIP) 5 4/8 (50) 1/8 (12.5) 3/8 (37.5)

Gentamicin (GM) 10 1/8 (12.5) 3/8 (37.5) 4/8 (50)

Tetracyclin (TE) 30 2/8 (25) 6/8 (75)

Clindamycin (CC) 2 2/8 (25) 6/8 (75)

Penicillin (G) 10 1/8 (12.5) 7/8 (87.5)

for 24 h, the resulting colonies were counted and expressed as
CFU/cm2 for the biofilm populations. V. parahaemolyticus can
contaminate both shrimp (Devi et al., 2009; Jun et al., 2012;
Saifedden et al., 2016; Ahmed et al., 2018), and mussel (Bauer
et al., 2006; Rojas et al., 2011; Jun et al., 2012; Lopatek et al.,
2015). Previous studies reported that the V. parahaemolyticus
isolates, collected from different sources (shrimp, crab, oysters
and mussels) can generate biofilm on other different surfaces
(Ahmed et al., 2018; Fang et al., 2018; Rosa et al., 2018), and it
was already reported that V. parahaemolyticus can make biofilm
on shrimp surface (Mizan et al., 2018). We considered shrimp as

a tested surface along with a mussel though strains were isolated
from mussel in this study.

Examination of Biofilms via Field
Emission Scanning Electron Microscopy
(FE-SEM)
The biofilm formation ability of representative isolates
(ATCC27969 and NIFS29) were examined by FE-SEM. The
surfaces were prepared with some modifications as described
previously by Jahid et al. (2013). The surfaces were fixed at
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room temperature for 4 h with 2.5% glutaraldehyde. The
surfaces were then serially treated with ethanol (50% for
15 min, 60% for 15 min, 70% for 15 min, 80% for 15 min,
90% for 15 min, and twice with 100% for 15 min each time)
and successively dehydrated by soaking in 33, 50, 66, and
100% hexamethyldisilazane in ethanol for 15 min each time.
The dehydrated surfaces were sputter coated with platinum
and visualized by FE-SEM (Hitachi/Baltec, S-4700). In this
study, NIFS29 was selected as a representative bacterium
among all isolates to present our data. NIFS29 was selected
based on the higher biofilm formation ability. However, the
biofilm formation ability between NIFS28 and NIFS29 were not
significantly different.

Transmission Electron Microscope (TEM)
Sample Preparation and Imaging
A TEM sample was prepared with minor modifications from
the previous study (Golding et al., 2016). The sample was
adsorbed for 1 min to a formvar film on a carbon-coated
400-mesh copper grid. It was then washed 3 times in
distilled water and negatively contrasted with 2% methylamine
tungstate (Nano-W; Nanoprobes, Yaphank, NY, United States).
The image was taken at 200 kV using a FEI Tecnai 20
transmission electron microscope (FEI Company, Hillsboro, OR,
United States). The magnifications of 3,500× to 19,000× was
considered for TEM images.

Statistical Analysis
Each experiment was performed independently in triplicate.
The data were expressed as mean ± standard error (SE).
Data were analyzed using Microsoft excel and Duncan’s new
multiple tests with SAS software (version 9.2, SAS Institute
Inc., Cary, NC, United States). P-values < 0.05 were considered
significantly different.

RESULTS

Gene Detection of V. parahaemolyticus
The distribution of specific and virulence-associated genes was
represented in Table 4. The V. parahaemolyticus isolates shown
positive PCR amplification to specific genes: (16S rRNA), marker
(toxR), pathogenic gene (L-tdh), biofilm genes VP950 (encoding
a lipoprotein-related protein), VP952, and VP962 (encoding a
hypothetical protein), type VI secretion T6SS (VP1409), Type
I pilus (VP1510), pathogenicity island-2 (VPaI-2), and VPaI-
6 (VP1253). Our results also indicated that 87.5% (n = 8) of
V. parahaemolyticus isolates harbored the complete type three
secretion T3SS (VP1690), tox-RS/Old, and VPaI-6 (VP1263);
50% (n = 8) of isolates harbored the complete Type I pilus
(VP1506) and type VI secretion T6SS (VP1418) genes. For trh
gene, all isolates (n = 8) shown negative amplification of PCR.

REP-PCR Fingerprinting
The genetic relationships among the V. parahaemolyticus isolates
were analyzed by REP-PCR. All the isolates demonstrated

a common band at ∼ 400 bp with amplification ranging
from 100 to 2,000 bp. According to the REP-PCR banding
pattern, all the isolates were classified into two major clusters,
cluster 1 and cluster 2 (Figure 1). Cluster 2 was divided
into two sub-clusters (cluster 2a and cluster 2b) having 49.9%
similarity. In cluster 2a, two main groups (Cluster 2a1 and
Cluster 2a2) were detected for the V. parahaemolyticus isolates.
NIFS18, NIFS29, NIFS30, ATCC27969, and ATCC17802 showed
97.4% similarity. The other isolates, NIFS25, NIFS28, NIFS26,
NIFS24, and NIFS27, showed 91.7% similarity. ATCC43894
(Escherichia coli) and BB170 (Vibrio harveyi) were used as
negative controls. A similarity level of 2.3% was observed
between these strains (Figure 1) independently from the
V. parahaemolyticus isolates.

Antibiotic Resistance Profile of
V. parahaemolyticus Isolates
The antibiotic resistance profile of V. parahaemolyticus isolates
with respect to 11 antibiotics were shown in Table 5. The majority
of isolates were resistant to all the antibiotics. The isolates were

TABLE 6 | Multiple antibiotic resistance (MAR) index of
V. parahaemolyticus isolates.

Resistance pattern Frequency Isolate code Percentage (%) MAR index

VA, TE 1 NIFS24 12.5 0.18

E, VA, P, CC 1 NIFS26 12.5 0.36

E, VA, P, CC, K, S, AM,
TE

1 NIFS30 12.5 0.73

VA, P, K, S, TE 1 NIFS25 12.5 0.45

VA, P, CC, K, S, AM,
CIP, GM, TE

1 NIFS27 12.5 0.82

VA, P, CC, S, CIP, GM 1 NIFS29 12.5 0.55

VA, P, CC, K, AM, GM,
TE

1 NIFS28 12.5 0.64

VA, P, CC, K, AM, CIP,
GM, TE

1 NIFS18 12.5 0.73

TABLE 7 | Biofilm cell grown at 30◦C for 24 h on shrimp and mussel surface.

Isolates Shrimp surface Mussel surface

V. Parahaemolyticus log CFU/cm2
± SD log CFU/cm2

± SD

ATCC17802 5.59 ± 0.27D 5.29 ± 0.27C

ATCC27969 6.19 ± 0.29C 5.72 ± 0.19BC

NIFS18 6.24 ± 0.16BC 6.04 ± 0.10BA

NIFS24 6.52 ± 0.14BAC 6.12 ± 0.33BA

NIFS25 6.72 ± 0.23BA 6.25 ± 0.18BA

NIFS26 6.21 ± 0.16C 5.91 ± 0.13BA

NIFS27 6.29 ± 0.27BC 6.06 ± 0.21BA

NIFS28 6.80 ± 0.13A 6.39 ± 0.09A

NIFS29 6.89 ± 0.16A 6.40 ± 0.17A

NIFS30 6.27 ± 0.16BC 6.04 ± 0.35BA

Within each treatment, values marked with the same letter are not
significantly different based on Duncan’s multiple-range test (p > 0.05).
SD = Standard deviation.
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FIGURE 2 | Representative FESEM images of V. parahaemolyticus clinical (ATCC27969) and environmental (NIFS29) isolates biofilm formation on mussel and shrimp
surfaces. For mussel surface clinical isolate (A), environmental isolates (B); For shrimp surface clinical isolate (C), environmental isolates (D).

highly resistant to vancomycin (100%) and penicillin (87.5%)
and showed 75% resistance to clindamycin and tetracycline,
and 62.5% resistance to kanamycin. The MAR index values of
V. parahaemolyticus isolates were summarized in Table 6. The
MAR values ranged from 0.18 to 0.82, with an average of 0.56.
One (12.5%) isolate exhibited the highest MAR index value of
0.82, showing resistance to nine antibiotics.

Comparison of Biofilm Formation Ability
Between Clinical and Environmental
Isolates
In this study, environmental isolates showed a higher
biofilm formation ability than clinical isolates. For shrimp
surface, NIFS25, NIFS28 and NIFS29 showed 6.72, 6.80,
and 6.89 log CFU/cm2 biofilm formation, respectively
(Table 7). For mussel surface, NIFS25, NIFS28 and NIFS29
also shown strong biofilm formation like 6.25, 6.39, and 6.40
log CFU/cm2, respectively (Table 7). On the other hand,
clinical isolates ATCC17802 and ATCC27969 showed 5.29 and
5.72 log CFU/cm2 biofilm formation, respectively (Table 7).
The biofilm-forming ability of the isolates may vary under
different environmental stress and isolation source. This study

indicated that environmental isolates show a great ability to
contaminate shellfish.

FE-SEM
The FE-SEM analysis of clinical and environmental isolates were
shown in Figure 2. The representative isolates for the clinical
and environmental were ATCC27969, and NIFS29, respectively.
ATCC27969 and NIFS29 were selected based on their higher
biofilm formation ability. In the case of both isolates, biofilms
were organized in structure with intact cell-to-cell connections.
The morphology of the isolates (ATCC27969 and NIFS29)
looked smooth with an intact cell membrane (Figure 2). The
environmental isolate showed stronger biofilm formation on
both surfaces than on the clinical isolate (Figure 2).

Morphological Structure Observation
Morphological structure of representative environmental isolate
(NIFS29) was observed through TEM. The electron micrographs
of NIFS29 cell was displayed in Figure 3. The bacterial cell
showed typical character of rod-shaped bacteria. The cell surface
was smooth, and the flagella was clear. The diameter of the cell
was 0.79 µm in width and 1.77 µm in length (Figure 3), this
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FIGURE 3 | Representative TEM image of V. parahaemolyticus environmental
isolate cell (NIFS29).

is within the range of V. parahaemolyticus standard diameter
(0.5–0.8 µm in width and 1.4–2.4 µm in length)1.

DISCUSSION

Assays based on molecular PCR are useful in detecting the
toxR gene in V. parahaemolyticus isolates (Fabbro et al., 2010).
Following detection on the CHROMagar Vibrio plates (data not
shown), PCR assays for toxR, and genes associated with biofilm
formation and pathogenicity were conducted for molecular
characterization of the V. parahaemolyticus isolates. The toxR
gene fragment (∼368 bp) specific to V. parahaemolyticus
(Zulkifli et al., 2009) and three biofilm-associated genes were
effectively amplified from all the isolates (Table 4); similar
results were reported in another study (Mizan et al., 2016).
It was reported that 82.6% of V. parahaemolyticus isolates
were positive for PCR targeting the 16S rRNA, whereas in
our study, 100% (Table 4) of V. parahaemolyticus isolates were
identified as positive by PCR (Rojas et al., 2011). Our results
for VPaI-2, VPaI-3, VPaI-6, Type I pilus, type III secretion
systems (T3SS), and type VI secretion systems (T6SS) were
consistent with those of other studies (Chao et al., 2009,
2010). The results of our study indicated that 100% of the
V. parahaemolyticus isolates harbored the complete L-tdh genes
(Table 4). Several studies revealed that 87.4, 93, and 86% of
V. parahaemolyticus isolates carried the tdh gene (Bhoopong
et al., 2007; Chen et al., 2016; Mizan et al., 2016). In the
case of trh gene, all V. parahaemolyticus environmental isolates

1https://www.msdsonline.com/resources/sds-resources/free-safety-data-sheet-
index/Vibrio-parahaemolyticus/

showed the negative amplification of PCR, and similar results
were found in other study (Rojas et al., 2011). Recently, it
was demonstrated that the virulence gene trh was absent in all
V. parahaemolyticus isolates from water and mollusk (Silva et al.,
2018). In another study, among 35 isolates from mussel only
4 isolates showed positive results against trh gene (Ottaviani
et al., 2005). It was also reported that only 4 isolates were
positive for trh virulence gene among 44 V. parahaemolyticus
isolated from oysters (Kang et al., 2017). However, sometimes
the presence or absence of virulence genes may depend on
the differences in geographical regions, testing methodologies,
and sample sources (Raghunath, 2015). For example, in a
previous study, the tdh gene was detected in 20.7% of the
seafood samples, from southwest coast of India by PCR after
18 h enrichment in ST broth. In the same study, it was
isolated tdh carrying V. parahaemolyticus isolates from 19% of
seafood samples, by colony hybridization following enrichment
using ST broth (Raghunath, 2015), whereas, tdh was detected
in 100% of the mussel samples from the west coast area of
Korea by PCR after 24 h enrichment in LB broth in this
study. It was reported that tdh gene was positive in 55 of
environmental (water) samples, by MPN-PCR technique. But
no tdh carrying strains were isolated by the conventional MPN-
culture procedure (Alam et al., 2002).

In epidemiological research, REP-PCR is an effective and
rapid typing method for the comparison and fingerprinting
of V. parahaemolyticus isolates (Wong and Lin, 2001;
Maluping et al., 2005). An earlier study using REP-PCR
explained the intraspecific and interspecific differences between
V. parahaemolyticus isolates and other strains (Jun et al., 2012). In
our study, we obtained similar results using REP-PCR to compare
and differentiating between intraspecific (10 V. parahaemolyticus
isolates) and interspecific strains (E. coli ATCC43894, V. harveyi
BB170) (Figure 1).

The environmental isolates in our study showed a high level
of resistance to vancomycin, tetracycline, kanamycin, ampicillin,
and penicillin (Table 5). Our findings were consistent with those
of previous reports (Elexson et al., 2014a; Jiang et al., 2014;
Xu et al., 2016; Kang et al., 2017; Tan et al., 2017; Ahmed
et al., 2018). The high levels of multiple-antibiotic resistance
property could be stated by the furthered chance to exchange
genetic resistance determinants spotted on the plasmids among
microorganisms, due to the extensive use of antibiotics in fishery
and for the treatment of different kinds of infections (Ottaviani
et al., 2013). It was demonstrated that the low MAR range
(0.15) indicated low risk of contamination, whereas the high
MAR range (above 0.25) indicated high risk of contamination
(Chitanand et al., 2010). In this study, the higher MAR index
values were 0.82, 0.73, and 0.64 (Table 6), indicating the high
contamination ability of V. parahaemolyticus isolates; this agrees
with the results obtained in other studies (Kang et al., 2017;
Ahmed et al., 2018). However, appropriate monitoring is essential
for developing a new generation of antibiotics and assuring the
safety of seafood (Krumperman, 1983; Yu et al., 2016). The
variation in the MAR index values may depend on sample sources
(Tunung et al., 2010), geographic distribution (Lesley et al.,
2011), and different testing methods (Robert-Pillot et al., 2004).
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It was described that the most possible source was cross-
contamination from other products in the sampling location.
However, cross-contamination could occur at any stage during
the long processing and distribution chain, such as during
pre-harvesting or post-harvest stage, contamination might
occur through a contaminated container for transporting
and improper handling (Chai et al., 2007). It was suggested
that geographical locations and selective pressure influence
the antibiotic resistance levels as well as multiple antibiotic
resistance index. The high multiple antibiotic resistance
value of V. parahaemolyticus isolates was 0.94, isolated
from local cockles (Anadara granosa) obtained from a
harvesting site in Tanjong Karang, Malaysia. The isolates
were routinely grown at 35◦C in LB broth with addition
of 3% (w/v) NaCl (Lesley et al., 2011). In comparison with
our study, the high multiple antibiotic resistance value of
V. parahaemolyticus isolates was 0.82, isolated from local mussel
(M. coruscus) from the west coast area of Korea, and grown
at 30◦C in LB broth with addition of 2% NaCl. Alternative
strategies are urgently needed to overcome the continuous
emergence of MDR in V. parahaemolyticus isolates in the
environment (Tan et al., 2016).

Clinical strains and V. parahaemolyticus isolated from
mussel possesses biofilm-forming abilities as well as pathogenic
properties, and the relationship between the virulence genes
detected with biofilm formation capabilities of the environmental
isolates and clinical strains is variable in this study. The
biofilm cell of V. parahaemolyticus has great resistant ability to
antibiotics and disinfectants than planktonic cells (Song et al.,
2017). The biofilm formation ability of V. parahaemolyticus
increase the cells attachment ability to suspended particles,
as well as shellfish (Elexson et al., 2014b). In this study,
V. parahaemolyticus environmental isolates shown strong
biofilm formation ability on both seafood surfaces at 30◦C
(Table 7). Previous study reported that V. parahaemolyticus
environmental isolates produced strong biofilm on abiotic
surface at 30◦C (Mizan et al., 2016). The temperatures ranging
25–37◦C was considered optimum for significant biofilm
formation by V. parahaemolyticus isolates (Ahmed et al.,
2018). There is limited study about biofilm formation on
seafood. This study examined the biofilm formation ability
of V. parahaemolyticus isolates on mussel surfaces for the
first time. Interestingly, the result indicated that environmental
isolates produced strong biofilm on mussel surface as well
as shrimp surface (Table 7) than clinical isolates. Various
studies described about better biofilm formation ability of
environment isolates than clinical isolates (Kim B. R. et al.,
2016; Qi et al., 2016). This might be due to differences in
structural components such as pili, and fimbriac and adhesive
surface proteins (Thompson et al., 2006; Abdallah et al.,
2009). It could be also depended on various environmental
conditions and bacterial adhesion properties (Wong et al.,
2002; Sayen, 2014; Kim B. R. et al., 2016). Previous study
reported V. parahaemolyticus biofilm formation ability on
shrimp surface (Mizan et al., 2018), but no report was
found on mussel surface. Therefore, further studies are needed
to confirm the biofilm formation ability of environmental

isolates on mussel surface. The SEM images showed the
visual biofilm formation ability of both isolates on mussel
(Figures 2A,B) and shrimp (Figures 2C,D) surface. Previous
studies examined the SEM images of biofilm formation ability
of V. parahaemolyticus on shrimp surface with different
temperatures (Han et al., 2016). This study indicated that
environmental isolates could produce significant biofilm on both
surfaces and contaminate seafood, resulting in potential risk to
consumer’s health.

CONCLUSION

In this study, the tested V. parahaemolyticus isolates showed
100% positive amplification to pathogenic gene L-tdh and
biofilm genes with strong genetic relationship. The mussel in
the west coast area of Korea could be a positive source of
resistance genes that may be transmitted to humans through
consumption of mussel. The present study demonstrated that
V. parahaemolyticus isolates carry the markers of different
virulence genes, high antibiotic resistance profile and remarkable
biofilm formation ability. These properties could be helpful
to influence seafood contamination ability of these isolates
significantly. This could be a good source of public health
hazard, especially for seafood consumers. Therefore, monitoring
of V. parahaemolyticus antibiotic resistance profile and others
pathogenic factors are important to protect seafood in the
marine environment and improve seafood safety in the
seafood industry. The strong point of this study was the
comprehensive coverage of genetic relationship, virulence factors
as well as biofilm formation ability on seafood. Although
only 8 environmental isolates were used in this study, the
collected data are expected to be useful to build strong
evidence in future research through increasing the number
of isolates. This study recommends additional research using
V. parahaemolyticus mussel isolates from different countries in
the world and making a comprehensive statement about the
variation of different virulence factors among the isolates of
different countries.
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