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Abstract: In this paper, we propose a fully integrated switched-capacitor DC–DC converter with low
ripple and fast transient response for portable low-power electronic devices. The proposed converter
reduces the output ripple by filtering the control ripple via combining a low-dropout regulator
with a main switched-capacitor DC–DC converter with a four-bit digital capacitance modulation
control. In addition, the four-phase interleaved technique applied to the main converter reduces
the switching ripple. The proposed converter provides an output voltage ranging from 1.2 to 1.5 V
from a 3.3 V supply. Its peak efficiency reaches 73% with ripple voltages below 55 mV over the
entire output power range. The transient response time for a load current variation from 100 µA to
50 mA is measured to be 800 ns. Importantly, the converter chip, which is fabricated using 0.13 µm
complementary metal–oxide–semiconductor (CMOS) technology, has a size of 2.04 mm2. We believe
that our approach can contribute to advancements in power sources for applications such as wearable
electronics and the Internet of Things.

Keywords: DC–DC converter; switched capacitor; power management integrated circuit;
CMOS technology

1. Introduction

Rapid advances in the Internet of Things and wearable electronic devices have led to an increasing
demand for various types of sensors [1]. For portability, such devices/applications are usually powered
by small batteries, which limit the operating time of sensor-based devices. Therefore, in order to
increase the battery efficiency to provide longer operating times, power management units such
as power management integrated circuits (ICs) are used to control power consumption [2,3]. The
power management IC can be mounted on the same printed circuit board as the sensor IC, as shown
in Figure 1a. Meanwhile, certain off-chip passive components such as inductors and capacitors
are additionally required for external support of the power management IC because they cannot
be integrated into the chip. In this regard, although multichip configurations are convenient for
a sensor module design, the cost and size of the resulting modules increase. Thus, integration of
the power management unit and passive components into a single sensor chip (Figure 1b) is being
actively pursued to reduce the module size and to increase market competitiveness [4–9]. The power
management unit normally comprises a high-efficiency switching DC–DC converter and a linear
low-dropout regulator. The switching DC–DC converter adjusts the battery voltage that drops over
time to a fixed supply voltage, and its output drives the low dropout regulator to provide a voltage
with low ripple and low noise to supply-sensitive analog components on the sensors [10,11].
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Figure 1. Types of sensor modules: (a) Sensor module with multichip architecture and (b) fully 
integrated sensor module (PMIC, power management IC; PMU, power management unit; and LDO, 
linear low dropout regulator). 

Figure 2 shows the two types of currently available switching DC–DC converters according to 
the choice of passive components utilized for energy storage. The first type is the inductor-based 
converter, which employs inductor LS and a push–pull stage as shown in Figure 2a. The output 
voltage is regulated by controlling the switches (Φ1 and Φ2) with either a pulse–width modulator or 
a pulse–frequency modulator [12,13]. The second type is the capacitor-based converter, which 
employs a flying capacitor CF and four switches (Φ1 and Φ2). The output voltage is regulated by 
controlling the switches with a pulse–width modulator, pulse–frequency modulator, or digital 
capacitor modulator (DCpM) [14–17]. The converting power depends on the storage capacity of the 
passive components as per the relation PL = L·I2/2 for the inductor-based converter and PC = C·V2/2 for 
the capacitor-based converter. Here, we note that inductor-based converters can deliver more power 
than capacitor-based converters via increasing the current at a fixed battery voltage, VBAT. Moreover, 
high power efficiency can be achieved by use of an off-chip inductor with high inductance and high 
Q values while maintaining a low ripple voltage. Thus, the traditional inductor-based buck converter 
has been widely adopted for moderate- to high-power applications.  
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Figure 2. Configuration of the step-down switching DC–DC converters: (a) Inductor-based converter 
and (b) capacitor-based converter. 

On the other hand, integrated inductors based on complementary metal–oxide–semiconductor 
(CMOS) technology present many limitations. First, the feasible inductance LS on a chip is limited 
from a few to some tens of nanohenries due to the planar layout structure and fabrication cost. Thus, 
integrated inductor-based converters should increase the modulation frequency to maintain ripple 
levels; however, this also increases the switching loss. Second, series resistance RS is very high, which 
leads to an increased inductor loss over the switching loss, regardless of the use of expensive 
additional manufacturing processes involving thick metals or integrated magnetic materials. Finally, 
the integrated inductor exhibits power loss due to the large parasitic capacitance in relation to the 
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Figure 1. Types of sensor modules: (a) Sensor module with multichip architecture and (b) fully
integrated sensor module (PMIC, power management IC; PMU, power management unit; and LDO,
linear low dropout regulator).

Figure 2 shows the two types of currently available switching DC–DC converters according to
the choice of passive components utilized for energy storage. The first type is the inductor-based
converter, which employs inductor LS and a push–pull stage as shown in Figure 2a. The output
voltage is regulated by controlling the switches (Φ1 and Φ2) with either a pulse–width modulator
or a pulse–frequency modulator [12,13]. The second type is the capacitor-based converter, which
employs a flying capacitor CF and four switches (Φ1 and Φ2). The output voltage is regulated by
controlling the switches with a pulse–width modulator, pulse–frequency modulator, or digital capacitor
modulator (DCpM) [14–17]. The converting power depends on the storage capacity of the passive
components as per the relation PL = L·I2/2 for the inductor-based converter and PC = C·V2/2 for the
capacitor-based converter. Here, we note that inductor-based converters can deliver more power than
capacitor-based converters via increasing the current at a fixed battery voltage, VBAT. Moreover, high
power efficiency can be achieved by use of an off-chip inductor with high inductance and high Q
values while maintaining a low ripple voltage. Thus, the traditional inductor-based buck converter
has been widely adopted for moderate- to high-power applications.
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Figure 2. Configuration of the step-down switching DC–DC converters: (a) Inductor-based converter
and (b) capacitor-based converter.

On the other hand, integrated inductors based on complementary metal–oxide–semiconductor
(CMOS) technology present many limitations. First, the feasible inductance LS on a chip is limited
from a few to some tens of nanohenries due to the planar layout structure and fabrication cost. Thus,
integrated inductor-based converters should increase the modulation frequency to maintain ripple
levels; however, this also increases the switching loss. Second, series resistance RS is very high,
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which leads to an increased inductor loss over the switching loss, regardless of the use of expensive
additional manufacturing processes involving thick metals or integrated magnetic materials. Finally,
the integrated inductor exhibits power loss due to the large parasitic capacitance in relation to the
substrate. In contrast, integrated capacitors afford either high parallel resistance RF or high Q factor
via the metal–insulator–metal (MIM) structure. Therefore, when passive components are realized
with CMOS technology, capacitors afford better energy density per chip area relative to inductors, as
explained in References [18–20]. Consequently, capacitor-based converters exhibit better power and
cost efficiency than inductor-based converters in low-power applications, such as sensors and Internet
of Things devices.

Figure 3 shows the block diagram of a commonly used switched-capacitor (SC) DC–DC converter
utilizing one-boundary hysteresis feedback for output voltage regulation and its output ripple voltage.
The controller provides switching control signals to the converter in phase with the input clock CLK.
The one-boundary hysteresis configuration employs only one comparator for the feedback control to
compare the output voltage with the reference voltage VREF [21]. In the steady state, this feedback
causes a low-frequency control ripple. In addition, the SC DC–DC converter “dumps” the charge
from the input to the flying capacitor and from the capacitor to the output at discrete time intervals
according to the clock frequency. This discrete charge transfer causes an unavoidable switching ripple.
The switching ripple is usually lower than the control ripple because the switching frequency is higher
than the control frequency.
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Fully integrated SC DC–DC converters require additional techniques to suppress the ripple due
to the size limitations of the load and flying capacitors. Figure 4 shows three representative ripple
mitigation techniques applied to the SC DC–DC converters. The capacitance modulation technique
regulates the capacity of the flying capacitor, which transfers the charge to the load, to suppress
the ripple. Flying capacitors are divided into several capacitors controlled by digital codes [15].
The capacitance modulation operates as a low-capacity flying capacitor in the light-load state and is
controlled to operate as a high-capacity flying capacitor in the heavy-load state. Further, pulse–width
modulation controls the time for which the flying capacitor is connected to the load. This method
reduces the ripple by regulating the amount of charge delivered to the load per clock cycle [22].
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The multiphase interleaving technique divides a converter into multiple units and drives each
unit in a different clock phase [19]. Because each converter operates in different phases, it appears
that the ripple waveform is operating at a frequency that is equal to the number of interleaved phases.
The ripple is reduced by the number of interleaved phases.

Against this backdrop, here, we propose a low-ripple fast-transient SC DC–DC converter operating
over the output current range, which integrates all the active and passive components on a single chip.
The converter employs a two-boundary hysteresis control with interleaving through a four-bit DCpM
to reduce the switching ripple and a parallel low-dropout regulator (LDR) to considerably mitigate
the ripple.

2. Principles of SC DC–DC Converters

2.1. Operation of the 2:1 Step-Down SC DC–DC Converter

The 2:1 step-down SC DC–DC converter operates in the two phases, as shown in Figure 5. The
output voltage is half the input voltage under ideal operation. Hence, maximum efficiency can only
be achieved if each phase operates at 50% duty cycle. During phase 1 (Φ1), the flying capacitor is
connected between the input node VBAT and output node VL, as shown in Figure 5b. In this phase, the
flying capacitor is charged up to the voltage difference between VBAT and VL. During phase 2 (Φ2), the
flying capacitor is connected to VL and the ground, as shown in Figure 5c. The charge acquired by the
flying capacitor during phase 1 is supplied to the output node. The repeated charging and discharging
during these phases produce output voltage ripple ∆VL, as illustrated in Figure 5d.
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Figure 6 shows a simplified model of the 2:1 step-down SC DC–DC converter. The parallel resistor
RP represents the shunt loss due to parasitic capacitances in the switches and flying capacitors. We
note here that RP is independent of the output current. The output impedance RO is connected in
series with the load resistor RL. RO changes the load voltage, and its power loss, called series loss, is
the sum of the switch conductance loss and the intrinsic SC loss. The switch conductance loss is caused
by the resistance in the on state of the switch. Increasing the size of the switch reduces the conductance
loss but increases the shunt loss via the parasitic capacitance of the switch [23]. The intrinsic SC loss is
caused by voltage ripple ∆VF due to the charge and discharge of the capacitor, as shown in Figure 5d.
The intrinsic SC loss of a 2:1 step-down SC DC–DC converter can be expressed as [24,25]

PCF = IL ·
∆VF

2
=

IL
2

4 ·CF · fSW
(1)

where f SW denotes the switching frequency related to the two-phase operation. A fully-integrated
SC DC–DC converter provides a relatively large load current with a small flying capacitance due to
chip size limitations. Therefore, the intrinsic SC loss is larger than the switch conductance loss. In
this paper, assuming an ideal switch, only the intrinsic SC loss is expressed as the series loss. Upon
applying Equation (1) to this simplified model, the load current can be approximated as

IL ≈
(VBAT/2−VL)

RO
= 4 ·CF · fSW · (VBAT/2−VL) (2)

The SC DC–DC converters regulate the output voltage via changing the value of Ro, which is
adjusted through either frequency or pulse–width modulation of the switching clock.
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Figure 6. Simplified model of a 2:1 step-down switched-capacitor (SC) DC–DC converter.

2.2. Multiphase Interleaved SC DC–DC Converter for Low Switching Ripple

As the SC DC–DC converter performs repeated charging and discharging, the output voltage
exhibits an inherent switching ripple. Multiphase interleaving aims to mitigate this ripple via dividing
the converter into multiple units and driving each unit with different clock phases. Figure 7 illustrates
a four-phase interleaved converter, with each unit utilizing a quarter of the total capacitance and
operating at a 45◦ phase shift relative to the clocks of the neighboring nodes. The flying capacitances
of all units are equal, and hence, the output charge per cycle is also identical. The output current of
each unit is the same as that of the converter without interleaving. Thus, the charge flowing through
each unit of the flying capacitor in multiphase interleaving is the same as that in the case of the
original converter.Electronics 2019, 8, x FOR PEER REVIEW 6 of 15 
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Figure 7. Block diagram of s four-phase interleaved SC DC–DC converter.

Figure 8 shows the operation of a four-phase interleaved SC DC–DC converter including the
output voltage ripple with and without phase interleaving. In Figure 8a, each SC DC–DC converter
without phase interleaving operates at the same clock phase (Φ1 and Φ2), producing output ripple ∆VL.
In Figure 8b, each converter of the interleaving configuration operates with 45◦ phase-shifted clocks
(ΦA_1, ΦB_1, ΦC_1, and ΦD_1). Therefore, the effective switching frequency f ripple in the converter
increases by a factor of four relative to the case with no interleaving, thereby reducing the output
ripple to 25% of the original ∆VL. Multiphase interleaving reduces the voltage ripple by increasing the
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effective switching frequency but maintains switching losses. To mitigate the output voltage ripple, a
load capacitor is generally used. Multiphase interleaving also decreases this load capacitor value by a
factor of four due to the increased ripple frequency.
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2.3. Output Voltage Regulation

The output voltage of the SC DC–DC converter can be modulated by the three methods depicted
in Figure 9. First, frequency modulation enables the adjustment of the operating frequency of switching
according to the load impedance, with the duty cycle usually set to 50%. This method changes the
output impedance of the converter by varying the charge transferred from the flying capacitor to the
load. However, it requires an additional voltage-controlled oscillator for frequency modulation. Second,
time modulation enables the adjustment of the pulse width of the switching signal, which allows for
control of the output current for the flying capacitors to charge or discharge. This method modulates
the output current by varying the connection time to the output node. However, efficiency is low due
to switching losses under light loads, given the low output current of the converter; nevertheless, the
switching loss is maintained constant under this condition. Third, capacitance modulation of the charge
transfer can be achieved by dividing the SC DC–DC converter into multiple converter cells in parallel
and utilizing some cells to provide the required current to the load, thereby establishing “digital”
operation. In this method, only the flying capacitors and switches of the converter cells involved in the
output current circuit operate, thus improving the efficiency with respect to switching loss. However,
the main limitation of this method is the required division of the SC DC–DC converter into cells for
accurate output current control. This division increases the complexity of both the chip layout and the
state machine to select the appropriate number of cells, thus imposing a tradeoff between efficiency
and complexity.
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Figure 9. Methods for output voltage regulation: (a) Pulse–frequency modulation; (b) pulse–width
modulation; and (c) capacitance modulation.

2.4. DCpM Control

The DCpM approach allows control of the amount of flying capacitance associated with the charge
transfer in the converter, thereby enabling load current regulation given that the amount of charge
transferred in one clock cycle is proportional to this capacitance. With this method, the total switch
size involved in the output current of the SC DC–DC converter can be adjusted according to the size
of the flying capacitance. Thus, the shunt loss originating from parasitic capacitances of the flying
capacitors and switches and the conduction loss due to the switch resistance are reduced when the
load current is low, thereby maintaining high efficiency under light load.

In the implementation of the SC DC–DC converter with DCpM control, the flying capacitor is
divided into a binary-weight bank. Figure 10 shows the structure of the SC DC–DC converter with a
four-bit DCpM control. The flying capacitance is divided into four different banks of size x1, x2, x4,
and x8. These four converter cells form a single matrix, and the charge transfer operation is enabled by
control code C[3:0]. Figure 11 shows a model of the proposed SC DC–DC converter based on a four-bit
DCpM. The 2:1 transformer represents the required voltage step-down process. The output impedance
RO and the shunt impedance RP are binary-weighted according to the DCpM control signal. The
output impedance is determined as 1/(4·CF·f SW), where f SW and CF denote the switching frequency
and the unit flying capacitance, respectively. The load current IL of the converter can be expressed as

IL = 4 · (0.5 ·VBAT −VL) · fSW ·

3∑
n=0

C[n] · 2n
·CF (3)

where VI and VL represent the input and output voltages, respectively, and DCpM code C[n] determines
the output current.
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3. Proposed Low-Ripple SC DC–DC Converter

Figure 12 shows the block diagram of the proposed SC DC–DC converter, which is composed of a
main converter, an auxiliary LDR, and a DCpM controller. The main converter provides most of the
current to the load, whereas the LDR assists the main converter to provide an accurate output current.
The LDR is powered by a small four-phase interleaved SC converter to improve efficiency. To reduce
the switching ripple, four interleaved phases (0◦, 45◦, 90◦, and 135◦) are adopted for the SC DC–DC
converter cells. The current of the main converter is controlled by the DCpM, which compares the
output voltage with two reference voltages using two clocked comparators. If output voltage VO >

VREF + ∆V or <VREF − ∆V, the binary code decreases or increases, respectively. If VL lies between
VREF + ∆V and VREF − ∆V, the binary code remains unchanged.
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Figure 12. Block diagram of the proposed switched-capacitor (SC) DC–DC converter.

Figure 13a shows one of the four-phase interleaved SC DC–DC converter matrices used in the
main converter, which is composed of four converter cells. Each cell employs a 2:1 step-down topology
and operates in a bi-phase mode (Φ1 and Φ2) with 50% duty cycle. The magnitudes of the flying
capacitors CF and switches are four-bit binary-weighted. Binary code C[3:0] of the DCpM controller
either enables or disables the operation of each converter cell to adjust the output current. As shown in
Figure 13b, the auxiliary LDR powered by the small four-phase SC converter employs a p–channel
metal–oxide–semiconductor (PMOS) pass transistor and a two-stage operational amplifier. Figure 14
shows the block diagram of the proposed LDR-assisted SC DC–DC converter with a low output ripple.
The proposed converter exhibits only a switching ripple, and the main converter is controlled by the
DCpM via two-boundary hysteresis feedback, which also produces a low-frequency control ripple.
Nevertheless, the two-boundary controller can limit the control ripple between VREF − ∆V and VREF +

∆V. Therefore, the LDR with a low output current capability can compensate for the output current
fluctuation due to the feedback control ripple by providing an opposite-phase accurate current to the
load. This approach ensures that the DCpM control bits performing coarse tuning are fixed at every
output current range, and hence, the output voltage ripple of the proposed converter presents no
control ripple due to hysteresis feedback but only switching ripple.

Figure 15a shows a simplified model of the proposed SC DC–DC converter, where the 2:1
transformer represents the 2:1 voltage step-down process. The main converter is described using a
binary-weighed unit-resistance RO, which equals 1/(4·CFLY·f SW), where f SW and CFLY represent the
switching frequency and unit flying capacitance, respectively. Current IMAIN of the main SC DC–DC
converter can be expressed as

IMAIN = 4 · ki · (0.5 ·VBAT −VL) · fSW ·

3∑
n=0

C[n] · 2n
·CF (4)
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where VI, VO, and ki denote the input voltage, output voltage, and number of interleaved phases,
respectively. The auxiliary LDR is modeled as a fixed resistance RSUB for each SC DC–DC converter
cell and a variable resistance RLDR for the LDR. Consequently, output current ILDR of the auxiliary
LDR can be expressed as

ILDR = 4 · ki · (0.5 ·VBAT −VL −VDO) · fSW · 2 ·CF (5)

where VDO represents the dropout voltage of the pass transistor in the LDR. Hence, the auxiliary LDR
can finely adjust the output current. From Figure 15b, we note that the main converter provides a
discrete coarse current that is determined by the DCpM code, whereas the auxiliary converter “fills” the
discrete steps using the linear LDR. Thus, the proposed SC DC–DC converter can provide any output
current in its operating range without requiring a complex pulse–width modulated or pulse–frequency
modulated controller.
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Figure 15. (a) The simplified model of the proposed switched-capacitor (SC) DC–DC converter and (b)
output current versus dropout voltage of the LDR pass transistor.

4. Results and Discussion

The proposed SC DC–DC converter was implemented using a 0.13 µm CMOS process (Dongbu
HiTek, Seoul, Korea), which provides triple-well CMOS devices and MIM capacitors with eight metal
layers and one poly layer. Figure 16 shows the microphotograph of the fabricated SC DC–DC converter.
The core chip has an area of 2.04 mm2. Several pads are allocated to the input and output ports to reduce
interconnection loss during measurement. The area of the capacitors is the major contributor to the
size of the main SC DC–DC converter, converter cells, and load capacitor. Stacked capacitors utilizing
the MIM and metal–oxide–semiconductor (MOS) capacitors are used to increase the capacitance per
unit area, which are 1 fF/µm2 and 2.5 fF/µm2 for the MIM and MOS capacitors, respectively. Figure 17
shows the measured output voltage and current. The proposed converter has an output voltage range
of 1.2 to 1.5 V from a 3.3 V supply. The output voltage waveforms were measured with the use of an
MSO7104B oscilloscope (Keysight Technologies, Santa Rosa, CA, USA). The output voltage and LDR
control signal are shown for the LDR in the on and off states in Figure 17a. The output voltage and
current were set to 1.2 V and 100 µA, respectively. When the LDR was deactivated, a high ripple of
approximately 380 mV was obtained. This is because the DCpM control code does not converge to one
value at light loads, and the variation in the control code generates a large control ripple. However,
the ripple drops below 10 mV upon activation of the LDR, which fine-tunes the output current and
limits the DCpM control code to one value in the main SC DC–DC converter. Thus, the control ripple
disappears due to the bounded DCpM control code, and only the switching ripple appears in the
output voltage waveform. Figure 17b shows the load transient performance when the current suddenly
changes from 120 µA to 50 mA. The output current and output voltage are restored to their regulated
values in less than 800 ns.

Figure 18a shows the measured efficiency according to the output current at the input voltage of
3.3 V. The efficiency depends on the output voltage, with the output voltage of 1.5 V corresponding
to the highest efficiency and lowest output current. This is because the voltage ratio of the input to
output is the closest to the transformer ratio of the 2:1 step-down topology in this case. The peak
efficiency is 73, 70, and 65% at output voltages of 1.5, 1.35, and 1.2 V, respectively. Figure 18b shows the
measured output voltage ripple according to the output current. The maximum ripple values remain
below 26, 36, and 55 mV at output voltages of 1.5, 1.35, and 1.2 V, respectively. Figure 19 shows the
loss contributions and their ratio according to the output current. At the very low output current, the
DCpM loss and the LDR quiescent loss decrease the power efficiency, but as the current increases, the
switching loss and conduction loss dominates. Figure 19a shows an efficiency reduction of 2.3% due to
the LDR loss at the output current of 5 mA but only a 0.23% reduction at the output current of 53 mA.
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Figure 16. Microphotograph of the proposed switched-capacitor (SC) converter.
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Figure 17. Measured output voltage and current waveforms: (a) the ripple voltage at a low output
current with and without the low dropout regulator (LDR) in operation and (b) the load transient
responses to a sudden current variation.
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Figure 19. Loss contributions from DCpM, LDR, switching, and conduction losses versus output
current for VL = 1.2 V: (a) the loss contributions and (b) the ratio of loss contribution.

Table 1 compares the performance of the proposed SC DC–DC converter with similar low-ripple
converters. As the ripple depends on the output current, load capacitance, and switching frequency,
we used the following figure of merit for a fair ripple comparison [26,27]:

FoMripple = IL/
(
CL · fSW ·Vripple

)
(6)

As can be observed from the table, our approach affords the highest figure of merit.

Table 1. Comparison of results of previously reported studies and current study.

Characteristic [15] [22] [26] [28] This Work

Technology (nm) 45 130 130 130 130
Input voltage (V) 1.8 1.8 1–1.2 1.2 3.3

Output voltage (V) 0.8–1 0.3–0.55 1.8–2.1 0.2–1.1 1.2–1.5
Maximum load current (mA) 10 55 2.61 2.53 53
Power density (mW/mm2) 50 24.5 0.67 7.56 31.2

Flying capacitance (pF) 534 - 400 840 2176
Load capacitance (pF) 700 5000 400 764 1000

Ripple (mV) <50 <50 <10 30
@IL = 30 µA 8–55

Peak efficiency (%) 69 70 82 80.6 73
Switching frequency (MHz) 30 100 20 5 40
Figure of merit, Equation (6) 9.5 2.2 14 3.25 24.1

Active area (mm2) 0.16 0.97 2.25 0.291 2.04

5. Conclusions

We proposed a fully-integrated SC DC–DC converter with low ripple and high efficiency. The
proposed converter employs a four-bit DCpM control and includes an auxiliary LDR in parallel.
The DCpM efficiently optimizes the gate switching losses according to the output current, and a
two-boundary hysteresis method supports the ripple control. In the proposed structure, the feedback
ripple is removed by means of an auxiliary LDR connected in parallel. Moreover, four-phase interleaving
is employed to reduce the switching ripple in the main converter. The proposed SC DC–DC converter
affords an output voltage range of 1.2–1.5 V from a 3.3 V supply and achieves a peak efficiency of 73%
and ripple below 55 mV over the entire output current range. We believe that our approach will find
utility in power sources for sensor-based devices of the future.
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