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Abstract: Porous TiO2 nanofibers (PTFs) and dense TiO2 nanofibers (DTFs) were prepared using
simple electrospinning for application in dye-sensitized solar cells (DSSCs). TiO2 nanoparticles
(TNPs) were prepared using a hydrothermal reaction. The as-prepared PTFs and DTFs (with a fiber
diameter of around 200 nm) were mixed with TNPs such as TNP-PTF and TNP-DTF nanocomposites
used in photoelectrode materials or were coated as light scattering layers on the photoelectrodes to
improve the charge transfer ability and light harvesting effect of the DSSCs. The as-prepared TNPs
showed a pure anatase phase, while the PTFs and DTFs showed both the anatase and rutile phases.
The TNP-PTF composite (TNP:PTF = 9:1 wt.%) exhibited an enhanced short circuit photocurrent
density (Jsc) of 14.95 ± 1.03 mA cm−2 and a photoelectric conversion efficiency (PCE, η) of 5.4 ±
0.17% because of the improved charge transport and accessibility for the electrolyte ions. In addition,
the TNP/PTF photoelectrode showed excellent light absorption in the visible region because of the
mountainous nature of light induced by the PTF light scattering layer. The TNP/PTF photoelectrode
showed the highest Jsc (16.96 ± 0.79 mA cm−2), η (5.9 ± 0.13%), and open circuit voltage (Voc, 0.66 ±
0.02 V).

Keywords: electrospinning; nanocomposites; porous TiO2 nanofiber; light harvesting; additive;
dye-sensitized solar cells

1. Introduction

Dye-sensitized solar cells (DSSCs) are basically thin-layer solar cells consisting of two sandwich-
type transparent conduction oxide (TCO) electrodes. One electrode is a highly colored photoelectrode
with a few micron-thick layers of mesoporous TiO2 or other semiconductors (ZnO, SnO2, and Nb2O5)
coated with a photosensitizer, while the other is a Pt-based counter-electrode [1–5]. The space between
the two electrodes is filled with an organic electrolyte containing a redox mediator (I−/I3

−), usually
a mixture of iodine and iodide in organic solvents such as acetonitrile [6–10]. DSSCs, which are
cost-effective and have high theoretical efficiencies, are available in various colors depending on the
dye. DSSCs co-photosensitized with an organic dye of alkoxysilyl-anchor dye (ADEKA-1, molecular
structures of carbazole dyes with a trimethoxysilyl group) and a carboxy-anchor organic dye of
LEG4 anchored to nanocrystalline TiO2 films show a photoelectric conversion efficiency (PCE) of
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up to 14.7% (under 1 sun illumination) [11]. The theoretical PCE limit of DSSCs using a simple
junction configuration (under standard test conditions) is reported to be 33% [12,13]. However,
the PCE of present DSSCs is significantly lower than their theoretical efficiency. The PCE response of
DSSCs depends on their open circuit voltage (Voc, V), photocurrent density (Jsc, mA cm−2), and fill
factor (FF, %) [14,15]. The Voc is estimated from the difference between the quasi-Fermi levels of
semiconductor materials, such as TiO2, and the redox potential of the electrolyte (I−/I3

−). Therefore,
the Voc of DSSCs is closely related to the properties of the semiconductor materials constituting
them. The Jsc and FF of DSSCs depend on the adsorption of the dye and the charge transfer in the
photoelectrode [15–17].

TiO2 typically used for a photoelectrode is chemically stable, non-toxic, and readily available in
vast quantities [18–22]. For the enhanced photovoltaic properties of TiO2 for DSSC, it is imperative
to improve its surface area, dye molecular adsorption activity, light harvesting effect, and charge
transport. There have been many reports on the use of metal oxide additives, such as SiO2, SnO2,
and ZrO2, for improving the photovoltaic properties of TiO2 nanoparticles [23–25]. In our previous
study [26], SnO2 hollow fibers were used as the additives for the TiO2 photoelectrodes in order to
improve the electron transport of DSSCs. The addition of SnO2 hollow fibers accelerated the electron
transfer and improved the electrochemical properties of the DSSC. The PCE of the DSSC with the SnO2

hollow fiber-added TiO2 photoelectrode was approximately 11% higher (5.43%) than that of the DSSC
with pure TiO2 photoelectrode (4.89%). Swathy et al. [27] used nanostructured (≈400 nm particle size)
anatase titania spheres as the light scattering layer for DSSCs. These DSSCs showed about two times
higher Jsc (10.44 mA cm−2) and two times higher PCE (4.92%) than those of TiO2 photoelectrodes
without scattering layers (Jsc of 5.83 mA cm−2, PCE of 2.7%). The photovoltaic performance of the
DSSCs was measured under an AM1.5G solar spectrum with a light intensity of 100 mW cm−2.

In summary, the PCE of DSSCs can be easily improved by altering the design of their photoelectrodes.
In this study, we prepared seven TiO2 photoelectrodes to improve the PCE of DSSCs, as shown in
Scheme 1. The TiO2 photoelectrodes were fabricated using TiO2 nanoparticles and the porous TiO2

nanofibers (PTFs), and dense TiO2 nanofibers (DTFs) were used as additives or light scattering
layer. The PTFs and DTFs were prepared using simple electrospinning. TiO2 nanoparticles (TNPs)
were prepared using a hydrothermal reaction and were used for fabricating the photoelectrodes.
The as-prepared PTFs and DTFs were used as additives or were coated as light scattering layers to
improve the charge transfer ability and light harvesting effect of the DSSCs.

2. Materials and Methods

2.1. Preparation of Porous TiO2 Nanofibers (PTFs)

The porous TiO2 nanofibers (PTF) were prepared via an electrospinning process and subsequent
heat treatment. The spinning solution was prepared by adding 2 mL butyl titanate (TBT, C16H36O4Ti,
≥97%, Kanto Chemical Co. Inc, Tokyo, Japan), 1 g polyacrylonitrile (PAN, Mw: 150,000, Sigma-Aldrich,
St. Louis, MO, USA), 4 g polystyrene (PS, Mw: ≈192,000, Sigma-Aldrich), and 2 mL of acetic acid
(99.7%, Daejung Chemicals and Metals, Siheung, Korea) in 40 mL of N,N-dimethylformamide (DMF,
≥99.5%, Samchun Chemical, Seoul, Korea). The resulting solution was stirred at room temperature for
24 h to ensure complete dissolution and was then loaded into a plastic syringe equipped with a 25 G
stainless steel needle (Øin = 0.25 mm, Øout = 0.51 mm). The needle was connected to a high-voltage
supply and a voltage of 20 kV was applied between the needle and the collector. The distance between
the needle tip and the drum collector was set at 15 cm at a flow rate of 2 mL h−1. The rotation of the
drum was maintained at 150 rpm. The resulting electrospun fibers were heated at 100 ◦C in air for 6 h
to remove the solvent, and then heat-treated at 500 ◦C for 3 h (heating rate was 5 ◦C min−1) in air to
remove the polymer.
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2.2. Preparation of Dense TiO2 Nanofibers (DTFs)

The dense TiO2 nanofibers (DTF) were also prepared via an electrospinning process and subsequent
heat treatment. The spinning solution was prepared by adding 4 mL TBT, 2 g polyvinylpyrrolidone
(PVP, M.W. 1,300,000, Alfa Aesar, Haverhill, MA, USA), and 8 mL of acetic acid in 20 mL of ethanol
(99.7%, Daejung Chemicals and Metals, Siheung, Korea). The resulting solution was electrospun and
heat-treated under the same condition as described above for PTF.

2.3. Preparation of Anatage TiO2 Nanoparticles (TNPs)

TNPs were synthesized via the hydrothermal method. In a typical reaction, 15 mL of titanium
tetraisopropoxide (TTIP, 99.9%, Aldrich) was dissolved in 50 mL of distilled water and the resulting
solution was vigorously stirred for a few minutes before adding 0.7 mL of ammonia solution (28–30%,
SAMCHUN) to it. This solution was magnetically stirred at 350 rpm for 3 h to obtain a homogeneous
mixture. The reaction mixture so obtained was transferred to a Teflon-lined autoclave and was then
heated at 200 ◦C for 5 h. Finally, the white precipitate was washed with distilled water and ethanol
and then dried at 80 ◦C for 12 h.

2.4. Preparation of DSSCs

TiO2 photoelectrodes were fabricated using TNP or TNP-DTF or TNP-PTF nanocomposites.
The TiO2 pastes were prepared by mixing acetylacetone (99%, Sigma-Aldrich), hydroxypropyl
cellulose (99%, Aldrich), and distilled water. Each paste was coated on a fluorine-doped tin oxide
(8 Ω/sq, Pilkington) substrate, which was subsequently sintered at 450 ◦C for 30 min. The obtained
TiO2 films were immersed in a 0.5 mM ethanol solution of N719 dye (bis-(isothiocyanato)bis
(2,2-bipyridyl-4,4-dicarboxylato)ruthenium(II)bis-tetrabutylammonium, Solaronix) for 5 h. The active
area of the photoelectrode was 0.25 cm2. The sandwich-type DSSC was assembled using a Pt
counter-electrode and a dye-sensitized photoelectrode. A redox I−/I3

− electrolyte was introduced
between the electrodes. The preparation methods of the counter electrode and I−/I3

− electrolyte were
described in detail in our previous report [17].

In this study, we prepared seven kinds of photoelectrodes, as shown in Scheme 1. The photoelectrodes
with only TNP, PTFs, and DTFs were labeled as TNP, PTF, and DTF, respectively. The TNP
photoelectrodes with 10 wt.% of PTFs and DTFs were denoted as TNP-PTF and TNP-DTF, respectively.
The photoelectrodes with PTF and DTF light scattering layers were denoted as TNP/PTF and
TNP/DTF, respectively.
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2.5. Characteristic and Measurements

The crystalline phases and morphologies of the prepared materials were identified using
X-ray diffraction (XRD, Ultima IV, Rigaku, Japan), field-emission scanning electron microscopy
(FE-SEM; LEO-1530, Carl Zeiss, Oberkochen, Germany), and field-emission transmission electron
microscopy (FE-TEM, 200KV, JEM 2100F, JEOL, Tokyo, Japan). To estimate the specific surface
area, pore volume, and pore size distribution of the materials, and their N2 adsorption/desorption
isotherms were measured at 77 K using a surface area analyzer (ASAP2020, Micromeritics,
Norcross, GA, USA). The Brunauer–Emmett–Teller (BET) method and Barrett–Joyner–Halenda (BJH)
model were used to estimate the specific surface area and pore size distribution of the samples,
respectively. Ultraviolet-visible (UV-Vis-NIR) reflectance spectra were obtained using a UV-Vis-NIR
spectrophotometer (Cary 5G, Varian, Palo Alto, CA, USA) equipped with diffuse reflectance accessory
(integral sphere). Total reflectance spectrum (Total reflectance = Diffuse reflectance + Specular
reflectance) was recorded in the spectral range of 200 to 800 nm at a scan rate of 600 nm min−1.
In addition, the UV-Vis spectrum of N719 solution was measured using S-3100 equipment (Sinco,
Seoul, Korea). The photovoltaic properties of the DSSCs were evaluated by recording their current
density–voltage characteristics under illumination from a Polaronix K201 (McScience, Suwon, Korea)
equipped with a K401 CW150 lamp power supply and an AM 1.5G filter (100 mW cm−2).

3. Results

The morphological features of PTFs, DTFs, and TNPs were observed by FE-SEM and FE-TEM,
as shown in Figure 1. Figure 1a shows PTF prepared using a spinning process, in which numerous
pores in the structure were confirmed from the fiber surface and cross-sectioned inset image. The PS
in the spinning solution was separated with PAN during electrospinning. Subsequently, PS in the
as-spun fibers was decomposed into CO2 gas during heat treatment, which formed the numerous
pores between TiO2 crystals in the structure. On the other hand, DTF fibers prepared from the solution
without PS showed dense structure in Figure 1b. Without the effect of phase separation by adding PS,
pores were not generated in the structure. Therefore, it was hard to observe any pores, even in the
cross-sectioned inset image in Figure 1b. The mean fiber diameter of PTF and DTF measured from
FE-TEM images were both 200 nm. From the elemental mapping images in Figure 1d,e, both TiO2

nanofibers showed uniformly distributed Ti and O elements over the nanostructure, but the C element
was negligible, which proves the completely decomposition of C during heat treatment. The TNPs
were rice-shaped and had an average particle size of about 30 nm (Figure 1c). Figure 1d–f shows the
FETEM and EDX mapping results of the PTF, DTF, and TNP powders. The EDX mapping results
show that only Ti and O were present in the samples. C was detected on the carbon tape used for
the sampling. The EDX results also showed that the PTFs were less dense as compared to the DTFs.
BET surface area measurements were carried out to determine the pore diameters and surface areas of
the samples quantitatively.

The pore diameter and surface areas of the PTFs, DTFs, and TNPs were measured by carrying
out BET measurements. The pore distribution and diameter determine the fast charge transfer and
light harvesting effect of porous fibers. However, a fiber structure is not good for the adsorption of
light-absorbing dyes. Adsorption of dye molecules is closely related to the specific surface area
of photoelectrode materials. Hence, in this study, we fabricated various photoelectrodes using
the TNPs, PTFs, and DTFs. The TNP, PTF, DTF, TNP-PTF, TNP-DTF, TNP/PTF, and TNP/DTF
photoelectrodes were used to assemble DSSCs. The photovoltaic properties of these DSSCs were
investigated. Figure 2 shows the cross-section and top view of the TNP/PTF, TNP/DTF, and TNP
photoelectrodes. The thickness of the TNP photoelectrode was about 8 ± 0.6 µm and the PTF and
DTF light scattering layers were coated on it. The top-view of TNP/PTF and TNP/DTF (Figure 2c,d)
revealed that TNP/PTF showed porosity and a loofah-like formation. These pores could improve
the light-harvesting and electrolyte diffusion of the photoelectrode and hence improved the charge
transport and accessibility of the electrolyte ions [28–31].
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N2 adsorption of all the samples was carried out and the results are shown in Figure 3 and Table 1.
The TNPs exhibited a specific surface area of 140 m2 g−1. The surface areas of the PTFs and DTFs
were lower than that of the TNPs. The TNPs, PTFs, and DTPs showed type-IV adsorption isotherms,
indicating the presence of mesoporous structures with an average pore size of 7.13, 18.47, and 5.48 nm,
respectively. In the case of the TNPs, the hysteresis loop was more prominent for the relative pressures
(P/P0) in the range of 0.7–1.0, indicating the presence of many pores. Figure 3b shows the pore
diameter distribution of the samples (within 0–100 nm). The PTFs showed a large mesopore volume
of 10–50 nm. They exhibited a hierarchical pore structure consisting mainly of mesopores along with
some micropores. Therefore, the use of PTF photoelectrodes can improve the electrode-electrolyte
interactions and shorten the ionic transport paths, thus promoting the charge transport and enhancing
the accessibility for electrolyte ions.
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Table 1. BET and crystal structure of the TNP, PTF, and DTF powders and the photovoltaic parameters
of different photoelectrode used DSSC.

Photo-
Electrodes

BET
(m2 g−1)

Pore Size
(nm)

Pore Volume
(cm3 g−1)

Crystal
Structure Voc (V) Jsc

(mA cm−2) FF (%) η (%)

TNP 140.08 7.13 0.2763 Anatase 0.69 ± 0.02 12.51 ± 0.60 53 ± 2 4.6 ± 0.07

PTF 48.01 18.47 0.2794 Anatase,
Rutile 0.65 ± 0.01 10.30 ± 0.96 56 ± 2 3.8 ± 0.19

DTF 23.16 5.48 0.0460 Anatase,
Rutile 0.66 ± 0.01 10.18 ± 1.24 48 ± 7 3.2 ± 0.15

TNP-PTF - - - - 0.68 ± 0.01 14.95 ± 1.03 54 ± 2 5.4 ± 0.17
TNP-DTF - - - - 0.68 ± 0.01 13.42 ± 0.50 55 ± 1 5.1 ± 0.16
TNP/PTF - - - - 0.66 ± 0.02 16.96 ± 0.79 56 ± 2 5.9 ± 0.13
TNP/DTF - - - - 0.66 ± 0.01 14.39 ± 0.50 54 ± 1 5.2 ± 0.13

The structural properties of the PTF, DTF, and TNP powders were investigated using their XRD
patterns shown in Figure 4. The PTFs and DTFs showed mixed anatase (space group I41/amd, card no.
21-1272 in the JCPDS database) and rutile (card no. 21-1276 in the JCPDS database) phases. On the
other hand, the TNPs showed only the anatase phase [32,33]. The dark and white squares in Figure 4
correspond to the anatase and rutile phases, respectively. The XRD results showed that the rutile
phase fraction of the DTFs (rutile phase peak intensity was higher) was higher than that of the PTF.
The rutile phase has a slightly lower bandgap than the anatase phase and can absorb a little sunlight in
the near-UV region. The open-circuit voltage of DSSCs can be controlled by adjusting the position of
the TiO2 conduction band. Most of the studies in this context have focused on anatase TiO2. However,
rutile TiO2 is easy to produce and has superior light-scattering properties, which is beneficial for
effective light-harvesting [34]. Therefore, we used the PTFs and DTFs (which consisted of the rutile
phase) as light scattering layers for DSSCs.
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Figure 5 shows the photocurrent density–voltage curves of the DSSCs fabricated using different
photoelectrodes. As shown in Figure 5, the TNP photoelectrode showed a higher open-circuit voltage
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(Voc) (0.69 ± 0.02 V) than the PTF and DTF photoelectrodes. The Voc of DSSCs can be controlled by
adjusting the position of the TiO2 conduction band. Hence, the Voc of the PTF and DTF photoelectrodes
(having the rutile crystalline structure) was lower than that of the anatase TNP photoelectrode.
In addition, the photocurrent densities of the PTF and DTF photoelectrodes were lower than that of the
TNP photoelectrode because of the loading of a small amount of dye. Dye loading of a photoelectrode is
closely related to the specific surface area of TiO2; the larger the specific surface area of TiO2, the larger
is the amount of dye that can be adsorbed on the TiO2 surface. The addition of the PTFs and DTFs to
the TNP photoelectrodes resulted in an increase in the short circuit photocurrent density (Jsc) and PCE
(η) because of the improved charge transport and enhanced accessibility for the electrolyte ions. On the
other hands in order to improve the light harvesting effect of the DSSCs, the PTF or DTF light scattering
layers were coated on the TNP photoelectrodes. As the result, the TNP/PTF photoelectrode showed
the highest Jsc and η. The high Jsc can be attributed to the increased light harvesting effect due to the
PTF light-scattering layer. The rutile phase-mixed PTF acted as an energy barrier and increased the
physical separation between the injected electrons and oxidized dyes/redox couples, thereby retarding
the recombination reactions in the resulting DSSCs [35]. The detailed photocurrent density–voltage
results are given in Table 1. The TNP/PTF photoelectrode-based DSSC showed the highest η of
5.9 ± 0.13%, which is approximately 28% higher than that of the TNP photoelectrode-based DSSCs
(4.6 ± 0.07%).
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The UV-Vis absorption spectra of the TNP, TNP/DTF, TNP/PTF photoelectrodes, and N719
dye are shown in Figure 6. As shown in Figure 6a, all the samples showed strong absorption in
the UV region (wavelengths lower than 250 nm) before dye adsorption. It can be observed that the
absorption edges of the TNP/DTF and TNP/PTF photoelectrodes slightly red-shifted with respect to
the TNP photoelectrode, suggesting that the TNP/DTF and TNP/PTF photoelectrodes caused a small
decrease in the energy band gap. In addition, the TNP/DTF and TNP/PTF photoelectrodes showed
an absorption peak in the near-UV region at 330 nm, which can be attributed to their rutile structure.
All the samples showed almost no absorption in the visible region. As shown in Figure 6b, the N719
dye showed an absorption peak in the visible region at 530 nm. The intensity of this peak was high in
the case of the TNP/PTF photoelectrode. This indicates that the use of the PTF light scattering layer
(TNP/PTF) coating increased the visible region absorption of the DSSC.
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4. Conclusions

Porous and dense TiO2 nanofibers (200 nm fiber diameter) were successfully prepared using
electrospinning and were used as additives or light-scattering layers to enhance the photovoltaic
properties of DSSC. Both the PTFs and DTFs showed mixed phases of anatase and rutile TiO2 crystals.
The addition of 10 wt.% of PTFs or DTFs increased the short circuit photocurrent density (Jsc) of
the TNP photoelectrode because of an improvement in the charge transport and accessibility for the
electrolyte ions. In addition, the TNP/PTF photoelectrode improved the visible light absorption of the
DSSC because of the mountainous nature of light due to the PTF light scattering layer. The highest
short circuit photocurrent density was shown by the TNP/PTF photoelectrode (16.96 ± 0.79 mA cm−2).
The TNP/PTF photoelectrode showed a high PCE of 5.9 ± 0.13% and an open-circuit voltage (Voc)
of 0.66 ± 0.02 V. These results show that the use of scattering layers made up of PTFs is an effective
approach to improve the photovoltaic performance of DSSCs.
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