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Abstract: Airtime fairness, or time-based fairness, has been well recognized as a method to solve WiFi
performance anomalies and provide a balance between fairness and spectrum efficiency in multi-rate
wireless networks. However, the definition of airtime is vague and simplistic. In this paper, it is
demonstrated that current airtime fair scheduling results in unfairness in reality because overheads
are neglected or unfairly counted. We introduce a notion of responsible airtime, which covers not
only the data transmission time, but also all overheads, even a TCP ACK segment in TCP traffic.
An approach based on responsible airtime can provide true time-based fairness, but responsible
airtime is too complicated to directly handle. A practical method is thus introduced for evaluating
responsible airtime fairness indirectly via throughput measurement. The key element, throughput
fair share, of a node, is based on the baseline property in time-based fairness. For each node, an
achieving ratio of actual throughput to the throughput fair share is determined, and a new fairness
index considering deficiency as well as equity is applied. To validate the feasibility of responsible
airtime fairness, we have developed a simple responsible airtime fair scheduler in access points for
download traffic. Extensive simulation experiments are conducted in various network and traffic
environments using the ns3 simulator. The results show that true time-based fairness is achievable
in practice.

Keywords: airtime fairness; time-based fairness; performance anomaly; responsible airtime; fairness
index; deficit round-robin; WiFi sensor networks; multi-rate wireless networks

1. Introduction

Since the data rate capability and channel condition of nodes may differ from each other in a
wireless network, a WiFi network operates at multiple data rates. It is well known that employing
multiple data rates provides individual fairness; however, it causes WiFi performance anomalies [1],
where the performance of a node using a higher data rate can be degraded to that of another node
using a lower data rate. For the 802.11 wireless standard, increasingly faster standards continue to
be released with backward compatibility. Moreover, various devices are often connected to an access
point (AP), from a CCTV camera to a WiFi-enabled sensor. As a result, it is nowadays usual that a link
is shared by devices at multiple data rates, ranging from a few Mbps to several hundred Mbps, and
the performance is mostly determined by traffic at those slower nodes.

Most studies have addressed this performance anomaly by applying the idea of airtime fairness,
or, more generally, time-based fairness. In CSMA/CA the chances of accessing the link are divided
fairly among the nodes, but most of the link time is consumed by a lower data rate node. To solve the
performance anomaly, the link times, rather than the chances, should be fairly divided. This is called
airtime in the meaning of time to air signals to the link for transmission. An ideal example of true
time-based fairness is the synchronous time-division multiple access (TDMA) in GSM mobile networks.
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Airtime fairness does not provide individual throughput fairness but rather provides fairness with
respect to the system resources, i.e., link bandwidth. It additionally provides better spectral efficiency
and, hence, higher overall throughput because the link is used a greater number of times at higher
data rates. Airtime fairness has been recognized as equivalent to proportional fairness, which means
that no better allocation exists in proportion to the rate capability, or speed ability, of nodes.

However, practical experience with airtime fairness usually shows that results are biased against
nodes with lower data rates: slower nodes have a lower throughput than expected and even
unstable network connectivity. This study, first, figures out why most airtime fairness scheduling
implementations are not fair in practice. The main reason is that airtime is treated in an incomplete way.
Sending a data frame requires not only time to air the frame, but also overhead such as inter- frame
spaces and ACK frames. Variable backoff delays are added, and even the time to transmit data from
the receiver of the frame may be indirectly imposed. For example, a TCP ACK message, which should
be sent by TCP on successful receiving data, is a derivative of the data and hence could be considered
overhead, if it is not piggy-backed in time. It is obvious that faster nodes send more data in airtime
fairness and more data accompanies more overheads. If a scheduler simply allocates an equal amount
of time without correctly counting overheads, it results in unfairness in the real link time usage. In
effect, a faster node uses more link time than a slower node.

True time-based fairness should concern not only the time of transmitting a data frame, but also
the total time needed for the transmission of the frame. In this study, we introduce a new notion
called responsible airtime for the latter, while the former is explicitly called pure airtime. There have
been studies to extend airtime to cover overheads; for example, the concept of total airtime in [2]
includes time cost from collisions. However, to our best knowledge, no attempt has been made to
cover total responsible time including indirect cost such as TCP ACK. If fair scheduling is made
based on responsible airtime, time-based fairness is achievable. However, unlike pure airtime, the
exact responsible airtime of a frame is not easily calculable with its data length and data rate. It is
also difficult to measure or analyze the actual responsible airtimes in a scheduling result, which are
necessary to evaluate the time-based fairness of an implementation. This study approaches responsible
airtime in an indirect and practical way.

In perfect time-based fairness, each node uses the same amount of responsible airtime regardless
of the data rate. We call this amount the responsible airtime fair share. In principle, this responsible
airtime fair share is the basis of evaluating the fairness of a scheduling result. Throughput, not
responsible time, is easily measurable. Therefore, we introduce throughput fair share, which is the
notion of a fair share in throughput for responsible airtime fairness. The throughput fair share of a
node is the throughput that the node achieves for its responsible airtime fair share. The responsible
airtime fair share is the same for all the nodes; however, the throughput fair share may be different
depending on the data rate of each node. In principle, the ratio of the actual responsible airtime to the
responsible airtime fair share for each node is the basic element in the evaluation of our time-based
fairness approach. In practice, it is indirectly derived from the ratio of the actual throughput to the
throughput fair share of the node.

The concept of throughput fair share has been mentioned in earlier studies as a baseline
property [3], meaning that if airtime fairness is achieved in a multi-rate network, the throughput
of a node is equal to the throughput of the node in the case in which all other nodes operate with the
same data rate as the node. An example of perfect time-based fairness is the case where all nodes in a
wireless network on the same channel condition including the data rate. In true time-based fairness
the throughput of a node in this case should be kept the same, no matter how other nodes change their
data rates. We believe that this baseline property is not only the consequence of airtime fairness, but it
is also a sufficient and necessary condition for true time-based fairness. That is, whether the baseline
property is satisfied can be used as a barometer for responsible airtime fairness. Our throughput fair
share of a node corresponds to the throughput to be maintained in the baseline property.
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The novelty of this study lies in that it separates the evaluation of fairness from analysis and
allocation of airtime. Most existing studies calculate airtime by analyzing its components, and then
fairness is implicitly ensured by allocating an equal amount of airtime to each node. In this approach,
the correctness of the fairness evaluation depends upon the precision and completeness of the analysis.
In other words, if the analysis is incomplete, the resulting fairness loses meaning. Our evaluation
method is independent of the analysis and allocation method, and the fairness index can be used as an
absolute measure.

A new fairness index is also proposed to evaluate the degree of time-based fairness for a given
scheduling result. Most fairness indices address equity in performance metrics, and equity in actual
responsible airtimes among nodes is important also in our study. However, in time-based fairness,
where a node relinquishes equal performance to pursue system fairness, preserving each fair share
could be critical. We add a notion of deficiency to equity to explicitly describe the extent of the shortage
from the fair share that occurs at each node because equity does not distinguish surplus and shortage.

Finally, we have developed a simple implementation of a responsible airtime fair scheduler at
the AP. Our research goal is to validate the feasibility of responsible airtime fairness. Hence, we limit
our development to a simple approximation of responsible airtime fair scheduling for download
traffic. It keeps measuring samples of time for which transmission of a data frame is completed, from
requesting a medium access to receiving the corresponding MAC ACK. This time sample contains
most of the overheads including the backoff time as well as the transmission time of the data frame.
An expected responsible time of a data frame for each destination node is calculated from the samples,
and a scheduling algorithm that is basically similar to the deficit round-robin is applied. Accordingly,
whenever a data frame to a node is transmitted, the expected responsible time to the node is counted
as a deficit, and the next frame to that node can be scheduled after its deficit is cleared.

Our implementation scheme takes a system approach rather than an analytic approach. Instead
of analyzing the components of costs one by one, the costs are estimated with a larger granularity,
in an integrated manner. Using a larger granularity in the estimation process has the potential to
avoid complications or imprecision arising from localized analysis. Moreover, a system approach
gives a better chance of incorporating otherwise hidden indirect time costs. This approach is limited in
precisely accounting for some overheads such as frame collisions. The implementation is independent
of the physical layer. Thus, it is implementable purely in the queue management. It is applicable
to any of the 802.11 physical standards or data rate adaptation mechanisms that are used. Through
comprehensive simulations, it is shown that our simple implementation produces fairness results that
are close to the ideal time-based fairness.

The remainder of this paper is organized as follows: Section 2 describes related work. Section 3
explains why existing airtime fairness scheduling is not fair in practice; in addition, the notion
of responsible airtime is explained. An evaluation method through the throughput measurement
is explained in Section 4. Section 5 presents a simple implementation of responsible airtime fair
scheduling. The simulation experiments are described in Section 6. Finally, Section 7 concludes
the study.

2. Related Work

Airtime fairness, or more generally, time-based fairness, in multi-rate wireless LAN has been
studied primarily to solve performance anomalies [1]. Since performance anomalies are due to
random access of the CSMA MAC, which pursues fairness in throughputs of individual nodes [4],
solutions exist sacrificing this individual fairness. The other fairness criterion is fairness in the usage
of system resources. Airtime fairness pursues fairness in the time for accessing the shared link,
which is equivalent to fairness in bandwidth usage. There are variations in implementation, such as
token-bucket regulator [4], airtime deficit round-robin scheduler [5], contention window controller [6],
and 802.11e TXOP [7]. Nonetheless, they share the same goal of fair link use in time.
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Some studies employ the notion of proportional fairness rather than airtime fairness. Since the
performance anomaly is incurred while providing max-min fairness to individual nodes, the key for
the solution is redefining the quality of fairness to enable a balance between fairness and spectrum
efficiency. In multi-rate wireless LANs, proportional fairness basically means that the individual
throughputs of each node are proportional to its data rate capability [6,7]. It was determined that
proportional fairness is equivalent to airtime fairness in multi-rate wireless LANs [8,9]. Specifically,
airtime scheduling provides proportional fairness, and a proportional fair allocation results in equal
usage of airtime. Ref. [10] introduced a modified CSMA algorithm achieving proportional fairness,
and compared the performances of various fairness criteria including time fairness.

The baseline property was first mentioned in [3] as a result of airtime fair scheduling; however,
it was not further explored. This study extends the property as a sufficient and necessary condition
for airtime fairness. We employ it as a barometer to assess airtime fairness. Our notion of responsible
airtime is conceptually simple but practically difficult to determine. From the baseline property, a
proportional fair share in throughput of a node can be determined, and fairness is decided based on
how closely each fair share is achieved in reality.

There have been many analytic studies for airtime or proportional fair allocation. For example,
Reference [2,11] performed rigorous analysis to calculate airtime by taking into account most
overheads including cost of collisions and developed an allocation scheme providing proportional
fairness. Reference [12] developed an extensive analytic model for 802.11 DCF with general traffic
loads and introduced a modified proportional fairness criterion for a practical allocation solution.
Reference [13] addressed proportional fair allocation in MU-MIMO wireless LANs. It suggested that
the notion of airtime should be subdivided into flow airtime and station airtime, because multiple
flow transmissions can be made in parallel to multiple stations. Although overheads are not much
concerned, its analysis showed that allocating equal airtime may not provide proportional fairness in a
MU-MIMO environment.

In recent years, studies on airtime fairness in wireless networks have diverged. One approach
is to extend its application to wireless networks other than a wireless LAN [14–16]. For example,
Reference [14] addresses a time-based fairness approach in 5G networks. The other approach is to
adequately develop it enough to be applicable to wireless routers in the real world. For example,
Cisco implements an airtime fairness functionality in their commercial wireless routers [17]. The
authors of [18] developed Linux kernel AP software with airtime fair scheduling and distributed it as
open-source software. Reference [2] developed a light-weight implementation using only software,
which is applicable to a commercial WiFi device. Reference [19] implemented a portable airtime
allocation scheduler, which runs on any Linux-based WiFi device. Reference [20] developed a device
enhancing the performance in an 802.11 infrastructure wireless LAN environment by alleviating
performance anomalies including multi-rate anomaly. All implementations were done within a single
box, without any modifications to the AP or the nodes. However, it does not address fairness as a
primary concern; there is no fairness evaluation of the enhancement results.

Our study differs from existing ones in that it is more fundamental. That is, it addresses what
airtime is exactly and how airtime fairness is evaluated. Without redefining the current notion of
airtime, which neglects some overheads, a solution for fairness yields unfair results in practice. To
our best knowledge, there is no study on airtime that has concerned indirect overheads, such as TCP
ACK. Although we address a fundamental problem, our approach is practical. Instead of directly
handling responsible airtime, a simpler fairness evaluation via the throughput fair share is introduced.
For a simple and portable scheduling implementation, our schedule uses an estimator based on time
measurement for responsible airtime of a data frame with no analysis of physical layer components.
Our implementation is limited to download traffic in infrastructure-mode networks.
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3. Necessity of a New Notion of Responsible Airtime

In order to validate our argument that the existing paradigms of airtime fairness yield false
time-based fairness, we first analyze how time is actually occupied in two different data rate
transmissions. The analysis shows that there exists a huge portion of time other than data transmission,
and the amount highly varies depending on the data rate. Considering airtime only for fairness is
irresponsible, and hence a new notion of airtime is needed for true time-based fairness.

3.1. Analysis of Actual Airtime in Transmission

Questions on airtime fairness come from the experimental observations shown in Table 1.
Two simple cases were evaluated in the ns3 simulator, and the airtime of each case was analyzed. In
both cases, there was a single node in the wireless LAN and TCP bulk traffic was downloaded. The
only difference in the cases was the distance from the AP to the node and resulting data rate. Case 1
was 20 m and 54 Mbps, and Case 2 was 110 m and 6 Mbps, respectively. For each case, downloading
was performed for 10 s, and the throughputs were different, as expected, because the higher data rate
increased the number of frames transmitted for the experiment duration. An interesting point is that
the sums of airtimes for each case are much different.

Table 1. Airtime Analysis (TCP Bulk Download Traffic, 802.11g Simulation for 10 s).

Parameter
CASE 1

20 m, 54 Mbps
Single Node

CASE 2
110 m, 6 Mbps
Single Node

Throughput 18.657 Mbps 4.277 Mbps
Number of Data Frames Transmitted

(1084 Bytes/Frame) 22,775 5221

Sum of (Pure) Airtimes for Data Frame Transmission 4.654 s 8.426 s

Sum of Extended Airtimes Including Overheads
(DIFS, SIFS, MAC ACK) 7.493 s 8.693 s

As a general meaning of working time, their airtimes would be expected to be similar because
both simulations were performed in the same saturated traffic for the same 10 s. However, as shown
in the table, the 54 Mbps case is approximately 3.8 s less than the 6 Mbps case. It is also shown that
in the 54 Mbps case, about 50% of the total operation time is used for purposes other than pure data
transmission, whereas only 15% was used in the 6 Mbps case. When the airtime was extended to
include per-frame overheads of DIFS, SIFS, and MAC ACK, which we call extended airtime in this
study, the gap becomes less; however, there still exists a significant difference.

From the above observations, it can be understood why allocating equal airtime does not
guarantee fairness in multiple data rates. Suppose that an AP schedules saturated download traffic
between one 54 Mbps node and one 6 Mbps node. If the scheduler allocates the same amount of pure
airtime, two nodes take different times for actual processing, where the former node requires more
than 200% of the allocated pure airtime and the latter node requires approximately 120%. The actual
result is uneven time sharing, where the slower node uses much less than the expected, i.e., the half of
the link time.

The observations have an alternate explanation as well. An example of perfect time-based fairness
is the synchronous time-division multiple access (TDMA) with equal weight because it evenly divides
the operation time among nodes. Suppose TDMA is applied in the above situation for 20 s. Then, each
node can access the link in a dedicated manner for 10 s. Each of the two nodes would obtain the same
throughput as in Table 1, and their airtimes would differ. To argue that allocating equal airtime is fair,
one should argue that TDMA is not fair.

This result is consistent with the public perception of airtime fair scheduling. Based on experience
in airtime fair scheduling implementation at wireless routers, for example, Cisco ATF [17], the
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performance of a slow node becomes so worse than in FIFO that the connection is unstable. There
may be some enhancements, including overheads; however, there are few implementations that are
adequately recognized to be adopted in practice.

It is clear that there exist more time-consuming components other than data frame transmissions.
To determine what they are, the process of data transmission is analyzed in detail. Figure 1 shows a
typical data download scenario, where the AP sends TCP data to Node 1 and Node 2 in the 802.11 DCF
mode without RTS/CTS. A frame is transmitted through the sequence of DIFS→ CW backoff→ data
frame→ SIFS→MAC ACK. Although two transmitters are involved, the time for the whole sequence
can be considered a single session and be charged as an extended transmission time of a data frame.
The time for CW backoff is not easily predictable, especially when a frame collision is involved.
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A complicated component is a TCP ACK message, which is a frame transmitted from Node 1
shown in the right half of the figure. First, it is disputable to whom its cost is to be charged. On one
hand, it can be considered a part of the previous data transmission and then should be counted as
indirect overhead. On the other hand, it might be counted independently of the data transmission from
the AP. However, its number of occurrences is certainly related with the number of data transmissions
from the AP. Second, its amount of time is not easily predictable. Its frequency of occurrence is
variable since TCP has a complicated rule on sending an acknowledgement, which is affected by many
factors. In addition, the cumulative semantics of a TCP acknowledgement message may be related
with multiple data previously transmitted, and hence it is not easy to distribute the responsibility for
its time cost.

Another component is related with a frame collision. If a collision actually occurs, the time cost
includes the wasted time, which extends to the longest of the collided frame transmission times. If a
collision is avoided, there is no wasted time; nevertheless, it causes the backoff time to increase. The
case is shown on the right side of Figure 1, where the AP backs off while Node 1 transmits a TCP ACK.
Again, it is a question of to whom the cost should be charged. Certainly, the number of frame collisions
for a node is also related with the number of data frames that are transmitted to a node and hence at
which data rate the node operates.

In summary, a process of data transfer in a WiFi network contains other time-consuming
components than the pure transmission time of the data frame transmission. The time costs of
those other components are not easily determinable, which be a reason why airtime has been used in
a vague manner. It is certain that a higher data rate yields more data, and more data causes higher
overheads. Fair scheduling based on airtime without correctly counting those components, which is
the way the current airtime fair scheduling operates, results in unfairness in reality.
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3.2. Responsible Airtime

The above observation gives insight into what is allocated fairly among nodes for true time-based
fairness: it is not pure airtime, rather, it is the total time cost. In other words, it is necessary to redefine
the notion of airtime in airtime fair scheduling. There have been other similar notions of time, such as
link occupation time [4]. Nevertheless, they still are limited for covering a time for collision resolution
or an indirect time cost, such as a TCP ACK message from a receiver.

The notion of responsible airtime is officially introduced here, as the total time cost covering
all responsible time components. The correct wording might be “responsible time”; however, we
choose “responsible airtime” because airtime is a more frequently recognized term in fair scheduling.
A responsible airtime of a data transmission represents the total time cost of all components engaged
in the data transmission. Since a component may span multiple actions, sometimes it is more useful
in an aggregate manner. A responsible airtime of a node is also used to mean the total aggregate
time cost for all data transmissions from and to the node throughout an operation or simulation.
Time-based fairness in multi-rate networks is achieved when fairness in responsible airtimes of each
node is achieved.

A responsible airtime contains the time to use the link directly and indirectly, as well as all
overheads and even some link idle time for back-off. Since it might have too many components to
enumerate, it would be helpful to figure out its complement, i.e., what is not included in responsible
airtime. There are only two components that are not related with the data transfer. One is overhead for
wireless network management, such as beacon transmission, while the other is idle time due to the
absence of traffic, which is different from idle time due to backoff. In a saturated traffic environment,
which is assumed to occur by default for a fairness evaluation, the latter appears only at the initial
transition interval to the steady state. Excluding those two aspects, any time interval should be a part
of responsible airtime of a node.

Conceptually, fairness based on responsible airtime can be addressed as usual. For example,
the responsible times of each node are measured, and Jain’s Index [14] of them may be calculated to
evaluate fairness. However, we believe that, unlike pure airtime, the actual responsible airtime of
a node is difficult to measure or analyze from a scheduling result. The exact amount of responsible
airtime of a frame, which is necessary for airtime fair scheduling, also seems to be not easy to calculate
with its data length and data rate. Instead of making a complicated analysis, this study uses responsible
airtime as a conceptual scale only. In practice, fairness is indirectly addressed via throughput, as shown
in Figure 2.
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First, we do not attempt to determine the responsible airtime of each data frame. An aggregate
measure, i.e., the responsible airtime of a node, is concerned because it is simpler to handle and
sufficient for long-term fairness. When the responsible airtime of a data frame is needed, such as
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in scheduling implementation, a statistical approximation is used. Second, the value of responsible
airtime of a node is not directly determined either. Using the throughputs of the nodes, which are easily
and accurately measurable, fairness is addressed. With the achieving ratio of the actual throughput to
the fair share, this throughput fairness can be translated into fairness in responsible airtimes. This is
the main topic of the next section.

4. Evaluation of Responsible Airtime Fairness

4.1. Throughput Fair Share

Assuming N nodes competing for T sec of responsible time under perfect time-based fairness,
each node uses the same amount of responsible time, i.e., T/N, regardless of the data rate. We call this
responsible airtime fair share. In principle, this responsible airtime fair share is the basis in deciding
fairness; fairness basically means how closely each node achieves this fair share. However, the actual
responsible airtime of a node is difficult to determine.

To bypass this difficulty, we introduce the throughput fair share of a node, which is throughput
that the node obtains for the responsible airtime fair share. Conceptually, it is a fair share in throughput
when a node competes under the perfect time-based fairness. In a multi-rate wireless network, the
responsible airtime fair share is the same for all the nodes. However, the throughput fair shares of
each node may be different depending on the data rate. Similar to the responsible airtime fair share,
throughput fair share can be used as a basis in deciding fairness. Fairness is represented by a metric
of how close the actual throughput of each node is to its fair share. In fact, throughput fair share is
the ideal throughput mentioned in the baseline property [3]. In multi-rate wireless networks with
time-based fairness, a node should obtain a consistent level of throughput regardless of what rates at
which the neighbor nodes operate, and the level is the one achieved when all neighbor nodes operate
in the same data rate of the node.

Overheads act as interference in achieving throughput. Throughput fair share is the throughput
in allocating a sufficient airtime when all direct and indirect overheads are taken into account. Since
fairness is evaluated using the achieving ratio of actual throughput to the throughput fair share, our
fairness evaluation does not determine the exact amount of interference. However, the responsible
airtime of a node takes account of overheads including TCP ACK.

Now we address our reasoning that fairness in responsible airtimes is handled via the fairness in
throughputs. Let rati be the responsible airtime of node i and {rati}, the set of rati, be the responsible
airtimes of the nodes in a wireless network. Additionally, let srat be the responsible airtime fair share,
which is equal for all nodes. Both a responsible airtime fair share and an actual responsible airtime
are dependent on how many nodes compete and the time length in which they compete. Hence, the
correct notation is srat(N, T) and rati(N, T), where N and T are the number of nodes in the network
and the competing time, respectively. Fairness studies usually compare scheduling results in a given
environment. We use the simpler terms, srat and rati, unless the environment is needed to be specified
with N and T.

When a general fairness function is notated as Fairness(), for example, Jain’s Index function, the
time-based fairness is described as Fairness({rati}). This is our conceptual approach, as illustrated in
Figure 2a. Since srat is constant for each node, without loss of generality:

Fairness({rati}) = Fairness
({

rati
srat

})
(1)

Next, let xi be the actual throughput that node i obtains, and let sx
i be the throughput fair share of

node i. Since the competing time is meaningless in the throughput, the correct notions are xi(N) and
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sx
i (N), respectively, where N is the number of nodes in the network. Again, xi and sx

i are used unless
there is the need to distinguish the network environment. From the definition of throughput:

size o f data actually transmitted to node i
expected size o f data f rom f air share o f node i

=
xi × T
sx

i × T
=

xi
sx

i
(2)

We call this ratio xi
sx

i
the throughput achieving ratio of node i, denoted as ai, which indicates how

closely the throughput fair share is achieved at node i. If ai < 1, it means that, under fair achievement
in that node, i achieves less throughput than expected. For a node, the amount of data transmitted is
linearly proportional to its responsible airtime; thus:

size o f data actually transmitted to node i
expected size o f data f rom f air share o f node i

=
rati
srat (3)

From Equations (2) and (3), we have:

rati
srat =

xi
sx

i
= ai (4)

Finally, from Equations (1) and (4), we have:

Fairness({rati}) = Fairness
({

xi
sx

i

})
= Fairness({ai}) (5)

Equation (5) says that the fairness of responsible airtimes can be determined via the fairness of
throughputs, or, more precisely, the fairness of the throughput achieving ratios. This is our practical
approach, as illustrated in Figure 2b.

The actual throughput of node i, xi is easily determined by measurement. The throughput fair
share of node i, sx

i , can be also measured; however, a separate experimental setup is needed. Since
802.11 MAC provides a fair chance to access the link for every node, all nodes can obtain the same
throughput if their channel and traffic conditions are the same. When the number of competing
nodes is N, we build an extra environment wherein there are N nodes whose channel conditions
and application traffic are the same as those of node i. Every node consumes an equal amount of
responsible airtime and obtains an equal throughput. sx

i , in more precise notion, sx
i (N), is determined

as the average of their throughputs. It is worthwhile to note that this measurement setup is the same
as the basis environment in the baseline property. The throughput in the basic environment is equal to
the throughput in the perfect airtime fairness, which is our throughput fair share. Our throughput
achieving ratio, in another interpretation, indicates how closely the baseline property is maintained
in effect.

One might doubt that the cost determining the throughput fair share is too costly. First, it might
not be as expensive as the alternative of determining an actual responsible airtime. As explained in the
previous section, considerable complexity can be expected, even if a fully detailed trace of network
activity is available. Second, determining a fair share is needed per the network configuration. Unless
the network configuration is changed, the same fair share is reused on all experiment results. The cost
issue will be further explained with the experiment results in Section 6.

4.2. Proposed Time-Based Fairness Index

Many fairness indices have been proposed. Most of them focus on describing equity among
competitors in a performance metric. For example, Jain’s Index [21] of throughputs at each node has
been used as a representative indicator for individual fairness in a wireless network. Conceptually,
equity in actual responsible airtimes among nodes could also be a good index for time-based fairness;
equity in throughput-achieving ratios could be in our practical approach. However, there could be a
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better approach to represent time-based fairness than equity only because the fair share of each node is
already determined.

As mentioned above, our fairness evaluation is based on the value of the throughput-achieving
ratio at each node. If it is greater than one, there is a surplus, and if it is less than one, there is a shortage
from the fair share. In time-based fairness, a node relinquishes equal performance to pursue system
fairness. Hence, preserving each fair share could be critical for fairness. That is, the degree of shortage
is significant while the surplus is not. Equity does not distinguish surplus and shortage. For example,
Jain’s Index of {1.10, 1.10, 1.10, 0.70} is the same as that of {1.30, 0.90, 0.90, 0.90}; however, from the
perspective of a shortage, they cannot be the same. This study adds a notion of deficiency to equity to
explicitly describe how much shortage from the throughput fair share occurs at each node.

There are two factors to describe the degree of deficiency: the number of nodes suffering the
shortage and the amount of shortage. In the spirit of max-min fairness, we confer more weight to
the amount of the shortage. Generally, if one is treated unfairly, the whole is perceived to be unfair;
however, the unfairness does not increase twice if the number of unfairness doubles. In the above
example, one generally believes that {1.10, 1.10, 1.10, 0.70} is more unfair than {1.30, 0.90, 0.90, 0.90}
because the former suffers up to a 30% shortage, whereas the latter suffers an only 10% shortage. We
define the deficiency index, DI, as follows:

DI = max{max(1− ai , 0)} (6)

Since ai ≥ 0, max(1− ai , 0) has a positive value if ai < 1, and it indicates the relative shortage
from the throughput fair share of node i. If ai ≥ 1, it is zero, which means that the surplus is simply
ignored. DI is determined as the worst case, i.e., the largest shortage among the nodes.

For the equity index, EI, the well-known Jain’s Index is used. Finally, the fairness index is defined
as the product of the equity index and the complement of the deficiency index as follows:

FI = EI × (1− DI)

=
(∑N

1 ai)
2

N ∑N
1 ai

2 × (1−max {max(1− ai , 0)})
(7)

where N is the number of nodes. Since both DI and EI are between zero and one, FI is also between
zero and one. Similar to Jain’s Index, the closer it is to one, the fairer it is. Table 2 shows fairness index
values for some example cases of scheduling results.

Table 2. Fairness Index of Sample Cases.

Case
(Set of Throughput Achieving Ratio) Equity Index Deficiency Index Fairness Index

{1.0, 1.0, 1.0, 1.0} 1.00 0.00 1.00
{0.9, 0.9, 0.9, 0.9} 1.00 0.10 0.90
{1.3, 0.9, 0.9, 0.9} 0.97 0.10 0.87
{1.1, 1.1, 1.1, 0.7} 0.97 0.30 0.68

5. Implementation of Responsible Airtime Fair Scheduling

5.1. Estimating the Responsible Airtime of a Frame

Now we check if there can be a scheduler that actually provides responsible airtime fairness.
For a fast feasibility test, we limit our development to download traffic and choose simplicity over
completeness. That is, the implementation goal is a simple scheduler at the AP that approximately
performs responsible airtime fair scheduling. Assuming download traffic only, it is only half of the
solution for fair scheduling. However, it is believed that checking the validity and applicability of the
responsible airtime approach is an important first step.
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An essential component in scheduling is the responsible airtime of a frame to transmit. In order
to determine it, we must count not only the frame length and data rate, but also the overhead, as
mentioned above. Since long-term fairness is the issue, the exact responsible airtime for each frame
is not necessary. We instead maintain an estimate, as in the following explanation, and apply it for
the scheduler.

The scheduler in the AP continues maintaining an expected responsible airtime of a frame for
each node. Whenever a frame is transmitted to a node, its total time duration is measured as a sample
time, and the expected value of the node is updated with the sample. The starting point of the duration
is when the AP requests MAC access immediately after a frame is scheduled to transmit. The ending
point is when the AP successfully receives the MAC ACK. If no frame intervenes, this duration covers
the extended airtime explained in Section 3.1. An upward frame containing TCP ACK may intervene
in the back-off interval, as shown in Figure 1. In this case, the duration also includes the transmission
time of the TCP ACK. This case is considered not to be a problem and the time sample is valid because
TCP ACK is also a part of the responsible airtime as indirect overhead. The source node of the TCP
ACK frame is not distinguished owing to a rationale explained later. When a frame collision occurs in
the duration, the time sample may be much greater than that of there being no collision. We simply
discard this big sample; specifically, a sample greater than twice of the current expected is discarded in
the test implementation, due to the following reason.

Ideally, the time cost for a TCP ACK should be included in the responsible airtime of the data
frame that causes the TCP ACK. However, this correctness per data frame is not necessary for long-term
fair scheduling. What is important in long-term performance analysis is whether its cost is counted
toward the correct corresponding expected value. For a given a TCP ACK, the probability that it is
caused by data frames to a certain node, say node i, is proportional to the occurrence frequency of
data frames to node i. This is because the frequency of sending a TCP ACK is proportional to that
of receiving a data frame. In our measurement rule where a TCP ACK is simply included in the
outstanding data frame at the AP, the probability that a TCP ACK hits on a data frame to node i is
also proportional to its occurrence frequency. Therefore, an expected responsible airtime based on our
measurement is valid with respect to the TCP ACK overhead. In short, direct causality does not matter
as long as overhead distribution is statistically correct. The rationale for this condition is similar to that
of RED in congestion control at a router [22].

The overhead of frame collision is dependent on the number of collisions and the cost per collision.
The former is certainly related with the number of data transmissions, and thus it may be handled in a
similar way to the case of TCP ACK. However, unlike TCP ACK, the latter is widely varied depending
on which nodes get involved. Integrating the cost of a collision without deterministic analysis may
distort an estimation value. A lower data rate node sends less data and causes less collisions; however,
the wasted time per collision is bigger because the transmission time of data frame is longer. From the
experimental measurements, it is found that the overall collision overheads for each node might not be
much different, regardless of their data rate. In precise, a lower data rate node causes slightly higher
overhead than a higher data rate node when a frame length is longer 1000 bytes. This means that
ignoring collision overhead may not affect fairness much, and at least not be harmful for a lower data
rate. This is the reason why a big time sample, in which a collision is usually involved, is discarded.

Certainly there exist traffic environments where these reasonings are not valid. One example is
shown in Section 6. Our argument here is that how much accurately implementing airtime fairness
can be an engineering choice though absolute correctness in deciding fairness is necessary. Our
approximation is not perfect—however, it is effective—in most cases.

Our estimation method is a simple averaging of sample measurements. We tested many other
estimators, such as the median or the minimum of time samples; however, the exponential moving
average with a 0.1 smoothing factor was found to be a good fit through experiments. It is simple but
adequate to cover variable cost components. This will be shown later in the experiments.
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Some may doubt that the frame length and data rate are not considered in the expected responsible
airtime of a frame. It is true that they are not explicitly and deterministically counted; however, it is
also true that they are reflected in a time sample for the duration. It is certain that the frame length
and data rate can be dynamically varied in real environments; nevertheless, they can eventually be
covered by a moving average, albeit not instantaneously. Again, our implementation focus is a simple
approximation of long-term time-based fairness.

Meanwhile, our implementation based on time measurement can be highly portable. We do not
directly handle any physical details, such as the data rate; we handle time duration as a synthetic
output that integrates the details in the system. As a result, our implementation scheme is independent
of the physical layer and hence is implementable purely in the queue management. As a result, it is
applicable to any 802.11 physical standards or data rate adaptation mechanisms.

5.2. Responsible Airtime Scheduling

Most implementations of airtime fair scheduling are based on the deficit round-robin (DRR) [23],
where the deficit is in the unit of bits, and the deficit counter of each node is reduced by its own
quantum value, which is basically the weight of each node in weighted fair queuing [24]. Specifically,
in airtime fair scheduling, the quantum values are based on the data rates of each node. A node with a
higher data rate has a larger quantum value than a node with a lower data rate and is thus scheduled
more frequently. If the ratios of the data rate are maintained in the ratios of the quantum values,
the result is the same as the pure airtime fair scheduling. In order to cover the extended airtime or
responsible airtime, a rule is needed that appropriately converts the data rate into the corresponding
quantum value. However, this requires a complicated analysis of overhead.

Our scheduling algorithm is also based on DRR. Nonetheless, it is different in that it does not use
quantum characteristics. The deficit counter is in the unit of time, that is, seconds. Whenever a frame
to a node is scheduled to transmit, the counter of the node is set as its expected responsible airtime.
That is, each deficit counter value indicates the time for which the corresponding node has used the
link previously and hence must wait. All deficit counters are reduced at an equal pace, and only a
node with a zero deficit is clear to be scheduled. The quantum approach is unnecessary because the
expected responsible airtime already includes not only the data rate but also overhead. The long-term
ratio of the times for which each node uses the link is the same as that of each expected responsible
airtime. Thus, responsible airtime fairness can be achieved as long as the expected values are accurate.

Figure 3 shows our scheduling algorithm in detail. The code is based on the implementation
of the ns3 [25] wifi module; it is inserted into the scheduler part in dca-txop.cc. As the ns3 variable,
m_queue refers the queue of frames to transmit, and m_currentPacket refers to the frame to transmit
to next; our code must set m_currentPacket to the next frame in responsible airtime fair order.
ExpectedResponsibleAirTime records the expected responsible time of each node, which is calculated
from the measured time samples, as explained in the previous subsection. TimeDeficit is the key in
scheduling and maintains a deficit value of each node in a nano-second scale.

The scheduler first equally reduces all entries of TimeDeficit until at least one entry is zero. Then,
it checks each node in round-robin order if it is a valid node, which has a zero deficit and has a frame
in the queue. If the node has a positive deficit, the next round is simply made because other nodes
having a zero deficit are waiting. If the node has a zero deficit but no frame in the queue, reducing the
deficits again is required for the work-conserving property before attempting the next round.

Applying the ns3 implementation to real APs will not be a major burden. For example, in
openwrt, an open source project for wireless routers, modification at the following code portions
are expected: adding some code to approximate a responsible airtime for each node can be
achieved by measuring times (ath9k_hw_set_txq_props() in ath9k/mac.c and ieee80211_frame_acked()
in mac80211/status.c) and modifying or adding packet scheduling code (ath_txq_schedule() in
ath9k/xmit.c). The implementation will not impose additional overhead because it does not require
any information exchange between an AP and nodes and the processing cost would not be significant.
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All operations are done at a relatively high level using system time and queue management. Therefore,
this implementation is applicable to any 802.11 physical standards or data rate adaptation mechanisms.

In order to construct a general responsible airtime scheduler, two modules should be implemented:
one for determining the responsible airtimes for each node, and the other for implementing a
distributed scheduler based upon the values of the responsible airtimes. Our approach to the second
module will be to simply borrow the best existing solution, as the scheduler in the ns3 implementation
borrowed the idea of the deficit round-robin. The two modules are independent of each other, and the
responsible airtime approach is more related to the first module.

One principle in implementing the first module is that responsible airtime should be approximated
without complicated analysis. This aim is difficult to achieve at a node locally because any measured
duration includes a traffic queuing delay, which is not the case at the AP. In general, information
exchange among nodes through the AP is necessary. The key problem is what kind of information
is exchanged, and how this information is utilized in calculating responsible airtime. The amount of
the overhead will be similar to those of other implementations, which is basically the cost required
to implement distributed fair queuing. The other principle is to maintain compatibility with wifi
standards, which is the most important in applying to the real devices.Sensors 2018, 18, 3658  13 of 19 
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6. Experiment Results

6.1. Validation of Fairness in TCP Traffic in a Basic Topology

The goal of the experiments was to compare the time-based fairness of scheduling methods, and
all experiments were performed with the well-recognized simulation tool, ns3 [25]. As an example
of multi-rate wireless networks, the experimental environment was set up as shown in Figure 4.
Saturated TCP traffics were downloaded from the server in the wired side to each of the wireless nodes
through the 802.11g AP, where the wireless nodes were separated with a distance sufficient to operate
in different data rates. With no specific reference, all performance data were obtained from this setup.
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First, the throughput fair shares of each node are determined. To this end, for each node, we set up
a separate environment wherein the basic topology is changed so that all nodes are at the same distance
to the AP. For example, for the throughput fair share of Node 1, the environment consists of four nodes
of which the distances are the same 20 m as Node 1. Since it is a situation where four instances of
Node 1 are competing, the average of throughputs at each node can be used as the throughput fair
share of Node 1. Table 3 shows the throughput fair shares of each node in the basic topology, where
the traffic type is a TCP bulk transfer. The table also shows each node’s data rate and aggregate pure
airtime for the throughput fair share, just for the contrast. The throughput fair shares are not directly
proportional to the data rates, which can be explained as being due to overheads. The aggregate pure
airtimes are obviously not equal. To be fair, with counting all overheads the faster node (Node 1)
should use less pure airtime than the slower node (Node 4).

Table 3. Throughput Fair Share for TCP Traffic in the Basic Topology (4 nodes, 10 s).

Parameter Node 1 Node 2 Node 3 Node 4

Distance from AP (m) 20 50 80 110
Data Rate (Mbps)

(Rate Adaptation: IDEAL) 54 24 12 6

Throughput Fair Share (Mbps) 4.681483 3.109867 1.906934 1.059533

Measured Aggregate Pure Airtime (s) 1.10585 1.512145 1.791905 1.9411

Making a real environment setup to evaluate the throughput fair share of a node may be more
difficult than making it in simulation. Specifically, placing wireless nodes side by side may not
guarantee physically identical channel conditions. However, we believe that it is feasible to build a
setup that gives a consistent average in throughput among nodes within the experimental error range.

We evaluated the responsible airtime fairness of four scheduling schemes, as shown in Table 4.
FIFO is the default scheduler of a current router that suffers a performance anomaly. It results in poor
throughput achieving ratios at faster nodes, and the fairness index is approximately 0.34. ARF is the
pure airtime fair scheduler, which ignores overhead effects. It causes slower node underachieving, and
the fairness index is limited to approximately 0.73. RAF is our responsible airtime fair scheduler. It
shows slight underachieving in faster nodes, although the fairness index is approximately 0.97. QDRR
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is a deficit round-robin scheduler whose quantum value is manually adjusted to fit the throughput fair
shares. It is the best scheduler that is intended for the fairness upper-bound. In summary, our simple
implementation provides reasonable responsible airtime fairness for TCP traffic, which indicates that
the average of measured time durations for frame transmission approximates well with the responsible
airtime of a frame.

Table 4. Throughput Achieving Ratio and Fairness Index in TCP Traffic.

Scheduling Algorithm Node 1 Node 2 Node 3 Node 4 Fairness Index

FIFO 0.444118 0.646696 1.054646 1.842467 0.344713
Pure Airtime Fair (ARF) 1.371370 1.004525 0.848570 0.768302 0.729057

Responsible Airtime Fair (RAF) 0.965460 0.998572 1.000086 1.023215 0.965048
Quantum Deficit Round-Robin (QDRR)

(Manually Adjusted Quantum) 0.994558 0.98893 0.986812 1.007832 0.986745

Achieving fairness certainly influences system performance. As shown in Figure 5, FIFO
scheduling pursuits fairness in throughput of each individual node, and hence the aggregated
throughput is the lowest because it requires sacrifice of a higher data-rate node in airtime. Pure
airtime fair scheduling pursues fairness in airtime among nodes, and it gives the highest aggregated
throughput because a higher data rate node has more chance to use the link. However, pure airtime
fair scheduling without counting all overheads correctly is biased in favor of a higher data rate node.
More data transmissions require more overhead and thus neglecting overheads is more beneficial for a
higher data rate node which transmits more data during the same airtime. Responsible airtime fairness
scheduling pursues fairness in total time usage with counting all responsible overheads. It removes the
bias for a higher data rate node and yields a better performance in a lower data rate node. However,
the aggregated throughput is lower than pure airtime fair scheduling.
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6.2. Fairness in Various Traffic and Network Environments

We investigated the responsible airtime fairness varying traffic and network attributes. First, we
tested how the responsible airtime fairness responds in UDP download traffic. Table 5 shows the
results, along with the throughput fair share in the UDP of each node. Since UDP does not add extra
overhead, their throughput fair shares are higher than those of TCP, and they are more closely related
with their data rates. For the same reason, pure airtime (ARF) yields better results than TCP, as does
our RAF, whose fairness index is almost 1.0. Again, QDRR was assessed just for comparison. QDRR of
UDP has quantum values that differ from those of QDRR of TCP because the effects of the data rate to
responsible airtime in the two cases are different.

Next, an experiment was conducted in an environment where TCP download and UDP download
traffic were mixed. Specifically, Nodes 1 and 3 received TCP traffic and Nodes 2 and 4 received UDP
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traffic. The throughput fair shares of Node 1 and 3 were the same as those of the TCP experiment,
respectively, and those of Nodes 2 and 4 were the same as UDP. As shown in Table 6, the fairness
index of RAF is only 0.88, and two UDP nodes suffer deficiency. This can be explained as follows. In
our simple implementation, the time cost for a TCP ACK was simply included into the duration of
the outstanding frame at the AP without distinguishing its source node. In a homogeneous traffic
environment, this causes no problem because the cost distribution based on the occurrence frequency
is consistent to real causality. However, in a heterogeneous traffic environment, where TCP traffic
causes TCP ACKs, whereas UDP traffic does not, the simple rule is effective. Specifically, a TCP ACK
frame may include a time sample of a UDP data frame, which causes the estimation of the responsible
airtime of a UDP traffic node to be longer and that of a TCP node to be shorter. As a result, UDP nodes
underachieve and responsible airtime fairness is degraded as much as the overhead is miscalculated.

Table 5. Throughput Achieving Ratio and Fairness Index in UDP Traffic.

Scheduling Algorithm Node 1 Node 2 Node 3 Node 4 Fairness Index

Throughput Fair Share (Mbps) 6.081147 3.801803 2.250381 1.221101

FIFO 0.387026 0.619064 1.045850 1.927408 0.286828
Pure Airtime Fair (ARF) 1.289889 1.006858 0.881419 0.816449 0.790332

Responsible Airtime Fair (RAF) 0.997121 0.995934 0.993175 1.005365 0.993155
Quantum Deficit Round-Robin (QDRR)

(Manually Adjusted Quantum) 0.998481 0.996364 0.993432 1.001612 0.993423

Table 6. Throughput Achievement Ratio and Fairness Index in TCP/UDP Mixed Traffic.

Scheduling Algorithm Node 1
(TCP)

Node 2
(UDP)

Node 3
(TCP)

Node 4
(UDP) Fairness Index

Throughput Fair Share (Mbps) 4.681483 3.801803 1.906934 1.221101

FIFO 0.022497 2.020314 0.013938 1.638232 0.007031
Pure Airtime Fair (ARF) 1.453305 0.90483 0.897586 0.733932 0.683151

Responsible Airtime Fair (RAF) 1.008875 0.882959 1.054215 0.956795 0.87714
Quantum Deficit Round-Robin (QDRR)

(TCP/UDP Quantum Reused) 1.047524 0.95133 1.037826 0.955606 0.949421

Regarding other scheduling algorithms, FIFO causes an extreme unbalance between TCP nodes
and UDP nodes because it cannot isolate non-congestion-controlled UDP traffic. In ARF, where
overhead is not counted at all, TCP nodes obtain higher achieving ratios than in the homogenous
traffic because the effect of offsetting overhead is higher in TCP traffic. In QDRR, we intentionally
reused the quantum values in TCP and UDP homogenous traffic, and the fairness index was 0.95. This
means that the new proportional quantum values were required for a new traffic environment. This
experiment demonstrated the limits of our simple implementation as well as the inherent complexity
in determining correct responsible airtimes.

In the next experiment, mobility was added to the basic topology. Nodes 1 and Node 4 moved
to each other’s position through the experiment time, while Nodes 2 and Node 3 remained at their
respective positions. Table 7 shows the results. The throughput shares of Nodes 1 and Node 4 are
newly determined. The purpose of this experiment was to check the adaptability in varying data rates.
RAF shows almost the same fairness index as the case of no mobility shown in Table 4. FIFO also
provides a better fairness index, although it is not because it has adaptability. It is because the channel
conditions become more equitable than the case of no mobility. QDRR with the quantum value of the
previous TCP experiment yields a much poorer fairness index because the quantum is fixed while the
data rate is being changed. This result indicates that a dynamic adjustable quantum value is necessary
in a wireless network environment. ARF is found to have some adaptability because the pure airtime
of a data frame reflects changes in the data rate, although it is far from fair.
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Table 7. Throughput Achieving Ratio and Fairness Index in TCP Traffic with Mobility.

Scheduling Algorithm Node 1 Node 2 Node 3 Node 4 Fairness Index

Throughput Fair Share (Mbps) 2.434094 3.109867 1.906934 2.511789

FIFO 0.867296 0.689808 1.107770 0.842424 0.670282
Pure Airtime Fair (ARF) 1.168780 1.044089 0.874818 1.156108 0.864145

Responsible Airtime Fair (RAF) 1.015715 0.972703 0.988916 0.987949 0.972466
Quantum Deficit Round-Robin (QDRR)

(TCP Quantum in Table 4) 1.584530 0.819433 0.818794 0.352641 0.283379

Another purpose of this experiment was to validate the baseline property. In true time-based
fairness, Nodes 2 and Node 3 should maintain their performances regardless of the data rates at which
other nodes, i.e., Nodes 1 and Node 4, operate. In the experiment, Nodes 1 and Node 4 continued
changing their data rates as they moved. In comparing the results of Table 4, only RAF produces
almost the same performance. We conclude that RAF well satisfies the baseline property and hence the
true time-based fairness.

Since our implementation does not explicitly account for frame length, we also tested how each
scheduling reacts on variable frame length. To maximize the length variation, we made the data length
of the UDP application random in a uniform distribution between 100 and 1024 bytes. As shown in
Table 8, RAF shows an approximate 0.98 fairness index, which is only 0.1 lower than the fixed length
case in Table 5. This means that the exponential averaging well covers the effect of variation in the
frame length on responsible airtime. Other scheduling methods show similar fairness pattern to the
experiment of mobility shown in Table 7.

Table 8. Throughput Achieving Ratio and Fairness Index in Variable Length UDP Traffic.

Scheduling Algorithm Node 1 Node 2 Node 3 Node 4 Fairness Index

Throughput Fair Share (Mbps) 4.205086 2.920385 1.872179 1.074929

FIFO 0.465375 0.667175 1.036752 1.820031 0.366719
Pure Airtime Fair (ARF) 1.064256 1.167587 0.943609 0.826082 0.812755

Responsible Airtime Fair (RAF) 0.977167 1.007989 1.003903 0.999893 0.977027
Quantum Deficit Round-Robin (QDRR)

(UDP Quantum in Table 5) 1.071074 1.046437 0.96383 0.917568 0.914067

Finally, to validate the independence of the physical layer and portability of our implementation,
we tested our responsible airtime fair scheduling on 802.11ac networks. 802.11ac has different physical
characteristics from 802.11g, for example, it has a 5 GHz band and MIMO streams. In principle,
determining the responsible airtime in 802.11ac requires a new analysis because new physical factors
should be considered. Our implementation abstracts all physical details into the time duration.
Therefore, it can be ported in 802.11ac as it currently exists. For a fair assessment, it should be checked
whether those physical factors are correctly abstracted. Table 9 shows the results in 802.11ac, and our
RAF gives a reasonable fairness index value again. Therefore, it could be said that the responsible
airtime is predictable without analyzing the details of the physical layer. We did not test QDRR in this
example because it was obvious that the quantum values in 802.11g have no meaning in 802.11ac.

Table 9. Throughput Achieving Ratio and Fairness Index in 802.11ac TCP Traffic.

Scheduling Algorithm Node 1
(20 m)

Node 2
(40 m)

Node 3
(60 m)

Node 4
(80 m) Fairness Index

Throughput Fair Share (Mbps) 9.524336 9.14175 8.036446 6.65848

FIFO 0.861723 0.896692 1.015551 1.229720 0.844278
Pure Airtime Fair (ARF) 1.315550 1.142832 0.867660 0.708023 0.671318

Responsible Airtime Fair (RAF) 1.008465 1.013723 0.998728 1.009420 0.998698
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7. Conclusions

For true time-based fairness, this paper introduced the responsible airtime concept, which includes
not only the data transmission time, but also all overheads, even including a TCP ACK segment
in TCP traffic. Responsible airtime is conceptually clear but difficult to directly handle. We thus
developed a method to evaluate time-based fairness via throughput measurement. How closely the
baseline property is satisfied is used as the barometer for fairness, and the fairness index is also
extended to reflect a deficiency. A simple scheduling method at the AP was also developed, and the
feasibility of responsible airtime fairness was validated through experiments in various traffic and
network environments.

We believe that this study is unique in that fairness itself in airtime fairness was addressed.
No study has addressed quantitative fairness with consideration of overheads such as TCP ACK. The
responsible airtime approach is novel in many aspects, ranging from the concept to the evaluation
method and implementation. Our solution for time-based fairness is highly practical and is thus
applicable in real-world routers.

There may be at least two directions for further research on this topic. The first is to make the
implementation more precise. One obvious point to be improved is to count the overhead of collisions
deterministically in the responsible airtime of the data frame that causes it. The second direction is to
apply our responsible airtime approach to upload traffic in wireless networks. Without QoS support at
a MAC level, such as 802.11e, a new implementation scheme is required because centralized control is
not possible. Some techniques in distributed packet scheduling, such as distributed fair queuing [26]
and proportional fair allocation [2] could serve as a foundation; however, expecting responsible airtime
would be necessary.
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