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Abstract: We design a coded massive multiple-input multiple-output (MIMO) system using
low-density parity-check (LDPC) codes and iterative joint detection and decoding (JDD) algorithm
employing a low complexity detection. We introduce the factor graph representation of the LDPC
coded massive MIMO system, based on which the message updating rule in the JDD is defined.
We devise a tool for analyzing extrinsic information transfer (EXIT) characteristics of messages
flowing in the JDD and the three-dimensional (3-D) EXIT chart provides a visualization of the JDD
behavior. Based on the proposed 3-D EXIT analysis, we design jointly the degree distribution of
irregular LDPC codes and the JDD strategy for the coded massive MIMO system. The JDD strategy
was determined to achieve a higher error correction capability with a given amount of computational
complexity. It was observed that the coded massive MIMO system equipped with the proposed
LDPC codes and the proposed JDD strategy has lower bit error rate than conventional LDPC coded
massive MIMO systems.

Keywords: massive MIMO; LDPC codes; joint detection and decoding; low complexity; density evolution

1. Introduction

The massive multiple-input multiple-output (MIMO) system, whose transmitter and receiver are
equipped with tens to hundreds of antennas, has recently attracted many researchers and engineers
because it can vastly improve the transmission data rate and spectral efficiency [1–7]. Massive MIMO
technology has recently found successful applications in cellular networks, known as the fifth
generation (5G) systems [5–11], as well as in energy-efficient wireless sensor networks [12–15].

Recovering multiplexed data from signals received by many antennas in an optimal manner
requires tremendously high amount of computations, so the reduction of detection complexity has been
a great concern for utilizing the massive MIMO technique in practical communication systems [3,4].
As an approach to reduce the detection complexity, suboptimal linear detection algorithms have
been intensively studied [7,16–26], where matched filter (MF) detection, zero forcing (ZF) detection
and minimum mean squared error (MMSE) detection are well known examples. Nevertheless,
these linear detection schemes cannot lower the computational complexity of the massive MIMO
receiver to an acceptable level because the inversion of high dimensional matrices is still required. Then,
low complexity detection algorithms based on approximate matrix inversion [18,19], low complexity
factor graph (FG) based belief propagation (BP) algorithms [20–22] and pairwise Markov random
fields (MRF) based MIMO detection algorithms [20,21] have been proposed. Tree-searching soft-input
soft-output (SISO) MIMO detection algorithms have also been proposed in various forms [23–26].
The FG based BP detection with Gaussian approximation of interference (GAI), called FG-GAI BP
detector, was proposed as one of the promising solutions to reduce the computational complexity of
the massive MIMO receiver to the practically allowable level [21,22].
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Low-density parity-check (LDPC) codes have been widely used in various communication
systems thanks to the powerful error correction capability [27–29]. It is well known that LDPC codes
can be efficiently designed by using the density evolution algorithm [29,30] or the extrinsic information
transfer (EXIT) chart [31]. There have been many research activities regarding the analysis and design
of LDPC coded MIMO systems with various forms of detection and decoding mechanisms [32–36].
It is a natural approach to apply LDPC codes to the massive MIMO system to improve the transmission
reliability, where a joint detection and decoding (JDD) algorithm of low complexity, of course, needs to
be considered. In [37], non-binary LDPC codes are designed for coded massive MIMO systems
considering modified MMSE and MF soft-output detectors. In [22,38], binary LDPC codes and
non-binary LDPC codes, respectively, are designed by considering the FG-GAI BP detection algorithm
through the degree distribution optimization based on the EXIT chart analysis.

To make the LDPC coded massive MIMO technology more applicable in practical communication
systems, the convergence of JDD has to be sped up for a given amount of computational complexity.
Note that the faster JDD convergence results in the lower BER if the computational complexity is
limited to finite amount. In [39], a modified FG-GAI BP detection algorithm is proposed to improve the
convergence rate of JDD in LDPC coded massive MIMO systems at the cost of increased computational
complexity. It is notable that one JDD iteration can be composed of multiple detection iterations
followed by multiple decoding iterations. Thus, the JDD strategy, specified by the ratio of the number
of detection iterations and the number of decoding iterations composing one JDD iteration, can be
used as a design parameter to obtain a good trade-off between the error correction performance and
the computational complexity. However, there do not exist many research works on developing a
systematic way to determine the JDD strategy improving the BER performance with a given amount
of computational complexity and an efficient way to design LDPC codes depending on the structure of
JDD strategy. Thus, there exist strong needs for a systematic and efficient design procedure of LDPC
codes and JDD strategy for coded massive MIMO systems.

In this paper, we design the LDPC coded massive MIMO system with an iterative JDD algorithm,
where the suboptimal FG-GAI BP detection is considered. We represent the LDPC coded massive
MIMO system by a factor graph composed of observation nodes, middle nodes, variable nodes and
check nodes connected through edges, and we define iterative updating rules for messages flowing
over the factor graph of JDD. We propose an analysis tool for investigating the EXIT behavior of JDD,
by which the density evolution of messages is analyzed and a 3-D (three-dimensional) EXIT chart
visualization is obtained. Based on the proposed EXIT analysis, we design jointly irregular LDPC
codes and the JDD strategy for the coded massive MIMO system to attain the lowest BER with a given
amount of computational complexity. In the LDPC code design, we include an additional constraint
regarding the placement of edges between variable nodes and check nodes in a practical point of view.
It is observed that the coded massive MIMO system equipped with the proposed LDPC codes and the
proposed JDD strategy has a lower BER performance than that equipped with conventional LDPC
codes and conventional JDD strategy. The performance gain of the proposed scheme over conventional
schemes are noticeable, especially when a low amount of computational complexity is allowed for the
receiver of the coded massive MIMO system.

This paper is organized as follows. In Section 2, we present the model for coded massive MIMO
system. In Section 3, we introduce the operation of JDD, propose the EXIT analysis tool for JDD,
and analyze the EXIT behavior of JDD of the LDPC coded massive MIMO system. In Section 4,
we design LDPC codes and the JDD strategy by using the proposed EXIT analysis tool. In Section 5,
we present BER performances of the proposed LDPC coded massive MIMO system in various points
of view and compare those with conventional ones. Finally, we conclude this paper in Section 6.
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Notations

• nT : Number of transmit antennas.
• nR: Number of receive antennas.
• Nch: Total number of channel uses required to transmit all symbols.
• C: Complex number.
• R: Real number.
• A: Set of values for complex transmit symbols.
• Ā: Set of values for real-valued transmit symbols.
• Mo: Modulation order of complex transmit symbols, where Mo is the cardinality of A.
• x(l): Transmit symbol vector at the lth channel use, l = 1, 2, · · · , Nch, where x(l) ∈ AnT×1.
• y(l): Received signal vector at the lth channel use, where y(l) ∈ CnR×1.
• w(l): Additive noise vector at the lth channel use, where w(l) ∈ CnR×1.
• H(l): MIMO channel gain matrix at the lth channel use, where H(l) ∈ CnR×nT .
• x̄(l), ȳ(l), w̄(l), H̄(l): Real-valued representations of x(l), y(l), w(l) and H(l), respectively, where

x̄(l) ∈ Ā2nT×1, ȳ(l) ∈ R2nR×1, w̄(l) ∈ R2nR×1, H̄(l) ∈ R2nR×2nT .

• x̄(l)i , ȳ(l)i , w̄(l)
i : The ith entry of x̄(l), ȳ(l), w̄(l), respectively.

• h̄(l)ij : The (i, j)th entries of H̄(l).
• <{·}: Real part of a complex value.
• ={·}: Imaginary part of a complex value.
• E{·}: Expectation.
• Var{·}: Variance.
• DETl : Detector node corresponding to the lth channel use.
• y\i: Vector obtained by excluding the ith entry of y.
• Ng: Number of global JDD iterations.
• Ndet: Number of detection iterations in one global iteration.
• Ndec: Number of decoding iterations in one global iteration.
• I(U; X): Mutual information between U and X.

2. Modeling of LDPC Coded Massive MIMO System

Consider a massive MIMO system with nT transmit antennas and nR receive antennas. A K-bit
information sequence b is encoded to a N-bit LDPC codeword u with the code rate of R = K/N. Then,
N coded bits are modulated as Mo-ary QAM symbols to be transmitted by nT transmit antennas using
a spatial multiplexing over Nch channel uses. Note that nT symbols are transmitted at each channel
use resulting in Nch = d N

nT log2 Mo
e. The MIMO channel at the lth channel use is expressed as

y(l) = H(l)x(l) + w(l), l = 1, 2, · · · , Nch, (1)

where entries of w(l) are independent and identically distributed (i.i.d.) zero-mean circular symmetric
complex white Gaussian with variance of σ2, and entries of H(l) are i.i.d. circular symmetric complex
Gaussian with zero mean and unit variance. The real-valued representation of Equation (1) is written by

ȳ(l) = H̄(l)x̄(l) + w̄(l), (2)
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where

ȳ(l) =

<{y(l)
}

=
{

y(l)
} ∈ R2nR×1, x̄(l) =

<{x(l)
}

=
{

x(l)
} ∈ Ā2nT×1,

w̄(l) =

<{w(l)
}

=
{

w(l)
} ∈ R2nR×1, H̄(l) =

<{H(l)
}
−=

{
H(l)

}
=
{

H(l)
}

<
{

H(l)
}  ∈ R2nR×2nT .

The receiver of massive MIMO system with the real-valued representation given in Equation (2)
can be expressed by a bipartite graph shown in Figure 1. The receiver consists of a detector and
a decoder which exchange messages with each other iteratively by joint detection and decoding.
The detector is composed of Nch detector nodes, DETl , l = 1, · · · , Nch, while the decoder is composed
of N variable nodes, v1, · · · , vN , and N − K check nodes, c1, · · · , cN−K. Each detector node DETl is
composed of 2nR observation nodes, o(l)1 , · · · , o(l)2nR

, and 2nT middle nodes, m(l)
1 , · · · , m(l)

2nT
, connected

through edges. Each middle node is connected to log2
√

Mo variable nodes, where each real-valued
symbol is generated from log2

√
Mo bits. We define variable super-nodes, v1, · · · , vNch , each of which

is a group of variable nodes associated with symbols transmitted at each channel use. Signals ȳ(1), · · · ,
ȳ(Nch) received over Nch channel uses are input to detector nodes DET1, · · · , DETNch , respectively.
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Figure 1. Receiver structure of LDPC coded massive MIMO system.

3. Joint Detection and Decoding for LDPC Coded Massive MIMO System

3.1. Operation of Joint Detection and Decoding

We consider an iterative JDD process employing a low-complexity detection algorithm based
on FG-GAI BP [22] and a sum-product decoding algorithm. One JDD iteration is composed of Ndet
detection iterations followed by Ndec decoding iterations, where we call a JDD iteration as a global
iteration. Let us consider the lth channel use. Then, Equation (2) can be written as
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ȳ(l)i =
2nT

∑
j=1

h̄(l)ij x̄(l)j + w̄(l)
i , i = 1, · · · , 2nR. (3)

Each observation node o(l)i obtains the information of x̄(l)k , k = 1, · · · , 2nT , from ȳ(l)i by regarding

terms associated with x̄(l)k , j 6= k, as interferences. For this purpose, we define z(l)ik , ∑2nT
j=1,j 6=k h̄(l)ij x̄(l)j +

w̄(l)
i as the interference plus noise when detecting the symbol x̄(l)k and rewrite Equation (3) as

ȳ(l)i = h̄(l)ik x̄(l)k + z(l)ik . (4)

In the case of using a massive number of transmit antennas, we can approximate z(l)ik as a Gaussian
random variable [22] with the mean µ

z(l)ik
and the variance σ2

z(l)ik

, where

µ
z(l)ik

= E{z(l)ik } =
2nT

∑
j=1,j 6=k

h̄(l)ij E{x̄(l)j } (5)

and

σ2
z(l)ik

= Var{z(l)ik } =
2nT

∑
j=1,j 6=k

(
h̄(l)ij

)2
Var{x̄(l)j }+

σ2

2
. (6)

The likelihood of x̄(l)k at each observation node o(l)i is approximately obtained by using the

Gaussian approximation of z(l)ik as

Pr{ȳ(l)i |H̄
(l), x̄(l)k = s} ≈ 1√

2πσ2
z(l)ik

exp

− (ȳ(l)i − h̄(l)ik s− µ
z(l)ik

)2

2σ2
z(l)ik

 , (7)

where s ∈ Ā. Note that µ
z(l)ik

and σ2
z(l)ik

are computed as

µ
z(l)ik

=
2nT

∑
j=1,j 6=k

h̄(l)ij

(
∑
s∈Ā

s · Pr(i){x̄(l)j = s}
)

(8)

and

σ2
z(l)ik

=
2nT

∑
j=1,j 6=k

(
h̄(l)ij

)2
{

∑
s∈Ā

s2 · Pr(i){x̄(l)j = s} −
(

∑
s∈Ā

s · Pr(i){x̄(l)j = s}
)2}

+
σ2

2
, (9)

where Pr(i){x̄(l)j = s} denotes a priori probability of x̄(l)j at the observation node o(l)i . The extrinsic

probability of x̄(l)k at each observation node o(l)i is obtained as [22]

Pr{x̄(l)k = s|H̄(l), ȳ(l)
\i } = κ

2nR

∏
j=1,j 6=i

Pr{ȳ(l)j |H̄
(l), x̄(l)k = s} · Pr{x̄(l)k = s}, (10)

where κ is a constant. As simple notations, we let α
(l)
ik (s) and β

(l)
ki (s) denote the likelihood and

the extrinsic probability, respectively, of x̄(l)k = s at the observation node o(l)i , i.e., α
(l)
ik (s) =

Pr{ȳ(l)i |H̄
(l), x̄(l)k = s} and β

(l)
ki (s) = Pr{x̄(l)k = s|H̄(l), ȳ(l)

\i }.
In the iterative process, the extrinsic probability replaces the role of a priori probability. In other

words, Pr(i){x̄(l)j = s} in Equations (8) and (9) are replaced by β
(l)
ji (s). Then, α

(l)
ik (s) is computed at the
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observation node o(l)i by using β
(l)
ji (s), j 6= k, via µ

z(l)ik
and σ2

z(l)ik

based on Equations (7)–(9) and delivered

to the middle node m(l)
k . Note that β

(l)
ki (s) is computed at the middle node m(l)

k by using α
(l)
jk (s), j 6= i,

as in Equation (10), and delivered to the observation node o(l)i . Consequently, α
(l)
ik (s) and β

(l)
ki (s) are

updated in a recursive manner through detection iterations.
At the end of detection iterations, the log-likelihood ratios (LLR) of coded bits are computed at

middle nodes in the following manner and delivered to the decoder. We suppose that a variable node
v = vr represents the tth bit in the bit-stream generating x̄(l)k , which results in r = (l− 1) · nT log2 Mo +

(k − 1) · log2
√

Mo + t. Then, the LLR of the coded bit ur corresponding to the variable node vr is

defined by Lvr = log Pr{ur=0}
Pr{ur=1} and obtained at the middle node m(l)

k as [22]

Lvr = log
∑s∈S−t

Pr{x̄(l)k = s|H̄(l), ȳ(l)}

∑s∈S+t
Pr{x̄(l)k = s|H̄(l), ȳ(l)}

= log
∑s∈S−t ∏2nR

i=1 α
(l)
ik (s)

∑s∈S+t ∏2nR
i=1 α

(l)
ik (s)

, (11)

where S−t = {s| is the tth bit of a bit-stream generating a symbol s is 0} and S+t = {s| is the tth bit

of a bit-stream generating a symbol s is 1}. In the last equality of Equation (11), we use Pr{x̄(l)k =

s|H̄(l), ȳ(l)} ∝ ∏2nR
i=1 Pr{ȳ(l)i |H̄

(l), x̄(l)k = s}. The messages Lvr obtained at middle nodes are delivered
to the decoder to be used in the sum-product decoding.

Next, consider the operation of sum-product decoding. Let Lvrc and Lcvr denote the message
flowing from the variable node vr to the check node c and the message flowing from the check node c
to the variable node vr, respectively. These messages are updated in an iterative manner by [29,30]

Lvrc = Lvr + ∑
c′∈Cvr \c

Lc′vr (12)

and

Lcvr = ∏
v′∈Vc\vr

sign(Lv′c) · φ

 ∑
v′∈Vc\vr

φ (|Lv′c|)

 , (13)

where φ(x) = log( exp(x)+1
exp(x)−1 ). Note that Cvr\c denotes the set of check nodes except c connected to the

variable node vr and Vc\vr denotes the set of variable nodes except vr connected to the check node
c. At the end of decoding iterations, the LLR message of the tth bit in the bit-stream generating x̄(l)k

is computed as L(l)
k (t) = ∑c∈Cvr

Lcvr and delivered to the middle node m(l)
k in the detector. At the

beginning of the next detection iteration, the probability Pr{x̄(l)k = s} is computed at the middle node

m(l)
k by

Pr{x̄(l)k = s} =
log2
√

Mo

∏
t=1

exp
(
(1− s(t)) · L(l)

k (t)
)

1 + exp
(

L(l)
k (t)

) , (14)

and used in the detector as in Equation (10), where s(t) denotes the value of the tth bit in the bit-stream
generating a symbol s.

After Ng global iterations, the decision on bits is made such that the coded bit ur is estimated

as 1 if Lvr + L(l)
k (t) < 0 and as 0 otherwise, where r = (l − 1) · nT log2 Mo + (k− 1) · log2

√
Mo + t.

The overall procedure of JDD is presented in Algorithm 1 and the FG-GAI BP detection is summarized
in Algorithm 2. Message flows between component nodes of the JDD are illustrated in Figure 2.
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Algorithm 1: Joint Detection and Decoding (JDD).

1 Initialize : β
(l)
ki (s) =

1√
Mo

, ∀l, i, k, s, Pr{x̄(l)k = s} = 1√
Mo

, ∀l, k, s, and Lcv = 0, ∀c, v.

2 for l′ = 1 to Ng do
3 for l = 1 to Nch do
4 Perform FG-GAI BP detection (see Algorithm 2).

5 Compute Lv, ∀v, by Equation (11).
6 for l′′ = 1 to Ndec do
7 Update Lvc and Lcv, ∀v, c, by Equation (12) and (13), respectively.

8 Compute Pr{x̄(l)k = s}, ∀l, k, s, by Equation (14).

9 Determine the value of coded bit corresponding to v, ∀v

Algorithm 2: FG-GAI BP detection.

1 for m = 1 to Ndet do
2 for i = 1 to 2nR do

3 ξµzi
← ∑2nT

j=1 h̄(l)ij ·∑s∈Ā

(
s · β(l)

ji (s)
)

4 ξσ2
zi
← ∑2nT

j=1

(
h̄(l)ij

)2
·
{

∑s∈Ā

(
s2 · β(l)

ji (s)
)
−
(

∑s∈Ā s · β(l)
ji (s)

)2 }
+ σ2

2

5 for k = 1 to 2nT do

6 µzik ← ξµzi − h̄(l)ik ·∑s∈Ā

(
s · β(l)

ki (s)
)

7 σ2
zik
← ξσ2

zi
−
(

h̄(l)ik

)2
·
{

∑s∈Ā

(
s2 · β(l)

ki (s)
)
−
(

∑s∈Ā s · β(l)
ki (s)

)2 }
8 α

(l)
ik (s)← 1√

2πσ2
zik

exp
(
− (ȳ(l)i −h̄(l)ik s−µzik )

2

2σ2
zik

)
, ∀s ∈ Ā.

9 for k = 1 to 2nT do
10 for i = 1 to 2nR do
11 β

(l)
ki (s)← ∏2nR

j=1,j 6=i α
(l)
jk (s) · Pr{x̄(l)k = s}, ∀s ∈ Ā

Figure 2. Message passing in the JDD of receiver for LDPC coded massive MIMO system.
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Let us think about the computational complexity of FG-GAI BP detection in terms of the number of
multiplications. We focus on one detection iteration for one channel use with a given modulation. It is
easily inferred from Algorithm 2 that the FG-GAI BP detection requires a computational complexity
of O (nTnR). For a brief comparison, we consider some other SISO MIMO detectors such as BP
detector [21], SISO MMSE detector, tree-searching detector such as sphere decoding (SD) aided max-log
method [26] and subspace marginalization with interference suppression (SUMIS) detector [26]. These
detectors require computational complexities of O

(
n2

TnR
)
. It is clear that the FG-GAI-BP detector

requires lower computational complexity than other SISO MIMO detectors under comparison.

3.2. Analysis of Joint Detection and Decoding

We analyze the behavior of JDD in the receiver of coded massive MIMO system in terms of mutual
information transfer characteristics, so-called EXIT characteristics, in component units. We focus on
the mutual information between coded bits generating transmit symbols and corresponding message
variables. In fact, α

(l)
ik (s) and β

(l)
ki (s) at the observation node o(l)i contain information regarding

the transmit symbol x̄(l)k . Thus, for the bit-level EXIT analysis mentioned above, we define new
LLR messages of coded bits at observation nodes. Let us consider the tth bit of a coded bit-stream
mapped to x̄(l)k and define two LLR messages of this bit at the observation node o(l)i . The first LLR

is L(l)
ki (t) = log

∑s∈S−t
β
(l)
ki (s)

∑s∈S+t
β
(l)
ki (s)

sent from m(l)
k to o(l)i , and the second LLR is L(l)

ik (t) = log
∑s∈S−t

α
(l)
ik (s)

∑s∈S+t
α
(l)
ik (s)

sent

from o(l)i to m(l)
k , where k = 1, · · · , 2nT . We let Lin

o and Lout
o denote random variables representing

L(l)
ki (t) and L(l)

ik (t), respectively, for all k, i, t, and let U denote the corresponding coded bit. We suppose
all LLR messages are independent and normally distributed. For each observation node, we define
IOA = I(U; Lin

o ) and IOE = I(U; Lout
o ). We define IVA = I(U; Lcv) and IVE = I(U; Lvc) at variable

nodes, where Lcv and Lvc are incoming and outgoing messages at variable nodes, respectively. We also
define ICA = I(U; Lvc) and ICE = I(U; Lcv) at check nodes, where Lvc and Lcv are incoming and
outgoing messages at check nodes, respectively. Allowing slight abuse of notation, we use IVA(dc) and
ICE(dc) to denote the mutual information between U and Lcv delivered from degree-dc check nodes to
a variable node. We also use IVE(dv) and ICA(dv) to denote the mutual information between U and
Lvc delivered from degree-dv variable nodes to a check node. We depict the resultant iterative JDD
process represented by transfer blocks of mutual information as in Figure 3.

Figure 3. The JDD process in terms of EXIT characteristics.

Consider a degree-dv variable node that is connected to dv check nodes and 2nR observation nodes
via a corresponding middle node. The variable node sums up all incoming messages except one from
a target node and sends the result to the target node. Thus, Lin

o is obtained by summing up 2nR − 1
copies of Lout

o and dv copies of Lcv. It follows that the variance of Lin
o is obtained by adding the variance

of Lout
o multiplied by 2nR − 1 and the variance of Lcv multiplied by dv. By defining J(σX) as [33]

J(σX) = 1−
∫ ∞

−∞

e−(ξ−σ2
X/2)2/2σ2

X√
2πσ2

X

· log2[1 + e−ξ ]dξ, (15)
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we obtain I(U; X) = J(σX), where σ2
X is the variance of a normally distributed random variable X.

Then, IOA is obtained as a function of dv as

IOA(dv)= J
(√

(2nR − 1)·[J−1 (IOE(dv))]
2
+ dv · [J−1 ( ĪVA)]

2
)

, (16)

where ĪVA = ∑
dc,max
dc=2 ρdc · IVA(dc) is the average of IVA(dc) over dc, ρdc denotes the fraction of edges that

are connected to check nodes of degree dc, and dc,max denotes the maximum degree of check node.
Let us define the EXIT function between IOA and IOE as

IOE(dv) = fO

(
IOA(dv),

Eb
N0

)
, (17)

where IOE is also a function of dv due to the dependency of IOA on dv. Note that fO(·) is obtained
by Monte Carlo simulation [33]. The LLR message Lvc sent from the variable node to check nodes
is obtained by summing up 2nR copies of Lout

o and dv − 1 copies of Lcv. Then, the variance of Lvc is
obtained by adding the variance of Lout

o multiplied by 2nR and the variance of Lcv multiplied by dv − 1.
It follows that

IVE(dv)= J
(√

2nR · [J−1 (IOE(dv))]
2
+ (dv − 1)·[J−1 ( ĪVA)]

2
)

. (18)

In the case of irregular distribution of dv, we define averages of IVE(dv) and IOE(dv) over dv as

ĪVE =
dv,max

∑
dv=2

λdv · IVE(dv) (19)

and

ĪOE =
dv,max

∑
dv=2

λdv · IOE(dv), (20)

respectively, where λdv denotes the fraction of edges that are connected to variable nodes of degree dv

and dv,max denotes the maximum degree of variable node.
Let us consider a degree-dc check node and define the EXIT function from ĪCA to ICE as [33]

ICE(dc) ≈ 1− J
(√

dc − 1 · J−1(1− ĪCA)
)

, (21)

where ĪCA = ∑
dv,max
dv=1 λdv · ICA(dv) is the average of ICA(dv) over dv. In the case of irregular distribution

of dc, we define the average of ICE(dc) over dc as

ĪCE =
dc,max

∑
dc=2

ρdc · ICE(dc). (22)

The density evolution of messages flowing in the JDD process in terms of EXIT characteristics is
summarized in Algorithm 3.

We can obtain the 3-D EXIT chart of JDD process by using Equations (16)–(22). The EXIT surface
for variable nodes is obtained by using Equations (18)–(20). The EXIT surface for check nodes is
obtained by stretching along the ĪOE-axis the 2-D EXIT function from ĪCA to ĪCE obtained by Equations
(21) and (22). As an example, we plot in Figure 4 the 3-D EXIT chart of JDD process for (3, 6)-regular
LDPC coded massive MIMO systems with Ndet = 1 and Ndec = 1, where coded bits are 4-QAM
modulated and transmitted over 16× 16 MIMO channel. We also plot in Figure 4 the JDD trajectory
obtained by Algorithm 3, where the update for ĪOE is computed by Equations (16), (17) and (20). It is
observed that the JDD trajectory is formed between two EXIT surfaces. If the JDD trajectory approaches
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a point with ĪVE = 1 at a certain Eb/N0, this implies that the JDD converges and the decoding succeeds
at this Eb/N0. The minimum value of Eb/N0 resulting in the JDD trajectory approaching ĪVE = 1 is
called the threshold. We can find the threshold value of LDPC coded massive MIMO system by using
Algorithm 3 and visualize the JDD behavior by using the 3-D EXIT chart.

Algorithm 3: Density evolution in terms of EXIT characteristics.

1 Initialize: ĪVA = 0 and IOE(dv) = 0, ∀dv

2 for l′ = 1 to Ng do
3 for dv = 2 to dv,max do
4 for m = 1 to Ndet do

5 IOE(dv)← fO

(
J
(√

(2nR − 1) · [J−1 (IOE(dv))]
2
+ dv · [J−1 ( ĪVA)]

2
)

, Eb
N0

)
6 ĪOE ← ∑dv λdv IOE(dv)

7 for l′′ = 1 to Ndec do

8 ĪVE ← ∑
dv,max
dv=1 λdv · J

(√
2nR · [J−1 (IOE(dv))]

2
+ (dv − 1) · [J−1 ( ĪVA)]

2
)

9 ĪCA ← ĪVE

10 ĪCE ← ∑
dc,max
dc=1 ρdc ·

(
1− J

(√
dc − 1 · J−1(1− ĪCA)

))
11 ĪVA ← ĪCE

0.07
0.06

0.05
0.04

ĪOE

0.03
0.02

0.010

0.2

ĪV A, ĪCE

0.4

0.6

0.8

0

0.2

0.4

0.8

1

0.6

1

Ī
V
E
,
Ī
C
A

EXIT surface for check node

EXIT surface for variable node

JDD trajectory

updated by using (16), (17) and (20)

Figure 4. The 3-D EXIT chart and trajectory of JDD process for (3, 6)-regular LDPC coded massive
MIMO system with 4-QAM over 16× 16 MIMO channel at Eb/N0 = 5 [dB], where ĪOE denotes the
mutual information per observation node.

4. Design of LDPC Coded Massive MIMO System

In general, LDPC codes are designed through two steps: the optimization of degree distributions
and the placement of edges between variable nodes and check nodes. Degree distributions of variable
nodes and check nodes from the edge perspective are represented in the form of polynomials as [29]

λ(x) =
dv,max

∑
dv=2

λdv xdv−1 and ρ(x) =
dc,max

∑
dc=2

ρdc xdc−1, (23)
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respectively. Then, the code rate R is given by [29]

R(λ, ρ) = 1−
∑

dc,max
dc=2 ρdc /dc

∑
dv,max
dv=2 λdv /dv

, (24)

where λ = {λ2, · · · , λdv,max} and ρ = {ρ2, · · · , ρdc,max}. In the first step of designing LDPC codes,
we first determine degree distributions to maximize the code rate guaranteeing the convergence of
JDD at a given Eb/N0 by using the density evolution algorithm. By repeating the same procedure for
various values of Eb/N0, we find the smallest Eb/N0 resulting in the maximum code rate exceeding
the target code rate. Such Eb/N0 is called the threshold, and the corresponding degree distributions are
considered optimal. In the second step of LDPC code design, we place edges between variable nodes
and check nodes based on given optimal degree distributions to satisfy the following criteria [29]:

(a) Avoid short cycles involving only degree-2 variable nodes.
(b) Length-4 cycles need to be avoided.

These criteria can be satisfied by using the progressive edge growth (PEG) algorithm [40].
When we construct finite-length LDPC codes, the following criterion needs to be satisfied additionally:

(c) All degree-2 variable nodes need to represent only non-systematic bits.

Let Λ2 denote the number of degree-2 variable nodes. Then, Λ2 ≤ N − K, or equivalently,

λ2 ≤ 2
dc,max

∑
dc=2

ρdc /dc (25)

is a necessary condition to satisfy Criterion (c). Thus, we need to take into consideration the condition
in Equation (25) when determining degree distributions in the first step of LDPC code design.

Since the computational complexity is a major concern, we need to design the coded massive
MIMO system such that the error correction capability is maximized with a given amount of
computational complexity. As introduced above, one global iteration of JDD consists of Ndet detection
iterations and Ndec decoding iterations. We can speed up the convergence of JDD by controlling
the ratio of Ndet and Ndec in one global iteration. In Table 1, we list the approximate numbers of
multiplications and additions required to compute various messages in the JDD process, where we
assume that exp(·), log(·) and φ(·) are obtained in a look-up-table manner. Total approximate numbers
of operations required by Ng global iterations of JDD are listed in Table 2, which are also approximated
as functions of N if N is large enough. We obtain JDD trajectories of LDPC coded massive MIMO
system by using Algorithm 3 for different combinations of Ndet and Ndec, and plot the results in
Figure 5, where Mo = 4 and nT = nR = 16. For each trajectory, we specify the approximate number of
required multiplications. It is observed that JDD trajectories may converge to the same values of ĪVE
and ĪCE, resulting in the same BER performance, with different computational complexities depending
on the combination of Ndet and Ndec. This verifies the importance of the JDD strategy represented by
Ndet and Ndec to operate the JDD efficiently.
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Table 1. Computational complexities for computing messages in the detector and the decoder, where
d̄v and d̄c denote the average degree of variable nodes and check nodes, respectively.

Messages
Approximate Number of Operations

Addition Multiplication

αik(s) 4nTnR(2
√

Mo + 1) , ΘA
α 2nTnR(11

√
Mo + 4) , ΘM

α

βki(s) 0 8nTnR
√

Mo , ΘM
β

Lv (
√

Mo − 2)N , ΘA
v 4nTnR

√
Mo + N , ΘM

v

Pr{x̄l = s} nT
√

Mo log2 Mo + v̄N , ΘA
s 2nT

√
Mo(log2 Mo − 1) , ΘM

s

Lvc (2d̄v + 1)N , ΘA
vc 0

Lcv 2d̄c(N − K) , ΘA
cv 3d̄c(N − K) , ΘM

cv

Table 2. Total approximate number of operations required for overall JDD.

Operation Total Approximate Number of Operations

Addition Ng
[
Nch NdetΘA

α + ΘA
v + Ndec(ΘA

vc + ΘA
cv)
]
+ (Ng − 1)NchΘA

s
≈ d̄v/(nT log2 Mo)Ng N2 + {(8nR

√
Mo/ log2 Mo)Ndet + 2(d̄v + d̄c)Ndec}Ng N

Multiplication Ng

[
Nch

{
NdetΘM

α + (Ndet − 1)ΘM
β

}
+ ΘM

v + NdecΘM
cv

]
+ (Ng − 1)Nch

(
ΘM

s + ΘM
β

)
≈
(
30nR

√
Mo Ndet + (3d̄c(1− R) log2 Mo)Ndec

)
Ng N

0.035

0.03

0.025

0.02

ĪOE

0.015

0.010

0.2

ĪCE , ĪV A

0.4

0.6

0.8

1

0.8

0.6

0.4

0.2

0

1

Ī V
E
,
Ī C

A

1/ 1/ 198/ 1.1× 105N
10/ 1/ 192/ 1.1× 106N
1/ 10/ 42/ 2.8× 104N
1/ 20/ 35/ 2.7× 104N

Ndet/ Ndec/ Ng/ no. of multiplications

Figure 5. JDD trajectories of LDPC coded massive MIMO system with R = 1/2, nT = nR = 16 and
Eb/N0 = 1.50 [dB].

Let us focus on the number of multiplications for a simple analysis of computational complexity.
It is clear from Table 2 that the number of multiplications required for detection is much higher than
that for decoding, especially with large nT and nR. Thus, increasing Ndet results in much higher
computational complexity than increasing Ndec. It follows that increasing Ndet results in the significant
decrease of Ng to maintain the total amount of computational complexity. With a small Ng, the JDD
does not converge sufficiently so that a low value of threshold is not attained. As a result, we fix
Ndet = 1 and adjust Ndec to design the JDD strategy, where Ng is determined by Ndec with other
parameters given. We call the JDD with Ndet = Ndec = 1 the global iteration only (GIO) JDD.
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Consider a LDPC coded massive MIMO system using GIO JDD with Ng = NGIO
g as a reference

system. The degree distributions of LDPC codes and the JDD strategy in a proposed coded massive
MIMO system are determined in the following manner. First, we choose candidate values of Ndec
resulting in the number of multiplications equivalent to that of GIO JDD. For each Eb/N0, we perform
the following optimization for all candidate values of Ndec:

max
λ,ρ

R(λ, ρ)

s.t. ĪVE = 1 after running Algorithm 3,

λ2 ≤ 2
dc,max

∑
dc=2

ρdc /dc,

dc,max

∑
dc=2

ρdc =
dv,max

∑
dv=2

λdv = 1 with ρdc , λdv ≥ 0,

(26)

where the first constraint guarantees the convergence of JDD and the second constraint is used to
satisfy Criterion (c) introduced above. The lowest Eb/N0, at which there exist Ndec such that the
maximum R(λ, ρ) exceeds the target rate, is called the threshold and denoted by (Eb/N0)

∗. Degree
distributions and Ndec resulting in the lowest threshold are determined as optimal parameters of LDPC
codes and the JDD strategy, respectively. Then, we construct the parity check matrix of LDPC codes
based on optimally determined degree distributions by using the PEG algorithm.

5. Numerical Results

We considered LDPC coded massive MIMO systems over 16× 16, 64× 64 and 256× 256 channels
with code rates of R = 0.5 and 0.75. Coded bits were mapped to 4-QAM transmit symbols by
Gray-mapping. We considered a coded massive MIMO system using GIO JDD with an arbitrary NGIO

g
as a reference system, based on which the number of multiplications was evaluated as a function of N
from Table 2. Then, we chose candidate values of Ndec of the proposed JDD strategy such that the total
number of multiplications with Ndet = 1 was equivalent to that of GIO JDD, where Ng was determined
by Ndec with other given parameters. We solved the optimization problem in Equation (26) for each
Eb/N0 and Ndec by using the differential evolution algorithm [41]. We found degree distributions and
the value of Ndec resulting in the smallest threshold and the rate exceeding the target rate. Note that,
in determining degree distributions of LDPC codes, we used the concentrated check node degree
distribution [30], i.e., ρ(x) = ρdc xdc + (1− ρdc)xdc+1. We constructed the parity check matrix of LDPC
codes by using the degree distribution and the PEG algorithm. Then, we generated LDPC codes from
the obtained parity check matrix and performed BER simulations.

5.1. Convergence Speed of JDD Strategy

We show the benefit of using the proposed JDD strategy in view of the threshold with respect to
the amount of computational complexity. In Figure 6, we plot the threshold (Eb/N0)

∗ obtained by the
density evolution algorithm given in Algorithm 3 for the proposed JDD strategy and GIO JDD over 16×
16 channel with various numbers of multiplications. It was observed that the proposed JDD strategy
converged to the lowest threshold faster than GIO JDD. It was also observed that the proposed JDD
strategy resulted in a lower threshold than GIO JDD for a given amount of computational complexity.
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Figure 6. The threshold of the LDPC coded massive MIMO system with the proposed JDD strategy and
with the GIO JDD obtained by the density evolution algorithm given in Algorithm 3, where R = 0.5
and R = 0.75 were considered with nT = nR = 16.

5.2. Performance Comparison without Complexity Constraint

We next considered the JDD without constraint on the amount of computational complexity.
We investigated the threshold and BER obtained with different values of Ndec, where the case of
Ndec = 1 corresponded to the reference system using GIO JDD. In Table 3, we list optimal degree
distributions of LDPC codes and resultant thresholds for some values of R, Ndec and dv,max with
nT = nR = 16. It was observed that the proposed JDD strategy and the GIO JDD resulted in the same
threshold for given dv,max and R.

In Figure 7, we plot BER performances of coded massive MIMO systems with N = 64,000 over
16× 16 channel for some values of Ndec and sufficiently large Ng. The degree distributions listed
in Table 3 corresponding to dv,max = 24 and dv,max = 20 for R = 0.5 and R = 0.75, respectively,
were used for generating LDPC codes. We used Ng = 200 and Ng = 85 for Ndec = 1 and Ndec = 15,
respectively, when R = 0.5 and we used Ng = 100 and Ng = 90 for Ndec = 1 and Ndec = 5, respectively,
when R = 0.75. It was observed that the proposed JDD strategy and GIO JDD showed similar BER
performances if a sufficiently high amount of computational complexity was allowed. This result
agreed with the threshold analysis presented in Figure 6 and Table 3.



Entropy 2019, 21, 231 15 of 21

Table 3. Optimal degree distributions of LDPC codes in a coded massive MIMO system over 16× 16
channel for some values of Ndec, dv,max and R. We also specified the threshold ( Eb

N0
)∗dB, the capacity

Γ∗dB and their gap, where the capacity of MIMO channel with Mo-ary input was obtained by using a
formula given in [34].

R 0.5 0.75
dv,max 12 24 12 24 12 20 12 20

λ2 0.31177 0.26138 0.31162 0.26137 0.17195 0.14485 0.17195 0.14485
λ3 0.39520 0.30763 0.39486 0.30766 0.76044 0.62119 0.76044 0.62119
λ8 0.12685 0.12684
λ12 0.29304 0.29352 0.06761 0.06761
λ20 0.23396 0.23396
λ24 0.30414 0.30413
ρ6 0.54707 0.54404
ρ7 0.45293 0.31868 0.45596 0.31868
ρ8 0.68132 0.68132
ρ11 0.34890 0.34889
ρ12 0.65110 0.65111
ρ13 0.18173 0.18173
ρ14 0.81827 0.81827
Ndec 1 1 15 15 1 1 5 5

( Eb
N0

)∗dB 1.67 1.45 1.67 1.45 3.40 3.32 3.40 3.32
Γ∗dB 1.35 3.12

( Eb
N0

)∗dB − Γ∗dB 0.32 0.10 0.32 0.10 0.28 0.20 0.28 0.20
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Figure 7. BER performances of LDPC coded massive MIMO systems over 16× 16 channel with various
Ndec and sufficiently high amount of computational complexity, where N = 64,000.

5.3. Performance Comparison with Complexity Constraint

We then considered the JDD with the finite amount of computational complexity. In Tables 4
and 5, we list optimal degree distributions of LDPC codes in the reference system (GIO JDD) and the
proposed system. It was observed that the proposed JDD strategy resulted in a lower threshold than
GIO JDD. We performed BER simulations of rate-0.5 LDPC codes with N = 4096 and rate-0.75 LDPC
codes with N = 10,240, which were constructed from the degree distributions presented in Tables 4 and
5, respectively. When R = 0.5, we used degree distributions and Ndec corresponding to dv,max = 24 for
both GIO JDD and the proposed JDD strategy. When R = 0.75, we used degree distributions and Ndec
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corresponding to dv,max = 3 and dv,max = 20 for GIO JDD and the proposed JDD strategy, respectively.
In Figure 8, we plot BER performances of the LDPC coded massive MIMO system equipped with
the proposed JDD strategy and with GIO JDD over 16× 16 channel. It was observed that using the
proposed JDD strategy resulted in a lower BER than using GIO JDD. This result agreed with the
threshold analysis presented in Tables 4 and 5. Consequently, the jointly designed LDPC codes and
JDD strategy could result in the lower BER of coded massive MIMO system by using the equivalent
amount of computational complexity.

Table 4. Optimal parameters of LDPC codes and JDD strategy for a coded massive MIMO system
with R = 0.5 over 16× 16 and 64× 64 channels, where GIO JDD with NGIO

g = 15 was used in a
reference system.

Channels 16 × 16 64× 64
JDD Strategy GIO Proposed GIO Proposed

dv,max 3 24 12 24 3 24 12 24
λ2 0.30583 0.25299 0.30486 0.25777
λ3 1.0 0.98521 0.38338 0.33001 1.0 0.98401 0.37864 0.32276
λ9 0.06158 0.05931
λ12 0.31079 0.31650
λ24 0.01479 0.35542 0.01599 0.36016
ρ6 0.99762 0.90687 0.42250 0.98853 0.89048 0.40215
ρ7 0.00238 0.09313 0.57750 0.18756 0.01147 0.10952 0.59785 0.21765
ρ8 0.81244 0.78235

Ndec Ng 1 15 1 15 21 11 18 11 1 15 1 15 35 13 29 13
( Eb

N0
)∗dB 3.24 3.23 1.91 1.86 3.20 3.19 1.82 1.69

Γ∗dB 1.35 1.35
( Eb

N0
)∗dB − Γ∗dB 1.89 1.88 0.56 0.51 1.85 1.84 0.47 0.34

Table 5. Optimal parameters of LDPC codes and JDD strategy for a coded massive MIMO system
with R = 0.75 over 16× 16 and 256× 256 channels, where GIO JDD with NGIO

g = 15 was used in a
reference system.

Channels 16 × 16 256 × 256
JDD Strategy GIO Proposed GIO Proposed

dv,max 3 3 20 3 3 20
λ2 0.00339 0.18128 0.15084 0.00772 0.18124 0.15360
λ3 0.99661 0.81872 0.65081 0.99228 0.81876 0.66624
λ20 0.19835 0.18017
ρ11 0.96429 0.96186
ρ12 1.0 0.03571 1.0 0.03814
ρ13 0.72658 0.97718
ρ14 0.27342 0.02282

Ndec Ng 1 15 11 13 9 13 1 15 76 14 67 14
( Eb

N0
)∗dB 4.20 3.66 3.65 4.10 3.45 3.44

Γ∗dB 3.12 3.12
( Eb

N0
)∗dB − Γ∗dB 1.08 0.54 0.53 0.98 0.33 0.32

As shown in Figures 9 and 10, we compared BER performances of the proposed LDPC coded
massive MIMO system and the conventional system with various numbers of antennas, where the
conventional system was equipped with the conventional LDPC codes and GIO JDD [38]. As the
proposed system, we constructed the rate-0.5 LDPC codes with N = 4096 using the degree distribution
corresponding to dv,max = 24 in Table 4 and the rate-0.75 LDPC codes with N = 2048 using the degree
distribution corresponding to dv,max = 3 in Table 5. It was observed (Figures 9 and 10) that the coding
gain of the proposed system over the conventional one at the BER of 10−5 over 16× 16 channel was
about 2.3 dB and 1.4 dB for R = 0.5 and R = 0.75, respectively.
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Figure 8. BER performances of LDPC coded massive MIMO systems equipped with the proposed JDD
strategy and with GIO JDD over 16×16 channel, where N = 4096 and N = 10,240 with R = 0.5 and
R = 0.75, respectively, were considered.
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Figure 9. BER performances of coded massive MIMO systems with the proposed LDPC codes and
JDD strategy and with the conventional LDPC codes and GIO JDD, where R = 0.5 and N = 4096 over
16× 16 and 64× 64 channels were considered.
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Figure 10. BER performances of coded massive MIMO systems with the proposed LDPC codes and
JDD strategy and with the conventional LDPC codes and GIO JDD, where R = 0.75 and N = 2048 over
16× 16 and 256× 256 channels were considered.

6. Conclusions

In this study, we designed the LDPC coded massive MIMO system equipped with an iterative JDD
algorithm using the low-complexity FG-GAI BP detection and the sum-product decoding. We defined
a factor graph representation of the LDPC coded massive MIMO system and defined updating rules
for messages flowing in the JDD process. We proposed a 3-D EXIT analysis as an engineering tool
for investigating the behavior of iterative JDD algorithm of coded massive MIMO receiver. Based on
the EXIT analysis, we designed jointly irregular LDPC codes through the optimization of degree
distributions and the JDD strategy to achieve the lowest BER with a given amount of computational
complexity. The proposed 3-D EXIT analysis enables the efficient design of LDPC codes and JDD
strategy for coded massive MIMO system in a joint manner. We observed that the JDD strategy and
corresponding LDPC codes designed appropriately by using the proposed EXIT analysis shows a
faster convergence rate than a conventional JDD algorithm. Thus, the proposed scheme results in the
improved BER performance over the conventional one with the equivalent amount of computational
complexity. This result is meaningful especially when the computational complexity of coded massive
MIMO receiver is constrained to finite amount, which is a practical situation.

In addition to the results presented in this paper, we plan to work on the following issues as
future works.

• We will perform 3-D EXIT analysis for coded massive MIMO system equipped with various kinds
of MIMO detectors. Based on this, we plan to optimize the JDD strategy for each SISO MIMO
detector under consideration and correspondingly design LDPC codes. Then, we will compare
BER performances of coded massive MIMO systems using different MIMO detectors.

• We will study and analyze the influence of imperfect channel estimation on the performance
of LDPC coded massive MIMO system. It is hard to obtain the perfect channel estimation in
practice, so we need to investigate this issue thoroughly to utilize the proposed scheme in practical
communication systems.
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• We will work on the finite-length analysis of LDPC coded massive MIMO system. It is well
known that using channel codes with short to medium blocklength results in a gentle waterfall in
the BER curve [42–45]. Since practical communication systems use finite-length channel codes,
we need to study this issue as a future work for the practical application of the coded massive
MIMO technology.
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