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A nonlinear backstepping control is proposed for the coupled normal form of nonlinear systems.The proposedmethod is designed
by combining the sliding-mode control and backstepping control with a disturbance observer (DOB). The key idea behind the
proposed method is that the linear terms of state variables of the second subsystem are lumped into the virtual input in the first
subsystem. A DOB is developed to estimate the external disturbances. Auxiliary state variables are used to avoid amplification
of the measurement noise in the DOB. For output tracking and unmatched disturbance cancellation in the first subsystem, the
desired virtual input is derived via the backstepping procedure.The actual input in the second subsystem is developed to guarantee
the convergence of the virtual input to the desired virtual input by using a sliding-mode control. The stability of the closed-loop
is verified by using the input-to-state stable (ISS) property. The performance of the proposed method is validated via numerical
simulations and an application to a vehicle system based on CarSim platform.

1. Introduction

Control for nonlinear systems has attracted considerable
attention, and, therefore, various control methods have been
investigated for nonlinear systems. Control methods using
the Lyapunov function were proposed for nonlinear systems
[1–4]. Input-output linearization and feedback linearization
were proposed to transform nonlinear systems to the normal
form and to control the nonlinear systems [5, 6]. Sliding-
mode control techniques were developed for nonlinear sys-
tems owing to the decoupling and invariance properties [7,
8]. Control algorithms based on the singular perturbation
theory were developed for nonlinear systems involving fast
and slow dynamics [9, 10]. Backstepping method is one of
the breakthroughs for the control of nonlinear systems. This
method is a recursive procedure using a Lyapunov function
and a systematic design approach for special forms of the
nonlinear systems (the strict feedback form or the normal
form or both) [11]. It can guarantee global stability and
improvement of tracking and transient performances. In the

past decades, various backstepping methods were widely
used to solve the control problems of nonlinear systems. A
backstepping control method was developed to improve the
force control performance for an electro-hydraulic actuator
[12]. An adaptive control technique was implemented to the
backstepping controller for unknown disturbance or param-
eters [13]. An adaptive backstepping sliding-mode controller
was designed to improve the tracking performance in the
sliding and presliding phases [14]. In [15], an output feedback
nonlinear control was proposed for a hydraulic system
with mismatched modeling uncertainties; in this control,
an extended state observer (ESO) and a nonlinear robust
controller are synthesized via the backstepping method. A
recurrent fuzzy neural network backstepping control was
proposed for the prescribed output tracking performance
of nonlinear dynamic systems [16]. An adaptive robust
control using ESO was developed for the DC motor control
[17]. An ESO-based backstepping was proposed to improve
the output-tracking performance with external disturbance
using only output feedback [18]. Active disturbance rejection
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adaptive control schemes were proposed for both parametric
uncertainties and uncertain nonlinearities of the nonlinear
systems [19, 20]. An observer-based backstepping control
method using reduced lateral dynamics was developed for
autonomous lane-keeping system [21].

Let us consider a class of nonlinear systems coupled with
two normal form subsystems as follows:

𝑥̇1 = 𝑥2
...

𝑥̇𝑟−1 = 𝑥𝑟
𝑥̇𝑟 = 𝑓𝑟 (𝑥𝑎) + 𝑛∑

𝑖=𝑟+1

𝑎𝑖𝑥𝑖 + 𝑑1
𝑥̇𝑟+1 = 𝑥𝑟+2

...
𝑥̇𝑛−1 = 𝑥𝑛

𝑥̇𝑛 = 𝑓𝑛 (𝑥) + 𝑔 (𝑥) 𝑢 + 𝑑2
𝑦 = 𝑥1

(1)

where 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 = [𝑥𝑎, 𝑥𝑏]𝑇 ∈ R𝑛 is the
state variable vector, 𝑥𝑎 = [𝑥1, 𝑥2, . . . , 𝑥𝑟]𝑇 ∈ R𝑟, 𝑥𝑏 =[𝑥𝑟+1, 𝑥𝑟+2, . . . , 𝑥𝑛]𝑇 ∈ R𝑛−𝑟, 𝑦 = 𝑥1 denotes the output, 𝑎𝑛 is
nonzero constant, the input function 𝑔(𝑥) is always positive
or negative for all 𝑥(𝑡), and 𝑑1(𝑡) and 𝑑2(𝑡) are disturbances.
In this paper, this class of systems (1) is called the coupled
normal form in nonlinear systems. This nonlinear system (1)
is not in the general normal form because 𝑥𝑟+1 cannot be
regarded as the virtual input in 𝑥𝑟 dynamics. Furthermore,
the disturbance 𝑑1 is in 𝑥𝑟 dynamics. Thus, previous back-
stepping controlmethods cannot be used directly for tracking
control of these systems. Several methods were presented to
solve the control problem of nonlinear systems [22, 23]. In
[22], two nonlinear control techniques using backstepping
and sliding mode techniques were applied to an autonomous
microhelicopter. Recently, a robust nonlinear control was
developed for the synchronization control of cross-strict
feedback hyperchaotic systems [23]. Unfortunately, because
systems in [22, 23] havemulti-inputs, these techniques cannot
solve the control problems for the coupled normal form in a
nonlinear system (1).

In this paper, we propose a nonlinear backstepping
control for the coupled normal form of nonlinear systems.
The proposed method combines a sliding mode technique
and backstepping control with the disturbance observer
(DOB). The key idea of the proposed method is that the
terms ∑𝑛𝑖=𝑟+1 𝑎𝑖𝑥𝑖 are lumped into the virtual input in the
first subsystem. A DOB is developed to estimate the external
disturbances. Auxiliary state variables are used to avoid
amplification of the measurement noise in the DOB. For
output tracking and unmatched disturbance cancellation in
the first subsystem, the desired virtual input is derived via

the backstepping procedure. The actual input in the second
subsystem is developed to guarantee the convergence of the
virtual input to the desired virtual input by using a super
twisting algorithm (STA). The stability of the closed-loop
is proven by using the input-to-state stable (ISS) property.
The performance of the proposed method is validated via
numerical simulations and an application to a vehicle system
based on CarSim platform.

2. Disturbance Observer Design

In this paper, we describe the situation that satisfies the
following Assumptions 1 and 2.

Assumption 1. 𝑑1, 𝑑2 and their derivatives are also bounded.

In general, prior information about the derivative of the
disturbances is unknown but bounded, at least locally [24].
The unknown constants ̇𝑑1max

and ̇𝑑2max
exist such that

󵄨󵄨󵄨󵄨󵄨 ̇𝑑1󵄨󵄨󵄨󵄨󵄨 ≤ ̇𝑑1max󵄨󵄨󵄨󵄨󵄨 ̇𝑑2󵄨󵄨󵄨󵄨󵄨 ≤ ̇𝑑2max
. (2)

Assumption 2. Thepolynomial 𝑎𝑛𝑠𝑛−𝑟−1+𝑎𝑛−1𝑠𝑛−𝑟−2+. . .+𝑎𝑟+1
is Hurwitz.

Most real systems that are in the form of (1) satisfy
Assumption 2. For example, the lateral dynamics of a vehicle
with differential braking force input satisfy Assumption 2
[25]. Thus, this assumption is not strict for actual physical
systems.

From (1), the disturbances, 𝑑1 and 𝑑2, can be rewritten as

𝑑1 = 𝑥̇𝑟 − 𝑓𝑟 (𝑥𝑎) − 𝑛∑
𝑖=𝑟+1

𝑎𝑖𝑥𝑖
𝑑2 = 𝑥̇𝑛 − 𝑓𝑛 (𝑥) − 𝑔 (𝑥) 𝑢.

(3)

We define the estimations of the disturbances, 𝑑1 and 𝑑2. The
dynamics of 𝑑1 and 𝑑2 are designed as

̇̂𝑑1 = 1𝜀1 (𝑥̇𝑟 − 𝑓𝑟 (𝑥𝑎) − 𝑛∑
𝑖=𝑟+1

𝑎𝑖𝑥𝑖 − 𝑑1)
̇̂𝑑2 = 1𝜀2 (𝑥̇𝑛 − 𝑓𝑛 (𝑥) − 𝑔 (𝑥) 𝑢 − 𝑑2)

(4)

where 1/𝜀2 and 1/𝜀3 are the observer gains. The estimation
errors are defined as

𝑑1 = 𝑑1 − 𝑑1
𝑑2 = 𝑑2 − 𝑑2. (5)
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From, (3), (4), and (5), the estimation error dynamics can be
derived aṡ̃𝑑1 = ̇𝑑1 − ̇̂𝑑1

= ̇𝑑1 − 1𝜀1 (𝑥̇𝑟 − 𝑓𝑟 (𝑥𝑎) − 𝑛∑
𝑖=𝑟+1

𝑎𝑖𝑥𝑖 − 𝑑1)
= ̇𝑑1 − 1𝜀1 (𝑑1 − 𝑑1) = − 1𝜀1 𝑑1 + ̇𝑑1

̇̃𝑑2 = ̇𝑑2 − ̇̂𝑑2 = ̇𝑑2 − 1𝜀2 (𝑥̇𝑛 − 𝑓𝑛 (𝑥) − 𝑔 (𝑥) 𝑢 − 𝑑2)
= ̇𝑑2 − 1𝜀2 (𝑑2 − 𝑑2) = − 1𝜀2 𝑑2 + ̇𝑑2.

(6)

To suppress the bounded derivatives of the disturbances, the
high gains, i.e., the low values of 𝜀1 and 𝜀2, are required.
In practice, measurement noises do appear in sensors. The
dynamics of 𝑑1 and 𝑑2 (4) employ the derivative of the
state. If high observer gains are used, the noise is amplified
by the high gains. Thus, the observer is not practical for
implementation. To avoid the use of the derivative of the state,
we use the auxiliary state variables, 𝜉1, 𝜉2.
Theorem 3. With Assumption 1, given the auxiliary state
variables, 𝜉1, 𝜉2 such as

𝜉1 = 𝑑1 − 𝑥𝑟𝜀1
𝜉2 = 𝑑2 − 𝑥𝑛𝜀2

(7)

the dynamics of the auxiliary state variables are

̇𝜉1 = − 1𝜀1 (𝜉1 +
𝑥𝑟𝜀1 ) + 1𝜀1 (−𝑓𝑟 (𝑥𝑎) −

𝑛∑
𝑖=𝑟+1

𝑎𝑖𝑥𝑖)
̇𝜉2 = − 1𝜀2 (𝜉2 +

𝑥𝑛𝜀2 ) + 1𝜀2 (−𝑓𝑛 (𝑥) − 𝑔 (𝑥) 𝑢) .
(8)

Then, |𝑑𝑖(𝑡)| ≤ exp(−(1/2𝜀𝑖)𝑡)|𝑑𝑖(0)| + 2𝜀𝑖 ̇𝑑𝑖max
for 𝑖 ∈ [1, 2].

Proof. Differentiating the auxiliary state variables with
respect to time gives

̇𝜉𝑖 = ̇̂𝑑𝑖 − 𝑥̇𝑗𝜀𝑖 (9)

for 𝑖 ∈ [1, 2] and 𝑗 ∈ {𝑟, 𝑛}. From (1), (5), (7), and (8), the
disturbance estimation error dynamics are obtained as

̇̃𝑑𝑖 = − 1𝜀𝑖 𝑑𝑖 + ̇𝑑𝑖. (10)

In (10), the dynamics of 𝑑2𝑖 are
𝑑𝑑𝑡 (

𝑑2𝑖2 ) = − 1𝜀𝑖 𝑑2𝑖 + 𝑑 ̇𝑑𝑖
≤ − 12𝜀𝑖 𝑑2𝑖 −

12𝜀𝑖
󵄨󵄨󵄨󵄨󵄨𝑑𝑖󵄨󵄨󵄨󵄨󵄨 (󵄨󵄨󵄨󵄨󵄨𝑑𝑖󵄨󵄨󵄨󵄨󵄨 − 2𝜀𝑖 󵄨󵄨󵄨󵄨󵄨 ̇𝑑𝑖󵄨󵄨󵄨󵄨󵄨)

(11)

The following result is thus derived from (11), using Lemma
6.20 andTheorem C.2 in [11]:

󵄨󵄨󵄨󵄨󵄨𝑑𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ exp(− 12𝜀𝑖 𝑡)
󵄨󵄨󵄨󵄨󵄨𝑑𝑖 (0)󵄨󵄨󵄨󵄨󵄨 + 2𝜀𝑖 sup

0≤𝜏≤𝑡

󵄨󵄨󵄨󵄨󵄨 ̇𝑑𝑖 (𝜏)󵄨󵄨󵄨󵄨󵄨
≤ exp(− 12𝜀𝑖 𝑡)

󵄨󵄨󵄨󵄨󵄨𝑑𝑖 (0)󵄨󵄨󵄨󵄨󵄨 + 2𝜀𝑖 ̇𝑑𝑖max
.

(12)

The upper bound of |𝑑𝑖(∞)| thus decreases as 𝜀𝑖 gets smaller.

Remark 4. The proposed DOB (8) with the auxiliary state
variable (7) does not require the derivatives of states, i.e., 𝑥̇𝑟
and 𝑥̇𝑛, to obtain ̇𝑑1 and ̇𝑑2. Thus, if (7) and (8) are used to
estimate the disturbances instead of (4), amplification of the
measurement noise by the high gain can be reduced, such that
it is negligible in practice.

3. Sliding Mode Backstepping
Controller Design

In this paper, the control goal is to determine 𝑢 thatmakes the
output 𝑦 = 𝑥1 track the desired reference trajectory 𝑦𝑑 = 𝑥1𝑑 ,
which is assumed to have continuous derivatives up to the 𝑛th
order. The tracking error 𝑒𝑖 𝑖 ∈ [1, 𝑟] is defined as

𝑒1 = 𝑥1 − 𝑦𝑑
𝑒2 = 𝑥̇1 − ̇𝑦𝑑
𝑒3 = 𝑥̈1 − ̈𝑦𝑑

...
𝑒𝑟 = 𝑥(𝑟−1)1 − 𝑦(𝑟−1)𝑑 .

(13)

To eliminate the steady-state error, the integral error 𝑒0 is
defined as

𝑒0 = ∫𝑡
0
𝑒1 (𝜏) 𝑑𝜏. (14)

The error dynamics from 𝑒1 to 𝑒𝑟 can be written as

̇𝑒0 = 𝑒1
̇𝑒1 = 𝑒2
...

̇𝑒𝑟−1 = 𝑒𝑟
̇𝑒𝑟 = 𝑓𝑟 (𝑥𝑎) + 𝑛∑

𝑖=𝑟+1

𝑎𝑖𝑥𝑖 + 𝑑1 − 𝑦(𝑟)𝑑 .

(15)

The linear combination of the tracking errors, 𝑠1, is designed
in terms of the error

𝑠1 = 𝑒𝑟 + 𝑟−1∑
𝑖=0

𝜎𝑖𝑒𝑖 (16)
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where the coefficients 𝜎0, . . . , 𝜎𝑟−1 are chosen such that the
polynomial 𝑠𝑟 + 𝜎𝑟−1𝑠𝑟−1 + ⋅ ⋅ ⋅ + 𝜎0 is Hurwitz. From (15) and
(16), we obtain ̇𝑠1 as

̇𝑠1 = 𝑓𝑟 (𝑥𝑎) + 𝑛∑
𝑖=𝑟+1

𝑎𝑖𝑥𝑖 + 𝑑1 − 𝑦(𝑟)𝑑 + 𝑟−1∑
𝑖=0

𝜎𝑖𝑒𝑖+1. (17)

We define the terms, ∑𝑛𝑖=𝑟+1 𝑎𝑖𝑥𝑖, as the virtual input of the
first subsystem in (1):

𝑠2 = 𝑛∑
𝑖=𝑟+1

𝑎𝑖𝑥𝑖. (18)

Equation (17) then becomes

̇𝑠1 = 𝑓𝑟 (𝑥𝑎) + 𝑑1 − 𝑦(𝑟)𝑑 + 𝑟−1∑
𝑖=0

𝜎𝑖𝑒𝑖+1 + 𝑠2𝑑 + 𝑧2 (19)

where 𝑠2𝑑 is the desired virtual input and the sliding surface𝑧2 = 𝑠2 − 𝑠2𝑑. The desired virtual input, 𝑠2𝑑, is designed as

𝑠2𝑑 = −𝑓𝑟 (𝑥𝑎) − 𝑑1 + 𝑦(𝑟)𝑑 − 𝑟−1∑
𝑖=0

𝜎𝑖𝑒𝑖+1 − 𝑘𝑠1𝑠1 (20)

where 𝑘𝑠1 is positive and constant. The derivative of 𝑧2 with
respect to time is

𝑧̇2 = ̇𝑠2 − ̇𝑠2𝑑 = 𝑛−1∑
𝑖=𝑟+1

𝑎𝑖𝑥𝑖+1 + 𝑎𝑛𝑥̇𝑛 − ̇𝑠2𝑑
= 𝑛−1∑
𝑖=𝑟+1

𝑎𝑖𝑥𝑖+1 + 𝑎𝑛 (𝑓𝑛 (𝑥) + 𝑔 (𝑥) 𝑢 + 𝑑2) − ̇𝑠2𝑑.
(21)

The input is designed using STA as

𝑢 = − 1𝑎𝑛𝑔 (𝑥) (
𝑛−1∑
𝑖=𝑟+1

𝑎𝑖𝑥𝑖+1 − ̇𝑠2𝑑 + 𝜙1 (𝑧2) − 𝜙2 (𝑧2))
− 1𝑔 (𝑥) (𝑓𝑛 (𝑥) + 𝑑2)

(22)

where 𝜙1(𝑧2) = 𝑘𝑧1|𝑧2|1/2sgn(𝑧2), ̇𝜙2(𝑧2) = −𝑘𝑧2 sgn(𝑧2),
and 𝑘𝑧1 and 𝑘𝑧2 are positive constants. In order to avoid the
chattering problem, STA [26, 27] is applied to the controller
(22).

Theorem 5. With Assumption 2, suppose that the control law,
(20) and (22), is applied to system (1).Then the output tracking
error 𝑒1 converges to zero and 𝑥𝑏 is ultimately bounded.

Proof.
Step 1. From (19) and (20), we have

̇𝑠1 = −𝑘𝑠1𝑠1 + 𝑧2. (23)

By defining the positive-definite Lyapunov function 𝑉1 as
𝑉1 = 12𝑠21 (24)

we obtain

𝑉̇1 = −𝑘𝑠1𝑠21 + 𝑧2𝑠1. (25)

Using 𝑧2 as the input and 𝑠1 as the output in (23) gives

𝑧2⏟⏟⏟⏟⏟⏟⏟
𝑖𝑛𝑝𝑢𝑡

𝑠1⏟⏟⏟⏟⏟⏟⏟
𝑜𝑢𝑡𝑝𝑢𝑡

= 𝑉̇1 + 𝑘𝑠1𝑠21⏟⏟⏟⏟⏟⏟⏟
≥0

. (26)

Then (26) shows that the relationship between 𝑠1 and 𝑧2
is strictly output passive [9] and ̇𝑠1 = −𝑘𝑠1𝑠1 is zero-state
observable.Therefore, 𝑠1 system is ISS.With control law (22),
the dynamics of 𝑧2 and 𝜙2 become

𝑧̇2 = −𝑘𝑧1 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨1/2 sgn (𝑧2) + 𝜙2
̇𝜙2 = −𝑘𝑧2 sgn (𝑧2) . (27)

We define the vector 𝜁 = [𝜁1 𝜁2]𝑇 = [|𝑧2|1/2sgn(𝑧2), 𝜙2]𝑇.
The derivative of 𝜁 with respect to time is

̇𝜁 = 1󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨𝐴𝜁𝜁 (28)

where

𝐴𝜁 = [
[
−12𝑘𝑧1 12−𝑘𝑧2 0]]

(29)

and |𝜁1| = |𝑧2|1/2. Because 𝑘𝑧1 > 0 and 𝑘𝑧2 > 0,𝐴𝜁 is Hurwitz.
We define the Lyapunov candidate function 𝑉𝜁 as

𝑉𝜁 = 𝜁𝑇𝑃𝜁𝜁 (30)

where 𝑃𝜁 is positive definite. The derivative of 𝜁 with respect
to time is given by

𝑉̇𝜁 = − 1󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨 𝜁
𝑇𝑄𝜁𝜁 (31)

where 𝑄𝜁 is positive definite such that 𝐴𝑇𝜁𝑃𝜁 + 𝑃𝜁𝐴𝜁 = −𝑄𝜁.
From [27], the origin 𝜁 = 0 is finite-time stable. Consequently𝑧2 is equal to zero, identically, after a finite time interval.

Step 2. With 𝑧2 = 0,
̇𝑠1 = −𝑘𝑠1𝑠1. (32)

Then, (16) can be rewritten as

̇𝑒0 = 𝑒1
...

̇𝑒𝑟−1 = 𝑒𝑟
𝑒𝑟 = −𝑟−1∑

𝑖=0

𝜎𝑖𝑒𝑖 + 𝑠1.
(33)
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Equation (33) is simplified as

̇𝑒𝑎 = 𝐴𝑎𝑒𝑎 + 𝐵𝑎𝑠1 (34)

where 𝑒𝑎 = [𝑒0, 𝑒1, . . . , 𝑒𝑟−1]𝑇 ∈ R𝑟,

𝐴𝑎 =
[[[[[[[[[[[[
[

0 1 0 ⋅ ⋅ ⋅ 0 0
0 0 1 ⋅ ⋅ ⋅ 0 0
0 0 0 ⋅ ⋅ ⋅ 0 0
... ... ... d

... ...
0 0 0 ⋅ ⋅ ⋅ 0 1

−𝜎0 −𝜎1 −𝜎2 ⋅ ⋅ ⋅ −𝜎𝑟−2 −𝜎𝑟−1

]]]]]]]]]]]]
]

,

𝐵𝑎 = [0, 0, . . . , 0, 1]𝑇 .

(35)

Because 𝐴𝑎 is Hurwitz, 𝑒𝑎 is bounded-input bounded output
(BIBO) stable. With the convergence of 𝑠1 to zero, 𝑒0, 𝑒1, . . .,𝑒𝑟−1 converge to zeros. Consequently, 𝑒𝑟 = −𝜎0𝑒0−𝜎1𝑒1−⋅ ⋅ ⋅−𝜎𝑟−1𝑒𝑟−1 also converges to zero.
Step 3. With 𝑧2 = 0,

𝑠2 = 𝑠2𝑑. (36)

Because 𝑒0, 𝑒1, . . ., 𝑒𝑟−1 converge to zeros and 𝑦𝑑 has
continuous derivatives up to the 𝑛th order, 𝜉 = −𝑓𝑟(𝑥𝑎) +𝑦(𝑟)𝑑 − 𝑑1 − ∑𝑟−1𝑖=1 𝜎𝑖𝑒𝑖+1 is bounded. Thus, a positive constant𝜉max exists such that 𝜉max = sup𝑡𝜉(𝑡). From (1), (18), and (36),
we obtain

𝑥̇𝑟+1 = 𝑥𝑟+2
...

𝑥̇𝑛−1 = 𝑥𝑛
𝑎𝑛𝑥𝑛 = − 𝑛−1∑

𝑖=𝑟+1

𝑎𝑖𝑥𝑖 + 𝜉.
(37)

Equation (37) is simplified as

𝑥̇𝑏𝑧 = 𝐴𝑏𝑥𝑏𝑧 + 𝐵𝑏𝜉 (38)

where 𝑥𝑏𝑧 = [𝑥𝑟+1, 𝑥𝑟+2, . . . , 𝑥𝑛−1]𝑇 ∈ R𝑛−𝑟−1,

𝐴𝑏 =

[[[[[[[[[[[[[[
[

0 1 0 ⋅ ⋅ ⋅ 0 0
0 0 1 ⋅ ⋅ ⋅ 0 0
0 0 0 ⋅ ⋅ ⋅ 0 0
... ... ... d

... ...
0 0 0 ⋅ ⋅ ⋅ 0 1

−𝑎𝑟+1𝑎𝑛 −𝑎𝑟+2𝑎𝑛 −𝑎𝑟+3𝑎𝑛 ⋅ ⋅ ⋅ −𝑎𝑛−2𝑎𝑛 −𝑎𝑛−1𝑎𝑛

]]]]]]]]]]]]]]
]

,

𝐵𝑏 = [0, 0, . . . , 0, 1𝑎𝑛 ]
𝑇 .

(39)

We define the positive-definite Lyapunov function 𝑉𝑏 as
𝑉𝑏 = 𝑥𝑇𝑏𝑧𝑃𝑏𝑥𝑏𝑧 . (40)

Because 𝐴𝑏 is Hurwitz, a positive definite matrix 𝑃𝑏 exists
such that

𝐴𝑇𝑏𝑃𝑏 + 𝑃𝑏𝐴𝑏 = −𝐼. (41)

The derivative of 𝑉𝑏 is
𝑉̇𝑏 ≤ −𝑥𝑇𝑏𝑧𝑥𝑏𝑧 + 2𝑥𝑇𝑏𝑧𝑃𝑏𝐵𝑏𝜉max

≤ − 󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩22 + 2𝜆max (𝑃𝑏) 𝜉max𝑎𝑛
󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩2

≤ − (1 − 𝜃1) 󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩22 − 𝜃1 󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩22
+ 2𝜆max (𝑃𝑏) 𝜉max𝑎𝑛

󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩2

(42)

where 0 < 𝜃1 < 1, and𝜆min(𝐴) and𝜆max(𝐴) are theminimum
and maximum eigenvalues of the matrix 𝐴, respectively.
Then,

𝑉̇𝑏 ≤ − (1 − 𝜃1) 󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩22 (43)

for all ‖𝑥𝑏𝑧‖2 ≤ 𝜇1 where 𝜇1 = 2𝜆max(𝑃𝑏)𝜉max/𝜃1𝑎𝑛. There
exists 𝑇1 such that

󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩2 ≤ 𝜆max (𝑃𝑏)𝜆min (𝑃𝑏) 𝜇1 (44)

for all 𝑡 ≥ 𝑇1. Consequently, 𝑥𝑏 is also ultimately bounded
with the ultimate bound of 𝑥𝑏𝑧 .
Remark 6. Owing to 𝜉 in (38), only the boundedness of 𝑥𝑏 is
guaranteed. Furthermore, the convergence rate of 𝑥𝑏 is fixed
by the system parameters. Only the convergence of 𝑧2 to 𝑧2𝑑
is sufficient to make 𝑒1 converge to zero, regardless of the
convergence rate of 𝑥𝑏.
Remark 7. When 𝑒𝑎 converges to zero and 𝑦𝑑(∞) and 𝑑 are
zero, 𝜉max becomes zero. Consequently, 𝑥𝑏 also converges to
zero.

Remark 8. In [22, 23], the coupled systems with multi-
inputs were dealt; these techniques cannot solve the control
problems for the coupled nonlinear system with single input
(1). On the other hand, the proposed method (20) and (22)
can solve the tracking control problems for the coupled
nonlinear system with one input (1).
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4. Closed-Loop Stability Analysis

Actually, controller (20) and (22) uses the estimated distur-
bances 𝑑1 and 𝑑2 instead of the disturbances 𝑑1 and 𝑑2. The
controller becomes

𝑠2𝑑 = −𝑓𝑟 (𝑥𝑎) + 𝑦(𝑟)𝑑 − 𝑑1 − 𝑟−1∑
𝑖=0

𝜎𝑖𝑒𝑖+1 − 𝑘𝑠1𝑠1
𝑢

= − 1𝑎𝑛𝑔 (𝑥) (
𝑛−1∑
𝑖=𝑟+1

𝑎𝑖𝑥𝑖+1 − ̇𝑠2𝑑 + 𝜙1 (𝑧2) − 𝜙2 (𝑧2))
− 1𝑔 (𝑥) (𝑓𝑛 (𝑥) + 𝑑2)

(45)

where 𝜙1(𝑧2) = 𝑘𝑧1|𝑧2|1/2sgn(𝑧2), ̇𝜙2(𝑧2) = −𝑘𝑧2 sgn(𝑧2),
and 𝑘𝑠1, 𝑘𝑧1, and 𝑘𝑧2 are positive constants. The closed-loop
system including controller (45) and observer (4) is given as
follows:

̇𝑠1 = −𝑘𝑠1𝑠1 + 𝑧2 + 𝑑1
𝑧̇2 = −𝑘𝑧1 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨1/2 sgn (𝑧2) + 𝜙2 + 𝑑2
̇𝜙2 = −𝑘𝑧2 sgn (𝑧2)
̇̃𝑑1 = − 1𝜀1 𝑑1 + ̇𝑑1
̇̃𝑑2 = − 1𝜀2 𝑑2 + ̇𝑑2

(46)

Theorem9. WithAssumptions 1 and 2, suppose that controller
(45) and disturbance observer (7) and (8) are used in (1).
Further, 𝜇𝑧2 and 𝑇𝑧2 exist such that󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨 ≤ 𝜇𝑧2 (47)

for all 𝑡 ≥ 𝑇𝑧2 .The overall tracking error system (46) is the serial
interconnected system of the ISS system. As 𝑡 󳨀→ ∞,󵄨󵄨󵄨󵄨𝑠1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑠1max󵄨󵄨󵄨󵄨󵄨𝑑1 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 2𝜀1 ̇𝑑1max󵄨󵄨󵄨󵄨󵄨𝑑2 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 2𝜀2 ̇𝑑2max

(48)

where 𝑠1max
= (2/𝑘𝑠1)(𝜇𝑧2 + 2𝜀1 ̇𝑑1max

). Consequently, 𝑒𝑎 and 𝑥𝑏
are ultimately bounded.

Proof.
Step 1. In (46), the dynamics of 𝑧2 and 𝜙2 are

𝑧̇2 = −𝑘𝑧1 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨1/2 sgn (𝑧2) + 𝜙2 + 𝑑2
̇𝜙2 = −𝑘𝑧2sgn (𝑧2) . (49)

We define the vector 𝜁 = [𝜁1 𝜁2]𝑇 = [|𝑧2|1/2sgn(𝑧2), 𝜙2]𝑇.
The derivative of 𝜁 with respect to time is

̇𝜁 = 1󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨𝐴𝜁𝜁 (50)

where

𝐴𝜁 = [
[
−12𝑘𝑧1 12−𝑘𝑧2 0]]

(51)

and |𝜁1| = |𝑧2|1/2. Because 𝑘𝑧1 > 0 and 𝑘𝑧2 > 0,𝐴𝜁 is Hurwitz.
We define the Lyapunov candidate function 𝑉𝜁 as

𝑉𝜁 = 𝜁𝑇𝑃𝜁𝜁 (52)

where 𝑃𝜁 is positive definite. The derivative of 𝜁 with respect
to time is given by

𝑉̇𝜁 = − 1󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨 𝜁
𝑇𝑄𝜁𝜁 + 1󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨1/2 [𝑑2 0] 𝑃𝜁𝜁 (53)

where 𝑄𝜁 is positive definite such that 𝐴𝑇𝜁𝑃𝜁 + 𝑃𝜁𝐴𝜁 = −𝑄𝜁.
From (10) and the definition of 𝑉𝑑2 = 𝑑22, 𝑉̇𝑑2 is given by

𝑉̇𝑑2 = − 1𝜀2 𝑑22 + ̇𝑑2𝑑2 = − 1𝜀2
󵄨󵄨󵄨󵄨󵄨𝑑2󵄨󵄨󵄨󵄨󵄨2 + ̇𝑑2max

󵄨󵄨󵄨󵄨󵄨𝑑2󵄨󵄨󵄨󵄨󵄨
= −( 1𝜀2 − 𝜃𝑑2) 󵄨󵄨󵄨󵄨󵄨𝑑2󵄨󵄨󵄨󵄨󵄨2 − 𝜃𝑑2 󵄨󵄨󵄨󵄨󵄨𝑑2󵄨󵄨󵄨󵄨󵄨2 + ̇𝑑2max

󵄨󵄨󵄨󵄨󵄨𝑑2󵄨󵄨󵄨󵄨󵄨
(54)

where 0 < 𝜃𝑑2 < 1. Then,

𝑉̇𝑑2 ≤ −( 1𝜀2 − 𝜃𝑑2) 󵄨󵄨󵄨󵄨󵄨𝑑2󵄨󵄨󵄨󵄨󵄨2 (55)

for all |𝑑2| ≥ 𝜇𝑑2 where 𝜇𝑑2 = ̇𝑑2max/𝜃𝑑2 .There exists𝑇𝑑2 such
that 󵄨󵄨󵄨󵄨󵄨𝑑2󵄨󵄨󵄨󵄨󵄨 ≤ 𝜇𝑑2 (56)

for all 𝑡 ≥ 𝑇𝑑2 When 𝑡 ≥ 𝑇𝑑2 , (53) becomes

𝑉̇𝜁 ≤ − 1󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨 (𝜁
𝑇𝑄𝜁𝜁 + 𝜇𝑑2𝜆 (𝑃𝜁) 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩2)

≤ 1󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨 (− (𝜆min (𝑄𝜁) − 𝜃𝜁) 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩2 − 𝜃𝜁 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩2
+ 𝜇𝑑2𝜆 (𝑃𝜁) 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩2)

(57)

where 0 < 𝜃𝜁 < 1. Then,

𝑉̇𝜁 ≤ 1󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨 (− (𝜆min (𝑄𝜁) − 𝜃𝜁) 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩2) (58)

for all ‖𝜁‖2 ≥ 𝜇𝜁 where 𝜇𝜁 = 𝜇𝑑2𝜆(𝑃𝜁)/𝜃𝜁. There exists 𝑇𝜁 such
that

󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩2 ≤ 𝜆max (𝑃𝜁)
𝜆min (𝑃𝜁) 𝜇𝜁 (59)

for all 𝑡 ≥ 𝑇𝜁. Consequently, 𝜇𝑧2 and 𝑇𝑧2 exist such that
󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨 ≤ 𝜇𝑧2 (60)
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for all 𝑡 ≥ 𝑇𝑧2 . In (46), 𝑠1 dynamics can be obtained as

̇𝑠1 = −𝑘𝑠1𝑠1 + 𝑧2 + 𝑑1. (61)

Then we obtain the dynamics of 𝑠21 as
𝑑𝑑𝑡 (𝑠212 ) = −𝑘𝑠1𝑠21 + 𝑠1 (𝑧2 + 𝑑1)

≤ −𝑘𝑠12 𝑠21
− 𝑘𝑠12 󵄨󵄨󵄨󵄨𝑠1󵄨󵄨󵄨󵄨 (󵄨󵄨󵄨󵄨𝑠1󵄨󵄨󵄨󵄨 − 2𝑘𝑠1 (

󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑑1󵄨󵄨󵄨󵄨󵄨)) .
(62)

From (62), the following result is derived using Lemma 6.20
andTheorem C.2 in [11]:

󵄨󵄨󵄨󵄨𝑠1 (𝑡)󵄨󵄨󵄨󵄨 ≤ exp(−𝑘𝑠12 𝑡) 󵄨󵄨󵄨󵄨𝑠1 (0)󵄨󵄨󵄨󵄨
+ 2𝑘𝑠1 sup0≤𝜏≤𝑡 (

󵄨󵄨󵄨󵄨𝑧2 (𝜏)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑑1 (𝜏)󵄨󵄨󵄨󵄨󵄨) .
(63)

Equation (63) shows that the relationship between 𝑧2 and 𝑑1,
and 𝑒𝑖+1 has ISS property. The overall tracking error system
(46) is the serial interconnected system of the ISS system. As𝑡 󳨀→ ∞, 󵄨󵄨󵄨󵄨𝑠1 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑠1max󵄨󵄨󵄨󵄨󵄨𝑑1 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 2𝜀1 ̇𝑑1max󵄨󵄨󵄨󵄨󵄨𝑑2 (𝑡)󵄨󵄨󵄨󵄨󵄨 ≤ 2𝜀2 ̇𝑑2max

(64)

where 𝑠1max
= (2/𝑘𝑠1)(𝜇𝑧2 + 2𝜀1 ̇𝑑1max

).
Step 2. Equation (16) can be rewritten as

̇𝑒0 = 𝑒1
...

̇𝑒𝑟−1 = 𝑒𝑟
𝑒𝑟 = −𝑟−1∑

𝑖=0

𝜎𝑖𝑒𝑖 + 𝑠1.
(65)

Equation (65) is simplified as
̇𝑒𝑎 = 𝐴𝑎𝑒𝑎 + 𝐵𝑎𝑠1 (66)

where 𝑒𝑎 = [𝑒0, 𝑒1, . . . , 𝑒𝑟−1]𝑇 ∈ R𝑟,

𝐴𝑎 =
[[[[[[[[[[[[
[

0 1 0 ⋅ ⋅ ⋅ 0 0
0 0 1 ⋅ ⋅ ⋅ 0 0
0 0 0 ⋅ ⋅ ⋅ 0 0
... ... ... d

... ...
0 0 0 ⋅ ⋅ ⋅ 0 1

−𝜎0 −𝜎1 −𝜎2 ⋅ ⋅ ⋅ −𝜎𝑟−2 −𝜎𝑟−1

]]]]]]]]]]]]
]

,

𝐵𝑎 = [0, 0, . . . , 0, 1]𝑇 .

(67)

Because𝐴𝑎 is Hurwitz, 𝑒𝑎 is BIBO stable. In (63) it was shown
that 𝑠1 is ultimately bounded and that |𝑠1(𝑡)| ≤ 𝑠1max

as 𝑡 󳨀→∞. Thus, as 𝑡 󳨀→ ∞, (66) can be rewritten as follows:

̇𝑒𝑎 ≤ 𝐴𝑎𝑒𝑎 + 𝐵𝑎𝑠1max (68)

We define the positive-definite Lyapunov function 𝑉𝑎 as
𝑉𝑎 = 𝑒𝑇𝑎𝑃𝑎𝑒𝑎. (69)

Because 𝐴𝑎 is Hurwitz, a positive definite matrix 𝑃𝑎 exists
such that

𝐴𝑇𝑎𝑃𝑎 + 𝑃𝑎𝐴𝑎 = −𝐼. (70)

The derivative of 𝑉𝑎 is
𝑉̇𝑎 ≤ −𝑒𝑇𝑎 𝑒𝑎 + 2𝑒𝑇𝑎𝑃𝑎𝐵𝑎𝑠1max

≤ − 󵄩󵄩󵄩󵄩𝑒𝑎󵄩󵄩󵄩󵄩22 + 2𝜆max (𝑃𝑎) 𝑠1max

󵄩󵄩󵄩󵄩𝑒𝑎󵄩󵄩󵄩󵄩2
≤ − (1 − 𝜃𝑒) 󵄩󵄩󵄩󵄩𝑒𝑎󵄩󵄩󵄩󵄩22 − 𝜃𝑒 󵄩󵄩󵄩󵄩𝑒𝑎󵄩󵄩󵄩󵄩22

+ 2𝜆max (𝑃𝑎) 𝑠1max

󵄩󵄩󵄩󵄩𝑒𝑎󵄩󵄩󵄩󵄩2 .
(71)

Then,

𝑉̇𝑎 ≤ − (1 − 𝜃𝑒) 󵄩󵄩󵄩󵄩𝑒𝑎󵄩󵄩󵄩󵄩22 (72)

for all ‖𝑒𝑎‖2 ≤ 𝜇1 where 𝜇𝑒 = 2𝜆max(𝑃𝑎)𝑠1max
/𝜃𝑒. Conse-

quently, 𝑒𝑎 converges to the bounded ball, 𝐵𝑒𝑎 as
𝐵𝑒𝑎 = {𝑒𝑎 | 󵄩󵄩󵄩󵄩𝑒𝑎󵄩󵄩󵄩󵄩2 ≤ 𝜆max (𝑃𝑎)𝜆min (𝑃𝑎) 𝜇𝑒} (73)

as 𝑡 󳨀→ ∞.

Step 3. With |𝑧2| ≤ 𝜇𝑧2 , we obtain
𝑥̇𝑟+1 = 𝑥𝑟+2

...
𝑥̇𝑛−1 = 𝑥𝑛

𝑎𝑛𝑥𝑛 ≤ − 𝑛−1∑
𝑖=𝑟+1

𝑎𝑖𝑥𝑖 + 𝜉 + 𝜇𝑧2 .
(74)

Because 𝑒0, 𝑒1, . . ., 𝑒𝑟−1 converge to the bounded ball 𝐵𝑎 and
because 𝑦𝑑 has continuous derivatives up to the 𝑛th order, 𝜉 =−𝑓𝑟(𝑥𝑎) + 𝑦(𝑟)𝑑 − 𝑑1 − ∑𝑟−1𝑖=1 𝜎𝑖𝑒𝑖+1 is bounded. Equation (74) is
simplified as

𝑥̇𝑏𝑧 ≤ 𝐴𝑏𝑥𝑏𝑧 + 𝐵𝑏 (𝜉max + 𝜇𝑧2) . (75)

We define the positive-definite Lyapunov function 𝑉𝑏 as
𝑉𝑏 = 𝑥𝑇𝑏𝑧𝑃𝑏𝑥𝑏𝑧 . (76)



8 Complexity

Because 𝐴𝑏 is Hurwitz, a positive definite matrix 𝑃𝑏 exists
such that

𝐴𝑇𝑏𝑃𝑏 + 𝑃𝑏𝐴𝑏 = −𝐼. (77)

The derivative of 𝑉𝑏 is
𝑉̇𝑏 ≤ −𝑥𝑇𝑏𝑧𝑥𝑏𝑧 + 2𝑥𝑇𝑏𝑃𝑏𝐵𝑏 (𝜉max + 𝜇𝑧2)

≤ − 󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩22 + 2𝑎𝑛 𝜆max (𝑃𝑏) (𝜉max + 𝜇𝑧2) 󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩2
≤ − (1 − 𝜃2) 󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩22 − 𝜃2 󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩22

+ 2𝜆max (𝑃𝑏)𝑎𝑛 (𝜉max + 𝜇𝑧2) 󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩2 .

(78)

where 0 < 𝜃2 < 1. Then,

𝑉̇𝑏 ≤ − (1 − 𝜃1) 󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩22 (79)

for all ‖𝑥𝑏𝑧‖2 ≤ 𝜇2 where 𝜇2 = (2𝜆max(𝑃𝑏)/𝜃2𝑎𝑛)(𝜉max + 𝜇𝑧2).
FromTheorem 4.18 of [9], there exists 𝑇2 such that

󵄩󵄩󵄩󵄩󵄩𝑥𝑏𝑧󵄩󵄩󵄩󵄩󵄩2 ≤ 𝜆max (𝑃𝑏)𝜆min (𝑃𝑏) 𝜇2 (80)

for all 𝑡 ≥ 𝑇2. Consequently, 𝑥𝑏 is also ultimately bounded
with the ultimate bound of 𝑥𝑏𝑧 .
Remark 10. As the controller gains 𝑘1 and 𝑘2, and the
observer gains 1/𝜀1 and 1/𝜀2 increase, ‖𝑒𝑎‖2 becomes smaller.
If the disturbances 𝑑1 and 𝑑2 are constant, we see that the
disturbance estimation errors 𝑑1 and 𝑑2 converge to zeros
from (12). Then, 𝑒𝑎 converges to zero. Consequently, the
output tracking error 𝑒1 converges to zero.
5. Performance Analysis

5.1. Numerical Simulation Study. Simulations were per-
formed to analyze the performance of the proposed method.
In these simulations, we used the system

𝑥̇1 = 𝑥2
𝑥̇2 = 3𝑥1𝑥2 + sin (𝑥2) + 20𝑥3 + 4𝑥4 + 𝑑1
𝑥̇3 = 𝑥4
𝑥̇4 = 𝑥21 + 2𝑥2 + 3 sin (2𝑥3) + 𝑥4

+ (1 + 0.5 cos (0.1𝑥1)) 𝑢 + 𝑑2

(81)

where 𝑑1 = sin(𝜋𝑡) and 𝑑2 = 2 + cos(5𝑥1). The desired
reference trajectory 𝑥1𝑑 = (1 − 𝑒−2𝑡)sin(0.2𝑡) was used. The
controller was designed as

𝜉1 = 𝑑1 − 𝑥2𝜀1
𝜉2 = 𝑑2 − 𝑥4𝜀2
̇̂𝜉1 = − 1𝜀1 (𝜉1 +

𝑥𝑟𝜀1 ) + 1𝜀1 (−3𝑥1𝑥2 − sin (𝑥2) − 2𝑥3
− 4𝑥4)

̇̂𝜉2 = − 1𝜀2 (𝜉2 +
𝑥𝑛𝜀2 ) − 1𝜀2 (−𝑥21 − 2𝑥2 − 3 sin (2𝑥3)

− 𝑥4) + 1𝜀2 (1 + 0.5 cos (0.1𝑥1)) 𝑢
𝑠1 = 𝜎0𝑒0 + 𝜎1𝑒1 + 𝑒2
𝑠2 = 2𝑥3 + 4𝑥4
𝑠2𝑑 = − (3𝑥1𝑥2 + sin (𝑥2)) + ̈𝑦𝑑 − 𝑑1 − (𝜎0𝑒1 + 𝜎1𝑒2)

− 𝑘𝑠1𝑠1
𝑢 = − 14 (1 + 0.5 cos (0.1𝑥1)) (𝑎3𝑥4 − ̇𝑠2𝑑 + 𝜙1 (𝑧2)

− 𝜙2 (𝑧2)) − 1(1 + 0.5 cos (0.1𝑥1)) (𝑥
2
1 + 2𝑥2

+ 3 sin (2𝑥3) + 𝑥4 + 𝑑2)

(82)

where 𝜙1(𝑧2) = 𝑘𝑧1|𝑧2|1/2sgn(𝑧2) and ̇𝜙2(𝑧2) = −𝑘𝑧2 sgn(𝑧2).
In controller (82), the following parameters were used: 𝑘𝑠1 =1000, 𝑘𝑧1 = 20, 𝑘𝑧2 = 10, 𝜎0 = 100, 𝜎1 = 20, 𝜀1 = 0.1, and𝜀2 = 0.05.

The estimation performance of the DOB is shown in
Figure 1. The disturbances were well estimated by the DOB.
The tracking performances of 𝑠1 and 𝑠2 are shown in Figure 2.𝑠1 and 𝑠2 converged to the neighborhood of zero and
neighborhood of 𝑠2𝑑 , respectively, because the controller and
observer gains were sufficiently high to suppress the effect
of the estimation error. The tracking performance and state
variables are shown in Figures 3 and 4. We see that both
tracking errors 𝑒1 and 𝑒2 converged to almost zero because of
the proposed controller (82). Because of the disturbance and
nonzero trajectory, state variables 𝑥3 and 𝑥4 did not converge
to zeros, but were bounded. Figure 5 shows the control input.
Because the control method was designed using STA, there
was no chattering problem.

5.2. Application to Differential Braking Control in Vehicle
Lateral Dynamics. To evaluate the performance of the pro-
posed method in a practical system, the proposed method
was applied to the differential braking control system in a
vehicle. In the vehicular control system, the lateral position
is controlled for avoiding collisions using differential brake
forces when the driver changes the lane under collision risk
or with a vehicle in the blind spot [25]. The lateral control
system with the differential braking is
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Figure 1: Estimated disturbances.
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̇𝑒1 = 𝑒2
̇𝑒2 = 𝑎22𝑒2 + 𝑎23𝑒3 + 𝑎24𝑒4 + 𝑏𝛿2𝛿 + 𝑏𝑤2𝜓̇𝑑 + 𝑑1
̇𝑒3 = 𝑒4
̇𝑒4 = 𝑎42𝑒2 + 𝑎43𝑒3 + 𝑎44𝑒4 + 𝑏𝛿4𝛿 + 𝑏𝑤4𝜓̇𝑑 + 𝑏𝐹4𝐹𝑏𝑠

+ 𝑑2.

(83)

where 𝑒1 is the lateral offset, 𝑒2 is the derivative of the lateral
offset, 𝑒3 is the yaw error, 𝑒4 is the yaw error rate, 𝐹𝑏𝑠 is
the differential braking force control input, 𝛿 is the steering
wheel angle, 𝜓̇𝑑 is the desired yaw rate, 𝑑1 is the disturbance
including the driver torque and modeling error, and 𝑑2 is the
disturbance including self-aligned torque, modeling error,
etc. The detailed definitions of the parameters can be found
in [28].The aim of controller design is to determine the brake
steer force 𝐹𝑏s that makes

lim
𝑡󳨀→∞

𝑒1 (𝑡) = 0. (84)

when the driver attempts the lane change under a collision
risk or with a vehicle in the blind spot. This system (83)
satisfies Assumption 2. The controller is designed as

𝜉1 = 𝑑1 − 𝑥𝑟𝜀1
𝜉2 = 𝑑2 − 𝑥𝑛𝜀2
̇̂𝜉1 = − 1𝜀1 (𝜉1 +

𝑥𝑟𝜀1 ) + 1𝜀1 (−𝑎22𝑒2 − 𝑎23𝑒3 − 𝑎24𝑒4−)
̇̂𝜉2 = − 1𝜀2 (𝜉2 +

𝑥𝑛𝜀2 ) + 1𝜀2 (−𝑎42𝑒2 − 𝑎43𝑒3 − 𝑎44𝑒4
− 𝑏𝐹4𝐹𝑏𝑠)

𝑠1 = 𝜎0𝑒0 + 𝜎1𝑒1 + 𝑒2
𝑠2 = 𝑎23𝑒3 + 𝑎24𝑒4
𝑠2𝑑 = −𝜎0𝑒1 − 𝜎1𝑒2 − 𝑎22𝑒2 − 𝑏𝛿2𝛿 − 𝑏𝑤2𝜓̇𝑑 − 𝑑1

− 𝑘𝑠1𝑠1
𝐹𝑏𝑠 = − 1𝑎24𝑏𝐹4 [𝑎23𝑒4

+ 𝑎24 (𝑎42𝑒2 + 𝑎43𝑒3 + 𝑎44𝑒4 + 𝑑2)]
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− 1𝑎24𝑏𝐹4 [𝑎24 (𝑏𝛿4𝛿 + 𝑏𝑤4𝜓̇𝑑) − ̇𝑠2𝑑 + 𝜙1 (𝑧2)
− 𝜙2 (𝑧2)]

(85)

where 𝜙1(𝑧2) = 𝑘𝑧1|𝑧2|1/2sgn(𝑧2) and ̇𝜙2(𝑧2) = −𝑘𝑧2 sgn(𝑧2),𝜎0 = 1000000, 𝜎1 = 200, 𝜎3 = 50, 𝜎4 = 0, 𝑘𝑠1 = 5, 𝑘𝑧1 = 1,𝑘𝑧2 = 0.1, 𝜀1 = 0.5, and 𝜀2 = 0.5. The velocity of the vehicle is
80 km/h on a straight road.The test scenario is as follows: (1)
at 5 sec., the driver attempts lane change under collision risk
with the object vehicle in the target lane; (2) as soon as the
driver attempts lane change, the differential braking control

(DBC) system is activatedwith awarning against the collision
risk; (3) the driver attempts to keep the original lane with the
help of the DBC; (4) the DBC system operates to move the
vehicle to the center of the original lane.

Simulations were performed using the vehicle dynamic
software CarSim and Matlab/Simulink as shown in Figure 6.
The S-function coded in C language was used for implement-
ing the proposed sliding mode backstepping control method.
The output of CarSim consists of vehicle motion data such as
steer angle, lateral velocity, and brake force. We also modeled
the lane camera sensor to obtain the lane coefficients [29]; 𝑐0
denotes the lateral lane center offset at c.g., 𝑐1 denotes the in-
lane heading slop, the heading angle error at c.g., 𝑐2 denotes
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Figure 6: Vehicle and camera models used in the simulations.
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Figure 7: Steering wheel angle.

curvature/2 at 𝑠 = 0, and 𝑐3 denotes the curvature-rate/6.
The steering wheel angle used in the simulations is shown in
Figure 7.

Two cases were tested: (1) driving with proposed con-
troller (85); (2) driving without proposed controller (85).The
simulation results are shown in Figure 8. The lateral offset
errors of the two cases are depicted in Figure 8(a). Figure 8(b)
shows the control input. Because the control method was
designed using STA, there was no chattering problem. In
case 2 (without DBC), for the given steering wheel angle, the
lateral offset error 𝑒1 becomes 1.1 m owing to the steering
wheel angle. On the other hand, in case 1 (with DBC), the
lateral offset error 𝑒1 was maintained to nearly zero because

the brake steer force compensated for the steering wheel
angle using the proposed method (85). The yaw rate error 𝑒4
was also kept to nearly zero. Figure 9 shows the estimated
disturbance. External disturbances appeared owing to the
bank angle, road reaction force, the assumptions for this
modeling, etc. The external disturbances were compensated
by using utilizing the proposed method. Consequently, the
lateral offset 𝑒1 converged to zero despite the steer angle and
the disturbances.

6. Conclusions

In this paper, we proposed a sliding-mode backstepping con-
trol for the coupled normal form of nonlinear systems. The
proposedmethod was developed by combining backstepping
and sliding-mode control. The key idea of the proposed
method is that the linear terms of the state variables of the
second subsystem are lumped into the virtual input in the
first subsystem. To compensate for the disturbances, a DOB
was developed. The stability of the closed-loop is validated
by using the ISS property. Through numerical simulations
and application to a vehicle system, the proposedmethodwas
observed to lead to convergence of the output to the desired
output trajectory under the described disturbances.

The main drawback is the use of the derivative of the
measured signal in the controller. It may result in the
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Figure 9: Estimated disturbances.

amplification of the measurement noise. Generally, the filter
technique is widely used to obtain the derivatives of the
measured signals without the amplification of the measure-
ment noise [30, 31]. However, the use of the filter may cause
the phase lag in the feedback loop. In future works, we will
develop the control method with the consideration of the
amplification of the measurement noise in the derivatives of
the measured signals.
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