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ABSTRACT This paper presents a new class of false data injection attacks (FDIAs) on volt/VAR
optimization (VVO), whichmay result in abnormal voltage conditions along the radial medium voltage (MV)
distribution feeder with an on-load tap changer (OLTC), capacitor banks (CBs), solar photovoltaic (PV)
systems, and smart meters. In comparison with existing FDIAs against voltage control that do not consider
the VVO process, we propose a new attack strategy with which the adversary can maliciously change the
distribution feeder voltage profile by misleading the VVO function through stealthily injecting false data
into smart meter measurements that are used for the VVO. The proposed attack strategy is formulated as
a bilevel optimization problem using mixed integer linear programming (MILP). Injected false load data
that raise or lower the tap position of the OLTC are calculated at the upper level while the VVO process is
guaranteed to correctly operate with false data at the lower level. The bilevel optimization problem is finally
reformulated to a single-level optimization problem based on Karush–Kuhn–Tucker conditions of the lower
level optimization problem. A simulation study is carried out in an IEEE 33-bus distribution system with an
OLTC, CBs, PV systems, and smart meters, and our results demonstrate the feasibility and capability of the
proposed attack approach in terms of voltage level, attack effort, and PV penetration rate.

INDEX TERMS False data injection attack (FDIA), volt/VAR optimization (VVO), on-load tap
changer (OLTC), smart meter, active distribution network.

NOMENCLATURE
A. VVO FORMULATION
Nt Total number of prediction horizon steps.
Nd Total number of nodes.
rd Resistance of the line from node d .
xd Reactance of the line from node d .
Plinet,d Real power flow from node d to d + 1 at

period t .
Qline
t,d Reactive power flow from node d to d + 1

at period t .
Pnodet,d Net real power consumption for node d

at period t .
Qnode
t,d Net reactive power consumption for node d

at period t .
P(Q)latt,d Real(Reactive) power flow through the lateral

branch from node d at period t .

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhitao Guan.

Vt,d Voltage magnitude for node d at period t .
Vmin(max) Minimum(Maximum) limit of the allowed

voltage range for node d .
P̂PVt,d Predicted PV real power output for node d

at period t .
QPV
t,d PV reactive power output for node d

at period t .
QCAP
t,d Reactive power output of CB for node d

at period t .
P̂loadt,d Predicted real load consumption for node d

at period t .
Q̂load
t,d Predicted reactive load consumption for node

d at period t .
TapOLTCt Tap position of OLTC at period t .
aOLTC Step size of change in OLTC tap position.
bCapt,d Binary switch status of the capacitor for node

d at period t; ‘‘1’’ for ON and ‘‘0’’ OFF.
NTapOLTCmax Maximum switching operations of OLTC

during the prediction horizon Nt .
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B. ATTACK FORMULATION
P̂load,at,d Manipulated real load consumption for node d

at period t .
Q̂load,a
t,d Manipulated reactive load consumption for node

d at period t .
1Ploadt,d Injected false real load consumption data for

node d at period t .
1Qload

t,d Injected false reactive load consumption data for
node d at period t .

δDt,d Binary attack status for node d at period t; ‘‘1’’
with attack and ‘‘0’’ without attack.

τ Limit factor for the magnitude of injected false
real load consumption data.

ω Weight for attack effort.
R Maximum number of compromised smart meters.
M Sufficient large positive constant.

I. INTRODUCTION
Volt/VAR optimization (VVO) is one of the key applica-
tions in distribution management systems (DMSs) for effi-
ciently managing and controlling active distribution networks
with distributed energy resources (DERs) (e.g., solar photo-
voltaic (PV) system and energy storage system (ESS)) [1].
In active distribution networks, VVO is carried out to deter-
mine optimal voltage levels along the distribution feeder
under all loading conditions through the coordination of
voltage regulators such as on-load tap changers (OLTCs)
at substations and capacitor banks (CBs) and the smart
inverters of DERs. Recently, advanced information and com-
munication technology (ICT) such as advanced metering
infrastructure (AMI) with smart meters provides voltage reg-
ulators with real-time loading and voltage measurements,
consequently adjusting voltage profile more quickly and
accurately [2].

However, as the coupling between the electric distribu-
tion system and ICT system becomes considerably stronger,
the applications in DMS may become more vulnerable
to potential cyber attacks through the ICT system. The
2015 Ukraine blackout [3] has been known as the first cyber
attack against electric distribution systems wherein ICT net-
works and components were compromised, and it resulted in
blackouts in three Ukrainian regions. This paper attempts to
investigate the impact of cyber attacks on VVO in DMS.

The main objective of this paper is to propose a novel
attack strategy with which the adversary malfunctions the
operation of VVO by injecting false data into smart meter
measurements that are used for VVO, consequently yield-
ing the abnormal feeder voltage profile. Fig. 1 illustrates a
two-layered framework that consists of cyber and physical
layers, corresponding to an AMI/DMS and an electric distri-
bution system, respectively. As shown in this figure, in the
cyber layer the corrupted smart meter measurements due to
false data injection from the adversary are, through the AMI
network, fed into the VVO module in DMS, which in turn
enables VVO to calculate the distorted optimal solutions of

FIGURE 1. Cyber physical framework illustrating cyber attack on VVO.

voltage regulators and PV systems (e.g., incorrect tap posi-
tions of OLTC and wrong reactive power dispatch of PV sys-
tems). As a result, the distorted solutions lead to an abnormal
feeder voltage profile and provide consumers with degraded
voltage quality in the physical layer. This paper contributes
to the following two aspects: (i) the proposal for a new class
of false data injection attack (FDIA) strategies with which
the adversary can distort the feeder voltage by misleading
VVO to calculate the wrong OLTC tap positions through the
injection of false data into smart meter measurements; and
(ii) impact analysis of VVO subject to the proposed attacks.

In the power system engineering field, a first class of cyber
data attack has been known as FDIA against DCmodel-based
state estimation [4] where the adversary can maliciously
change the estimate of the state of the transmission system
while avoiding bad data detection in the energy manage-
ment system (EMS). A more detailed review of the literature
related to the subject of FDIA in electric power systems can
be categorized into the following two parts:
• Cyber attack on electric transmission system: A large
body of literature has been accumulated on the sub-
ject of FDIA in electric transmission system [5]–[14],
ranging from attacks against AC state estimation [5],
impact analysis of automatic generation control (AGC)
attack [6], online static security and contingency anal-
ysis attack [7], [8], topology data attack through the
manipulation of the status of circuit breaker and
switch [9]–[12], load redistribution attack through the
injection of malicious load data in a bilevel optimization
problem [13] and a trilevel optimization problem [14]
using mixed integer linear programming (MILP). While
many studies have formulated new attack models and
conducted their impact analysis in electric transmis-
sion systems from an adversary perspective, various
defending strategies to mitigate the impact of cyber
attack on electric power system operations, from a
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system operator perspective, have been proposed.
In [15], the least-budget dependent method against FDI
attack was presented where securely protected sensors
were determined by solving a mixed integer nonlin-
ear programming (MINLP) problem based on Bender’s
decomposition. In [16], a bilevelMILP problemwas for-
mulated to determine the minimum number of measure-
ments required to be protected. A new FDIA detection
approach using load forecast data, generation sched-
ules, and synchrophasor data was proposed in [17].
In [18], a framework for quantifying the impact of a
cyber attack on bus and transmission line protection
systems was developed where the expected load cur-
tailment index was proposed to assess potential system
loss from the attack. More recently, FDIA detection
strategies based on various machine learning methods
were presented where measurements can be categorized
into non-attack events and attack events by using: tem-
poral characteristics of FDIA using conditional deep
belief network (CDBN) [19], semisupervised online
learningmethod [20], and non-nested generalized exem-
plars (NNGE) through pre-processing of the state extrac-
tion method (STEM) [21]. A broader range of FDIA
models and defending methods in the electric transmis-
sion system are summarized well in [22] and [23].

• Cyber attack on electric distribution system: In com-
parison with extensive research on the FDIA prob-
lem at the transmission system level, studies about
the FDIA problem at the distribution system level
are relatively few. In [24], a least-effort FDIA against
three-phase balanced distribution system state estima-
tor was proposed where the adversary can reduce
his/her effort with only the information of local state
obtained by approximating the entire system state using
a small number of power flow or injection measure-
ments. The possibility of a cyber threat on a distri-
bution automation system (DAS) was first addressed
in [25] and [26], where the attack impact assessment
model [25] that consists of a terminal device level and
control center server level was developed, and an effi-
cient secret key distribution protocol without requiring
much computation of encryption algorithm [26] was
proposed. More recently, a unified attack model and
security assessment framework for active distribution
systems was developed based on limited stochastic Petri
net (LSPN) graph theory, and the index that quantify
the attack performance and the system robustness was
proposed in [27]. A considerable amount of literature
has been published recently on the attack model and
impact analysis in voltage control [28]–[34], including
the manipulation of the OLTC tap position [28], [29],
attack on Volt-VAR control (VVC) under different
capacitor bank configurations [30], the voltage change
due to the malfunction of DERs through the injec-
tion of false generation setpoint signal [31] and reactive
current measurement [32], an event tree-based impact

assessment framework [33], and a denial-of-service
attack mitigation framework [34].

Although extensive research has been carried out on the
subject of the FDIA problem at both the transmission and
distribution system levels, to the best of our knowledge,
no research has been conducted to present FDIA against VVO
and investigate the impact of such an attack on the voltage
level along the distribution feeder. In prior work, Isozaki
et al. [28], Anwar et al. [29], Teixeira et al. [30], Shelar
and Amin [31], Teymouri et al. [32], Langer et al. [33],
and Cameron et al. [34] considered an attack scenario where
the adversary can attack against voltage control algorithms
without the VVO process being considered. The main contri-
butions of this paper are suggested as follows:

1) We propose two types of FDIAs on VVO. The adver-
sary stealthily raises or lowers the tap position of OLTC
by misleading the VVO process by injecting false data
into smart meter measurements that are used for VVO,
consequently leading to the abnormal voltages along
the distribution feeder.

2) We formulate the proposed attack approach in a bilevel
mixed integer linear programming (MILP) optimiza-
tion problem that consists of upper and lower level
optimization problems. The former calculates injected
false data for the OLTC tap position to stealthily
increase or decrease while the adversary spends the
least attack effort. The latter enables VVO to oper-
ate correctly even with the injected false data. The
bilevel optimization problem is then transformed to a
single-level MILP optimization problem using Karush-
Kuhn-Tucker (KKT) conditions of the lower level opti-
mization problem.

3) We quantify the performance of the proposed attacks
in the IEEE 33-bus distribution system in terms of: i)
the OLTC tap position; ii) voltage magnitude along the
feeder; and iii) attack effort as a function of the mag-
nitude of injected false data and a maximum number
of compromised smart meters. Furthermore, we study
the impact of the proposed attacks with varying amount
of PV penetration as well as with different number of
prediction horizon in the VVO on the voltage profile.

The rest of this paper is organized as follows. Section II
provides an overview of the VVO model and the KKT con-
ditions of the optimization problem. Section III states the
attack problem and elaborates the formulation of the pro-
posed VVO attack strategies using a bilevel and single-level
MILP optimization programming. The simulation results for
the proposed attack approach are provided in Section IV, and
the conclusions are given in Section V.

II. BACKGROUND
The main notations used throughout this paper are summa-
rized in the nomenclature section. Bold symbols represent
vectors. Hat symbols represent estimates of true parameter
value. The other undefined symbols in the nomenclature
section are explained in the text.
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A. VOLT/VAR OPTIMIZATION MODEL
For each node d with a scheduling period t and prediction
horizon Nt , the VVO problem is generally formulated as
follows:

min J =
Nt∑
t=1

Nd∑
d=1

|Vt,d − V nom
| (1)

s.t. α : Plinet,d+1 = Plinet,d − P
node
t,d+1 − P

lat
t,d+1 (2)

χ : Qline
t,d+1 = Qline

t,d − Q
node
t,d+1 − Q

lat
t,d+1 (3)

λ : Vt,d+1 = Vt,d −

(
rdPlinet,d + xdQ

line
t,d

V0

)
(4)

θ : Vt,1 = V nom
+ aOLTCTapOLTCt (5)

γ : Pnodet,d = P̂loadt,d − P̂
PV
t,d (6)

∇ : Qnode
t,d = Q̂load

t,d − Q
PV
t,d − Q

CAP
t,d (7)

β : QCAP
t,d = bCAPt,d QCAP,nom

d (8)

bCAPt,d ∈ {0, 1} (9)
Nt∑
t=1

|TapOLTCt − TapOLTCt−1 | ≤ NTap
OLTC
max (10)

TapOLTCt ∈ {−16, . . . ,−1, 0, 1, . . . , 16} (11)

κ : −cPVP̂PVt,d ≤ Q
PV
t,d ≤ c

PVP̂PVt,d (12)

8 : Vmin
≤ Vt,d ≤ Vmax. (13)

In this formulation, the objective function is to minimize the
total deviation of voltages from the nominal voltage for all
nodes during the prediction horizon in (1). Equations (2)–(4)
represent the linearized distribution real power flow, reactive
power flow, and voltage for node d at the scheduling period t ,
respectively [35]. Equation (5) represents the substation volt-
age, which can be determined by the OLTC tap position
TapOLTCt , along with the step size for changing tap positions
aOLTC. For each node d , the nodal real and reactive power
balance equations can be expressed in terms of the real and/or
reactive power of the load, CBs, and PVs in (6) and (7).
Equation (8) represents the reactive output that is supported

by the CB for node d at scheduling period t . Here, QCAP,nom
d

is the size of the capacitors and bCAPt,d is a binary decision
variable that determines the switch status of the capacitors
in (9). During the prediction horizon Nt , the total number of
switching operations for the OLTC is limited by its corre-
sponding switching threshold NTapOLTCmax in (10) along with
the integer position of the OLTC tap in (11). Equation (12)
represents the reactive power capability of the PV system at
node d , which can be described in terms of the predicted PV
real power output P̂PVt,d and its coefficient cPV defined as

cPVd =

√√√√1− (PFPV,min
d )2

(PFPV,min
d )2

where PFPV,min
d is the minimum power factor of the PV

system at node d . The range of allowable voltages for all
nodes can be expressed in (13) where Vmin and Vmax are

FIGURE 2. Illustration of VVO attack manipulating smart meter data.

selected to be 0.95 p.u. and 1.05 p.u. The decision variable
vectors from the VVO problem are denoted as V, Pline,Qline,
Pnode, Qnode, QCAP, QPV, TapOLTC, and bCAP.

In this paper, we convert the mixed-integer nonlinear pro-
gramming (MINLP)-based VVO algorithm into a MILP opti-
mization problem. To this end, the nonlinear equations for
the objective function (1) and the constraints for the number
of switching operations for the OLTC (10) are linearized as,
respectively,

1Vt,d = |Vt,d − V nom
| (14)

J− : 1Vt,d ≥ Vt,d − V nom (15)

J+ : 1Vt,d ≥ V nom
− Vt,d (16)

and

U− : NTapOLTCt ≥ TapOLTCt − TapOLTCt−1 (17)

U+ : NTapOLTCt ≥ TapOLTCt−1 − Tap
OLTC
t (18)

ξ :

Nt∑
t=1

NTapOLTCt ≤ NTapOLTCmax . (19)

Furthermore, the binary and integer decision variables
in (9) and (11) are relaxed with continuous variables as the
following linear constraints:

ζ : 0 ≤ bCAPt,d ≤ 1 (20)

ρ : −16 ≤ TapOLTCt ≤ 16. (21)

In this paper, the linear programming (LP)-based VVO prob-
lem through the relaxation above needs to be formulated in
order to develop our attack strategy illustrated in the fol-
lowing section. It is noted that the proposed attack strategy
includes the KKT conditions of the VVO problem, how-
ever, no KKT conditions of the MILP optimization problem
exist.

In the LP-based VVO formulation, all variable vectors
(α, χ , λ, θ , γ ,∇, β, κ ,8, J,U, ζ , and ρ) corresponding to the
equality/inequality constraints are the Lagrangian multipliers
that have non-negative values. In particular, the Lagrangian
multiplier vector associated with its inequality constraint
consists of two types of Lagrangian multiplier subvectors,
corresponding to the upper and lower limit of inequality
constraints, respectively (e.g., κ = [κ+, κ−] in (12)).
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B. KKT CONDITIONS
A general optimization problem with linear equality and
inequality constraints is formulated as follows:

min
x

J (x, a) (22)

s.t. λ : Fx = a, (23)

κ : Gx ≤ a, (24)

Here, x and a are the vectors for decision variables and param-
eters, respectively. F and G are linear matrices associated
with the equality and inequality constraints, respectively.

Given the Lagrangian function (L(x, a) = J (x, a) − λ
(Fx− a)+ κ(Gx− a)), the KKT conditions are written as

1) ∇xL(x, a) = 0
⇒∇xJ (x, a)− λ∇x(Fx− a)+ κ∇x(Gx− a) = 0,

2) Fx = a,
3) Gx ≤ a.
4) κ(Gx− a) = 0, κ ≥ 0,

where the first conditions are the first-order optimal con-
ditions, the second and third conditions are the primal fea-
sibility conditions, and the fourth conditions are the dual
feasibility or the complimentary slackness conditions.

In this paper, we apply the KKT conditions to a bilevel
optimization attack problem where the LP VVO problem at a
lower level is replaced by its KKT conditions.

III. FORMULATION OF VOLT-VAR
OPTIMIZATION ATTACK
A. STATEMENT OF THE PROPOSED ATTACK PROBLEM
In this paper, we consider a closed-loop VVO architecture
where load measurements from smart meters are periodically
fed into the VVO module through AMI networks as shown
in Fig. 2. We assume that the VVO algorithm is executed in
a medium voltage (MV) distribution system that is equipped
with voltage regulators (e.g., OLTC and CBs), PV systems,
and smart meters. In this environment, as shown in Fig. 2,
the primary goal of the adversary is to stealthily move the tap
position of the OLTC by injecting false data into smart meter
measurements, consequently leading to changes in voltage
along the MV distribution feeder. The proposed attacks are
classified into the following two types:
• Attack I: The tap position of the OLTC is switched
upward as much as possible in order to increase the
voltage profile.

• Attack II: The tap position of the OLTC is switched
downward as much as possible in order to decrease the
voltage profile.

A higher voltage level caused by attack I can increase
consumer energy consumption and decrease the distribution
system efficiency owing to increasing power loss. On the
other hand, a lower voltage level caused by attack II can have
a detrimental impact on voltage stability and lead to voltage
collapse with the violation of the minimum voltage limit.

Prior to the proposed attack, the adversary is required to
have the following capabilities:

(R1) The adversary can compromise smart meters by
observing and manipulating their measurements.

(R2) The adversary has the capability to execute the VVO
having the knowledge of distribution system topology
including the line parameters and the location of volt-
age regulating devices, PV systems and smart meters.

(R3) The adversary has the knowledge of operating parame-
ters for voltage regulators (e.g., the range of the OLTC
tap position and the size of CB) and the prediction value
of the PV generation output with the power factor of the
PV systems.

B. BILEVEL OPTIMIZATION PROBLEM FOR
THE PROPOSED ATTACKS
Based on the aforementioned attack assumptions, the two
proposed attack strategies are formulated as a bilevel MILP
optimization problem as follows:

Attack I: max

{
TapOLTCt − ω

Nd∑
d=1

δDt,d

}
(25)

or

Attack II: min

{
TapOLTCt + ω

Nd∑
d=1

δDt,d

}
(26)

s.t.
Nd∑
d=1

1Ploadt,d = 0 (27)

Nd∑
d=1

1Qload
t,d = 0 (28)

1Ploadt,d 6= 0⇔ δDt,d = 1 (29)

− τ P̂loadt,d ≤ 1P
load
t,d ≤ τ P̂

load
t,d (30)

Nd∑
d=1

δDt,d ≤ R (31)

− cloadd 1Ploadt,d ≤ 1Q
load
t,d ≤ c

load
d 1Ploadt,d

(32)

min
Nt∑
t=1

Nd∑
d=1

1Vt,d (33)

s.t. γ : Pnodet,d = P̂load,at,d − P̂PVt,d (34)

η : P̂load,at,d = P̂loadt,d +1P
load
t,d (35)

∇ : Qnode
t,d = Q̂load,a

t,d − QPV
t,d − Q

CAP
t,d (36)

µ : Q̂load,a
t,d = Q̂load

t,d +1Q
load
t,d (37)

Eqn. (2)− (5),Eqn. (8) (38)

Eqn. (12)− (21) (39)

In the upper level (25)–(32), the adversary computes false
load data (1Ploadt,d ,1Qload

t,d ) that are injected into smart meters
in order to maximize (attack I) or minimize (attack II) the
OLTC tap positions and minimize the attack effort simulta-
neously while maintaining the undetectable condition along
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with the limited attack capability. The multi objective func-
tion (25) or (26) for attack I or attack II consists of two terms,
corresponding to the OLTC tap position and a total number of
injected false load data where δDt,d equals to one when smart
meter at node d is attacked, otherwise δDt,d equals to zero.
In the second term for the objective function, ω represents
a penalty weight for the attack effort. A larger ω yields a
smaller number of δDt,d = 1 along with a reduced false
data magnitude, and hence, it saves the attack effort; yet,
it prevents the adversary from manipulating the OLTC tap
position significantly. Equations (27) and (28) guarantee that
the injected false data are undetected by system operators.
The number of injected false data are counted in (29), which
is equivalent to the following constraints:

1Ploadt,d +τ P
load
t,d δ

D
t,d ≥ 0 (40)

1Ploadt,d −τ P
load
t,d δ

D
t,d ≤ 0 (41)

δDt,d ∈ {0, 1}. (42)

Equations (30) and (31) represent the limit for the magnitude
and the number of injected false data, respectively. In (32),
the injected false reactive power data are bounded by the limit
in terms of the injected false real power data and the following
coefficient cloadd in terms of the power factor (PF load

d ) at
node d

cloadd =

√
1− (PF load

d )2

(PF load
d )2

.

On the other hand, the lower level (33)–(39) represents
the VVO problem that is illustrated in subsection II-A. Only
the difference from the previous VVO formulation is that the
VVO problem at the lower level includes the modified nodal
real and reactive power balance equations (34)–(37), which
are expressed as a function of the injected false data delivered
from the upper level.

C. SINGLE-LEVEL OPTIMIZATION PROBLEM
FOR THE PROPOSED ATTACKS
In this paper, the bilevel MILP optimization-based attack
strategy is converted into an equivalent single-level optimiza-
tion problem. To this end, the lower level optimization prob-
lem is replaced by its KKT equations, which are classified
into four types of conditions as follows:

� The first-order optimality conditions
Given the Lagrangian function of the VVO problem at the
lower level, which is illustrated in subsection II-B, the first-
order optimality conditions can be derived as

1− J−t,d − J
+

t,d = 0 (43)

−λt,d−1+λt,d −8
−

t,d+8
+

t,d + J
−

t,d − J
+

t,d − θt = 0 (44)

−
λt,d rd
V nom − αt,d−1 + αt,d = 0 (45)

−
λt,dxd
V nom − χt,d−1 + χt,d = 0 (46)

−∇t,d − βt,d = 0 (47)

−∇t,d − κ
−

t,d + κ
+

t,d = 0 (48)

βt,dQ
CAP,nom
d − ζ−t,d + ζ

+

t,d = 0 (49)

γt,d − ηt,d = 0 (50)

∇t,d − µt,d = 0 (51)

−αt,d−1 − γt,d = 0 (52)

−χt,d−1 −∇t,d = 0 (53)

aOLTCθt−ρ−t +ρ
+
t + U

−
t − U

−

t+1 − U
+
t + U

+

t+1=0 (54)

−ξt − U−t − U
+
t = 0. (55)

� The primal feasibility conditions
The primal feasibility conditions are all equality and inequal-
ity constraints for the lower level optimization problem:

Eqn. (34)− (39) (56)

� The complimentary conditions
The complimentary conditions are expressed as the multi-
plication of all inequality constraints and their Lagrangian
multipliers.

J−t,d
(
−Vt,d + V nom

−1Vt,d
)

+J+t,d
(
Vt,d−V nom

−1Vt,d
)
= 0 (57)

κ−t,d

(
−QPV

t,d − c
PVP̂PVt,d

)
+κ+t,d

(
QPV
t,d − c

PVP̂PVt,d
)
= 0 (58)

U−t
(
−NTapOLTCt − TapOLTCt−1 +Tap

OLTC
t

)
+U+t

(
−NTapOLTCt +TapOLTCt−1 − Tap

OLTC
t

)
= 0 (59)

ξt

( Nt∑
t=1

NTapOLTCt − NTapOLTCmax

)
= 0 (60)

8−t,d

(
−Vt,d + Vmin

)
+8+t,d

(
Vt,d − Vmax

)
= 0 (61)

ζ−t,d

(
−bCAPt,d

)
+ζ+t,d

(
bCAPt,d − 1

)
= 0 (62)

ρ−t,d

(
−TapOLTCt −16

)
+ρ+t,d

(
TapOLTCt − 16

)
= 0. (63)

It is noted that the complimentary conditions above are
nonlinear owing to the multiplication of two continuous deci-
sion variables. Thus, to formulate the attack method in an
MILP optimization problem, the nonlinear complimentary
conditions can be relaxed as the linear constraints with addi-
tional binary decision variables (δJ

−

t,d , δ
J+
t,d , δ

κ−

t,d , δ
κ+

t,d , δ
U−
t ,

δU
+

t , δξ
+

t , δ8
−

t,d , δ
8+

t,d , δ
ζ−

t,d , δ
ζ+

t,d , δ
ρ−

t , and δρ
+

t ) as follows:
J−t,d −Mδ

J−
t,d ≤ 0

−Vt,d + V nom
+1Vt,d ≤ M (1− δJ

−

t,d )
J+t,d −Mδ

J+
t,d ≤ 0

Vt,d − V nom
+1Vt,d ≤ M (1− δJ

+

t,d )

(64)



κ−t,d −Mδ
κ−

t,d ≤ 0
QPV
t,d + c

PVP̂PVt,d ≤ M (1− δκ
−

t,d )
κ+t,d −Mδ

κ+

t,d ≤ 0
−QPV

t,d + c
PVP̂PVt,d ≤ M (1− δκ

+

t,d )
δκ
−

t,d + δ
κ+

t,d ≤ 1

(65)
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
U−t −Mδ

U−
t ≤ 0

NTapOLTCt + TapOLTCt−1 − Tap
OLTC
t ≤ M (1− δU

−

t )
U+t −Mδ

U+
t ≤ 0

NTapOLTCt − TapOLTCt−1 + Tap
OLTC
t ≤ M (1− δU

+

t )

(66)

{
ξ+t −Mδ

ξ+

t ≤ 0

−
∑Nt

t=1 NTap
OLTC
t + NTapOLTCmax ≤ M (1− δξ

+

t )
(67)

8−t,d ≤ Mδ
8−

t,d

Vt,d − Vmin ≤ M (1− δ8
−

t,d )

8+t,d ≤ Mδ
8+t,d
t,d

−Vt,d + Vmax ≤ M (1− δ8
+

t,d )
δ8
−

t,d + δ
8+
≤ 1

(68)



ζ−t,d ≤ Mδ
ζ−

t,d

bCAPt,d ≤ M (1− δζ
−

t,d )

ζ+t,d ≤ Mδ
ζ+

t,d

−bCAPt,d + 1 ≤ M (1− δζ
+

t,d )

δ
ζ−

t,d + δ
ζ+

t,d ≤ 1

(69)



ρ−t ≤ Mδ
ρ−

t

TapOLTCt + 16 ≤ M (1− δρ
−

t )

ρ+t ≤ Mδ
ρ+

t

−TapOLTCt + 16 ≤ M (1− δρ
+

t )

δ
ρ−

t + δ
ρ+

t ≤ 1.

(70)

� The dual feasibility conditions
All the non-negative Lagrangian multiplies belong to the dual
feasibility conditions as follows:

[α;χ;λ; θ; γ ;∇; η;µ;β; κ;8; J,U, ξ , ζ , ρ] ≥ 0. (71)

Finally, using the aforementionedKKT conditions, the pro-
posed attack strategy can be formulated as the following
single-level optimization problem:

Attack I: max

{
TapOLTCt − ω

Nd∑
d=1

δDt,d

}
(72)

or

Attack II: min

{
TapOLTCt + ω

Nd∑
d=1

δDt,d

}
(73)

s.t. Eqn. (27)− (32) (74)

Eqn. (43)− (56), (64)− (71)

(KKT conditions). (75)

IV. SIMULATION RESULTS
A. SIMULATION SETUP
In this section, we assess the performance of the proposed
attack approach in the modified IEEE 33-bus distribution test
system [35], which is illustrated in Fig. 3. In this test system,
the base MVA is set to 100 MVA. The modified IEEE 33-bus
system includes one OLTC, nine CBs, four PV systems and

FIGURE 3. Modified IEEE 33-bus system with OLTC, CBs, and PV systems.

FIGURE 4. Profile of the predicted value with a resolution of 1 h for PV
real power output.

32 smart meters. The smart meters are located from node 2 to
node 33. An integer tap position of OLTC at the substation
ranges from -16 to 16 with its step change aOLTC = 0.003.
The maximum number of tap changes for OLTC during the
predicted horizon is set to NTapOLTCmax = 3. The CBs are
connected to nodes 4, 7, 8, 14, 23, 24, 25, 30, and 32, and
the maximum output of each CB is QCAP,nom

d = 30kVAr.
The PV systems are installed at nodes 11, 16, 17, and 31.
The profiles for the predicted PV real power output and load
coefficient are shown in Fig. 4 and Fig. 5, respectively.
For simplicity, the predicted PV real power output and load
coefficient are assumed to be identical for all nodes. The
scheduling period is 1 h for VVO with a predicted horizon
Nt = 1. The comparison of the attack performance for VVO
with different predicted horizons between Nt = 1 and Nt = 4
is conducted in the following subsection. Initially, the param-
eters for the attack optimization problem are given as follows:
the limit for injected real load attack measurement τ = 0.5,
maximum number of compromised smart meters R = 25,
and large positive constant for the relaxation M = 105.
The proposed attack model is implemented in computer

34514 VOLUME 7, 2019



D. Choeum, D.-H. Choi: OLTC-Induced False Data Injection Attack on Volt/VAR Optimization in Distribution Systems

FIGURE 5. Profile of the predicted value with a resolution of 1 h for load
coefficient.

(IntelCore i7-4790 CPU clocking at 3.6 GHz and 4 GB of
RAM) using the optimization toolbox in MATLAB R2018a.

B. IMPACT OF THE PROPOSED ATTACKS
ON VOLTAGE PROFILE
In this subsection, we conduct an impact analysis of voltage
conditions along the distribution feeder subject to the pro-
posed attacks I and II. We consider two types of voltages
belonging to different layers as shown in Fig. 1: 1) voltage
in cyber layer; and 2) voltage in physical layer. The former
represents the optimal voltage schedule that is calculated by
the VVO. The latter represents the voltage value that involves
the actual operating condition of the distribution system.
Voltage in the physical layer is computed by distribution
system power flow analysis [36]. In this paper, voltages in
the cyber layer and in the physical layer are denoted by the
cyber voltage and the physical voltage, respectively.

FIGURE 6. Voltage profile for 33 nodes during 24 h without attack.

Figs. 6, 7 and 8 show cyber voltage profiles for all nodes
during 24 h without attack, with attack I, and with attack II,
respectively. Fig. 6 provides a performance benchmark for
the proposed attack strategies where the voltages are main-
tained within their acceptable limits [0.95 p.u., 1.05 p.u.].
Compared to Fig. 6, we observe from Figs. 7 and 8 that
attacks I and II tend to increase or decrease feeder voltages,
respectively, while the voltages are still maintained at their

FIGURE 7. Voltage profile for 33 nodes during 24 h with attack I.

FIGURE 8. Voltage profile for 33 nodes during 24 h with attack II.

FIGURE 9. Comparison of three different tap positions of OLTC during
24 h among without attack and with attacks I and II.

acceptable levels. This observation is due to the fact that
the OLTC tap position becomes higher or lower by the
adversary that successfully constructs and injects the false
load attack vector into the VVO module, respectively, conse-
quently distorting the normal voltage profile. Fig. 9 compares
the OLTC tap positions between without attack and with
attacks I and II. In the case of no attack, we observe from
Fig. 9 that the OLTC tap position ranges from 7 to 15 where
a lower tap position is associated with a higher amount of
PV generation (2 p.m.∼4 p.m.) and a higher tap position
with a lower amount of PV generation (7 p.m.∼11 p.m.).
As expected, compared to the tap positions of OLTC without
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FIGURE 10. Comparison of three different voltage profiles
at 8 a.m.: (i) without attack, (ii) with attack I (cyber layer), and
(iii) with attack I (physical layer).

attack, they increase or decrease owing to attacks I and II,
respectively, as shown in Fig. 9. However, it is observed from
this figure that the OLTC tap position has the maximum value
at any scheduling time during attack I. This observation may
be regarded as an abnormal operation of the OTLC by system
operators. In this case, the adversary needs to wait another
day when the schedule that has different OLTC tap positions
at some nodes can be obtained from attack I.

FIGURE 11. Comparison of three different voltage profiles at
10 p.m.: (i) without attack, (ii) with attack I (cyber layer), and (iii) with
attack I (physical layer)

Next, we evaluate the impact of the proposed attacks on
the physical voltage at two randomly selected scheduling
time slots. Figs. 10 and 11 show two cyber voltages without
attack and with attack I along with one physical voltages
with attack I at 8 a.m. and 10 p.m., respectively. We can
observe from these figures that both cyber and physical volt-
ages remain within the allowable range and are listed in the
decreasing order of their magnitudes, as follows: the physical
voltage with attack > the cyber voltage with attack > the
cyber voltage without attack. We verify from this result that
the adversary with attack I successfully increases the physical
voltage through the manipulation of the OLTC tap position
without being detected by system operators in the cyber layer.

We also observe from Figs. 10 and 11 that attack I has
no detrimental impact on voltage quality because no physical

FIGURE 12. Comparison of three different voltage profiles
at 8 a.m.: (i) without attack, (ii) with attack II (cyber layer), and
(iii) with attack II (physical layer).

voltage violation occurs after the attack. However, it is noted
that a higher voltage operating condition requires more power
supply from the substation, and hence, it has a detrimental
impact on system efficiency.

FIGURE 13. Comparison of three different voltage profiles at
10 p.m.: (i) without attack, (ii) with attack II (cyber layer), and (iii) with
attack II (physical layer).

Figs. 12 and 13 illustrate the impact of attack II on both
cyber and physical voltages at 8 a.m. and 10 p.m.. Com-
pared to the result from Figs. 10 and 11 without voltage
violation, we verify from Figs. 12 and 13 that the adversary
with attack II causes physical voltage violations below the
minimum voltage limit at some nodes while the cyber voltage
with attack at any node still remains within the allowable
range. We observe from Figs. 12 and 13 that the physical
voltage violations occur at two groups of nodes at 8 a.m.,
{nodes 13∼18} and {nodes 29∼33}, whereas the physical
voltage violations does at 10 p.m. at only {nodes 13∼18}.
This observation derives from the fact that due to no available
PV reactive power injection at 10 p.m., the PV systems do
not contribute to increased voltages above theminimum limit,
which in turn results in raising the OLTC tap position.

C. IMPACT OF PV ON THE VVO ATTACK
In this subsection, we quantify the impact of three different
amounts of PV real power output on the performance of
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FIGURE 14. Impact of three different PV penetration rates on voltage
magnitude differences between without attack and with attack I.

FIGURE 15. Impact of three different PV penetration rates on voltage
magnitude differences between without attack and with attack II.

the proposed attacks, corresponding to different scheduling
time slots: (1) low PV generation at 6 p.m.; (2) medium
PV generation at 11 a.m.; and (3) high PV generation at
2 p.m. Figs. 14 and 15 show the comparison of voltage mag-
nitude differences among different PV penetration rates when
attacks I and II occur, respectively. Here, the voltage magni-
tude difference is defined as the deviation of physical voltage
with attack from cyber voltage without attack. We observe
from Fig. 14 that the adversary using attack I can cause
more negative voltage deviation from the normal voltage level
with a higher PV penetration rate. This phenomenon is due
to the fact that the voltage level at the substation is lower
at a high PV penetration than at low PV generation, and
hence, the adversary can obtain more room to maximize the
OLTC tap position for increasing the voltage level at any
node. Compared to Fig. 14, Fig. 15 demonstrates that the
adversary using attack II can have a more significant impact
on positive voltage deviation at low PV penetration than at a
high PV penetration rate. It is noted that low PV penetration
causes a higher OLTC tap position than high PV penetration.
As a result, low PV penetration provides more room for the
adversary using attack II to minimize the OLTC tap position
and decrease voltages eventually.

D. IMPACT OF THE ATTACK EFFORT ON THE VVO ATTACK
In this subsection, we investigate the impact of the
attack effort on the performance of the proposed attacks.

FIGURE 16. Tap positions of OLTC with three different attack limit
factors τ .

Here, the attack effort is defined as two attack limit factors,
τ and R, for: (1) the magnitude of injected false load data τ ;
and (2) the maximum number of injected false load data R,
respectively. For the simulation study, three different values
of the attack effort are selected with τ = 0.4, 0.6 and
0.8 and R = 5, 15 and 25. In this simulation, the impact
assessment of attack II subject to varying attack effort is
conducted. Fig. 16 shows the OLTC tap positions during 24 h
after the attack with varying τ . Along with the result from
Fig. 16, it is observed that the increase of value of τ results
in a lower OLTC tap position at some scheduling time slots,
which consequently lead to an increase in the physical voltage
magnitude difference at any node as shown in Fig. 17.

FIGURE 17. Voltage profiles with three different attack limit factors τ .

Fig. 18 shows the OLTC tap positions during 24 h after
the attack with varying R. Similar to the result from Fig. 16,
it is observed from Fig. 18 that the OLTC tap positions at
some scheduling time slots become lower with increasing R.
As shown in Fig. 19, it is also observed that the voltage mag-
nitude differences fluctuate further with a larger value of R.
In addition, with different values ofR, the location of nodes

with the attacked smart meters (i.e., load measurements) are
summarized as follows: {node 11, node 23, nodes 28∼30}
for R = 5, {node 4, node 6, node 14, node 16, node 18, node
21, node 23, nodes 25∼32} for R = 15, and {nodes 4∼9,
nodes 14∼32 for R = 25. It is noted from this result that,
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FIGURE 18. Tap positions of OLTC with three different attack efforts R.

FIGURE 19. Voltage profiles with three different attack efforts R.

to achieve the desired attack result, in general the adversary
injects false data into smart meters that are further away from
the substation. For a secure VVO operation against false data
injection attacks, this may provide some practical guideline
wherein smart meters installed around the end node of the
distribution system need to be protectedwith a higher priority.

E. IMPACT OF THE NUMBER OF PREDICTION
HORIZON ON THE VVO ATTACK
This subsection evaluates the impact of the proposed attacks
on VVO with different number of prediction horizon Nt .
In this paper, we define VVO with a one-step prediction
interval (i.e., Nt = 1) as static VVO, otherwise as look-ahead
VVO with multi-step prediction intervals. In comparison
with the static VVO approach, the benefit of the look-ahead
VVO approach lies in that during the multi-step prediction
horizon, look-ahead VVO allows OLTC, CB, and PV sys-
tems with inter-temporal constraint to reserve their capaci-
ties and operate efficiently, thus operating the VVO process
more effectively along with the reduction of the total cost
(i.e., the deviation of optimal voltage from nominal voltage)
of VVO. To fairly compare the attack performance between
static VVO and look-ahead VVO, we assume that identical
smart meters for both VVO methods are attacked.

Figs. 20 and 21 show voltage magnitude differences of
static VVO (Nt = 1) and look-ahead VVO (Nt = 4) at

FIGURE 20. Comparison of attack I performance between static VVO and
look-ahead VVO at 10 a.m.

FIGURE 21. Comparison of attack II performance between static VVO and
look-ahead VVO at 10 a.m.

10 a.m. due to attack I and attack II, respectively. We observe
from these figures that the voltage magnitude difference in
static VVO is larger than in the look-ahead VVO. We can
conjecture from this observation that in view of robustness to
cyber attack, look-ahead VVO still outperforms static VVO.

Finally, the main observations from the simulation studies
can be summarized as follows:
• The proposed attacks I and II are undetectable because
the cyber voltages remain within the allowable range
after the attack.

• Attack I increases cyber voltage and physical voltage
where the latter is larger than the former. However,
no voltage violation at any node in physical layer occurs.

• Attack II decreases cyber voltage and physical voltage
where the latter is less than the former. Voltage violations
in physical layer are identified at some nodes.

• Attack I has a more detrimental impact on physical
voltage profile with a higher PV penetration whereas
attack II does with a lower PV penetration.

• The increase of attack effort in terms of the magnitude
and the number of injected false load data leads to more
voltage deviation from the normal voltage level.

• Static VVO with one-step prediction interval is more
susceptible to attacks I and II than look-ahead VVOwith
multi-step prediction intervals.
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V. CONCLUSIONS
In this paper, we presented a novel false data injection attack
that causes changes in voltage profile along a distribution
feeder by misleading VVO through false load data injec-
tion into smart meters and manipulating tap positions of an
on-load tap changer. We first formulated two attack strategies
that increase or decrease the tap position of an on-load tap
changer in a bilevel optimization problem where the upper
level and lower level correspond to the construction of attack
vector and the VVO operation with attack vector, respec-
tively. Then, we reformulated the bilevel optimization-based
attack method into a single-level optimization problem using
Karush-Kuhn-Tucker conditions of the lower level opti-
mization problem. Numerical examples simulated in the
IEEE 33-bus distribution system demonstrated that the pro-
posed attack approach can stealthily result in an abnormal
feeder voltage profile in both the physical and the cyber
layers.

In the future, we will extend the proposed attack model to
a more practical attack in a realistic unbalanced three-phase
distribution system with a voltage-dependent load model.
Another interesting direction for future research is to develop
an effective mitigation strategy to protect distribution systems
from false data injection attacks against VVO.
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