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Abstract

Manning formula is one of the most famous functions used in hydraulics and hydrology, which
calculates the average flow velocity based on roughness coefficient, hydraulic radius, and
slope. This study intends to improve the original formula by minimizing the deviation error
between calculated flow velocity and observed one. The first improvement approach was to
estimate the exponent values of hydraulic radius and slope, instead of using current 2/3 and
1/2, while fixing the roughness value. When logarithm-converted multiple linear regression,
calculus-based BFGS technique, and meta-heuristic genetic algorithm were applied to the
problem, genetic algorithm found the best exponent values in terms of sum of squares error and
coefficient of determination. The second approach was to estimate the individual roughness
value, instead of a constant one, which is the function of hydraulic radius and slope. When
multiple linear regression, artificial neural network with BFGS, and artificial neural network
with genetic algorithm tackled the problem, the latter found the best solution. We hope these
approaches will be utilized more practically in the future.
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1. Introduction

The Manning formula, also referred to as Gauckler-Manning formula (or Gauckler-Manning-
Strickler formula) in Europe [1] or Manning’s equation in the United States [2] and English-
speaking countries [3], is a simple-structured empirical formula which calculates the average
velocity of uniform or gradually varied flow [2] in an open channel. The common form of the
formula is

V =
a

n
R2/3S1/2, (1)

where V is cross-sectional mean velocity (L/T); n is roughness coefficient (T/L1/3); R is
hydraulic radius (L), which is calculated from the cross-sectional area A (L2) divided by
wetted perimeter P (L) of the flow. For wide rectangular channels, R is approximated by flow
depth [1, 4]; S is channel slope (L/L) which is assumed to be equal to friction slope [5]; and a
is conversion factor between SI (a=1) and English (a = 1.49) units. This paper will follow the
SI unit.
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Figure 1. Relationship plot of fixed roughness coefficient.

The Manning formula is utilized for fully rough turbulent
flows [1] and is usually applied to free surface profile calculation
in an open channel or circular-piped sewer design [2].

This empirical formula sometimes does not work very well
because it is sensitive to roughness value n, which is discharge-
dependent, and applied only to a specific flow condition (fully
turbulent). The objective of this study is to improve the original
Manning formula by optimally relating the calculated velocity
from the formula and the observed velocity from real laboratory
experiments using various statistical, optimization, and meta-
heuristic methods. For the dataset, Jorissen’s result in 1938 [6]
was used, which had been obtained after 26 runs with differ-
ent conditions (observed mean velocity = 0.2640-0.5658 m/s;
channel width = 0.610 m; water depth = 0.0204-0.1049 m;
slope = 0.00111-0.00333; temperature = 18.9-23.3◦C; bed
condition = plane, ripples, or dunes) as shown in the second,
third and fourth columns of Table 1. Actually, Jorissen’s data
can be found in Johnson’s report [7] and it was again introduced
by Brownlie [8].

2. Improvement of the Formula with Fixed Rough-
ness Coefficient

If the Manning’s roughness coefficient n is assumed to be fixed,
we can rearrange Eq. (1) as follows:

V

R2/3S1/2
=

1

n
. (2)

Also, Eq. (2) can be plotted using the dataset [8] as shown in

Figure 1.

In order to find fixed n, the dataset was analyzed using a
linear regression with zero intercept (0I-LR; y = cx+0) which
passes the origin point (both x and y are equal to zero) and
whose slope becomes 1/n [9]. The regression result shows
that 1/n = 74.202 or n = 0.013477 with the coefficient of
determination (R2) of 0.4861.

In this situation, is there any way to further improve the
Manning formula with fixed roughness coefficient? For this
“empirical” formula, the exponent values, such as 2/3 of hy-
draulic radius and 1/2 of slope, appear somewhat arbitrary and
those values can be optimized using several techniques [10]
such as multiple linear regression (MLR), calculus-based opti-
mization, and meta-heuristic optimization.

For an optimal exponent estimation using MLR, we can first
apply a logarithm to both sides of Eq. (1):

ln(V ) = ln

(
1

n
RαSβ

)
= ln

(
1

n

)
+ α ln(R) + β ln(S). (3)

And, the common form of MLR is

Y = c0 + c1X1 + c2X2. (4)

Since we already have the dataset of V (Y = ln(V )), R
(X1 = ln(R)), and S (X2 = ln(S)), the optimal values of α,
β, and n can be obtained using the following relations:

α = c1, β = c2, n = 1/ec0 . (5)

The regression result shows thatα = 0.785254, β = 0.31775,
and n = 0.03037 with R2 of 0.8294, which means that α in-
creased from 0.6667 to 0.7853, β decreased from 0.5 to 0.3178,
n increased from 0.0135 to 0.0304 (since the exponent values
were changed, we might not fairly compare the magnitude of
two roughness coefficients), and R2 soared from 0.4861 to
0.8294 as shown in Figure 2.

Instead of using the above logarithm-converted multiple lin-
ear regression (Ln-MLR), we can adopt optimization techniques
for estimating the roughness coefficient and two exponent val-
ues. In this optimization process, we have to minimize the sum
of squares error (SSE) as follows:

Minimize
n∑
i=1

(
Vi − V̂i

)2
, V̂i =

1

n
Rαi S

β
i , (6)
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Table 1. Experimental dataset and calculated velocities with fixed n

V̂i (m/s)
Run No. Vi (m/s) Ri (m) Si

0I-LR Ln-MLR BFGS GA

1 0.400945 0.060583 0.00113 0.384760 0.421653 0.427683 0.424328

2 0.440086 0.070916 0.00112 0.425455 0.475809 0.481878 0.480858

3 0.493025 0.073364 0.00113 0.437130 0.490042 0.495939 0.495704

4 0.557127 0.078054 0.00112 0.453548 0.513028 0.518989 0.519815

5 0.340164 0.044717 0.00167 0.382025 0.376098 0.377570 0.375687

6 0.421810 0.056999 0.00167 0.449112 0.455053 0.455539 0.457541

7 0.443044 0.066841 0.00165 0.496423 0.513707 0.513518 0.518728

8 0.540074 0.074797 0.00165 0.535074 0.561139 0.560194 0.568344

9 0.263983 0.019121 0.00332 0.305722 0.240101 0.237589 0.234723

10 0.304127 0.026482 0.00331 0.379283 0.309773 0.305399 0.305505

11 0.379098 0.032199 0.00333 0.433381 0.361859 0.355859 0.358765

12 0.454098 0.039972 0.00333 0.500578 0.428822 0.420646 0.427642

13 0.369026 0.060583 0.00111 0.381340 0.419267 0.425533 0.421913

14 0.401014 0.062495 0.00112 0.391069 0.430846 0.436987 0.433936

15 0.438431 0.065183 0.00113 0.403997 0.446593 0.452592 0.450315

16 0.561799 0.073882 0.00112 0.437237 0.491367 0.497396 0.497130

17 0.565847 0.074797 0.00112 0.440840 0.496139 0.502155 0.502126

18 0.363013 0.038834 0.00168 0.348775 0.337300 0.339108 0.335656

19 0.430440 0.051457 0.00165 0.416984 0.418323 0.419451 0.419442

20 0.477283 0.055201 0.00167 0.439616 0.443742 0.444382 0.445783

21 0.500336 0.059032 0.00166 0.458349 0.466857 0.467263 0.469848

22 0.556912 0.064065 0.00167 0.485498 0.498785 0.498636 0.503096

23 0.282029 0.024382 0.00333 0.360036 0.290865 0.286975 0.286223

24 0.283186 0.025394 0.00332 0.369376 0.300019 0.295897 0.295552

25 0.383270 0.034578 0.00331 0.453106 0.381960 0.375394 0.379418

26 0.394911 0.040649 0.00332 0.505460 0.434107 0.425792 0.433106

where Vi is ith observed mean velocity in dataset; V̂i is calcu-
lated mean velocity using ith hydraulic radius Ri and slope Si
in the dataset.

When a calculus-based optimization technique, named BFGS
[11], was applied to the identical dataset, we could obtain α =

0.773554, β = 0.282297, and n = 0.03936 with R2 of 0.8295
and SSE of 0.0345, which means thatR2 was slightly improved
from 0.8294 to 0.8295 and SSE was also slightly improved
from 0.0347 to 0.0345 when compared with the results from
Ln-MLR.

When a popular meta-heuristic algorithm, named genetic
algorithm (GA) [12], was also applied to the identical dataset,
we could obtain α = 0.812227, β = 0.319725, and n =

0.027611 with R2 of 0.8309 and SSE of 0.0342, which means
that R2 was even improved from 0.8295 to 0.8309 and SSE
was also even improved from 0.0345 to 0.0342 when compared
with the results from BFGS. The fifth to eighth columns of
Table 1 show the calculated velocities from different techniques,
and Table 2 summarizes corresponding parameter values and
fitness indexes.

3. Improvement of the Formula with Varied Rough-
ness Coefficient

Roughness value n varies along the reach in a river, and even
varies in an identical reach with different flow amount [4]. The
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Figure 2. Relationship plot using multiple linear regression.

Table 2. Optimal parameter values from various techniques

Method α β n R2 SSE

0I-LR 0.6667 0.5000 0.0135 0.4861 0.1041

Ln-MLR 0.7853 0.3178 0.0304 0.8294 0.0347

BFGS 0.7736 0.2823 0.0394 0.8295 0.0345

GA 0.8122 0.3197 0.0276 0.8309 0.0342

value of n generally decreases as discharge (or depth or hy-
draulic radius) increases [13–15] although sometimes a direct
proportion between the two occurs in sand-bed, instead of this
inverse proportion [3, 14]. Anyhow, this discharge-dependency
is seldom considered, and most cases adopt a fixed roughness
value [3] for a given reach.

If the Manning’s roughness coefficient n is assumed to be
varied, we can calculate individual roughness coefficient as
follows:

ni =
R2/3S1/2

Vi
. (7)

The individual roughness value is shown in the third column
of Table 3. When a graph of Ri versus ni is drawn as shown in
Figure 3, we can confirm the previous studies where roughness
decreases with increasing hydraulic radius.

Furthermore, when a graph of Si versus ni is drawn as shown
in Figure 4, we can also confirm the previous research where
roughness increases with increasing slope [16].

With the above relationships among hydraulic radius, slope
and roughness, we can derive a two-independent-variable func-

Figure 3. Relationship plot between hydraulic radius and roughness.

Figure 4. Relationship plot between slope and roughness.

tion using MLR as follows:

ni = c0 + c1Ri + c2Si. (8)

MLR could obtain c0 of 0.014049, c1 of −0.04483, and c0
of 1.09974 with R2 of 0.8367 and SSE of 0.0333. The cor-
responding ni and V̂i values can be found in the seventh and
fourth columns of Table 3, and Figure 5 shows the relationship
between observed and calculated velocities. This varied rough-
ness approach by MLR slightly enhanced the solution quality
in terms of R2 from 0.8309 to 0.8367, and SSE from 0.0342

to 0.0333 when compared with those from the fixed roughness
approach by GA.

In the varied roughness approach by MLR, the roughness
ni was the function of hydraulic radius Ri and slope Si. We
can ask if there is any way to improve this linear relationship
among them.

This study introduces an artificial neural network (ANN)
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Table 3. Experimental dataset and calculated velocities with varied n

V̂i(m/s) n̂iRun No. Vi (m/s) ni (s/m1/3)
MLR ANN+

BFGS
ANN+

GA
MLR ANN+

BFGS
ANN+

GA
1 0.400945 0.012933 0.412319 0.418819 0.410950 0.012576 0.012381 0.012618

2 0.440086 0.013029 0.473793 0.487133 0.471736 0.012102 0.011770 0.012155

3 0.493025 0.011949 0.490799 0.505732 0.496809 0.012003 0.011649 0.011858

4 0.557127 0.010971 0.518795 0.538541 0.585896 0.011782 0.011350 0.010432

5 0.340164 0.015135 0.370899 0.364315 0.379831 0.013881 0.014132 0.013555

6 0.421810 0.014349 0.454040 0.445487 0.453332 0.013330 0.013586 0.013351

7 0.443044 0.015100 0.519934 0.512035 0.509077 0.012867 0.013066 0.013142

8 0.540074 0.013352 0.576392 0.570223 0.560367 0.012511 0.012646 0.012868

9 0.263983 0.015608 0.244620 0.252857 0.254519 0.016843 0.016294 0.016188

10 0.304127 0.016807 0.309751 0.315694 0.316054 0.016502 0.016191 0.016173

11 0.379098 0.015406 0.359028 0.362360 0.361278 0.016268 0.016118 0.016166

12 0.454098 0.014856 0.423771 0.421844 0.417734 0.015919 0.015992 0.016149

13 0.369026 0.013926 0.409370 0.416470 0.407822 0.012554 0.012340 0.012602

14 0.401014 0.013143 0.422327 0.430116 0.419148 0.012479 0.012253 0.012574

15 0.438431 0.012418 0.440150 0.449151 0.435160 0.012370 0.012122 0.012512

16 0.561799 0.010489 0.492323 0.508122 0.502058 0.011969 0.011597 0.011737

17 0.565847 0.010499 0.498087 0.514702 0.514645 0.011928 0.011543 0.011544

18 0.363013 0.012948 0.332046 0.326778 0.343594 0.014156 0.014384 0.013680

19 0.430440 0.013055 0.414518 0.406985 0.419285 0.013557 0.013808 0.013403

20 0.477283 0.012413 0.441769 0.433391 0.442782 0.013411 0.013670 0.013380

21 0.500336 0.012346 0.466955 0.458501 0.464440 0.013228 0.013472 0.013300

22 0.556912 0.011749 0.502771 0.494049 0.494495 0.013014 0.013243 0.013232

23 0.282029 0.017204 0.291977 0.298950 0.299863 0.016618 0.016231 0.016181

24 0.283186 0.017578 0.300571 0.307062 0.307717 0.016562 0.016212 0.016177

25 0.383270 0.015932 0.378361 0.380001 0.377960 0.016139 0.016069 0.016156

26 0.394911 0.017249 0.429020 0.426441 0.421927 0.015878 0.015974 0.016145

approach with optimization technique, which can consider non-
linearity among variables. Actually ANN approaches have
been applied to various prediction problems such as energy
demand [17] or water pipe deterioration [18]. While those
approaches used error-back-propagation technique to adjust
the weight values among layers, a recent ANN approach hy-
bridized ANN with an optimization algorithm to search the
solution space of an ocean engineering problem more effi-
ciently [19]. The basic ANN model, named feed-forward mul-
tilayer perceptron, can be structured as shown in Figure 6. As
shown in the figure, there are three layers (input layer in left
column, hidden layer in middle column, and output layer in
right column). If we put certain values for hydraulic radius

Ri and slope Si in the left input layer, these values are multi-
plied by weighting values (such as 16.18) on the links. Then,
those multiplied values are summed at each node (for example,
v1 = 16.18 × Ri + (−9.36) × Si + (−18.21)) in the middle
hidden layer. Again, Sigmoid-functioned nodal values (for ex-
ample, 1

1+e−v1
) in the middle layer are multiplied by weighting

values (such as −97.43), then the multiplied values are finally
summed (for example, z = −97.43

1+e−v1
+ −1.65

1+e−v2
+ 2.52) in the

right output layer and Sigmoid functioned.
When the ANN was hybridized with BFGS (ANN+BFGS),

this model slightly enhanced the solution quality when com-
pared with MLR, obtaining R2 of 0.8447 and SSE of 0.0315.
The corresponding ni and V̂i values can be found in the eighth
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Figure 5. Observed and calculated velocities from MLR.

Figure 6. Structure of feed-forward multilayer perceptron model.

and fifth columns of Table 3.

When the ANN was hybridized with GA (ANN+GA), this
model even enhanced the solution quality when compared with
ANN+BFGS, obtaining R2 of 0.8636 and SSE of 0.0277. The
corresponding ni and V̂i values can be found in the ninth and
sixth columns of Table 3. The optimal weight values from
ANN+GA are shown in Figure 6, and this result can be explicitly
described as follows:

n̂i =
0.0176

1 + e−z
,

z =
−97.43
1 + e−v1

+
−1.65

1 + e−v2
+ 2.52,

v1 =
Ri

0.0781
× 16.18 +

Si
0.0033

× (−9.36)− 18.21,

v2 =
Ri

0.0781
× 1.56 +

Si
0.0033

× (−8.06) + 4.47. (9)

4. Discussions

The amount of data (26 points) introduced in Table 1 does
not appear very large. Nonetheless, this is not small for our
regression-type neural-network calculation. In fact, a much
larger dataset is required for unstructured data (pixel-type pho-
tos or sound wave files). However, because our hydraulic data
is very structured (number-type), 26 points might be enough
for devising the better formula, which could be verified with
statistical indexes (R2 and SSE) and our other papers for energy
demand prediction [17] and pipe condition assessment [18].

Actually, Manning formula can be derived from Chézy for-
mula [13] as follows:

V = CR1/2S1/2, (10)

where C is Chézy number and can be represented as C =

R1/6n−1. This is why the Manning formula is sometimes
called as Chézy-Manning formula [20].

Since the basic structure of the Chézy formula relies on
a physical relationship between the average velocity and the
square root of the bed shear stress (τ ∝ RS), we may change
only Chézy number while fixing the exponent 0.5. When BFGS
tackled this situation (fixing R1/2S1/2 part of Chézy formula),
we obtained a much higher exponent value (1.0024) for R in
Chézy number with R2 = 0.8075 and SSE= 0.0412, which is
a more theoretical approach but less accurate when compared
with the approach of varied slope exponent.

Manning formula is usually used by engineers, who barely
have much knowledge of cutting-edge computational intelli-
gence techniques, such as artificial neural network and genetic
algorithm. The ANN model in this study can be simply an
improved model which considers higher nonlinearity between
independent variables and a dependent one, than existing MLR
model. And, the GA technique can be utilized for globally
finding optimal weighting values of the ANN model. However,
a calculus-based BFGS model, which finds optimal weighting
values locally, could perform as well as GA in this study. In
order for engineers to easily use these techniques, application
software can be coded in the form of spreadsheet macros.
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5. Conclusions

This study proposed various techniques to improve the orig-
inal Manning formula. The approach was divided into two
parts. The first approach was to estimate the exponents of
hydraulic radius and slope while fixing the roughness value.
When three different techniques, such as logarithm-converted
MLR, gradient-based BFGS, and meta-heuristic GA as well as
zero-intercept LR, tackled the problem, the GA technique found
the best solutions with respect to determination coefficient and
SSE.

The second approach was to estimate the individual rough-
ness value while fixing the exponent values of hydraulic radius
and slope. When three different techniques, such as MLR,
ANN+BFGS, and ANN+GA, tackled the problem, ANN+GA
found the best solutions with respect to determination coeffi-
cient and SSE.

Nonetheless, we have to admit that this study has a limita-
tion when determining the Manning’s roughness n, which is
also related with riverbed material, particle size distribution,
and sediment transport, mainly because we do not currently
have those detailed data. However, in order to fully investi-
gate the roughness, we need such factors as riverbed type, flow
depth, hydraulic radius, free surface width, d50, d75, d84, d90,
cross section geometry, etc, as shown in previous studies [21].
While the goal of this paper to minimize any error between
experimental data and corresponding hydraulic formula is ac-
complished by utilizing computational intelligence techniques,
we have to consider more roughness-related data for implement-
ing more practical and realistic formula in the future. Also,
various soft computing techniques such as neural network [22],
meta-heuristics [23], and fuzzy theory [24] will be utilized for
this endeavor.
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