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ABSTRACT As the coupling between home energy management system (HEMS) and distribution system
state estimation (DSSE) becomes stronger for smart distribution grid operations, unexpected HEMS data
change can, through the distortion of the HEMS solution, deteriorate the DSSE performance. In this paper,
we investigate the impact of data changes in the HEMS for multiple homes on three-phase unbalanced
DSSE. We develop a two-level sensitivity analysis framework based on the perturbed Karush–Kuhn–Tucker
conditions from the HEMS and DSSE optimization formulations. The developed framework is used to assess
the impact of the HEMS data changes in a low-voltage (LV) distribution network (at the first level) on the
DSSE solutions in a medium-voltage (MV) distribution network (at the second level). Using the sensitivity
framework, system operators can quantify the sensitivity of DSSE to changes in various types of HEMS
data (e.g., demand response signals, appliance parameters, and consumer comfort). Along with the HEMS
data impact analysis, the proposed sensitivity approach is tested under different measurement redundancy
for DSSE in an IEEE 13-bus MV distribution system with 12 smart households in a radial LV network.

INDEX TERMS Distribution system state estimation, home energy management system, data change,
sensitivity analysis.

I. INTRODUCTION
The distribution management system (DMS) [1] and the
home energy management system (HEMS) [2] are essential
tools for distribution system operators (DSOs) and residential
load aggregators (RLAs) to conduct an efficient energy man-
agement in medium voltage (MV) and low voltage (LV) dis-
tribution networks, respectively. While the coupling between
the DMS and the HEMS is further strengthened for the reli-
able operation of an entire MV/LV distribution network, an
incorrect HEMS solution due to data changes from inherent
and/or cyber threats can lead to the malfunction of the major
DMS applications. The main objective of this paper is the
study of the impact of HEMS data changes on the distribution
system state estimation (DSSE) that is one of the key DMS
applications.

Under various demand response (DR) programs and
dynamic electricity tariffs (e.g., time of use (TOU) rate,

real-time pricing (RTP)), HEMS is a key technology for
an efficient management of the residential energy in smart
grid. The HEMS monitors the real-time energy usage of
consumers using a smart meter and schedules the optimal
energy consumption of their home appliances along with
distributed energy resources (DERs) such as rooftop solar
panels and the energy storage system (ESS). A core HEMS
technology is the optimization method for load reduction and
load shifting. In [3], a stochastic load scheduling method
for which the uncertainties from home appliance operation
times and renewable energy resources are considered was
proposed using linear programming (LP). Stochastic control
and optimization methods were used to build a robust HEMS
in [4]–[6]. The optimization of the heating, ventilation, and
air-conditioning (HVAC) scheduling was developed along
with electric vehicle (EV) [7]. In [8], the various types of
demand side management that are potentially integrated with
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HEMS were introduced. The more recent papers [9] and [10]
proposed a load management method for multiple consumers
for which a mixed-integer linear programming (MILP) is
applied. A chance constrained optimization-based model for
HEMS was proposed to resolve uncertainties that result from
forecasted errors of electricity prices and loads in [11]. Vari-
ous optimization formulations are summarized in [12].

Traditionally, the DMSwith a limited system observability
to the LV network manages and controls only the MV load.
Recently, the HEMS functionality at the LV level has been
extended to support the DMS at the MV level by forecasting
the uncertain aggregated residential loads that are due to
DERs and various demand side management (DSM) pro-
grams. In future smart grids with more diverse residential
demands and unpredicted DERs, the DMS becomes increas-
ingly dependent on the HEMS for an accurate load forecast-
ing and efficient load management in the LV network.

It should be noted that the performance of the optimization-
based HEMS highly relies on the accuracy of various types
of data (e.g., smart meter energy consumption, weather fore-
casts, the operational parameters for appliances, consumer-
preferred indoor temperatures, and the DR signals with a
demand reduction request and duration). Therefore, a small
change in theHEMSdatamay result in a significant distortion
of the HEMS solution. For example, a recent paper [13] has
addressed the possibility of data manipulation-based cyber
attacks against the HEMS and quantified their detrimental
impacts on the HEMS. Furthermore, as the coupling between
the HEMS and the DMS becomes stronger for smart distri-
bution grid operations, it is obvious that the changes in the
HEMS data due to natural errors and/or cyber data attacks
could lead to the malfunction of the HEMS, which in turn
deteriorates the performances of the DMS applications.

In this paper, we propose a new analytical framework
to quantify the sensitivity of the distribution system state
estimation (DSSE) in the DMS with respect to HEMS data
changes in an entire MV/LV distribution network. As an
entry point in the DMS, the DSSE is a key function for
the real-time monitoring of the distribution systems. The
DSSE processes sensor measurements from a supervisory
control and data acquisition (SCADA) system, and provides
the initial operation conditions to the other DMS applications
such as contingency analysis, load flow analysis, and vol-
var control. Since the pioneering works of [14] and [15]
regarding the three-phase DSSE, a considerable amount of
literature has been published on the development of advanced
DSSE methods including a linearized DSSE with a pha-
sor measurement unit (PMU) [16], a meter placement algo-
rithm for the determining of the optimal locations of the
PMUs and smart meters [17], [18], artificial neural network
(ANN)-based pseudo measurement modeling [19], new
DSSE formulations for which the distributed generation (DG)
and the LV load are incorporated as state variables [20], [21].
More recently, robust measurement placement methods for
distribution system state estimation were developed con-
sidering network reconfiguration with the uncertainties of

distributed generation output [22] and formulating the mea-
surement placement problem using a mixed-integer semidef-
inite programming with distributed energy resources and
volatile loads [23]. In [24], multi-area state estimation in
distribution systems was presented, which calculates the esti-
mation solution efficiently and accurately with minimum
communication costs among local areas. A detailed literature
review on the DSSE is given in [25].

FIGURE 1. Illustration of information flow from HEMS to DSSE in the
MV and LV networks.

Fig. 1 illustrates the information flow fromHEMS toDSSE
in the MV/LV networks when the HEMS data change. The
changed HEMS data yields incorrect aggregated load sched-
ule through the HEMS, consequently leading to the miscal-
culation of the DSSE solution. In this figure, the aggregated
residential load from the HEMS is a key variable in our
proposed sensitivity framework, connecting the sensitivities
of the HEMS and the DSSE to changes in the HEMS data and
in SCADA measurements, respectively. For the desired sen-
sitivity analysis, the aggregated residential load is assumed to
be a real power injection measurement at the corresponding
MV bus for the DSSE.

Recent studies have shown sensitivity approach for
power system applications regarding data changes.
Castillo et al. [26] developed a general sensitivity analysis
framework for the impact analysis regarding the sensitivity
of nonlinear optimization subjects to data changes by per-
turbing the KKT conditions. This sensitivity framework has
been used to assess the impact of data changes, as follows:
i) locational marginal price (LMP) [27], ii) state estimation
in transmission system [28], and iii) security constrained
economic dispatch (SCED) [29], and iii) HEMS optimization
algorithm for a house [30].More recently, based on the results
from [26] and [28], the method for quantifying the impact
of multiple perturbations in data on transmission system
state estimation was proposed where data that are influential
to state estimation solution are identified using principal
component analysis (PCA) technique [31].

However, none of the previous works have investigated
the impact of HEMS data changes on the DSSE perfor-
mance in the entire MV/LV distribution network considering:
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(1) the multiple homes with energy trade among consumers;
and (2) the three-phase unbalanced distribution systems. It is
noted that previous studies [28], [30], [31] were limited to
the sensitivity analysis of only transmission system state
estimation and the HEMS for only one house regarding data
changes..

The main contributions of this paper are summarized as
follows:
• A sensitivity analysis framework where the impact of
data changes in the HEMS for multiple houses on the
DSSE can be analyzed is provided. In the LV and MV
distribution networks, the interactions between multi-
spatial components such as: 1) the HEMS data; 2) the
aggregate scheduled residential load from the HEMS;
3) the real power injection measurement for the DSSE;
and 4) the optimal solution of the DSSE (i.e., the esti-
mated states and the objective function) are considered
for the proposed framework.

• A two-level sensitivitymatrix associatedwith theHEMS
at the first level and the DSSE at the second level is
derived. Each sensitivity matrix is derived using the per-
turbed KKT equations of its own optimization problem.
The matrix that is calculated through the multiplication
of two sensitivity matrices enables system operators to
assess the sensitivity of the DSSE to changes in the
various types of HEMS data such as DR signal, oper-
ation parameters of appliances, and consumer comfort.
Numerical examples are illustrated in the IEEE 13-bus
MV distribution system with 12 smart households in a
radial LV network considering different measurement
redundancy for DSSE.

The rest of this paper is organized as follows. Section II
introduces the optimization formulation of the HEMS and the
DSSE. Section III presents the proposed sensitivity matrix
based on the KKT conditions perturbation approach, which
is used to assess the impact of the distorted HEMS load
aggregation due to data changes on the DSSE. The simulation
results for the proposed sensitivity approach are provided in
Section IV, and the conclusion is given in Section V.

II. BACKGROUND
The notations used in this paper are summarized in Table 1.
For simplicity, the subscript p for phase is omitted in the
HEMS optimization formulation.

A. HOME ENERGY MANAGEMENT SYSTEM
For each consumer u ∈ U := {1, . . . ,U} and the scheduling
period t ∈ T := {1, . . . ,T }, the goal of the MILP HEMS
optimization problem is to minimize the following multi
objective function:

min
Pnet,δ

J =
∑
u∈U

∑
t∈T

πtPnetu,t︸ ︷︷ ︸
J1

+

∑
u∈U

εu
∑
t∈T

δu,t︸ ︷︷ ︸
J2

. (1)

J1 is the daily electricity cost of consumers in terms
of the electricity price πt and the net consumption Pnetu,t .

TABLE 1. Notation.

J2 is the amount of the consumer’ discomfort cost that
includes the deviation of the consumer’ preferred temperature
from the indoor temperature. The relaxation variable δu,t is
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the temperature deviation of the consumer u, and the feasi-
bility of the optimization problem can be guaranteed by δu,t
with the penalty parameter εu at the expense of the consumer
preferred thermal comfort. With the objective function, the
HEMS optimization problem is formulated with the follow-
ing equality/inequality constraints:

Pnetu,t =
∑

a∈Ac
u,r

Pu,a,t +
∑

a∈Ac,NI
u,s

Pu,a,t

+

∑
a∈Ac,I

u,s

(
Pcu,a,t − P

d
u,a,t

)
+

∑
a∈Auc

u

Pu,a,t − P̂solaru,t (2)

T in
u,a,t = T in

u,a,t−1 + αu(T̂
out
u,t−1 − T

in
u,a,t−1)

+βuPu,a,t ∀a ∈ Acu,r (3)∑
t∈T

yu,a,t = du,a, ∀a ∈ Ac,NI
u,s (4)

∑
t∈T

vu,a,t = 1, ∀a ∈ Ac,NI
u,s (5)

yu,a,t =
t∑

τ=t−Lu,a+1

vu,a,τ , ∀a ∈ Ac,NI
u,s (6)

SOCu,a,t = SOCu,a,t−1 +
ηcu,aP

c
u,a,t

Emax
u,a

−
Pdu,a,t

ηdu,aEmax
u,a

∀a ∈ Ac,I
u,s (7)

Pnetu,t =
∑
l∈L

au,lFl,t (8)

F1,t =
∑
u∈U

Pnetu,t (9)

Pnetu,t ≤ DR(Qu,Du) (10)

Tmin
u − δu,t ≤ T in

u,a,t ≤ T
max
u + δu,t , ∀a ∈ Acu,r (11)

0 ≤ δu,t ≤ δmax
u (12)

SOCmin
u ≤ SOCu,a,t ≤ SOCmax

u , ∀a ∈ Ac,I
u,s (13)

Pc,min
u,a bu,a,t ≤ Pcu,a,t ≤ P

c,max
u,a bu,a,t , ∀a ∈ Ac,I

u,s (14)

Pd,min
u,a (1− bu,a,t ) ≤ Pdu,a,t ≤ P

d,max
u,a (1− bu,a,t ), (15)

Pmin
u,a ≤ Pu,a,t ≤ Pmax

u,a , ∀a ∈ Ac
u,r/Ac,I

u,s (16)

−Fmax
l ≤ Fl,t ≤ Fmax

l , ∀l ∈ L. (17)

Equation (2) is the constraint on the net energy consump-
tion (total consumption of the reducible appliance (a ∈ Ac

u,r ),
shiftable appliances with non-interruptible load (a ∈ Ac,NI

u,s ),
shiftable appliances with interruptible load (a ∈ Ac,I

u,s),
and uncontrollable appliances (a ∈ Auc

u ) without the pre-
dicted solar generation). Equation (3) is the constraint for
the temperature dynamics of the reducible appliance at the

hour t (T in
u,a,t ) in terms of T in

u,a,t−1 of hour t − 1, the outdoor
temperature at hour t − 1 (T̂ out

u,t−1), the reducible appliance
power consumption (Pu,a,t ), and the environmental parame-
ters (αu, βu) that specify the indoor thermal condition. Equa-
tions eqs. (4)–(6) guarantee the desired operations of shiftable
appliances with the non-interruptible load (e.g., washer):
i) for the operation period du,a hours during a day (4),
ii) for the starting time with once-daily binary value (5); and
iii) a consecutive operation period du,a hours (6). Equation (7)
defines the operational dynamics of the state of charge (SOC)
for the ESS at the current hour t in terms of the SOC at the
previous hour t − 1, the battery capacity Emax

u,a , the charging
and discharging efficiency, ηcu,a and η

d
u,a, and the charging and

discharging power, Pcu,a,t and P
d
u,a,t . Equation (8) illustrates

the relationship between the consumer u’ net power and the
power flows to his neighbors. In (8), au,l is the element
of a node-branch matrix A, as follows: au,l = ±1 if the
node u is the receiving or sending terminal of the branch
l ∈ L; otherwise au,l = 0. Equation (9) is the total power
flow from a grid, which is equal to the sum of the net
consumptions of all of the consumers. The DR constraint
is illustrated in (10), where the DR signal consists of the
demand reduction requests Qu KW and the DR period of Du
hours. Equation (11) presents the range of the relaxed indoor
temperature, which is limited by δmax

u in (12). Equation (13)
is the capacity constraint of the SOC. Equations (14) and (15)
are the constraints on the charging and discharging powers of
the ESS, where bu,a,t represents the binary decision variable
that determines the on/off status of the ESS. The capacity of
the power consumption for the shiftable appliances with the
non-interruptible load and reducible appliances is described
in (16). The inter-consumer power flow is limited in (17).

B. DISTRIBUTION SYSTEM STATE ESTIMATION
In an MV distribution network, a three-phase unbalanced
weighted least squares (WLS) DSSE is formulated, as shown
in [32],

min
V,θ ,P,Q,PF ,QF ,I

J =
∑

p=a,b,c

[ ∑
i∈BV

ωVi,p(V
z
i,p − Vi,p)

2

+

∑
i∈BPI

ωPi,p(P
z
i,p − Pi,p)

2

+

∑
i∈BQI

ω
Q
i,p(Q

z
i,p − Qi,p)

2

+

∑
(i,j)∈BPF

ωPij,p(P
z
ij,p − Pij,p)

2

+

∑
(i,j)∈BQF

ω
Q
ij,p(Q

z
ij,p − Qij,p)

2

+

∑
(i,j)∈BI

ωIij,p(I
z
ij,p − Iij,p)

2
]

(18)
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FIGURE 2. Impact of the data change in the HEMS on the DSSE.

s.t.

Pi,p = Vi,p
∑
j∈Ni

∑
q=a,b,c

[
Vj,q{Gij,pq cos(θi,p − θj,q)

+Bij,pq sin(θi,p − θj,q)}
]

(19)

Qi,p = Vi,p
∑
j∈Ni

∑
q=a,b,c

[
Vj,q{Gij,pq sin(θi,p − θj,q)

−Bij,pq cos(θi,p − θj,q)}
]

(20)

Pij,p = Vi,p
∑

q=a,b,c

[
Vi,q{gij,pq cos(θi,p − θi,q)

+ bij,pq sin(θi,p − θi,q)}

+Vj,q{−gij,pq cos(θi,p − θj,q)

− bij,pq sin(θi,p − θj,q)}
]

(21)

Qij,p = Vi,p
∑

q=a,b,c

[
Vi,q{gij,pq sin(θi,p − θi,q)

− bij,pq cos(θi,p − θi,q)}

+Vj,q{−gij,pq sin(θi,p − θj,q)

+ bij,pq cos(θi,p − θj,q)}
]

(22)

Iij,p =
∑

q=a,b,c

[
(g2ij,pq + b

2
ij,pq){V

2
i,q + V

2
j,q

− 2Vi,qVj,q cos(θi,q − θj,q)}
] 1

2

(23)

Pmin
i,p (Qmin

i,p ) ≤ Pi,p(Qi,p) ≤ Pmax
i,p (Qmax

i,p ) (24)

θmin
i,p ≤ θi,p ≤ θ

max
i,p . (25)

The goal of the previous optimization problem is the
computation of the optimal estimate of the state vari-
able vector V and θ (the estimates of P,Q,PF ,QF ,
and I are determined from the estimates of V and θ )
through the minimization of the weighted measurement
error function J in (18) while the equality/inequality
constraints are being satisfied eqs. (19)–(25). In (18),
the sets

(
BV ,BPI ,BQI ,BPF ,BQF , and BI

)
include buses

with voltage magnitude measurements, real/reactive power

injection measurements, real/reactive power flow measure-
ments, and current magnitude measurements, respectively.
Equations (19) and (20) are the real and reactive power
injection constraints, respectively. Equations (21) and (22)
are the real and reactive power flow constraints, respectively.
The current magnitude constraint is illustrated in (23). The
inequality constraints eqs. (24) and (25) enforce the limits
of real power generations, reactive power generations, and
voltage angles, respectively.

III. PROPOSED SENSITIVITY ANALYSIS FRAMEWORK
This section introduces the proposed analysis framework that
is used to quantify the DSSE sensitivity with respect to data
changes in the HEMS. In the proposed framework, we con-
sider the situation where the HEMS data changes due to a
natural noise and/or a data attack could distort the HEMS
solution (i.e., aggregate scheduled load), which in turn leads
to incorrect DSSE solutions such as the estimated states and
the objective function as shown in Fig. 2,.

A. SENSITIVITY ANALYSIS IN AN
OPTIMIZATION PROBLEM
A general nonlinear programming optimization problem is
formulated as follows:

min
x
J (x, a) (26)

s.t. λ : f(x, a) = 0, κ : g(x, a) ≤ 0, (27)

where J (x, a) is a scalar objective function, and f(x, a) and
g(x, a) are the equality and inequality constraints with the
corresponding Lagrangian multipliers λ and κ , respectively.
x is the decision variable vector and a is the data vector that
is used for the formulation of the optimization problem.

1) KKT CONDITIONS
Given the Lagrangian function (L(x, a) = J (x, a)+λf(x, a)+
κg(x, a)), the KKT conditions are written as follows:

(K1) ∇xL(x, a) = 0 ⇒ ∇xJ (x, a) + λ∇xf(x, a) +
κ∇xg(x, a) = 0,

(K2) f(x, a) = 0,
(K3) g(x, a) ≤ 0,
(K4) κg(x, a) = 0, κ ≥ 0,
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where (K2) and (K3) are the primal feasibility conditions, and
(K4) is either the dual feasibility or the complimentary slack-
ness conditions. In this paper, only the binding inequality
constraints (κ > 0) are considered for our sensitivity analysis.

2) PERTURBED KKT CONDITIONS
The perturbed equations of the previously mentioned KKT
conditions that are subject to x, a, λ, and κ , are written as
follows:
(P1) [∇xJ (x, a)]T dx+ [∇aJ (x, a)]T da-dJ=0
(P2) [∇xxJ (x, a)+ λ∇xxf(x, a)+ κ∇xxg(x, a) ]dx

+[∇xaJ (x, a)+ λ∇xaf(x, a)+ κ∇xag(x, a) ]da
+∇x(f(x, a))dλ+∇x(g(x, a))dκ = 0,

(P3) [∇xf(x, a)]T dx+ [∇af(x, a)]T da = 0,
(P4) [∇xg(x, a)]T dx+ [∇ag(x, a)]T da = 0.
Using (P1)∼(P4), the following linear matrix equation is
constructed,

S1[dx dλ dκ dJ ]T = S2da (28)

where S1 and S2 are the matrices whose elements are the
coefficients of dx, da, dλ, dκ , and dJ in the perturbed KKT
conditions (detailed expressions of S1 and S2 are referred
in [26]).

Lastly, the matrix S = S−11 S2 provides the sensitivity of
the decision variables, the Lagrangian multipliers, and the
objective function with respect to the data variations.

S = S−11 S2 =
[
dx
da

dλ
da

dκ
da

dJ
da

]T
. (29)

Remark 1: The previously mentioned sensitivity analysis
approach can be applied to the MILP optimization problem
for the HEMS in the following steps:
Step 1) The solution of the MILP problem is calculated
Step 2) The MILP problem is converted into the LP prob-

lem through a consideration of the obtained integer
decision variables from Step 1) as the fixed data,
the constraints that include only the integer decision
variables are eliminated, and the solution of this
modified LP problem is calculated.

Step 3) For the binding constraints, the redundant constraints
and the nonbasic variables are removed to ensure the
invertibility of the matrixM1 in (29), the explanation
of which is given in [27].

B. PROPOSED SENSITIVITY MATRIX
First, using the KKT conditions perturbation approach that is
introduced in subsection III-A, the desired sensitivity matri-
ces of the HEMS and the DSSE (i.e, a truncatedmatrix of (29)
without a consideration of the Lagrangian multipliers) can be
derived, respectively,

SHEMS =
dL
da
, ŜxDSSE =

d x̂
db
, SJDSSE =

dJ
db
, (30)

where L is the vector function in terms of the aggregate
scheduled load Li[t] =

∑
u∈U P

net
u,t at the time slot t for load

bus i, and the data vectors of the HEMS and the DSSE from
eqs. (1)–(17) and eqs. (18)–(25) are written as

a = [α ηc(d) SOCcap Tcap δmax Pc(d),cap Fmax DR Psolar]T ,

b = [Vz PzI Q
z
I P

z
F Qz

F Iz].

In the vector a, a superscript cap represents the maximum or
minimum value of the variable.

The following two subsections provide simple numerical
examples how to derive the KKT and the perturbed KKT
conditions for HEMS and DSSE. For simplicity, we consider
equality/inequality constraints (9), (10) for HEMS and equal-
ity constraint (19) for DSSE.

1) HEMS SENSITIVITY ANALYSIS FRAMEWORK
The Lagrangian function of the simplified HEMS optimiza-
tion problem is formulated as

L =
∑
u∈U

∑
t∈T

πtPnetu,t +
∑
u∈U

εu
∑
t∈T

δu,t

−

∑
t∈T

λt

(
F1,t −

∑
u∈U

Pnetu,t

)
+

∑
u∈U

∑
t∈T

κu,t
(
Pnetu,t − DR(Qu,Du)

)
. (31)

Then, the KKT first-order conditions for the HEMS model
are expressed as

(C1) (πt + λt + κu,t )χ{(u,t)∈U×T } = 0, ∀u, t

(C2) εuχ{(u,t)∈U×T } = 0, ∀u, t

(C3) λtχ{t∈T } = 0, ∀t

(C4) F1,t =
∑
u∈U

Pnetu,t , ∀t

(C5) Pnetu,t = DR(Qu,Du), ∀u, t.

Here, χ{(u,t)∈A} and χ{t∈A} are the characteristic functions
based on the set A. Next, all KKT equations (C1)∼(C5) along
with the HEMS objective function are perturbed in regards to
the decision variables (Pnetu,t , δu,t , and F1,t ), Lagrange mul-
tipliers (λu,t and κu,t ), and data (πt , εu, and DR(Qu,Du)) as
long as the KKT conditions still hold. All perturbed equations
for the HEMS are finally written in a linear matrix equation
form as follows:


M1 0 −1 0
M2 0 0 −1
0 ϒT 0 0
ϒ 0 0 0





dPnet

dδ
dF1
dλ
dκ
dJ1
dJ2


=

31
32
33

 dπ
dε
dDR

.

(32)

Taking the inverse of the left-hand side matrix in (32) on
both sides of (32), we can obtain the sensitivity matrix that
evaluates the impact of HEMS data on aggregate scheduled
load. The derivations of submatrices in the linear matrix
equation (32) are referred to in Appendix A.
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2) DSSE SENSITIVITY ANALYSIS FRAMEWORK
The Lagrangian function of the simplified DSSE optimiza-
tion problem is formulated as

L =
∑

p=a,b,c

[ ∑
i∈BPI

ωPi,p(P
z
i,p − Pi,p)

2
−

∑
i∈BPI

λi,p

(
Pi,p − Vi,p

∑
j∈Ni

∑
q=a,b,c

[
Vj,q{Gij,pq cos(θi,p − θj,q)

+Bij,pq sin(θi,p − θj,q)}
])]

. (33)

Then, the KKT first-order conditions for the DSSE model are
expressed as

(D1)
(∑
j∈Ni

∑
q=a,b,c

λi,p

[
Vj,q{Gij,pq cos(θi,p − θj,q)

+Bij,pq sin(θi,p − θj,q)}
]
+ Vi,pGii,pp

)
+

∑
o=a,b,c,o 6=p

λi,o

[
Vj,p{Gij,po cos(θi,p − θi,o)

+Bii,po sin(θi,p − θi,o)}
]
+

∑
j∈NB,j 6=i

∑
q=a,b,c

λj,p[
Vi,p{Gij,pq cos(θi,p − θj,q)+ Bij,pq sin(θi,p − θj,q)}

]
= 0

(D2)
(
Vi,p

∑
j∈Ni

∑
q=a,b,c

λi,p

[
Vj,q{−Gij,pq sin(θi,p − θj,q)

+Bij,pq cos(θi,p − θj,q)}
]
− V 2

i,pBii,pp

)
+

∑
o=a,b,c,o 6=p

λi,o

[
Vj,p{Gij,po cos(θi,p − θi,o)

+Bii,po sin(θi,p − θi,o)}
]
+

∑
j∈NB,j 6=i

∑
q=a,b,c

λj,p[
Vi,p{Gij,pq cos(θi,p − θj,q)+ Bij,pq sin(θi,p − θj,q)}

]
= 0

(D3) − 2ωPk,p(P
z
k,p − Pk,p)− λi,p = 0

(D4) Pi,p = Vi,p
∑
j∈Ni

∑
q=a,b,c

[
Vj,q{Gij,pq cos(θi,p − θj,q)

+Bij,pq sin(θi,p − θj,q)}
]
.

Here, a symbol o represents one of the phases, however it does
not equal to phase p. All KKT equations (D1)∼(D4) along
with the DSSE objective function are perturbed in regards to
the decision variables (Vi,p, θi,p, and Pi,p), Lagrange multi-
plier λu,t , and data Pzi,p as long as the KKT conditions still
hold. All perturbed equations for the DSSE are finally written

in a linear matrix equation form as follows:

 M 0 −1
ϒ1 ϒT

2 0
ϒ2 0 0



dV
dθ
dP
dλ
dJ


=


[
2ωPk,p(P

z
k,p − Pk,p)

]
1×|BPI |

0|BPI |×|BPI |
3

[ dPzI ]. (34)

Taking the inverse of the left-hand side matrix in (34) on
both sides of (34), we can obtain the sensitivity matrix that
assesses the impact of DSSE data (in particular, real power
injection measurement) on DSSE solutions. The derivations
of submatrices in the linear matrix equation (34) are referred
to in Appendix B.

TABLE 2. Classification of data in HEMS.

In this paper, the considered HEMS data are classified
into three groups ((G1) ∼ (G3)) according to the data unit
in Table 2. The first group includes the capacity limits of
the flow line, the ESS charge/discharge, the DR signal, and
the solar power generation. The second group corresponds
to the comfortable indoor temperature range and the relaxed
temperature of the consumer. In the third group, the data
represent the parameters of the indoor thermal condition and
the ESS.

Next, the composite functions of x̂(L(a)) and J (L(a)) that
explain the relationship between the HEMS data a and the
DSSE solution including the state estimate x̂ and the objective
function J , respectively, are defined. To develop the desired
sensitivity framework, the following assumptions are consid-
ered for the two previously mentioned composite functions:
i) TheHEMS scheduling time (every hour) is synchronized

with the DSSE execution time (every several minutes).
ii) The aggregated load of the HEMS at any bus equals the

real power injection measurement for the DSSE at the
same bus (i.e., L = PzI ).

According to the chain rule, together with these assump-
tions, the following sensitivity matrices are finally derived in
a multiplication form, as follows:

Ŝx =
d x̂
da
=

d x̂
dL

dL
da
= ŜxDSSESHEMS, (35)

SJ =
dJ
da
=

dJ
dL

dL
da
= SJDSSESHEMS, (36)

where L is selected as the intermediate vector for which two
of the different sensitivity matrices of the HEMS (SHEMS) and
the DSSE (ŜxDSSE or SJDSSE) are combined. The main goal of
this paper is to calculate the sensitivity of the DSSE to the data
changes of the HEMS using the matrices in (35) and (36).
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FIGURE 3. IEEE 13-bus system with 12 smart households.

IV. SIMULATION RESULTS
In this section, the sensitivity of the DSSE with respect
to the HEMS data changes is illustrated in the the IEEE
13-bus MV test system [33] with 12 smart households in
the LV network, as shown in Fig. 3. The smart households
belong to three groups, each of which has four households
that are connected to the feeder associated with bus 6 for
phases A, B, and C , respectively.

For the HEMS data in four households for phase A, the
total scheduling period is one day with T = 24 time
slots so that each time slot is 1 h. It is assumed that each
consumer joins a DR program and accepts a DR reduction
request (QA,u = 650W, DA,u = 4 h (1 P.M.∼4 P.M.)). The
TOU rates are selected as follows: 0.14 $/KWh for the peak
(10 − 11 A.M., 1 − 4 P.M.), 0.11 $/KWh for the shoulder
(9 A.M., 12 P.M., 5 − 10 P.M.) and 0.06 $/KWh for the
off-peak period (12− 8 A.M.). For simplicity, each consumer
u has the appliances and the ESS with identical specifica-
tions, as follows: for the air conditioner Pmax

A,u,a = 1KW,
for the washer Pmax

A,u,a = 0.2KW, and for ESS ηcA,u,a =

0.95, ηdA,u,a = 0.9, Emax
A,u,a = 400Wh, SOCmax

A,u = 0.9,
SOCmin

A,u = 0.1, SOCA,u,0 = 0.5, Pc,max
A,u,a = 120W, Pc,min

A,u,a =

13W, Pd,max
A,u,a = 135W, Pd,min

A,u,a = 12W. The initial indoor
temperatures of the four consumers are also the same as
T in
0 = 26◦C, the temperature relaxation δmax

= 1◦C, and
the environmental parameters (α = 0.3, β = −0.015).
However, the comfortable temperature ranges of the con-
sumers u = 1, 2, 3, 4 are set differently to: [22◦C, 23◦C],
[22◦C, 24◦C], [22◦C, 25◦C], and [22◦C, 26◦C], respectively.
The line flow limit Fmax

A,l is set as 3.2KW. In the following
subsections, three cases that correspond to the HEMS-data
groups (G1), (G2), and (G3) are simulated in Table 2, respec-
tively. In this simulation, consumers 1, 2, and 3 have binding
DR constraints at different time slots: PnetA,1,t , P

net
A,2,t , and P

net
A,3,t

bind at DRA,1, DRA,2, and DRA,3 in t ∈ [1 P.M., 4 P.M.],
t ∈ [2 P.M., 4 P.M.], t = 2 P.M., respectively. A DR
binding constraint does not exist for consumer 4. The aggre-
gate scheduled load L6,A binds at Fmax

A,1 in t = 12 P.M. and

t ∈ [5 P.M., 7 P.M.] We assume that the HEMS data of
the other four households for each phase B and C are the
same as those of the four households for phase A. System
data for the IEEE 13-bus distribution test feeder are taken
from MATPOWER 4.0 IEEE 13-bus distribution test case
file.We assume that themeasurements for voltagemagnitude,
real/reactive power injection, real/reactive power flow and
current magnitude are corrupted by additive Gaussian noises
with different variances σ 2

= 10−6, 2× 10−6, 3× 10−6 and
4 × 10−6, respectively. For bad data detection, the thresh-
old of the Chi-square test follows a 95% confidence level.
Numerical testing is performed with the optimization toolbox
inMATLABR2015b (IntelCore i5 CPU clocking at 3.0 GHz,
with 4 GB of RAM).

FIGURE 4. Scatter plot for the matrices Sx̂
DSSE and SHEMS.

A. STRUCTURE OF THE DEVELOPED SENSITIVITY MATRIX
The structure for the two developed sensitivity matrices
(ŜxDSSE and SHEMS in (35)) is illustrated in Fig. 4. The desired
matrix Ŝx = ŜxDSSESHEMS provides the sensitivity of the
DSSE three phase solutions x̂ at bus i to the HEMS data for
four consumers that are connected to bus i for some phase
p at time t . d x̂/dLi[t] and dLi[t]/da in (35) correspond to
the column of ŜxDSSE and the row of SHEMS for bus i at
time t , respectively. In each sensitivity matrix, solid dots with
blue color represent the elements with non-zero sensitivities.
The elements with zero sensitivity are expressed without the
dots. For the matrix ŜxDSSE, the x-axis indicates all real power
injection measurements at any bus i for any phase p, and the
y-axis indicates all voltage angle and magnitude estimates
at any bus i for any phase p. For the matrix SHEMS, the
x-axis indicates various types of the HEMS data in the vec-
tor a. Since all HEMS data associated with three phases are
the same, the subscript p for phase is omitted. In the x-axis,
1 ∼ 56 correspond to different HEMS data for four con-
sumers. 57 ∼ 80 and 81 represent identical data for four
consumers, corresponding to T̂ out

t and line flow limit, respec-
tively. The y-axis indicates aggregate scheduled load for bus i
at time t .

B. SENSITIVITY ANALYSIS FOR CHANGE IN THE HEMS
DATA WITH DIFFERENT MEASUREMENT REDUNDANCY
In this subsection, we quantify the sensitivity of DSSE to
changes in HEMS data under different measurement redun-
dancy for DSSE. Figs. 5(a) and (b) show the sensitivity
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TABLE 3. Sensitivities of the bus voltage angle and magnitude estimates at bus 6 for phase C to the change in (G1) HEMS data for a consumer.

FIGURE 5. Sensitivities of the bus voltage angle and magnitude
estimates at bus 6 to the change in the HEMS data under: (a) complete
measurement redundancy and (b) poor measurement redundancy.

of V̂i,p (puV/puW) and θ̂i,p (rad/puW) at any bus i for any
phase p at 12 P.M. subject to line flow limit for four con-
sumers of phases A, B, and C with complete and poor mea-
surement redundancy, respectively. In this figure, the x-axis
indices, 1 ∼ 13, 14 ∼ 26, 27 ∼ 39, 40 ∼ 52, 53 ∼ 65, and
66 ∼ 78 correspond to θ̂1∼13,A, θ̂1∼13,B, θ̂1∼13,C , V̂1∼13,A,
V̂1∼13,B, and V̂1∼13,C .
In Fig. 5(a), all the measurements have been completed;

where the measurements of the voltage/current magnitude

and the power injection/flow are assigned to each bus and
line. The measurement redundancy (i.e., the ratio of the
number of measurements to the number of state variables)
is 225/75. We can observe from this figure that the changes of
the line flow limit for each phase have little impact on voltage
angle and magnitude estimates in the other phase and bus.
For example, the sensitivity subject to the line flow limit for
phase C has the largest absolute value in θ̂6,C and V̂6,C . This
observation explains the localized effect where the intermedi-
ate variable L6,C at bus 6 for phase C that has been subjected
to data changes is the most influential to the DSSE solution
at the same bus 6 for phase C . This can be justified because
the relaxed binding flow limit constraint due to increasing of
Fmax
C,1 leads to an increase of the L6,C , subsequently resulting

in a drop of the voltage magnitude and angle estimates.
Fig. 5(b) shows the sensitivity of voltage angle and magni-

tude estimates under poor measurement redundancy (99/75).
We can observe that the sensitivities in Fig. 5(b) are larger
than the sensitivities in Fig. 5(a). This observation implies
that less number of measurements causes the value of voltage
magnitude and angle estimates to be more sensitive to the
change of L6,p.Moreover, compared to Fig. 5(a), the sensitivi-
ties of the voltage magnitude and angle estimates for the other
buses are much larger in Fig. 5(a). We conclude from this
observation that poor measurement redundancy could lead to
the non-localized effect of data change on the DSSE solution.

C. SENSITIVITY ANALYSIS FOR CHANGE IN
VARIOUS TYPES OF THE HEMS DATA
In this subsection, we assess the sensitivity of DSSE to
changes in various types of HEMS data that are defined in
Table 2. Three case studies are conducted with different data
groups: (i) Case 1: (G1) data, (ii) Case 2: (G2) data; and
(iii) Case 3: (G3) data, respectively. For more clear verifica-
tion of the impact of the HEMS data on DSSE, the simulation
setup for all three cases is the same as Fig. 5(a) with complete
measurement redundancy.

1) CASE 1: SENSITIVITY ANALYSIS FOR (G1) DATA CHANGE
Table 3 shows the sensitivity of θ̂6,C and V̂6,C at 11 A.M.
subject to all data in (G1) for a consumer C1. From Table 3,
it is verified that the (G1) data can be categorized into three
sensitivity groups, each of which has the sensitivity of the
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TABLE 4. Sensitivities of the estimated objective function J to the (G1) data for a consumer.

TABLE 5. Sensitivities of the bus voltage angle and magnitude estimates at bus 6 for phase C to the change in the flow limit and DR data in (G1) for 12
consumers.

same sign, as follows: {DRC,1, P
d,max
C,1 , Fmax

C,1 , P̂
solar
C,1,11∼16},

{Pd,min
C,1 ,Pc,min

C,1 }, and {Pc,max
C,1 , P̂solarC,1,1∼10, P̂

solar
C,1,17∼24}. This

grouping property enables system operators to rapidly pre-
dict the direction of the DSSE solution to the HEMS data
change. We can also list the data in the decreasing order
of the absolute sensitivity value, as follows: DRC,1 >

P̂solarC,1,16 > Pd,max
C,1 > P̂solarC,1,15 > Pd,min

C,1 > P̂solarC,1,14 >

P̂solarC,1,13 > P̂solarC,1,11 > Fmax
C,1 = P̂solarC,1,12 > Pc,min

C,1 >

Pc,max
C,1 = P̂solarC,1,1∼10 = P̂solarC,1,17∼24. It should be noted

that among these data only the DRC,1 can be frequently
changed by the system operators to reduce the peak demand.
Therefore, a robust DR signal that protects against data
corruption needs to be designed to maintain the correct
DSSE solution.
Alternatively, the sensitivities of the estimated objective

function J (1/puW) to the (G1) data are provided in Table 4.
The order of the data impact on J is the same as that of the
data impact on the DSSE estimation solution. It is noted that
the value of J is used for bad data detection for which the
Chi-squares test is used: bad data are suspected if J is larger
than some threshold; otherwise bad data are nonexistent.
The sensitivity results from Table 4 could help the system
operators to prioritize the HEMS data that exert the most
significant impact on the performance of bad data detec-
tion. From a cybersecurity perspective, these sensitivities
with positive or negative signs may be used to identify the
following two types of data attacks: (i) the deletion of nor-
mal data (∂J/∂a > 0); and (ii) the bypass of bad data
detection (∂J/∂a < 0).
Table. 5 compares the sensitivities of θ̂6,C and V̂6,C at 3

P.M. to Fmax
p,1 and DR for all consumers. As expected,the

results from this table show the localized effect of the HEMS
data change where θ̂6,C and V̂6,C are more affected by change
in the HEMS data for phase C than for phases A and B.
In Table. 5, the order of the absolute sensitivity value for
all three phases is as follows: Fmax

1 > DR1 = DR2 =

DR3 > DR4. Through the comparison of the results between
Table. 4 and Table. 5, we observe that the most influen-
tial data regarding the sensitivity vary with different HEMS

scheduling time: DRC,1 in Table. 4 (11 A.M.) and Fmax
C,1

in Table. 5 (3 P.M.). Similar to Case 1, the sensitivities in
Table. 5 corresponding to the HEMS data for phase C are
categorized into three groups, each of which has the sensi-
tivity of the same sign but different magnitudes, as follows:
{Fmax

C,1 ,DRC,3}, {DRC,1,DRC,2} and {DRC,4}. It is noted
that ∂V̂6,C/∂DRC,1 and ∂V̂6,C/∂DRC,2 are negative. This is
because an increase of DRC,1 and DRC,2 leads to an increase
of PnetC,1,15 and P

net
C,2,15, subsequently resulting in a drop of the

voltage magnitude at 3 P.M. Alternatively, the sensitivities to
the DRC,3 and the Fmax

C,1 at 3 P.M. are positive, because an
increase of these data leads to a rise of the voltage magnitude
through a decrease of the PnetC,3,15 and FC,1,15. Lastly, the
sensitivity to DRC,4 is zero because PnetC,4,t is not binding at
any scheduling time slot.

FIGURE 6. Sensitivities of the bus voltage magnitude estimates at bus 6
for phase C to the change in the HEMS (G2) data for four consumers at
phase C (Case 2).

2) CASE 2: SENSITIVITY ANALYSIS FOR (G2) DATA CHANGE
In Case 2, the sensitivity of the DSSE to (G2) data for
four consumers’s thermal comfort levels is quantified. Fig. 6
shows the sensitivities of V̂6,C (puV/◦C) to the change in
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two different data, Tmax
C,u and δmax

C,u in t ∈ [5A.M., 8P.M.].
In the maximum value of the absolute sensitivity to these
data, the sensitivity order is listed as follows: Tmax

C,1 (δ
max
C,1 ) >

Tmax
C,2 (δ

max
C,2 ) > Tmax

C,3 (δ
max
C,3 ) > Tmax

C,4 (δ
max
C,4 ). This result is

natural because the consumer’s preferred comfortable tem-
perature range becomes narrower from consumer 1 to 4 in
the increasing order of the temperature range. In addition, the
TOU rate affects the sensitivity of theDSSE to Tmax

C,u and δmax
u .

For example, for all consumers, the sensitivity of δmax
u is

zero in t ∈ [5A.M., 9A.M.] and t ∈ [5P.M., 8P.M.] when
the TOU rate is inexpensive. However, when the TOU rate
suddenly increases at 10 A.M. and 1 P.M., the sensitivity to
δmax
C,u becomes greater than to Tmax

C,u . At the other scheduling
time slots, sensitivities associated with both data are the
same. Also, from Fig. 6, ∂V̂6,C/∂Tmax

C,u and ∂V̂6,C/∂δmax
C,u are

generally positive. This is consistent with our expectation that
an increasing of the Tmax

C,u and the δmax
C,u would reduce the net

power consumption of each consumer, which in turn leads to
a rise of the voltage magnitude.

FIGURE 7. Sensitivities of the bus voltage angle estimates at bus 6 for
phase C to the change in the HEMS (G3) data for four consumers at
phase C (Case 3).

3) CASE 3: SENSITIVITY ANALYSIS FOR (G3) DATA CHANGE
In Case 3, the impact of the (G3) data on the θ̂6,C from the
DSSE in the t ∈ [11A.M., 5P.M.] is investigated. From
Fig. 7, the order of the (G3) data with the absolute on-
average sensitivity value can be listed, as follows: αA,u >
ηdA,u > SOCmax

A,u = SOCmin
A,u > ηcA,u. It is conjectured from

this result that the data associated with the air conditioner
impacts the DSSE more than the ESS. From this figure,
the time slots are also compared when the change of data
of each consumer exerts a significant impact on the DSSE.
For example, the sensitivities that are associated with the
comfortable data for consumers 1 and 2 are greater than those
for consumers 3 and 4 at 11 A.M. and 1 P.M., respectively.
Alternatively, for consumers 3 and 4, the sensitivities are
greater than those for consumers 1 and 2 at 3 P.M. In addition,
the sensitivities at 12 P.M. and 5 P.M. are zero, and this is
due to the fact that L6,A is binding at the Fmax

A,1 at 12 P.M.
and 5 P.M. so that the change is only regarding the Fmax

A,1
influence on the calculation of the L6,A, and subsequently the
sensitivity of the DSSE. We note 3 P.M. in Case 3. In general,

when PnetA,1,15 ∼ PnetA,3,15 are bounded to the DR constraint,
their sensitivities to the other HEMS data change become
zero. However, as shown in the figure, the sensitivity values
of HEMS data for household 1∼3 are not zero at 3 P.M. due
to the line flow constraint that represents the capacity of total
power consumption for household 1∼4. If the flow is binding
at a flow constraint, net power consumption can be affected
by the HEMS data for the other households. At 3 P.M.,
HEMS data change for household 1∼3 affect only PnetA,4,15
without having impact on their own net power consumptions.
Due to this reason, the sensitivities of both the aggregated
load at 3 P.M. to the HEMS data for household 1∼3 and
the corresponding bus voltage angle estimates have non-zero
values.

TABLE 6. Performance of the proposed sensitivity analysis framework.

In addition, the performance of the proposed sensitivity
analysis framework is evaluated in terms of average absolute
deviation (AAD) and absolute deviation (AD):

AADx̂
=

1
3NB

NB∑
i=1

∑
p=a,b,c

∣∣∣1x̂(r)i,p (a
cur, anew)−1x̂(a)i,p (1a)

∣∣∣ ,
(37)

ADJ
=

∣∣∣1J (r)(acur, anew)−1J (a)(1a)
∣∣∣ (38)

where

1x̂(r)i,p (a
cur, anew) = x̂(r)i,p (a

cur)− x̂(r)i,p (a
new), (39)

1x̂(a)i,p (1a) = Ŝx1a, (40)

1J (r)(acur, anew) = J (r)(acur)− J (r)(anew), (41)

1J (a)(1a) = SJ1a. (42)

Equations (37) and (38) represent the formulas of AAD
and AD for state estimate and objective function, respec-
tively. In (39), 1x̂(r)i,p (a

cur, anew) represents the reference
value, which illustrates the difference between two DSSE
estimation solutions with current HEMS data (acur) and new
HEMS data (anew). In this paper, (39) is defined as an
existing perturbation method-based equation. On the other
hand, in (40), 1x̂(a)i,p (1a) indicates the analytical value of
the varying estimation solution subject to the HEMS data
change (1a), which can be calculated using our proposed
sensitivity matrix Ŝx. Our proposed analytical method is
based on (40). Equations (41) and (42) for ADJ are also
defined similar to (39) and (40). Table 6 shows the results of
AADx̂ and ADJ when data F1 and Tmax

1 change. We observe
from this table that the solutions from the existing pertur-
bation method are almost consistent with those from the
proposed analytical method.
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Finally, the meaningful observations from simulation stud-
ies of the proposed sensitivity framework can be summarized
as follows.
• Impact of the HEMS data on the DSSE sensitivity under
different SCADA measurement redundancy: decreased
SCADA measurement redundancy leads to stronger
non-localized effect of the HEMS data on the DSSE
performance where variations in the HEMS data at bus i
for phase p can be influential to the DSSE solution at
the other buses and phases. In the unexpected situation,
the proposed sensitivity framework helps system oper-
ators to accurately predict which DSSE solution can be
affected much more significantly due to the HEMS data
changes.

• Fast assessment of the DSSE sensitivity in response to
changes in various types of the HEMS data: according
to the sign and magnitude of the calculated sensitivities,
the different types of the HEMS data can be grouped and
prioritized. The results are used to quickly identify the
most influential HEMS data as well as the direction of
the change in the DSSE solution subject to the HEMS
data change. Furthermore, the sensitivities to the HEMS
data at different scheduling time are compared, and the
most affecting HEMS scheduling time to DSSE can be
predicted rapidly.

V. CONCLUSIONS
In this paper, an analytical framework is presented for the
quantification of the sensitivity of the three phase DSSE
in the MV network with respect to changes of the various
types of HEMS data in the LV network. The two following
sensitivity matrices are constructed: The first comprises a
DSSE sensitivity to any SCADA measurement, and the sec-
ond comprises a sensitivity of the aggregate scheduled load
from the HEMS to the HEMS data. Given that the aggregate
scheduled load is equal to the SCADA real power injection
measurement, a matrix that combines these two matrices
in the multiplication form provides the sensitivity informa-
tion regarding the extent that the DSSE solution (i.e., the
estimated bus voltage magnitude/phase angle and objective
function) varies when it is subjected to changes of the HEMS
data, such as the DR signal, the operation parameters of the
appliances, and the consumer preferred indoor temperature.
This is the first study to investigate the sensitivity of DSSE
subject to the HEMS data changes in the unified sensitiv-
ity framework considering the entire MV/LV distribution
network.

The sensitivity results from the simulation study could
be used as follows: 1) HEMS-data grouping/listing with
different sensitivity values, and 2) a segmentation of the
LV network into the most- and least-influential residen-
tial areas on the DSSE while the HEMS data change.
Furthermore, these results may provide guidelines for the
design of the DR signal and the development of DSSE
and HEMS algorithms that are robust to attacker data
manipulation.

APPENDIX A
PERTURBATION SUBMATRICES FOR HEMS
In this appendix, 1(k×l) and 0(k×l) are the k × l matrices with
all ones and all zeros, respectively. Ik is the k × k identity
matrix. Nt is the number of time slots and Nu is the number
of smart households that are in same phase. The submatrices
in (32) are expressed as follows:

A. THE SUBMATRICES IN THE LEFT-HAND SIDE OF (32)

M1 =
[
[πt ](1×NuNt ) 0(1×NuNt ) 0(1×NuNt )

]
,

M2 =
[
0(1×NuNt ) [εu](1×NuNt ) 0(1×NuNt )

]
,

ϒ =

[
−INt · · · − INt 0(Nt×NuNt ) INt

INuNt 0(NuNt×NuNt ) 0(NuNt×Nt )

]
.

B. THE SUBMATRICES IN THE RIGHT-HAND SIDE OF (32)

31 =

[
[
∑

u∈U
Pnetu,t ](1×Nt )

∑
t∈T

[δu,t ](1×Nu) 0(1×Nu)
]
,

32 =

 81 0(NuNt×Nu) 0(NuNt×Nu)
0(NuNt×Nt ) 82 0(NuNt×Nu)
0(NuNt×Nt ) 0(NuNt×Nu) 0(NuNt×Nu)

,
33 =

[
0(Nt×Nt ) 0(Nt×Nu) 0(Nt×Nu)
0(NuNt×Nt ) 0(NuNt×Nu) 83

]
,

where
81 =

[
−INt · · · − INt

]T
(Nt×NuNt )

,

82 =

[
Diag(Nu)(1)TNt×1

]T
(Nu×NuNt )

,

83 =

[
Diag(Nu)([0 1(1×Du) 0])Nt×1

]T
(Nu×NuNt )

.

Here, Diag(A)(B) is a block diagonal matrix with A blocks of
the matrix B.

APPENDIX B
PERTURBATION SUBMATRICES FOR DSSE
In addition to notations in Appendix A, |S| represents the
cardinality of a set S (i.e., the number of elements in S). NB is
the number of buses on distribution system. The submatrices
in (34) are written as follows:

A. THE SUBMATRICES IN THE LEFT-HAND SIDE OF (34)

M =
[
0(1×6NB) [−2ωPi,p(P

z
i,p − Pi,p)](1×|BPI |)

]
ϒ1 = = 51 +52

where

51

=

 0(3NB×3NB) 0 0
0 0(3NB×3NB) 0
0 0 Diag(2ωPi,p)(|BPI |×|BPI |)

,
52

=


∂2P
∂V∂V

∂2P
∂V∂θ

0(3NB×|BPI |)
∂2P
∂θ∂V

∂2P
∂θ∂θ

0(3NB×|BPI |)
0(|BPI |×3NB) 0(|BPI |×3NB) 0(|BPI |×|BPI |)

,
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Here, the matrix52 is called as the Hessian matrix for DSSE,
which is the symmetric matrix. The following matrix ϒ2
is a derivative matrix of any constraint with respect to any
variable for DSSE, which is similar to the Jacobian matrix:

ϒ2 =


−
∂P
∂V (3NB×|BPI |)

−
∂P
∂θ (3NB×|BPI |)

I|BPI |

.

B. THE SUBMATRICES IN THE RIGHT-HAND SIDE OF (34)

3 =

[
0(6NB×|BPI |)

Diag(−2ωPk,p)(|BPI |×|BPI |)

]
.
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