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Erratum to: JCAP05(2013)016

Abstract. Here we report a mistake in the dark matter annihilation amplitudes presented
in the published version of this work. In particular, we provide the corrected version of
eqs. (3.4)–(3.6) and derive the corresponding repercussions on our results. None of our
conclusions changes due to this correction.

ArXiv ePrint: 1303.6632

1 Corrected annihilation amplitudes

A mistake was detected in the squared amplitudes of the annihilation channels χχ̄ →
as, aa, ss, i.e. in eqs. (3.4)–(3.6) of the published manuscript. Before giving the recalcu-
lated amplitudes, let us first generalise the annihilation cross section times velocity originally
given in eqs. (3.1)–(3.3):
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with κ = 1 or 2 for the annihilation channels ij = as or ij = aa, ss, respectively. For later
convenience, instead of using the centre-of-mass energy ECM and the transfer momentum q
as in the published manuscript, we shall use throughout the Mandelstem variables s, t, u:
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where vrel is the Möller velocity and the approximate expressions are valid in the non-
relativistic limit up to order O(v2rel).

We now provide the recalculated squared amplitudes of the annihilation channels as,
aa, ss originally given in eqs. (3.4)–(3.6):
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2 Repercussions on the published results

Let us examine how the above corrections impact our published results and figures. To begin
with, using eqs. (3.1′)–(3.6′), the annihilation cross sections times velocity1 for the three
annihilation channels in the non-relativistic regime read
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Clearly, the process χχ̄→ as is s-wave, whereas the processes χχ̄→ aa, ss are both p-wave.
Therefore, the annihilation today (vrel ∼ 10−3) is largely dominated by the as channel if this

1Note that, unlike in the original eqs. (3.8)–(3.10), here we give the annihilation cross section times velocity
without thermal average.
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Figure 3′. Contours of the total annihilation cross section at freeze-out 〈σv〉fo in units of the thermal
cross section for Dirac dark matter particles, 〈σv〉th = 6× 10−26 cm3 s−1, as a function of mχ and λχ.
The left (right) panel shows the narrow (wide) box scenario with ma/mχ = ms/mχ = 0.999 (0.1).

is kinematically accessible and, if not, by either the aa or the ss channels. Notice that, if the
as channel is kinematically forbidden, either only the aa channel or only the ss channel are
accessible. This renders figure 2 in the published version of our work obsolete — it should
be replaced by a trivial figure where BR(χχ̄ → as, aa, ss) ' 1, 0, 0 for ma + ms < 2mχ;
BR(χχ̄→ as, aa, ss) ' 0, 1, 0 for ma < mχ and ma +ms > 2mχ; and BR(χχ̄→ as, aa, ss) '
0, 0, 1 for ms < mχ and ma +ms > 2mχ.

The thermally averaged cross sections are obtained from the full cross section expressions
eqs. (3.1′)–(3.6′) by applying the full averaging procedure (see, for instance, eq. (3.8) in
ref. [1]) with a freeze-out temperature Tfo = mχ/25. The repercussions of the corrections
to the annihilation amplitudes on the thermal cross sections, i.e. on the published version of
figures 3 and 4, are less dramatic than for the present branching ratios discussed above, but
for completeness we provide here an updated version of both figures, see figures 3′ and 4′.
All the comments to these figures in the published version of the work hold true.

Finally, we also update the gamma-ray spectrum expected for our narrow box and wide
box scenarios, i.e. figure 6 in the published version. The corrected annihilation branching
ratios and cross section ratios read BR(χχ̄→ as, aa, ss) ' 1, 0, 0 and 〈σv〉0/〈σv〉fo ' 0.238 for
the narrow box (mχ = 250 GeV,ms = ma = 249.75 GeV), and BR(χχ̄→ as, aa, ss) ' 1, 0, 0
and 〈σv〉0/〈σv〉fo ' 1.013 for the wide box (mχ = 150 GeV, ma = ms = 15 GeV). The
updated plots are shown in figure 6′. Note that the original figure 5, which shows the limits
for the annihilation channel χχ̄→ aa, still holds true since it is model-independent. However,
for the benchmark models discussed above the only relevant channel is now χχ̄ → as; the
model-independent limits for this channel are a factor 2 weaker than the ones plotted in the
original figure 5 (assuming ms = ma).

– 3 –



J
C
A
P
0
3
(
2
0
1
6
)
E
0
1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

1

10
0

10
-1

10
-2

10
-3

10
-4

10
0

10
-1

10
-2

10
-3

10
-4

δa

δ
s

<σvrel>0/<σvrel>f .o.

▲

★

Figure 4′. Contours of the ratio of the present to thermal total annihilation cross sections
〈σv〉0/〈σv〉fo as a function of δa ≡ (mχ − ma)/mχ and δs ≡ (mχ − ms)/mχ. The hatched re-
gion marks the parameter space where the width of the box is 10% or less than the maximum energy
of the photons. We also show the location of our exemplary points with ma/mχ = ms/mχ = 0.999
for the narrow box scenario (F) and 0.1 for the wide box scenario (N).
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Figure 6′. Predicted gamma-ray spectrum for a narrow box scenario with mχ = 250 GeV,
ms = ma = 249.75 GeV assuming c1/c2 = 3 (left) and for a wide box scenario with mχ = 150 GeV,
ma = ms = 15 GeV (right). In both panels, the dark matter coupling λχ is determined as a function of
dark matter mass by the thermal annihilation cross section 〈σv〉th = 6× 10−26 cm3 s−1 (see figure 3′)
and the present annihilation cross section follows from figure 4′. The branching ratio for the different
annihilation channels and the branching ratios for the axion decay are predicted by the model, see
text. The background flux is assumed to be a power law in the energy range shown and has been
chosen to fit the data below 70 GeV (black line).
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