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Abstract: This paper presents a computationally efficient haze removal and image enhancement
methods. The major contribution of the proposed research is two-fold: (i) an accurate atmospheric
light estimation using principal component analysis, and (ii) learning-based transmission estimation.
To reduce the computational cost, we impose a constraint on the candidate pixels to estimate the haze
components in the sub-image. In addition, the proposed method extracts modified haze-relevant
features to estimate an accurate transmission using random forest. Experimental results show that
the proposed method can provide high-quality results with a significantly reduced computational
load compared with existing methods. In addition, we demonstrate that the proposed method can
significantly enhance the contrast of low-light images according to the assumption on the visual
similarity between the inverted low-light and haze images.

Keywords: image enhancement; dehazing; random forest; principal component analysis; low-light
image enhancement; supervised learning

1. Introduction

As various digital cameras are introduced in the consumer market with related multimedia
services, the enhancement of outdoor hazy images attracts increasing interest. Haze occurs when the
reflected light from an object is scattered or absorbed by the particles in the atmosphere and results in
visibility degradation. In the case of vehicular systems, cameras should acquire as clean of an image as
possible, even in bad weather, including hazy and rainy conditions. Since the haze particles limit the
performance of the recognition of other vehicles, pedestrian, and traffic signs, haze removal should be
performed in the consumer devices to obtain high-quality images. In addition, hazy images lose color
information and contrast because of the haze component. To challenge this problem, various haze
removal methods have been proposed in the literature. He et al. proposed a haze removal method
using the dark channel prior (DCP) which consists of the minimum brightness value among the red
(R), green (G), and blue (B) pixels in the local image patch [1]. The DCP plays an important role in
estimating the transmission and atmospheric light to remove the haze component. However, He’s
method exhibits inaccurately estimated atmospheric light, especially in the bright region. Moreover, it
is not easy to implement the method in consumer devices because of the high computational complexity
in refining the transmission. To solve this problem, Zhu et al. proposed a linear model to estimate the
depth using the color attenuation prior which represents the relationship between the brightness and
saturation components of hazy images [2]. Ancuti et al. estimated the hazy region by estimating the
differences between hue components in the hazy image and its semi-inverse [3].
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Learning-based haze removal methods were also proposed using haze-relevant features. Tang et al.
proposed a haze estimation method by learning a regression model using random forest [4]. Tang’s
method can provide better results than existing methods at the cost of an increasing computational
load to extract features in overlapping patches. Deep convolutional neural network-based haze
removal methods have also been proposed to estimate more accurate transmission information [5,6].
However, their performance is also limited since transmission and atmospheric light cannot be
learned simultaneously.

Recently, Fattal et al. proposed a haze removal method based on the assumption that pixels
having the same color in the haze region lie on the same line in the RGB color space [7]. Although
this method uses a local image formation model to estimate the accurate transmission, it provides
an over-dehazed result according to the light condition. Berman et al. defined a haze-line based
on the observation that haze-free images can be expressed by a finite number of color values [8].
In hazy images, clustered pixels using k-means in haze-free images are distributed along the haze-lines.
In order to estimate an optimal solution, Meng et al. proposed a haze removal method by performing
contextual regularization using a bounded constraint and weighted l1-norm [9]. In addition, He et al.
estimated haze removal using convex optimization based on the discrete Haar wavelet transform to
reduce the computational cost [10].

On the other hand, Sulami et al. estimated the optimal atmospheric light based on a new geometry
assumption in the RGB vector space [11]. This method assumes that the principal component vectors
of all the patches in a haze-free image are through the origin of the RGB vector space. However, since
the haze component is added to the patch’s principal component vector, it cannot be passed through
the origin. For that reason, this method estimates the vector of an atmospheric light using a principal
component analysis (PCA) of the image patches. However, since this method selects the image patch
including the candidate pixel of atmospheric light at every pixel, it provides the resulting image at a
high-computational cost.

Yoon et al. extracted the sky region and estimated transmission using color correction in the HSV
color space [12]. Kim et al. improved surveillance monitoring images using a DCP-based maximum
filter to remove the haze components [13]. Kim et al. also performed haze removal using the disparity
map which was estimated between a set of stereo images [14].

To solve this problem, this paper presents a novel estimation method for the optimal atmospheric
light and the transmission. The contribution of the proposed method is two-fold: (i) estimation
of atmospheric light vectors using the reduced pixels based on the PCA, and (ii) estimation of
the transmission component using random forest via modified haze-relevant features. Since the
atmospheric light is estimated by constraining the searching region and clustering the similar pixels
to reduce the candidate pixels, the computational complexity is significantly reduced. In addition,
the proposed method estimates the transmission using single-scale haze-relevant features to simplify
the random forest. In conclusion, the proposed method can provide similar results at a low
computational cost.

This paper is organized as follows. Section 2 describes the modified haze removal model as
the theoretical background. Section 3 presents the proposed haze removal method using optimal
atmospheric light and transmission in detail. Experimental results are shown in Section 4, and Section 5
concludes the paper.

2. Theoretical Background

Degradation Model of a Haze Image

In the hazy condition, the light scattered by various types of particles in the atmosphere decreases
the visibility of the acquired image. In addition, the amount of image degradation is proportional to
the distance between the object and camera. He et al. proposed the transmission-based haze removal
method in reference [1], where the image degradation model is defined as
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g(x) = f (x)t(x) + A(1− t(x)), (1)

where g(x) represents the observed hazy image; f (x) is the haze-free image; A is the atmospheric light;
and t(x) is the transmission. The transmission (t(x)) is defined as

t(x) = e−βd(x), (2)

where β represents the scattering coefficient of the atmosphere, and d(x) is the scene depth.
He et al. analyzed the statistical properties of various haze-free images based on a histogram.

They introduced the DCP which is estimated by selecting the minimum intensity value among the R,
G, and B pixels. In this method, the haze-free image is obtained by solving the degradation model
using properly estimated A and t(x) values. The haze-free image was obtained as

f (x) =
g(x)− A

t(x)
+ A. (3)

If A and t(x) are inaccurately estimated, color distortion and brightness saturation many occur in
the resulting image.

On the other hand, Sulami et al. presented the localized haze model using a small patch in a hazy
image in reference [11], where the image degradation model is defined as

gi(x) = ti(x)Ri + mi A, (4)

where gi(x) represents the i-th patch in g(x); ti(x) is the i-th patch in the transmission; Ri is the RGB
vector representing the reflected light from gi(x); and mi a constant magnitude of the A. This model
assumes that the vectors of the principal component of the patches in a haze image intersect the vector
of atmospheric light, which passes through the origin in the RGB color space. Sulami et al. estimated
the orientation and magnitude of the atmospheric light vector using the PCA of the selected haze patch
satisfying the degradation model of (4) [11].

3. Haze Removal Using PCA and Haze-Relevant Features

The proposed method consists of two steps: (i) atmospheric light estimation using PCA,
and (ii) transmission estimation using modified haze-features and random forest. An additional
contribution of the proposed dehazing algorithm is its computational efficiency that can significantly
reduce the processing time and computation resources, particularly for consumer mobile cameras.
Figure 1 shows the block diagram of the proposed method.

Figure 1. The block diagram of the proposed method.

3.1. Estimation of the Atmospheric Light Using PCA

Since existing dehazing methods estimate the atmospheric light for every candidate pixel in
the input haze image, they require a very large amount of computation. To solve this problem, the
proposed method estimates the atmospheric light vector using PCA on the the reduced number of the
candidate haze patches.
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Sulami et al. estimated the atmospheric light by estimating the intersection of the principal
vectors of the haze patches, but they performed PCA twice on all haze patches, which requires more
computation [11]. In the proposed method, we employ the additional constraints to efficiently estimate
the atmospheric light using the reduced number of the candidate pixels regarded as haze particles, as
shown in Figure 2.

More specifically, the proposed method reduces the number of candidate haze patches by dividing
the input image into four sub-images and then selects the sub-image with the maximum mean
brightness value. Since the haze region smoothly varies with the bright pixels, we assume that the
selected sub-image with the maximum average includes more haze components. Figure 2 shows the
comparison of the region of interests containing the candidate atmospheric light to be estimated.

In addition, the proposed method can reduce the probability of inaccurate estimation which
regards a bright object as the atmospheric light, since the region of maximum average in the image is
usually the sky area. For that reason, the proposed method selects the non-edge candidate pixels that
have higher intensity values than the average of the selected sub-image, as shown in Figure 2c. As a
result, the proposed method can estimate the candidate atmospheric light at the reduced processing
time, because the candidate region is selected, providing the highest mean brightness value.

Figure 2. Region of interests for the candidate atmospheric light pixels: (a) input hazy image [11],
reproduced with permission from [11], IEEE, 2014, (b) Sulami’s method [11], and (c) the proposed method.

Since the haze patch containing the haze pixel smoothly varies with similar intensity values
and principal vector, Sulami et al. proposed constraints to select a haze patch having the positive
principal component, a single large eigenvalue, and a PCA matrix of rank-one [11]. However, since
Sulami et al. performed PCA twice to remove outliers by discarding the farthest principal component
vector, this method requires more computation. On the other hand, the proposed method can estimate
the atmospheric light vector using the constraints proposed in reference [11] in a computationally
efficient manner, because the constraints of the proposed method reduce the number of haze patches
to be computed.

The optimum haze patches containing the atmospheric light are selected at the intersection of
the principal component vectors. The candidate vector of atmospheric light is determined to give
the smallest error among the intersection points and principal vectors of the optimum haze patches.
For that reason, the magnitude of atmospheric light of a hazy image can be estimated using the
candidate vectors as

mi =
∥∥∥Ãi

∥∥∥2

2
, (5)

where Ãi represents the i-th candidate vector of the atmospheric light. Since the magnitude of the
atmospheric light is estimated by averaging the magnitude of Ãi, the proposed method can provide
more accurate atmospheric light in a haze image.

Figure 3 shows the dehazing results using the atmospheric light values estimated by three different
haze removal methods, including the proposed method. The dehazing results were obtained by solving
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the degradation model of a hazy image in (3). In experiments, we differently estimated the atmospheric
light using existing and proposed methods, and the transmission was obtained using He’s method [1] as

t(x) = 1−ωD(x), (6)

where
D(x) = min

c∈{R,G,B}
min

y∈Ω(x)
gc(y). (7)

t(x) represents the transmission; ω is the positive constant parameter; D(x) is the dark channel at the
local window of size n× n whose center is located at x; and Ω is the the region of the local window.
Since the transmission is estimated by inverting the normalized and weighted DCPs, it can be regarded
that the DCP approximately represents the quantity of haze components [1].

Figure 3a shows the ground-truth of an atmospheric light and input haze image. Since Sulami’s
method estimated darker atmospheric light than the ground-truth, the resulting image shows brightness
saturation in the sky region, as shown in Figure 3b. Berman’s method produces color distortion because
the color of the estimated atmospheric light is different from that of the ground-truth [15]. On the other
hand, the proposed method accurately estimated atmospheric light similarly to the ground-truth, and
as a result, it can remove the haze without brightness saturation or color distortion.

Figure 3. Comparative results of the atmospheric light estimation to remove haze. The top row shows
the estimated atmospheric light using existing and proposed methods. The second row shows dehazed
images using (3) and estimated atmospheric light of the top row: (a) input haze image [16], reproduced
with permission from [16], IEEE, 1969 (b) Sulami’s method [11], (c) Berman’s method [15], and (d) the
proposed method.

3.2. Transmission Estimation Using Random Forest

In this sub-section, we describe the haze-relevant features to accurately estimate the transmission.
Tang et al. estimated the haze-relevant features from thirteen differently scaled spaces at the cost of a
high computational overhead [4]. On the other hand, the proposed method extracts the haze-relevant
features of the dark channel and local contrast in a single in-scale haze image. The haze components
decrease the contrast of an input image by scattering the light in the atmosphere. For that reason, the
proposed method uses the local maximum contrast to train the random forest, which estimates the
contrast enhanced transmission. The local maximum contrast is defined as

L(x) = max
y∈{Ω(x)}

(‖g(x)− g(y)‖2
2), (8)

where Ω represents the neighborhood region with center x. The local maximum contrast feature
represents the variance between the center and the surrounding pixels in the patch.

The haze-relevant features to train the random forest are extracted from the synthesized haze
patches based on (1) [4]. The model to synthesize a haze patch is defined as

pg = tp f + A(1− t), (9)
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where pg represents the synthesized hazy patch; p f is the haze-free patch; and t ∈ [0.1, 0.9] is the range
of transmission. The haze-relevant features of dark channel and local maximum contrast extracted
from synthesized haze patches are used as the training data in the random forest. However, if an object
is close to the camera, the light ray travels through less particles which results in a high transmission
value. In addition, since a very high transmission value results in over-dehazing, the correspondingly
dehazed region looks unnatural [1]. For that reason, we constrained the range of transmission from 0.1
to 0.9 to synthesize the haze patch.

The color vector of the atmospheric light in a synthesized patch is supposed to be [1, 1, 1], since the
synthesized patch cannot adaptively estimate A for each patch. To solve this problem, the proposed
method performs normalization by estimating the atmospheric light on the haze image to prevent
brightness saturation. Moreover, the estimated transmission tends to result in a blocking artifact,
because the transmission is estimated using the random forest with the haze-relevant features in a
patch-wise manner. For that reason, the proposed method uses weighted guided filtering to refine the
initial transmission [17]. Figure 4 shows the transmission estimation using the proposed haze-relevant
features and random forest and the training of random forest using the haze-relevant features extracted
from the synthesized haze patches. In this work, we used 100 decision trees for the random forest.

Figure 4. The proposed transmission estimation process using haze-relevant features and random
forest. The green dash line shows the training of the random forest using the haze-relevant features
extracted from the synthesized haze patches. In the haze feature extraction block, D(x) and L(x)
represent the dark channel and local contrast, respectively.

In the random forest regression process, selection of good features can reduce the training time [18].
Figure 5 shows that the number of haze-relevant features used in the proposed method is related to the
prediction of the transmission compared with existing method. We used the quantity ‘importance’ as a
measure of each feature based on the variation of out-of-bag (OOB) error, which means that it is averaged
and divided by the standard deviation over the all trees [4]. The multiscale dark channel and local contrast
features, denoted by D(x) and L(x) in Figure 4, respectively, have significantly different importance values,
as shown in Figure 5. It can be seen from the feature importance that the features on a certain scale do not
have a significant effect on the learning-based prediction results. On the other hand, the importance of the
proposed method is higher than that of the existing method which means that the haze features of the
proposed method are more related to the transmission estimation than the existing features.

Figure 5. Comparison of the importance rate of each haze feature by random forest regression. The
solid line represents the importance rate of the proposed method and the dotted line shows that of
Tang’s method [4].
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3.3. Training the Random Forest

The proposed method used a set of high-resolution haze-free images collected from the internet
to generate the training dataset for the learning of random forest [19]. In the proposed method, the
random forest is trained using the haze-relevant features of the local maximum contrast and dark
channel. However, since the local maximum contrast and dark channel features are more salient
in the non-sky region, we extracted the haze-free patches from non-sky regions. In addition, since
it is hard to obtain the transmission of observed haze image directly, we synthesized haze patches
using transmission values from 0.1 to 0.9 based on the patch-based haze model in (9). We generated
10,000 pairs of haze and haze-free patches for each t and extracted the haze-relevant features to train
the random forest. Eighty percent of the training dataset was used for training and the rest was used
for testing for each t in (9).

In addition, we extracted the haze-free patches from a set of image pyramid to generate a pair of
haze and haze-free patches, as shown in Figure 6a. Since transmission is constant at regions of the
same depth, the transmissions of patches p1, p2, and p3 extracted at in- and across-scales should also
be constant. For that reason, multiscaled patches of the same size can be regarded as a set of different
scenes at the same depth. Figure 6c,d respectively show the comparison of estimated transmissions
using random forest.

Figure 6c is the transmission estimated using the random forest trained by the haze-relevant
features estimated from the haze patches, which were synthesized using haze-free patches extracted
from a single in-scale space. On the other hand, the random forest used in Figure 6d was trained using
the haze-relevant features estimated from the haze patches, which were synthesized using haze-free
patches extracted from multiscaled spaces. As shown in Figure 6d, the haze-free patches extracted
from multiscale spaces are more related to the relationship between the haze-relevant features and
transmission compared with Figure 6c. For that reason, the proposed method can estimate a more
accurate transmission at the same scene depth from an image pyramid and random forest.

Figure 6. An image pyramid generated using the haze-free images collected from the internet and
estimated transmissions using a single in-scale and multiscaled spaces: (a) an image pyramid [19],
(b) an input haze image [16], reproduced with permission from [16], IEEE, 1969 and (c,d) comparative
results of transmission estimated using random forest.

4. Experimental Results

This section demonstrates the performance of the proposed haze removal method using existing
dehazing methods proposed by He et al. [1], Meng et al. [9], Berman et al. [8,15], Zhu et al. [2],
Ren et al. [6], and Sulami et al. [11]. The performances of haze removal methods were compared in
terms of atmospheric light estimation, dehazing, and processing time. Objective quality assessments
were performed using the l2-error of the estimated atmospheric light and visibility level descriptor
proposed in reference [20,21]. To evaluate the processing time, we performed the experiments using a
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personal computer equipped with 3.70 GHz CPU with six cores and 48 GByte of RAM. The proposed
method was implemented using Matlab and the Parallel Computing Toolbox.

4.1. Comparison of the Estimated Atmospheric Light

This subsection demonstrates the performance of the atmospheric light estimation using a pair
of 34 haze and ground-truth images proposed in reference [20]. Bahat et al. manually extracted the
specified region of the ground-truth atmospheric light. Objective assessments are summarized in
Table 1. Figure 7 shows estimated atmospheric lights using the existing and proposed methods given
the ground-truth of atmospheric light.

Table 1. Objective assessments of atmospheric light estimation using the l2-error and processing time
(seconds) [20].

[1] [11] [15] Proposed

Error Time Error Time Error Time Error Time Time (Parallel)

Sweden 0.24 0.85 1.03 8.41 0.19 4.40 0.28 0.18 0.15
Train 0.82 0.67 0.45 5.43 0.03 2.25 0.30 0.34 0.29
Swan 0.23 1.72 0.68 8.36 0.21 5.10 0.02 0.22 0.21

Schechner 0.65 0.96 0.32 11.44 0.14 4.26 0.01 2.61 1.56
Forest 0.07 1.63 1.17 14.16 0.74 5.49 0.16 1.50 0.93

Avg. 0.40 1.17 0.73 9.56 0.26 4.30 0.15 0.97 0.63

Figure 7. Estimation of the atmospheric light using the proposed and existing methods. The first
and second rows respectively show the input haze image and the estimated atmospheric light [20],
reproduced with permission from [20], IEEE, 2016. The third row shows the R, G, and B pixel values of
estimated atmospheric light: (a) ground-truth, (b) He’s method [1], (c) Sulami’s method [11], (d) Berman’s
method [15], reproduced with permission from [15], IEEE, 2017 and (e) the proposed method.

Since He’s method estimated the atmospheric light using the top 0.1% brightest pixels of the DCP,
the estimated atmospheric light may be inaccurate because of the brightest object in a haze image [1].
As shown in Figure 7c, Sulami’s method provided darker atmospheric light because this method
does not compensate the magnitude of the atmospheric light vector when estimating the atmospheric
light [11]. Berman’s method estimated the atmospheric light located at the end of the haze-line [15].
For that reason, the Berman’s method showed a bright atmospheric light value, as shown Figure 7d.

On the other hand, since the proposed method estimates the atmospheric light using the candidate
pixels in a specified region, the estimated atmospheric light should be similar to the ground-truth.
Table 1 shows that the proposed method provided the lowest l2-error in terms of the atmospheric light
estimation compared with existing methods. In terms of the processing time, the proposed method
provided the best and second best processing times with and without parallel processing, respectively.
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4.2. Objective Assessments

Figures 9–11 compare the performance of the haze removal using the existing and proposed
methods. The objective assessments were performed using Hautiere’s method and a set of test images,
which were presented in He’, Tang’, Liu’s, and Cai’s works, as shown in Figure 8 [1,4,5,16]. Σ and
r respectively represent the ratios of brightest and darkest pixels and the ratio of gradient norms
between the input and haze-removed images [21]. The small value of Σ means that the resulting image
has a lower brightness saturation while preserving the dark region. On the other hand, if r is close
to 1, the gradient of the resulting image does not change without over-dehazing [22]. The objective
assessments are summarized in Table 2.

Figure 8. The test images used for the objective assessment of haze removal [1,4,5,16]: (a–j) are the real
haze images to evaluate the performance of haze removal. Reproduced with permission from [1], IEEE,
2011, reproduced with permission from [4], IEEE, 2014, reproduced with permission from [5], IEEE,
2016, reproduced with permission from [16], IEEE, 1969.

Figure 9. Experimental results of haze removal using the proposed and existing methods: (a) an input
haze image [1], reproduced with permission from [1], IEEE, 2011, (b) He’s method [1], (c) Meng’s
method [9], reproduced with permission from [9], IEEE, 2013, (d) Berman’s method [8], reproduced
with permission from [8], IEEE, 2016, (e) Zhu’s method [2], (f) Ren’s method [6], and (g) the
proposed method.

As shown in Figures 9b–11b, He’s method provided an enhanced result in the sense that it
preserved the details in the dark and bright regions with the best score of Σ [1]. Although Meng’s
method provided improved results using l1-norm minimization, it could not avoid saturation in the
bright region, as shown in Figurs 9c–11c [9] . Since Berman’s method reduced the haze component
based on the haze-line, it was able to preserve the color information, as shown in Figures 9d–11d [8].
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However, it is difficult to choose an appropriate parameter to obtain the optimal result and the resulting
images include brightness saturation.

Figures 9e–11e show the resulting images fromusing Zhu’s method with the halo effect near the
edges [2]. Although Ren’s method estimated the transmission using the convolutional neural network,
the resulting images show color distortion because of the inaccurately estimated atmospheric light [6].
On the other hand, the proposed method provided better results than most existing methods with
improved contrast and lower brightness saturation.

Figure 10. Experimental results of haze removal using the proposed and existing methods: (a) an
input haze image [4], reproduced with permission from [4], IEEE, 2014, (b) He’s method [1], (c) Meng’s
method [9], (d) Berman’s method [8], (e) Zhu’s method [2], (f) Ren’s method [6], and (g) the
proposed method.

Figure 11. Experimental results of haze removal using the proposed and existing methods: (a) an
input haze image [16], reproduced with permission from [16], IEEE, 1969, (b) He’s method [1],
(c) Meng’s method [9], (d) Berman’s method [8], (e) Zhu’s method [2], (f) Ren’s method [6], and
(g) the proposed method.

Since Tang et al. used the random forest of 200 decision trees with multiscaled haze features
to solve the regression problem [4], their algorithm took about 193.9253 and 99.9524 s for feature
extraction and the learning of random forest, respectively, for an input image of size 3873 × 2516, as
shown in Figure 12a. On the other hand, since the proposed method divides the input image into
5 × 5 non-overlapping patches to extract the haze features, it took only about 9.7474 and 25.6829 s with
and without parallel processing for feature extraction, respectively. The estimation of transmission
using the trained random forest took about 17.0358 s with 100 decision trees. In addition, the proposed
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method was able to provide similar MSE values with a smaller number of decision trees for the random
forest, as summarized in Table 3.

Table 2. Comparison of objective assessments using Hautiere’s method [21].

[1] [9] [8] [2] [6] Proposed

Σ r Σ r Σ r Σ r Σ r Σ r

Figure 8a 0.0000 1.0870 0.1848 1.5752 1.8338 1.7643 0.0011 1.4817 0.0335 1.2680 0.0095 1.1960
Figure 8b 0.1664 1.6934 1.1730 2.1021 0.2565 2.4137 0.1468 1.7906 0.1694 1.5785 0.2161 1.4357
Figure 8c 0.0451 1.3218 0.2335 2.1207 6.8876 2.3389 0.4164 1.5604 0.7551 1.2884 0.3001 1.2475
Figure 8d 0.0000 1.1548 0.0000 1.5989 0.1561 2.1856 0.0000 1.3821 0.0000 1.3001 0.0000 1.2380
Figure 8e 0.0168 1.6015 0.1468 2.1761 0.2651 2.1589 0.0485 1.7905 0.1226 1.7027 0.1152 1.4676
Figure 8f 0.1256 2.2194 0.0487 2.6322 0.0563 2.3590 0.8070 1.9389 0.0019 1.8372 0.4088 1.6709
Figure 8g 0.0285 1.0251 0.5099 1.3173 2.0646 1.9343 0.0801 1.2948 0.5049 1.1967 0.2038 1.1557
Figure 8h 0.0003 2.6491 0.0366 3.6266 0.1915 5.0999 0.0000 1.7928 0.0000 1.7705 0.0000 1.5342
Figure 8i 0.0000 1.2353 0.0293 2.3817 0.3793 2.0831 0.1233 1.3019 0.1233 1.3019 0.0459 1.2112
Figure 8j 0.3083 1.1934 0.2971 1.5665 4.7788 2.8473 54.6675 1.6899 0.2363 1.1427 0.2992 1.3260

Avg. 0.0691 1.5181 0.1660 2.1097 1.6870 2.5185 0.7291 1.6112 0.1947 1.4387 0.1599 1.3469

Figure 12. The test images used for the objective assessments of the performance of transmission
estimation [23]: (a)-(e) are the real outdoor haze-free images of size 3873 × 2516. The haze image can
be synthesized using corresponding depth map of the haze-free image.

Table 3. Comparison of the objective assessments of the transmission estimation using random forest.

[4] Proposed
# of Trees

200 200 100 50

Figure 12a MSE 0.0600 0.0313 0.0316 0.0324
Figure 12b MSE 0.0500 0.0428 0.0428 0.0430
Figure 12c MSE 0.0780 0.0314 0.0316 0.0320
Figure 12d MSE 0.0693 0.0245 0.0241 0.0252
Figure 12e MSE 0.0612 0.0384 0.0390 0.0390

Table 3 shows the comparative results for the mean squared error (MSE) of the estimation of
transmission using synthesized outdoor haze images. Figure 12 is a set of original haze-free images
that were used to synthesize haze patches to estimate MSE values in reference [23]. As summarized in
Table 3, the proposed method provided lower MSE scores than Tang’s method [4]. This means that the
proposed method can estimate more accurate atmospheric light and transmission with a significantly
reduced computational load regardless of the number of trees.

4.3. Application to Low-Light Image Enhancement

In this subsection, we demonstrate that the proposed method can improve the quality of a
low-light image by using the degradation model of an inverted haze image. Dong et al. assumed that
inverted low-light images are similar to hazy images by analyzing a histogram [24]. Jiang et al. showed
that an inverted low-light image can be regarded as a haze image in terms of visual similarity [25].
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Based on this observation, they improved the quality of low-light images by solving the
degradation model of a haze image with an inverted low-light image. The conventional haze model in
(1) can be rewritten by respectively substituting g(x) and f (x) with their inverted versions:

ginv(x) = finv(x)t(x) + A(1− t(x)), (10)

where ginv(x) and finv(x) respectively represent the inverted versions of the input low-light and the
latent images. To enhance the brightness of an input low-light image, Jiang et al. estimated the
transmission using the dark channel prior and obtained the latent image by solving the degradation
model in (3) by

finv(x) =
ginv(x)− A

t(x)
+ A. (11)

In the proposed method, we estimated the atmospheric light using the proposed method described
in Section 3. The transmission of the inverted low-light image is estimated by using the trained random
forest with dark channel and local contrast features. To evaluate the performance of the low-light
image enhancement, we synthesized the low-light image by the non-linear gamma correction using a
set of test images as shown in Figure 13. The adjustment parameter γ was set to 2.5.

Figure 14 compares the objective performance of the low-light image enhancement using the
existing and proposed methods. The first and second columns respectively show a set of ideal
and synthesized low-light images. As shown in Figure 14c, the resulting image of the histogram
equalization (HE) shows both over-enhancement and color distortion, because the cumulative
distribution function is drastically changed in the narrow region [26].

Huang et al. presented the gamma correction-based image enhancement method using the
weighted cumulative distribution function [27]. However, Huang’s method generated brightness
saturation in the bright region, as shown in Figure 14d. Jiang’s method provided a significantly
enhanced result, but it could not avoid color distortion in the resulting image, as shown in
Figure 14e [25]. On the other hand, the proposed method provided better results than most existing
methods without brightness saturation and color distortion, as shown in Figure 14f. Table 4 shows
the objective assessments using the peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) [28].

Figure 13. A set of test images used in the objective assessments of low-light image enhancement [29]:
(a–j) are the test images of size 768 × 512 and the low-light image is synthesized by adjusting the
non-linear gamma correction.
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Figure 14. Resulting enhanced images using existing and proposed methods taking synthesized
low-light images as the input: (a) ideal image [29], (b) synthesized low-light image, (c) histogram
equalization (HE) [26], (d) Huang’s method [27], (e) Jiang’s method [25], and (f) the proposed method.

Table 4. The objective assessments of the low-light image enhancement using the peak signal-to-noise
ratio (PSNR) and the structural similarity index measure (SSIM) [28].

[26] [27] [25] Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Figure 13a 14.9340 0.6473 15.2250 0.6990 13.7155 0.7044 17.9683 0.8122
Figure 13b 8.9670 0.1310 12.7210 0.5678 15.0965 0.8063 18.1877 0.8205
Figure 13c 14.2907 0.4049 15.4260 0.5586 12.9453 0.6143 18.1130 0.5971
Figure 13d 13.7084 0.2131 15.7105 0.5963 14.2142 0.6855 16.7344 0.6968
Figure 13e 12.8507 0.6044 15.6484 0.6960 14.0895 0.6400 17.5864 0.6429
Figure 13f 14.4912 0.3775 14.8379 0.5650 12.6677 0.6375 19.3865 0.7534
Figure 13g 20.9754 0.8128 19.0706 0.7980 14.4191 0.7019 16.8107 0.7687
Figure 13h 15.6074 0.5902 15.8949 0.6559 12.0559 0.6022 14.5077 0.6213
Figure 13i 15.0136 0.3879 17.0851 0.5924 13.9160 0.6787 17.8701 0.7628
Figure 13j 15.5462 0.5564 16.7592 0.6522 12.7164 0.5974 18.2142 0.7238

Avg. 14.6384 0.4725 15.8379 0.6381 13.8536 0.6668 17.5379 0.7200

Figure 15 shows the resulting images of the low-light image enhancement using real low-light
images. The HE shows the contrasting enhanced result, but it did not preserve the details in the bright
region, as shown in Figure 15b [26]. Huang’s method provided a more enhanced result than that of
HE [27]. However, the resulting image could neither appropriately control the brightness saturation,
nor successfully enhance the dark region, as shown in Figure 15c. In the same manner, Jiang’s method
also provided the resulting image with brightness saturation, and it showed imbalanced amplification
of the color components, as shown in Figure 15d [25].

On the other hand, the proposed method provided the resulting image with an increased dynamic
range, preserving the details of the bright region without color distortion. Table 5 shows objective
assessments using the autoregressive-based image sharpness metric (ARISM), which evaluates the
sharpness ratio by analyzing the autoregressive image model without reference images [30]. We used
the ARISM as a metric to evaluate the amount of detail in the bright and dark regions. As summarized
in Table 5, Although the HE provided the best score, the proposed method provided better visual
quality, as shown Figure 15.
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Figure 15. Resulting enhanced images of the existing and proposed methods using real low-light
images: (a) input image, (b) HE [26], (c) Huang’s method [27], (d) Jiang’s method [25], and
(e) the proposed method.

Table 5. The objective quality assessments of the real low-light image enhancement using the
autoregressive-based image sharpness metric (ARISM) [30].

Input [26] [27] [25] Proposed

ARISM ARISM ARISM ARISM ARISM

Road 3.0858 5.0867 4.5993 4.0872 4.8857
Beach 3.0861 4.1843 3.4659 3.4488 4.0736
Café 3.0882 4.5606 3.9947 4.1014 4.2017

Avg. 3.0867 4.6105 4.0200 3.8791 4.3870

5. Conclusions

This paper presented haze removal and low-light image enhancement methods using the
supervised learning manner. The proposed method simplifies the atmospheric light estimation using
the feature of haze patches analyzed by the principal component analysis. To estimate an accurate
transmission, we generated the synthesized haze patches using the haze-free patches extracted from
the non-hazy region at multiscaled spaces. The transmission was estimated in a supervised learning
manner using random forest with two haze-relevant features. Through experiments, we demonstrated
that the proposed method can estimate accurate atmospheric light and transmission than existing
haze removal methods. As a result, the proposed method can obtain the resulting image without
color distortion or brightness saturation. In addition, we demonstrated that the proposed method can
be applied to low-light image enhancement problems using the degradation model of an inverted
haze image. In conclusion, the proposed method can provide high-quality images for various image
processing applications in haze and low-light conditions.
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