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We consider a light dark matter candidate that is produced by the freeze-out mechanism with 3 → 2

annihilations, the so-called strongly interacting massive particles (SIMPs). SIMPs are identified as dark
pions in dark chiral perturbation theory (ChPT) in which both light mass and strong coupling needed for
SIMPs can be realized by strong dynamics. In QCD-like theories with SUð3ÞL × SUð3ÞR=SUð3ÞV flavor
symmetry, including dark vector mesons in the hidden local symmetry scheme, we illustrate that dark
vector mesons unitarize the dark ChPT efficiently, thus determining the correct relic density condition
within the validity of the dark ChPT.
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I. INTRODUCTION

The weakly interacting massive particles (WIMPs) have
been regarded as a consistent paradigm for dark matter
(DM), accommodating the large-scale structure of the
Universe, the gravitational lensing and the cosmic micro-
wave background anisotropies, etc. Nonetheless, deviations
from the WIMP paradigm, such as the too-big-to-fail [1–4]
and core-cusp problems [5], have been observed at galaxy
scales, rendering the DM profile from the center of the
Galaxy being cored unlike the expectation of the N-body
simulations with WIMPs. These are known as the small-
scale problems and would require a large self-scattering
cross section for DM in the range of 0.1 cm2=g≲
σ=mDM ≲ 1 cm2 [6]. The effects of baryons and supernova
feedback in simulations might resolve such tensions in
massive galaxies [7,8]. Otherwise, the small-scale problems
would imply a new long-range force for DM [6] as often
appearing in DM models with dark gauge symmetries
[9–11] and/or light dark matter as alternatives to WIMPs.
Moreover, since there has been no conclusive hint for

WIMP signals yet, alternatives to WIMPs have been

considered more seriously. Previous direct detection experi-
ments with DM-nucleon elastic scattering do not constrain
the DM masses below 10 GeV scale much; thus, recently,
there has been more attention paid to light dark matter
candidates. New freeze-out mechanisms for the thermal
production of light dark matter with sub-GeV-scale mass
have been proposed in the literature such as 3 → 2 channels
[12,13], forbidden channels [14], codecay channels [15], and
inelastic scattering channels [16]. The last three cases require
light hidden particles in the dark sector, whereas the first
case with 3 → 2 channels relies only on self-interactions of
dark matter, thus so called the strongly interacting massive
particles (SIMPs) miracle [13]. The freeze-out condition for
SIMPs predicts a sub-GeV-scale dark matter for solving the
small-scale problems, but a consistent model with strong
couplings for SIMPs is demanding.
For dark fermions with strong interactions, composite

dark pions in the dark chiral perturbation theory (ChPT) are
natural candidates for SIMPs [17], as both the DM masses
and couplings are derived from strong dynamics. Namely,
the dark pion masses are given due to dark QCD con-
densation, while the 3 → 2 interactions are naturally
obtained by the Wess-Zumino-Witten (WZW) term [17].
However, as the perturbativity limit for mπ=fπ (i.e., 2π) is
reached by the relic density condition, the validity of dark
ChPT is prone to considerable next-to-leading-order and
next-to-next-to-leading-order corrections [18]. Indeed, near
the validity region of ChPT (mπ=fπ; jp⃗πj=fπ ∼ 2π), there
will appear new resonances (as in ordinary hadron physics)
that have to be included in the chiral Lagrangian explicitly.
Thus, one can never capture correct physics with pions
alone near the thresholds of new resonances, and thus it is
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mandatory to include new resonance explicitly in the
dark ChPT.
In this paper, we introduce a consistent model for SIMPs

in the dark ChPT with QCD-like chiral symmetry,
SUð3ÞL × SUð3ÞR=SUð3ÞV . We regard dark pions as
SIMPs and improve the dark ChPT by including vector
mesons explicitly as gauge bosons associated with hidden
local chiral symmetry. Then, we calculate the thermal relic
density and the self-scattering cross section for dark pion
DM in this framework in the validity region of the
dark ChPT.

II. DARK CHIRAL LAGRANGIAN
WITH VECTOR MESONS

The minimal setup of DM scenarios with dark pions is
defined in terms of confining non-Abelian gauge theories
with the number of dark colors,Nh;c, and the number of dark
flavors,Nh;f. Dark pion DM can be a goodWIMP candidate
with a singlet scalar mediator, as discussed in Refs. [19–24].
A SIMP scenario becomes possible for Nh;f ≥ 3, in which
case there exists a nontrivial π5ðG=HÞ ¼ Z [25,26]; thus,
a nonzero Wess-Zumino-Witten term allows π-number-
changing 3 → 2 processes. In this paper, we consider a
dark QCD sector with three flavors of dark quarks in a
strongly coupled SUð3Þ gauge symmetry at high energy
(Nh;c ¼ Nh;f ¼ 3), as proposed in Refs. [17,19–23,27]. (It is
straightforward to generalize the numbers of dark colors and
dark flavors to different values [19–24].)
The dark sector Lagrangian is given by

LSIMP ¼ −
1

4
Ga

μνGμνa

þ
X3
i¼1

Q̄i½iD −mi�Qi; i ¼ 1; 2; 3: ð1Þ

In the exact chiral limit mi → 0, this Lagrangian has the
exact global SUð3ÞL × SUð3ÞR symmetry, which is spon-
taneously broken into Hglobal ¼ SUð3ÞV by a nonzero Q̄Q
condensate, hQ̄iQii ¼ Λ3

DQCD, with the sum over i ¼ 1, 2,
3. Then, the broken global symmetry is nonlinearly realized
on the coset space Gglobal=Hglobal as massless dark pions

and the inclusion of hidden local gauge symmetry as
Gglobal ×Hlocal lead to dark vector resonances (see
Ref. [28] for a review).
In case of mi ≠ 0, the SUð3ÞV will be explicitly broken

unless m1 ¼ m2 ¼ m3. But SUð3ÞV is still an approxi-
mately good symmetry as long as ðmi −mjÞ ≪ ΛDQCD.
Also, dark pions get masses if mi ≠ 0, but they can still be
considered as Nambu-Goldstone bosons, as long as
ðmi þmjÞ ≪ ΛDQCD. In the low-energy limit, dynamical
degrees of freedom in the dark QCD sector will be pseudo–
Nambu-Goldstone bosons, namely, light dark pions,
the interactions of which are conveniently described by
a nonlinear sigma model. One can introduce light dark
vector mesons (in analogy to the ρ meson in real QCD)
as gauge bosons associated with Hlocal with the corre-
sponding gauge coupling g. The detailed information on the
hidden gauge symmetry and dark vector mesons can be
found in the Appendix.
The leading chiral Lagrangian for the pion field,

ΣðxÞ ¼ expði2πðxÞ=fπÞ, takes the following form:

Lπ ¼
f2π
4
Tr½∂μΣ∂μΣ†�: ð2Þ

Here, we note that π ≡ πata fields are normalized
such that Trðπ2Þ ¼ 1

2
ðπaÞ2 with TrðtatbÞ ¼ δab=2. In the

presence of extra gauge symmetries, the derivative in the
pion Lagrangian (2) is replaced as ∂μΣ → DμΣ ¼
∂μΣ − ilμΣþ iΣrμ, where SUð3ÞL × SUð3ÞR is considered
as local symmetries. In this work, however, we set extra
gauge symmetry other than dark QCD to zero and keep
only the dark pions and vector mesons.
Implementing the SUð3ÞV as a local symmetry with the

gauge fields, Vμ ≡ Va
μta, we obtain the kinetic term for the

vector mesons as

LV ¼ −
1

2
Tr½FμνFμν� ð3Þ

with Fμν ¼ ∂μVν − ∂νVμ − ig½Vμ; Vν�.
We note that dark pions πðxÞ and vector mesons VμðxÞ

are written in the following matrix forms:

πðxÞ ¼ 1ffiffiffi
2

p

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η0 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η0 K0

K− K0 − 2ffiffi
6

p η8 þ 1ffiffi
3

p η0

1
CCCA ð4Þ

VμðxÞ ¼
1ffiffiffi
2

p

0
BBB@

1ffiffi
2

p ρ0μ þ 1ffiffi
6

p ω8μ þ 1ffiffi
3

p ω0μ ρþμ K�þ
μ

ρ−μ − 1ffiffi
2

p ρ0μ þ 1ffiffi
6

p ω8μ þ 1ffiffi
3

p ω0μ K�0
μ

K�−
μ K�0

μ − 2ffiffi
6

p ω8μ þ 1ffiffi
3

p ω0μ

1
CCCA: ð5Þ
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In terms of the ΣðxÞ field, the pion mass terms are
expressed as

Lm ¼ −
f2π
2
Tr½μðMΣþ Σ†MÞ�; ð6Þ

where M ¼ diagðm1; m2; m3Þ. The parameter μ can be
considered as a spurion field, transforming as μ → L†μR ¼
R†μL under SUð3ÞL × SUð3ÞR when one constructs the
chiral invariant Lagrangian. This μ term breaks chiral
symmetry explicitly, thereby generating nonzero masses:

m2
π ¼ μðm1 þm2Þ; ð7Þ

mK� ¼ μðm1 þm3Þ; ð8Þ

m2
K0 ¼ μðm2 þm3Þ; ð9Þ

m2
η8 ¼

2

3
μðm1 þm2 þm3Þ; ð10Þ

m2
η0 ¼

1

3
μðm1þm2þ4m3Þþð2πΛÞ2: ð11Þ

Here, Λ2 is a correction to the isospin limit, being propor-
tional to ðm1 −m2Þ2. For simplicity, we assume m1 ¼
m2 ¼ m3 ≡m for unbroken remaining SUð3ÞV flavor
symmetry. In this case, all the dark pions have the same
mass, m2

π ¼ 2μm. Additionally, we assume that the vector
mesons are also all degenerate with mass mV , as will be
discussed shortly.
The resulting Lagrangian is nothing but the usual non-

linear σ-model Lagrangian. Expanding ΣðxÞ up to trilinear
terms in πðxÞ, we find that the chiral Lagrangian yields

Lπ ⊃ Tr½ð∂μπÞð∂μπÞ�

þ 2

3f2π
Tr½ð∂μπÞπð∂μπÞπ − π2ð∂μπÞð∂μπÞ�: ð12Þ

On the other hand, the masses and couplings of vector
mesons are given by

ΔLV ¼ m2
VTrVμVμ − 2igVππTrðVμ½∂μπ; π�Þ

−
a
4f2π

Trð½π; ∂μπ�2Þ ð13Þ

with

m2
V ¼ ag2f2π; ð14Þ

gVππ ¼
1

2
ag: ð15Þ

In the ordinary hadron system, a ≃ 2, but a can be
considered as a free parameter in the dark ChPT.
In particular, we can control mV and mπ independently
by suitably varying the current quark mass M. This is
possible because of m2

π ∼MΛDQCD, whereas m2
V ∼ Λ2

DQCD.
An important constraint on our model stems from the

2 → 2 self-scattering cross section. The Bullet Cluster
constraints place an upper limit as σscat=mπ ≲ 1 cm2=g
[6]. In our model, the 2 → 2 self-scattering cross section
can be calculated for nonrelativistic dark pions with relative
velocity v by the ChPT Lagrangian to be

σscat ¼
77m2

π

24πf4πN2
π
þm2

πð139f2πg2−216m2
πÞ

96πf6πg2N2
π

v2

þ m2
π

12288πf4πN2
π

�
2176þ 12A1

f2πg2m2
Vð4m2

π −m2
VÞ

þ 9A2

f4πg4ð4m2
π −m2

VÞ2
�
v4; ð16Þ

with

A1¼ 6144m6
π −5376m4

πm2
V þ796m2

πm4
V −7m6

V;

A2¼ 10240m8
π −6144m6

πm2
V þ1008m4

πm4
V

þ72m2
πm6

V −9m8
V: ð17Þ

The above result becomes the same for v ¼ 0 as in the
dark ChPT without vector mesons in Ref. [17], being
consistent with the low-energy theorem [28]. (We note that
Nπ ¼ 8 in our case and the pion decay constant fπ in
this paper is a factor of 2 smaller than that in Ref. [17].)
Vector mesons also lead to velocity-dependent terms in the
2 → 2 self-scattering, but they are much smaller than
the s-wave contributions at scales of galaxies and galaxy
clusters, even near two-pion resonances, so we safely
ignored them.
The chiral Lagrangian with vector mesons presented

above has a fictitious symmetry under π → −π, which is
not a true symmetry of dark QCD. This fictitious symmetry
would be broken by the Wess-Zumino-Witten term
[25,26,29], allowing the processes such as 3π → KK,
π0 → 2γ, etc., in ordinary hadron physics. Generalization
of the WZW Lagrangian in the presence of vector mesons
ρ, ω, etc., was obtained in Ref. [28] (see also Ref. [30] for
compact review on these subjects).
Keeping only the dark pions and vector mesons, we

obtain the full anomalous Lagrangian,

Γanom¼
Z

d4x½LWZW−15Cðc1L1þc2L2þc3L3Þ�; ð18Þ

where the Wess-Zumino-Witten term for pions [25,26,29]
is written as
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LWZW ¼ 2Nc

15π2f5π
ϵμνρσTr½π∂μπ∂νπ∂ρπ∂σπ� ð19Þ

and C≡ −i Nc
240π2

. From the Appendix, it can be shown that
the gauged WZW terms, L1;2;3, contain the interactions
between vector mesons and pions, given from the expan-
sion in terms of π up to Oðg=f3πÞ, as follows:

L1 ¼ −
4g
f3π

ϵμνρσTr½Vμ∂νπ∂ρπ∂σπ� ¼ −L2; ð20Þ

L3 ¼ −
2ig
fπ

ϵμνρσTr½ð∂μVνÞðVρ∂σπ − ∂ρπVσÞ�

−
4g2

fπ
ϵμνρσTr½VμVνVρ∂σπ�: ð21Þ

These new vector meson terms induce additional 3 → 2
processes between the dark pions, as illustrated in Fig. 1.
In the following numerical analysis, we will first take
c1 − c2 ¼ −1 and c3 ¼ 1 in analogy to the hadronic
physics. Then, we vary c1 − c2 to other values and study
phenomenological consequences, since they could be
different from ordinary hadronic case in principle.

III. RELIC DENSITY

In the SIMP scenario, the 3 → 2 number-changing
processes are assumed to be dominant over the DM pair
annihilation into SM particles. In our model, the total DM
density is given by nDM ¼ P

8
i¼1 ni, and the exact flavor

symmetry leads to Nπ ¼ 8 mass-degenerate dark pions,
with n1 ¼ n2 ¼ � � � ¼ n8 ≡ 1

8
nDM. Thus, the resulting

Boltzmann equation for YDM ¼ nDM=s is

dYDM

dx
¼ −

ρhσv2i
x5

ðY3
DM − Y2

DMY
eq
M Þ; ð22Þ

where hσv2i is the sum of thermal averaged 3 → 2
annihilation cross sections over relevant subprocesses
and x≡mπ=T and ρ≡ s2ðmπÞ=HðmπÞ.
The addition of dark vector mesons in the gauged WZW

terms allows for the 3 → 2 processes illustrated in Fig. 1,
which are not present in the original SIMP models
[13,17,31], so it can help alleviate the tension between
the Bullet Cluster bound and the relic density condition
[17]. Before thermal averaging, vector resonances modify
the 3 → 2 annihilation cross section in the center-of-mass
frame, as below,

ðσv2Þ ¼ 25
ffiffiffi
5

p
N2

cm5
π

π5f10π N3
π

�
1

128
−

15aðc1 − c2Þf2πg2B1

1024ð4m2
π −m2

VÞð9m2
π −m2

VÞðm2
π þm2

VÞ
þ 225a2ðc1 − c2Þ2f4πg4B2

16384ð4m2
π −m2

VÞ2ð9m2
π −m2

VÞ2ðm2
π þm2

VÞ2

−
225a3ðc1 − c2Þc3f6πg5B3

8192ð4m2
π −m2

VÞ2ð9m2
π −m2

VÞ2ðm2
π þm2

VÞ3
þ 15a2c3f4πg3B4

512ð4m2
π −m2

VÞð9m2
π −m2

VÞðm2
π þm2

VÞ2

þ 225a4c23f
8
πg6B5

8192ð4m2
π −m2

VÞ2ð9m2
π −m2

VÞ2ðm2
π þm2

VÞ4
�
bV ð23Þ

FIG. 1. Feynman diagrams contributing to 3 → 2 processes for the dark pions with the vector meson interactions.
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with bV ¼ 1
4
ðv21 þ v22 þ v23Þ2 − 1

2
ðv41 þ v42 þ v43Þ and

B1 ¼ 37m4
π − 21m2

πm2
V þ 2m4

V

B2 ¼ 829m8
π − 828m6

πm2
V þ 299m4

πm4
V − 42m2

πm6
V þ 2m8

V

B3 ¼ 526m8
π − 599m6

πm2
V þ 236m4

πm4
V − 37m2

πm6
V þ 2m8

V

B4 ¼ 11m4
π − 8m2

πm2
V þm4

V

B5 ¼ 170m8
π − 218m6

πm2
V þ 95m4

πm4
V

− 16m2
πm6

V þm8
V: ð24Þ

Here, v1;2;3 are the speeds of initial dark pions given in the
center-of-mass frame for the 3 → 2 processes, so the
corresponding cross section shows a d-wave behavior.
We note that the CV term dominates near the resonances
at mV ≈ 2mπ or 3mπ for either two pions or three pions. In
these cases, the thermal average should be taken for the
2 → 2 or 3 → 2 Breit-Wigner form [32,33]. The width
dependence of the 3 → 2 cross section is important near
resonances, so we included the width of vector mesons
explicitly in the vector meson propagators for the later
numerical analysis.
We note that the SIMP scenarios with vector mesons

have been studied only in 2 → 2 semiannihilation channels,
ππ → πV [34]. Moreover, the additional channels, πππ →
πV and πππ → VV, could be relevant for mV < 2mπ and
mV < 3mπ=2, respectively. But the latter is closed for
mV > 2mπ; the former is suppressed by gVππ, which is
of order 1 in the parameter space of our interest, so we did
not include it in our analysis.
While the ω8 primarily decays to three pions because

mω < 2mK in the usual SM QCD, this is not necessarily
true in the case of dark QCD since we can vary the pion/
kaon mass. Since we are assuming all eight pions/kaons are
degenerate in mass, two-body decays such as ω8 → KK
could be allowed as well as usual three-body decays such as

ω8 → 3π. Then, we find that the widths of vector mesons
with degenerate masses are identical as follows:

ΓV ¼ a2g2mV

256π

�
1 − 4

m2
π

m2
V

�
3=2

: ð25Þ

If we chose a QCD-like set of parameters (a ≈ 2,
c1 − c2 ¼ −1, and c3 ¼ 1), the widths of vector mesons
would be sizable for values of mπ=fπ that yield the
correct relic density. However, if a ≪ 1, then the mass
relation, m2

V ¼ ag2f2π ≈ 9m2
π or 4m2

π, is maintained with
ΓV=mV ≪ 1.
For 3 → 2 processes, we take the vector meson masses

near the resonances and make the thermal average under the
narrow-width approximation with ΓV=mV ≪ 1 in Eq. (23).
Then, the thermal averaged 3 → 2 annihilation cross
section becomes [33]

hσv2iR ≈

(
81π
128

κϵ4Vx
3e−

3
2
ϵVx; mV ≈ 3mπ;

8
3

ffiffiffi
π

p
κϵ3=2V x1=2e−ϵVx; mV ≈ 2mπ;

ð26Þ

where the effective 3 → 2 cross section before the thermal
average is taken to be ðσv2Þ ¼ κbVγV

ðϵV−u2Þ2þγ2V
, with κ being the

velocity-independent coefficient and, ðϵV;γVÞ¼
ðm2

V−4m
2
π

4m2
π

;mVΓV

4m2
π
Þ and u2 ¼ 1

2
ðv21 þ v22Þ − 1

4
v23 for two-pion

resonances or ðϵV; γVÞ ¼ ðm2
V−9m

2
π

9m2
π

; mVΓV
9m2

π
Þ and u2 ¼ 1

3
ðv21 þ

v22 þ v23Þ for three-pion resonances. Then, we can solve the
Boltzmann equation by fixing the vector meson masses or
ϵV and find the condition for the correct relic density.
In Fig. 2, we illustrate contours of constant relic density

(Ωh2 ≈ 0.119) for mπ vs mπ=fπ and the dark pion self-
scattering cross section as a function of mπ for the value of
fπ that yields the correct relic density. Parametrizing vector
meson masses by mV ¼ 2ð3Þmπ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵV

p
on the left (right)

FIG. 2. Contours of relic density (Ωh2 ≈ 0.119) for mπ and mπ=fπ and the self-scattering cross section per DM mass in cm2=g as a
function ofmπ . The cases without and with vector mesons are shown in black lines and colored lines, respectively. We have imposed the
relic density condition for obtaining the contours of the self-scattering cross section. Vector meson masses are taken near the resonances
with mV ¼ 2ð3Þmπ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵV

p
on the left (right) plots. In both plots, c1 − c2 ¼ −1 and ϵV ¼ 0.1 are taken.
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plots, we have chosen c1 − c2 ¼ −1, c3 ¼ 1, and ϵV ¼ 0.1
for both plots in Fig. 2. Taking the WZW terms without
vector mesons, we show the relic density condition in black
dotted-dashed lines and the self-scattering cross section
without vector mesons in black dotted lines in both plots,
respectively. For different choices of a, the relic density
condition is satisfied in colored solid lines, and the
corresponding self-scattering cross sections are shown in
colored dashed lines.
As can be seen in Fig. 2, the value of mπ=fπ needed for

the correct relic density is reduced due to vector meson
resonances with a ¼ Oð1Þ (a ≪ 1) for mV ∼ 2mπ

(mV ∼ 3mπ), as compared with the case with the WZW
terms without vector mesons. The self-scattering cross
section in our scenario with vector mesons is greatly
reduced due to a smaller value of mπ=fπ than in the case
without vector mesons. We have checked that, varying the
anomalous parameters c1;2;3, acceptable values for the relic
density and the self-scattering cross section can be obtained
within the validity region of chiral perturbation theory with
light vector mesons.

We remark on the vector meson coupling, gVππ ¼
3
2
ð1Þ ffiffiffi

a
p ðmπ=fπÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵV

p
, near the three- (two-)pion reso-

nance, from Eqs. (14) and (15). First, for mV ∼ 3mπ,
c1 − c2 ¼ −1, and c3 ¼ 1 (on the right in Fig. 2), the
correct relic density requires mπ=fπ ≲ 6ð4.5Þ for a ¼
0.1ð0.01Þ and mπ ≲ 1 GeV, but we need gVππ ≲ 3.0ð0.7Þ
in this case. For mV ∼ 2mπ, c1 − c2 ¼ −1, and c3 ¼ 1 (on
the left in Fig. 2), the correct relic density requiresmπ=fπ ≲
5.5ð4Þ for a ¼ 1ð0.1Þ and mπ ≲ 1 GeV, resulting in
gVππ ≲ 5.8ð1.3Þ, which is comparable to the case with
mV ∼ 3mπ. Then, the unitarity violation is delayed to much
higher energy scales due to vector mesons in our scenario,
although not far from the scale of vector meson masses, for
instance, through Vπ → ππ.
Off the resonance poles, there is still a meaningful

improvement of perturbativity with vector mesons. In
Figs. 3 and 4, we take the vector meson masses off the
resonance poles to ϵV ¼ 0.3 and 0.5 with respect to mV ¼
2mπ andmV ¼ 3mπ on the left and right panels, respectively.
With mV ¼ 3mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵV

p
and ϵV ¼ 0.5 chosen, the correct

relic density requires mπ=fπ ≲ 8ð6Þ for a ¼ 0.1ð0.01Þ and

FIG. 3. Similar contours of relic density formπ andmπ=fπ and the self-scattering cross section per DMmass as in Fig. 2. Vector meson
masses are taken off the resonance with ϵV ¼ 0.3, and c1 − c2 ¼ −1 and c3 ¼ 1 are chosen.

FIG. 4. Similar contours of relic density for mπ and mπ=fπ and self-scattering cross section per DM mass as in Fig. 2. Vector meson
masses are taken off the resonance with ϵV ¼ 0.5, and c1 − c2 ¼ −1 and c3 ¼ 1 are chosen.
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mπ ≲ 1 GeV, thus, gVππ≲4.6ð1.6Þ; with mV¼2mπ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þϵV

p
and ϵV ¼ 0.3 chosen, the relic density requires mπ=fπ ≲
8ð6Þ for a ¼ 1ð0.1Þ and mπ ≲ 1 GeV, thus gVππ ≲ 9ð2Þ.
Therefore, we may tolerate vector meson masses being
further off the resonance conditions, mV ¼ 2mπ or
mV ¼ 3mπ, being consistent with perturbativity and extend-
ing a viable parameter space.
Before closing, two remarks are in order. First of all, if

the assumption of degenerate masses is relaxed, the thermal
relic density could be achieved in some interesting param-
eter space, to which we hope to return in a future
publication. Second, in the SIMP scenario, the dark sector
is required to remain in kinetic equilibrium with the
standard model [13]. This is accomplished via portal
interactions for dark scalars such as a sigma field (or dark
Higgs) [35,36] or dark photon [27,37,38], the details of
which would deserve further study for the detection of
SIMP dark matter.

IV. CONCLUSIONS

We have considered a SIMP scenario in which dark
pions in the dark QCD are light dark matter candidates.
Including dark vector mesons in the hidden gauge sym-
metry scheme, we showed that the 3 → 2 annihilation cross
section can be enhanced near resonance poles to realize
the SIMP freeze-out mechanism, while reducing the self-
scattering cross section. As a result, we proposed a
consistent scenario for natural light dark matter with
3 → 2 processes in which there is no perturbativity problem
for the parameter values rendering the correct relic density.
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APPENDIX THE CHIRAL LAGRANGIAN WITH
VECTOR MESONS

Here, we provide the details for the chiral Lagrangian
with vector mesons for QCD-like chiral symmetry,
SUð3ÞL × SUð3ÞR=SUð3ÞV , in the hidden local gauge
symmetry scheme. We also list the anomalous WZW
Lagrangian that is responsible for four-point interactions
between dark pions and vector mesons.
It is convenient to introduce the fields that transform

under global SUð3ÞL × SUð3ÞR and local SUð3ÞV as
follows:

ξLðxÞ → UðxÞξLðxÞL† ðA1Þ

ξRðxÞ → UðxÞξRðxÞR† ðA2Þ

gVμðxÞ → UðxÞ½∂μ − igVμðxÞ�U†ðxÞ ðA3Þ

DμξL ¼ ð∂μ − igVμÞξLðxÞ þ iξLðxÞlμ ðA4Þ

DμξR ¼ ð∂μ − igVμÞξRðxÞ þ iξRðxÞrμ: ðA5Þ

Here, L ∈ SUð3ÞL, R ∈ SUð3ÞR, and UðxÞ ∈ SUð3ÞV , and
we have implemented the global SUð3ÞL × SUð3ÞR as local
symmetries, by introducing lμ and rμ as gauge fields of the
local SUð3ÞL × SUð3ÞR gauge symmetries and identifying
them as the gauge bosons of any additional dark gauge
symmetries.
Then, the chiral Lagrangian for dark pions and vector

mesons is given by

L ¼ LA þ LB þ Lm þ Lkin þ Γanom ðA6Þ

LA ¼ −
f2π
4
Tr½ðDμξLÞξ†L − ðDμξRÞξ†R�2 ðA7Þ

LB ¼ −a
f2π
4
Tr½ðDμξLÞξ†L þ ðDμξRÞξ†R�2 ðA8Þ

Lm ¼ −
f2π
2
Tr½μðξLMξ†R þ H:c:Þ� ðA9Þ

Lkin ¼ −
1

2
Tr½FμνFμν� ðA10Þ

Fμν ¼ ∂μVν − ∂νVμ − ig½Vμ; Vν�: ðA11Þ

One can also define a new exponential field ΣðxÞ as
ΣðxÞ≡ξ†LðxÞξRðxÞ¼exp½i2πðxÞ=fπ� with ξ†LðxÞ ¼ ξRðxÞ ¼
exp½iπðxÞ=fπ�, which transforms as ΣðxÞ → LΣðxÞR†

under the original global chiral transformation.
We define the objects

α̂L ¼ DξL · ξ†L ¼ αL − igV þ il̂; ðA12Þ

α̂R ¼ DξR · ξ†R ¼ αR − igV þ ir̂; ðA13Þ

FV ¼ dV − igV2; ðA14Þ

F̂L ¼ ξLðdl − il2Þξ†L; ðA15Þ

F̂R ¼ ξRðdr − ir2Þξ†R; ðA16Þ

with αL=R ¼ dξL=R · ξ†L=R, l̂ ¼ ξL · l · ξ†L and r̂ ¼ ξR · r · ξ†R.
Then, the anomalous WZW terms in the presence of light
vector mesons are given by
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Γanom ¼ ΓWZW − 15C
X4
i¼1

ci

Z
d4xLi ðA17Þ

L1 ¼ Tr½α̂3Lα̂R − α̂3Rα̂L� ðA18Þ

L2 ¼ Tr½α̂Lα̂Rα̂Lα̂R� ðA19Þ

L3 ¼ iTr½FVðα̂Lα̂R − α̂Rα̂LÞ� ðA20Þ

L4 ¼ iTr½F̂Lα̂Lα̂R − F̂Rα̂Rα̂L�; ðA21Þ

where

C ¼ −i
Nc

240π2
: ðA22Þ

Here, ΓWZW is the familiar Wess-Zumino-Witten term for
pions [25,26,29], written as

ΓWZW ¼ C
Z

d5xTrðα5Þ: ðA23Þ

In this work, there is no extra gauge symmetry other than
dark QCD. Therefore, we ignore the external gauge fields
by setting lμ ¼ rμ ¼ 0 and keep only the dark pions and
vector mesons Vμ; thus, L4 is zero.
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