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Abstract

The downstream of kinase (DOK)-1 is involved in the protein tyrosine kinase (PTK) pathway in mast cells, but the role of
DOK-1 in the pathogenesis of asthma has not been defined. In this study, we have demonstrated a novel regulatory role of
DOK-1 in airway inflammation and physiologic responses in a murine model of asthma using lentiviral vector containing
DOK-1 cDNA or DOK-1-specific ShRNA. The OVA-induced inflammatory cells, airway hyperresponsiveness, Th2 cytokine
expression, and mucus response were significantly reduced in DOK-1 overexpressing mice compared to OVA-challenged
control mice. The transgenic introduction of DOK-1 significantly stimulated the activation and expression of STAT-4 and T-
bet, while impressively inhibiting the activation and expression of STAT-6 and GATA-3 in airway epithelial cells. On the other
hand, DOK-1 knockdown mice enhanced STAT-6 expression and its nuclear translocation compared to OVA-challenged
control mice. When viewed in combination, our studies demonstrate DOK-1 regulates allergen-induced Th2 immune
responses by selective stimulation and inhibition of STAT-4 and STAT-6 signaling pathways, respectively. These studies
provide a novel insight on the regulatory role of DOK-1 in allergen-induced Th2 inflammation and airway responses, which
has therapeutic potential for asthma and other allergic diseases.
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Introduction

Asthma is Th2-mediated inflammatory disease characterized by

airway hyperresponsiveness (AHR), and airway remodeling that

results in bronchial eosinophil accumulation [1,2]. Allergens

trigger antigen-presenting cells to interact with naı̈ve T cells

[3,4]. These events activate Th2 cells, resulting in the over-

production of various Th2 cytokines, such as interleukin (IL)-4, IL-

5 and IL-13, which are known to have a critical role in the

differentiation in Th2 development [5,6,7]. Both clinical and

experimental allergic inflammations lead particularly to altered

blood and lung profiles of Th1 and Th2 cytokines. It has been

shown that CD4+ Th2 cells play a pivotal role in the pathogenesis

of asthma and other allergic inflammatory diseases [5,8,9].

The balance between Th1 and Th2 cells is tuned by the cross talk

of transcription factors. One of the major transcription factors

regulating the expression of Th2 cytokine is STAT6 [10,11,12]. The

STATs have been shown to be important in the regulation of

cytokines and growth factor-inducible transcription factors in

immune response [13,14]. Recent studies using STAT6-deficient

mice demonstrated that phosphorylation of STAT6 and its nuclear

translocation are critical for the development of Th2 cell differen-

tiation and airway responses [10,11]. A significant role of STAT6 in

airway inflammation was further supported by findings in asthmatic

patients who showed increased levels of STAT6 expression in the

lung [14]. IL-4, a prototype Th2 cytokine, enhances Th2 cell

development through STAT6, which activates GATA-3 genes

[15,16]. GATA3, as a downstream transcriptional factor of STAT6,

plays a key role in Th2 cell development by promoting Th2 cytokine

expression through binding to a variety of regulatory regions of Th2

cytokines [16,17]. On the other hand, IL-12 drives Th1 cell

differentiation through activation of STAT 4 and T-box expressed

in T cells (T-bet), Th1 transcription factor, which up-regulates IFN-c
and down-regulates IL-4 and IL-5 production [12,17,18].

Downstream of tyrosine Kinase-1 (DOK-1) is a common

substrate of many protein tyrosine kinases (PTKs) [19,20,21,22].

This is a recently discovered family of adapter molecules which
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have emerged as an expanding group of insulin receptors

substrates-related signaling molecules, consisting of NH2-terminal

tandem of PH and PTB domains [20,23,24]. DOK-1, initially

designated as DOK or p62dok, was first branded as a major

substrate of p210bcr-abl. Which tyrosine phosphorylation, DOK-1

and its closet homologue DOK-2 act as adaptor proteins and

recruit multiple SH2-containing molecules such as rasGAP and

Nck [25]. Experiments with mice lacking DOK-1 or DOK-2

established an indispensable role in the negative regulation of Erk

downstream of PTKs in various hematopoietic cells [21,26].

Furthermore, the negative regulatory role of DOK-1 was validated

by the expression of small interfering RNA directed against DOK-

1, which enhanced activation of MAP kinase and subsequent

release of arachidonic acid and TNF-a [19,20,23].

Although it has been shown that DOK-1 suppresses activation

of antigen/FceRI-mediated signaling pathway in RBL2H3 mast

cells [22,27], the role of DOK-1 in the development of allergic

inflammation and airway response has not been explored. In this

study, we hypothesized that DOK-1 plays an important regulatory

role in allergen-induced lung inflammation and physiologic

responses. To address this hypothesis, we generated and

characterized mice in which lung DOK-1 is knock-downed (KD)

or over-expressed (OE) using a lentiviral transgenic system. These

studies demonstrate that DOK-1 significantly inhibits allergen-

induced pulmonary inflammation and airway responses by

selective inhibition and stimulation of STAT6 and STAT4

signaling pathways, respectively.

Results

Generation of DOK-1 KD and DOK-1 OE mice
To understand the role of DOK-1, we generated lentiviral

vector containing DOK-1- specific ShRNA and cDNA and

evaluated the in vivo efficacy after treatment on the mice.

Knockdown efficiency of 4 different DOK ShRNA in the lung

was individually evaluated, and Clone 3 was selected because it

showed the highest efficiency in silencing DOK-1 in the lung

(.95% knockdown) (Figure 1A). Conversely, DOK is highly

expressed in the lungs of mice treated with lentivirus containing

DOK-1 cDNA (Figure 1A). The local tissue expression of DOK-1

was determined by confocal evaluations after DOK-1 immuno-

staining. We detected minimum cytosolic expression of DOK-1 in

the lung epithelial cells of control mice without OVA allergen

challenge (Figure 1B). However, the expression of DOK-1 was

increased in the animals with OVA stimulation, and immunore-

action was remarkably negative for DOK-1 knockdown mice. On

the other hand, DOK-1 overexpression was clearly appreciated in

the mice treated with lentiviral transgenic construct (Figure 1B).

These data demonstrate that DOK-1 expression is localized in the

cytosol of airway epithelial cells, and its expression in the lung is

efficiently modulated by lentiviral knockdown or transgenic

approaches.

Role of DOK-1 in OVA-induced allergic inflammation,
airway responsiveness, and OVA-specific IgE production

To define the role of DOK-1 in allergic inflammation, wild-

type, DOK-1 knockdown (DOK_ShRNA) and transgenic mice

(DOK) were sensitized and challenged with OVA. OVA

sensitization and challenge significantly increased BAL inflamma-

tory cells compared to sham controls (Figure 2A). The OVA-

induced BAL inflammation was not significantly modulated in the

DOK_ShRNA mice (Figure 2A), but there were slightly increased

eosinophil peroxidase (EPO) levels compared to OVA-challenged

mice. In contrast, DOK-1 OE mice had significantly less BAL

inflammatory responses, especially in eosinophils and lymphocytes

numbers, together with EPO levels. (Figure 2A and B). To

determine the role of DOK-1 in allergen-induced physiologic

response, we evaluated airway hyperresponsiveness (AHR) after

methacholine challenge. As we expected, OVA challenge

significantly increased AHR in a dose response manner and the

DOK_ShRNA mice showed comparable levels of airway

responsiveness. In contrast, OVA-induced AHR was abolished

in the DOK-1 transgenic mice (Figure 2C). Systemic sensitization

with OVA increased the serum levels of OVA-specific IgE and

IgG2a. DOK-ShRNA mice showed comparable levels of serum

IgE (1007.36211.3 ng/ml) compared with OVA-treated control

mice (913.26176.51 ng/ml). On the other hand, the OVA-

induced IgE levels were dramatically decreased in DOK-1

transgenic mice (323.33694.25 ng/ml). Interestingly, IgG2a levels

were not significantly changed in any of these groups of mice.

Role of DOK-1 in OVA-induced tissue responses
The effects of DOK-1 in tissue inflammatory and mucus

responses were evaluated by histologic examination of lung

sections. Impressive perivascular and peribronchial inflammation

and mucus metaplasia was noted in the mice with OVA challenge.

DOK-1 knockdown mice showed comparable levels of inflamma-

tion and mucus responses compared with OVA stimulated control

mice (Figure 3A). In contrast, OVA-induced inflammatory and

mucus responses were significantly reduced in the DOK-1

transgenic mice (Figure 3A). In accordance with these histologic

changes, the inflammatory score (Figure 3B) and mucus index

(Figure 3C) showed overexpression of DOK-1 significanlty

reduced OVA-induced inflammation and mucus production

(*p,0.05).

Role of DOK-1 in T cells and cytokine expression
To understand the mechanism of DOK-1 regulation in OVA-

induced inflammation, we characterized T cell population and

measured levels of Th1 and Th2 cytokines in the BAL fluid.

Proliferative responses revealed pulmonary CD4+ T cell popula-

tion was significantly up-regulated in DOK-1 knockdown mice

compared to OVA-challenged control mice (Figure 4A). Intracel-

lular cytokine staining of IFN-c and IL-4 on CD4+ T cells isolated

from BAL cells further revealed that transgenic expression of

DOK-1 significantly reduced IL-4+ CD4+ T cells with increased

number of IFN-c producing CD4+ T cells (Figure 4B). Although

the total number of cells was not significantly increased in the

OVA-challenged mice with shRNA silencing of DOK-1 (Table 1),

there was a significant increase in the CD4+ cells compared to

OVA-challenged and vehicle-treated mice (Figure 4A). Interest-

ingly, these cells are not typical Th1 or Th2 cells because the

expression of IL-4 and IFN-c was not significantly changed in the

lungs from this group of mice compared to OVA challenged and

vehicle treated mice (Figure 4B). Further characterization of these

cells remains to be determined in future studies. On the other

hand, the expression levels of IL-4, IL-5, IL-13 and eotaxin were

also significantly down-regulated in DOK-1 transgenic mice

compare to OVA-challenged control mice or DOK-1 KD mice.

In contrast, the levels of IFN-c and IL-12 in this group of mice

were higher than OVA-challenged control mice or the DOK-1

KD mice (Figure 4C). These studies demonstrate that overex-

pression of DOK-1 not only suppresses allergen-induced Th2

inflammation but also stimulates IFN-c producing Th1 cells.

Role of DOK-1 on STAT-6 and STAT-4 signaling
To define the role of DOK-1 in the Th1/Th2 immune signal

pathway, we evaluated the activation or expression of STAT-6,
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STAT-4, GATA-3 and T-bet in each group of mice. Western blot

analysis revealed that DOK-1 transgenic expression significantly

reduced STAT-6 activation and GATA-3 protein levels, while

stimulating STAT-4 activation and T-bet expression (Figure 5).

We further revealed that the regulatory affect of DOK-1 on

STAT-6 and STAT-4 signaling pathways are mostly independent

from each other, because similar regulation was observed both in

STAT6 and STAT4 null mice. In the absence of STAT-6, DOK-

1 OE significantly activates STAT-4 and T-bet expression

(Figure 6A). Similarly, in the absence of STAT-4, the DOK-1

inhibition of STAT-6 activation and GATA3 expression was not

significantly affected (Figure 6B). Thus, these studies indicate that

Figure 1. DOK-1 expression in the lungs after OVA sensitization and challenge. The lentiviral vectors containing DOK-1 specific ShRNA
(DOK_ShRNA) or DOK-1 cDNA (DOK) were administrated together with controls (empty vector or vector containing non-specific scrambled ShRNA)
before OVA challenge. (A) Representative western blotting demonstrating DOK-1 protein expression in the lungs of the mice. Con, non OVA
challenged; OVA, OVA-challenged with empty lentiviral vector; DOK_ShRNA, OVA-challenged with DOK_ShRNA knockdown; DOK, OVA-challenged
with DOK-1 overexpression (B) Immunofluorescent staining on the tissue sections from the lungs using Alexa Fluor 488-conjugated DOK-1 antibody
and DAPI stains.
doi:10.1371/journal.pone.0034554.g001
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DOK-1 has the capacity to selectively activate and inhibit STAT6

and STAT4 signaling pathways, respectively, in the regulation of

allergen-induced Th2 immune responses.

Role of DOK-1 in STAT-6 and STAT-4 expression and
nuclear translocation

In non-stimulated sham control mice, we detected only minimal

levels of cytosolic expression of STAT-4 and STAT-6 in airway

epithelial cells by immunohistochemistry. However, after OVA

Figure 2. Effects of DOK-1 in OVA-induced inflammation and airway response. (A) The recovery of BAL cells 24 hr after OVA challenge.
NEU, Neutrophil; EOS, Eosinophil; LYM, Lymphocyte; MAC, Macrophages; TOT, total cell. (B) Eosinophil peroxidase (EPO) activity in BAL fluids of OVA-
sensitized and –challenged mice. (C) Airway responsiveness to aerosolized methacholine measured by non-invasive whole body plethysmography.
(D) Serum IgE and IgG2a levels detected by ELISA. The values in all the panels represent means 6 S.E.M. At least 5 mice were included in each group.
*P,0.05, ***P,0.001 vs. OVA-challenged mice.
doi:10.1371/journal.pone.0034554.g002
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challenge, we noted significant nuclear translocation of STAT-4

and STAT-6 from cytoplasm. The STAT-6 expression and

nuclear translocation were further increased in the OVA-

challenged DOK-1 KD mice (Figure 7A). However, DOK-1 OE

mice showed significantly reduced the expression and transloca-

tion of STAT-6 into nucleus (Figure 7A). On the other hand,

DOK-1 OE mice showed significantly increased STAT-4

expression and translocation into nucleus (Figure 7B).

Discussion

Murine models of asthma have been used to understand the

pathogenesis of human asthma [28]. In this study, we demonstrate

a novel regulatory role of DOK-1 in OVA-induced allergic

inflammation and airway responses by letiviral-mediated DOK-1

knockdown and DOK-1 transgenic mice. To our knowledge, this

study is the first to provide experimental evidence demonstrating

the regulatory role of DOK-1 in allergen-induced airway

Figure 3. Effect of DOK-1 in OVA-induced tissue inflammation and mucus responses. (A) Lung sections were stained with hematoxylin
and eosin, D-PAS, alcian blue for the evaluation of inflammatory cells and airway mucus responses. 640 of original magnification. Con, non OVA
challenged; OVA, OVA-challenged with empty lentiviral vector; DOK_ShRNA, OVA-challenged with DOK_ShRNA knockdown; DOK, OVA-challenged
with DOK-1 overexpression. At least 4 mice were included in each group. (B) Inflammatory index that scored parenchymal inflammation. At least 4
mice were included in each group. *P,0.05 (C) Mucus index evaluated by morphometric analysis representing alcian blue stained mucus cells
(percentage of positive cells) in airway epithelial cells. At least 4 mice were included in each group. *P,0.05.
doi:10.1371/journal.pone.0034554.g003
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inflammation and physiologic responses in a murine model of

asthma.

Asthma is an inflammatory disease characterized by Th1/Th2

balance that can proceed to life-threatening airway obstruction

[29,30,31]. Th2 cytokines, IL-4, IL-5 and IL-13 produced by

Figure 4. Effect of DOK-1 on T cells and cytokine/chemokine expression. (A) FACS Histogram analysis on BAL cells from the mice after OVA
sensitization and challenge. Con, non OVA challenged; OVA, OVA-challenged with empty lentiviral vector; DOK_ShRNA, OVA-challenged with
DOK_ShRNA knockdown; DOK, OVA-challenged with DOK-1 overexpression. Each lane indicates CD4+ T cell population stained with Cy5-anti-CD4
antibody. (B) BAL CD4(+)T cells gated with PE-conjugated CD4 were further evaluated by intracellular staining against Cy5-conjugated-IL-4 and FITC-
conjugated-IFN-c. (C) The levels of inflammatory Th1 and Th2 cytokines and a chemokine in BAL fluid were measured by ELISA at 24 hrs after the last
OVA challenge. Data represent means 6 S.E.M. Each group contains at least 7 mice. *P,0.05, ***P,0.001 vs. OVA-challenged mice.
doi:10.1371/journal.pone.0034554.g004
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activated CD4+ T cells, play a central role in the pathogenesis of

asthma by controlling the key process of immunoglobulin E (IgE)

production, growth of mast cells and the differentiation and

activation of mast cells and eosinophils [32,33,34]. In contrast,

Th1 cytokines such as IFN-c and IL-12, which down-regulate Th2

responses inhibit the development of allergic lung inflammation

[35,36,37]. Thus, interventions that inhibit Th2 cytokines by

enhancing Th1 cytokine production may be useful for the

treatment of allergic asthma.

Th2 cytokines play a pivotal role in the induction, and

regulation of allergic diseases by regulating IgE production,

differentiation of naı̈ve T cells toward Th2 cells and activation

of mast cells. The critical role of STAT-6 and GATA-3 in IL-4

signaling has been demonstrated in STAT-6 deficient mice. In the

absence of STAT-6, mice did not develop Th2 responses, Ig class

switching to IgE, AHR, mucus hypersecretion and airway

eosinophilia upon allergen sensitization and airway challenges,

highlighting the essential role of this transcription factor in the

pathogenesis of allergic asthma [16,38].

DOK-1 negatively regulates Ras-Erk signaling and functions as

an intermediary adaptor protein in this pathway [39]. Recent

studies further demonstrated that DOK-1 associates with CD45 in

a tyrosine phosphorylation dependent manner and negatively

regulate JAK/STAT pathways [25]. Moreover, site-directed

mutagenesis led to the identification of tyrosine residue (Y296) in

DOK-1 as a pivotal site for CD45/DOK-1 interaction. Upon

anti-CD3/TCR stimulation, DOK-1 translocates from the

cytoplasm to the plasma membrane to serves as a downstream

effector of CD45, and negatively regulates JAK/STAT pathways

[25]. Together with DOK-2, DOK-1 also negatively regulates

lipopolysaccarid stimulated TLR-4 signaling pathways [26]. In

addition, recent studies further demonstrated that DOK-1

regulates specific immune cell function such as mast cells [22].

However, the in vivo role of DOK-1 in allergic inflammation and

airway response has not been defined.

As an animal model of asthma, the mice sensitized and

challenged with OVA developed Th2 inflammation, mucus

metaplasia and airway hyperresponsiveness, hallmarks of asthmat-

ic airways. Because we administrated the lentiviral vectors

containing ShRNA or DOK-1 cDNA before OVA challenge,

we speculated that DOK-1 modulates effector function of immune

cells or other mediators. In particular, we noted significant

changes in the STAT-6 and STAT-4 signaling molecules in airway

epithelial cells with genetic modification of DOK-1. In accord with

this finding, a number of previous studies demonstrated that

airway epithelial cells play a critical role in allergen-induced

inflammation and physiologic response [40,41]. Present studies

clearly indicate that transgenic introduction of DOK-1 signifi-

cantly down-regulates allergen-induced STAT6 expression and its

activation (phosphorylation and nuclear translocation) in airway

epithelial cells. This data suggest that DOK-1 plays an important

role in these signaling pathways in epithelial cells, as was the case

in the hematopoietic inflammatory cells. However, we could not

rule out the possibility that DOK-1 primarily affects the

inflammatory cells such as mast cells or dendritic cells that have

the capacity to drive Th2 inflammation and tissue responses. In

this regard, the specific regulatory function DOK-1 on each

immune cell needs to be further defined in future studies. The

effect of local administration of lentiviral vectors containing these

DOK-1 transgenes also remains to be determined.

Interestingly, endogenous DOK-1 expression was increased in

the mice with OVA challenge. Although it did not reach statistical

significance, knock down DOK-1 showed a trend of increase in

BAL inflammation and airway responsiveness, especially in EPO

(+) cells and airway responsiveness at 50 mg/ml methacholine

challenge, compared to vehicle-challenged mice (Figure 2). Thus,

it is reasonable to speculate that the increased expression of

endogenous DOK-1 after OVA challenge is a partially protective

response that limit exaggerated responses to OVA allergen

challenge. Because we only noted significant suppression of

allergic responses with overexpression of DOK-1, we speculate

that the level of OVA-induced endogenous DOK-1 expression was

not enough to suppress the allergic response itself. We did not see

any significant inflammatory and histologic changes in the naive

mice with DOK-1 silencing.

Table 1. Inflammatory cell counts in the lungs from mice
challenged with OVA and DOK-1 shRNA.

Total cell CD4(+) cell IL-4(+) cell IFN-c (+) cell

Con 217860610786 45716112 326670 237661

OVA 1210638616088 21065164750 63776419 26176213

DOK_ShRNA 1384283618549 30731063515 63606355 23396497

DOK OE 79009969963 11930466197 44666340 52956535

doi:10.1371/journal.pone.0034554.t001

Figure 5. Effect of DOK-1 on STAT-6 and STAT-4 signaling
pathways. Expression and/or activation (phosphorylation) of STAT6,
STAT4, GATA3, and T-bet transcriptional factors were evaluated by
Western blot analysis. A representative gel photo out of 6 similar
independent experiments. Con, non OVA challenged; OVA, OVA-
challenged with empty lentiviral vector; DOK_ShRNA, OVA-challenged
with DOK_ShRNA knockdown; DOK, OVA-challenged with DOK-1
overexpression.
doi:10.1371/journal.pone.0034554.g005
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In this study, transgenic introduction of DOK-1 impressively

modulated OVA-induced CD4 T cell recruitment to BAL and

lungs and serum IgE levels. Interestingly, the total number of cells

in the lung was not significantly increased in the OVA-challenged

mice with shRNA silencing of DOK-1, but this group of mice

showed a significant increase in CD4(+) cells compared to OVA-

challenged and vehicle-treated mice. Further FACS evaluation

indicated possible involvement of non-Th1 or Th2 cells in these

mice, because no significant changes in the expression of Th2 (IL-

4 and IL-13) or Th1 (IFN-c) cytokines in these group mice were

noted compared to OVA-challenged and vehicle treated mice.

The potential contribution of these cells into allergic response

remains to be determined in future studies. On the other hand, the

mice treated with lentiviral vectors with DOK-1 transgene

significantly increase in the number of OVA-induced Th1 cells

(IFN-c(+), IL-4(2)) and a reduction in the number of Th2 cells (IL-

4(+), IFN-c (2)). These studies suggest that DOK-1 strongly

stimulates Th1 while suppressing Th2 polarization after antigen

stimulation. The enhanced activation and expression of STAT-4

and T-bet, the exclusive transcriptional factors for Th1 differen-

tiation, by DOK-1 transgene mechanistically support T cell

differentiation by DOK-1. Although there could be a reciprocal

interaction between STATs over transcriptional cofactors such as

CBP/p300, DOK-1 regulation of STAT-4 and STAT-6 are

mostly independent of each other, because STAT-6 or GATA-3

suppression by DOK-1 were not significantly modulated in the

absence of STAT-4. The mechanism underlying selective

activation and inhibition of STAT-6 and STAT-4 will be

important in understanding the role of DOK-1, especially in

immune cell functions. Further cell –specific regulatory mecha-

nisms of DOK-1 on STAT signaling remains to be determined in

future studies.

In our current studies, we did not note compromised IgE

response in the mice treated with shRNA silencing of DOK-1, in

contrast to the results shown in Dok-1 null mice by Yamanashi et

al [21]. The expression of endogenous DOK-1 was partially

suppressed in the cells with siRNA silencing. On the other hand, in

DOK-1 null mutant mice, all the cells including immune cells lack

DOK-1 expression from the developmental stage. We speculate

that the extent of DOK-1 knock down in a variety of immune cells

in vivo could be a major reason for the difference in the immune

cell responses between these two studies. In addition, we could not

completely exclude the possibility of inherent functional deviation

of immune cells in the DOK-1 null mice affecting the overall

allergen sensitization, processing and effector function of a variety

of immune cells. Currently, it is not clear whether the impaired

IgE response seen in DOK-1 null mice after allergen challenge

resulted from the impaired function of B cells or other immune

cells related to antigen processing. To address these controversial

Figure 6. DOK-1 regulation of STAT-4, STAT-6 signaling pathways (A) Expression and/or activation of DOK-1, STAT-4, GATA-3 and
T-bet in STAT-6 knockout and (B) DOK-1, STAT-6, GATA-3 and T-bet in STAT-4 knockout mice were evaluated by Western blot
analysis. A representative gel photo out of five similar independent experiments. Con, non OVA challenged; OVA, OVA-challenged with empty
lentiviral vector; DOK_ShRNA, OVA-challenged with DOK_ShRNA knockdown; DOK, OVA-challenged with DOK-1 overexpression.
doi:10.1371/journal.pone.0034554.g006
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issues in DOK-1 null mutant mice, the use of conditional DOK-1

null mice or cells will be important in future studies.

In summary, these studies demonstrate that DOK-1 is a

negative regulator of allergen-induced Th2 inflammation, mucus

production and airway hyperresponsiveness in a murine model of

asthma. DOK-1 may regulate Th1/Th2 balance through selective

inhibition and activation of STAT-6 and STAT-4 signaling

pathways. These studies also highlight a therapeutic potential of

DOK-1 in the intervention of asthma and other allergic diseases.

Figure 7. Effects of DOK-1 on STAT-6 and STAT-4 expression and nuclear translocation in airway epithelial cells. (A) Lung sections
were stained with Alexa Fluor 488-conjugated DOK-1 and Alexa Fluor 568-conjugated STAT-6 antibodies and DAPI stain. (B) Lung sections were
stained with Alexa Fluor 488-conjugated DOK-1 and Alexa Fluor 568-conjugated STAT-4 antibodies and DAPI stains. A representative photo of 7
similar experiments. Con, non OVA challenged; OVA, OVA-challenged with empty lentiviral vector; DOK_ShRNA, OVA-challenged with DOK_ShRNA
knockdown; DOK, OVA-challenged with DOK-1 overexpression.
doi:10.1371/journal.pone.0034554.g007
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Materials and Methods

Mice and experimental protocol
Female C57/BL6 mice, 6–8 weeks of age and free of murine-

specific pathogens, were obtained from the Orient (Seoul, Korea),

and all experimental animals used in this study were under a

protocol approved by the Institutional Animal Care and Use

Committee of the Pusan National University (PNU-2009-0036).

Mice were sensitized on days 1 and 15 by intraperitoneal injection

of 20 mg ovalbumin (OVA) (Sigma-Aldrich, St. Louis, MO) added

in 1 mg of aluminum hydroxide (Pierce Chemical Co., Rockford,

IL) in a total volume of 200 ml. One week later, mice were exposed

to aerosolized OVA once a day for 3 days. [42] Lentiviral vectors

containing DOK-1 specific ShRNA or DOK-1 cDNA were

intraperitoneally injected on days 18 and 19. The mice were

sacrificed and evaluated 24 hrs after the last OVA challenge.

(Figure S1)

Construction of lentiviral vector containing DOK-1 ShRNA
and cDNA

Four ShRNAs target sequences (Clone 1: TCRN0000088814,

clone 2: TCRN0000088815, clone 3: TCRN0000088816, clone4:

TCRN0000088817) were selected for DOK-1 knockdown exper-

iments (Mission ShRNA, Sigma-Aldrich, St. Louis, MO). DOK-1

cDNA was cloned by PCR amplification using the following

primers : 59-CTACCTGAGCTACCAGTCCGC-39 (Sense) and

59-CGTGAAGAATGTGCGAGAC-39 (antisense) (Genecopoeia,

Germantown, MD). DOK-1 ShRNAs and cDNA were further

cloned into pLKO.1-puro and transferred to 293FT cells using

calcium phosphate-mediated transfection. Then the viruses were

collected and concentrated 100-fold by ultra-centrifugation. The

virus stocks were titrated using 293FT cell-based GFP expression

assay and a viral titer of 16106 IFU was used in this study.

Evaluation of BAL cells
The total cell numbers were counted with a hemocytometer.

Smears of BAL cells prepared with Cytospin II (Shandon,

Runcorn, UK) were stained with Diff-Quik solution (Dade

Diagnostics of P.R. Inc, Aguada, PR) for differential cell counting.

Two independent, blinded investigators counted the cells, using a

microscope. Approximately 200 cells were counted in each of four

different random locations.

Th1 and Th2 cell evaluation
BAL cells were first blocked with 10% (v/v) normal goat serum

for 15 min at 4uC and stained with Cy5PE-conjugated mouse

mAbs against CD4, then cells were analysed on a FACSCalibur

cytometer (Becton Dickinson, Franklin Lakes, NJ). For intracellu-

lar cytokine staining, the cells were treated with brefeldin A (10 lg/

ml; 4 hr), washed with 1% v/v FBS-PBS (staining buffer), stained

with PE-conjugated mouse mAbs against CD4, IFN-g with FITC-

conjugated and IL-4 with Cy5PE-conjugated and fixed in 4% w/v

paraformaldehyde (20 min at room temperature).

Measurement of eosinophil peroxidase
The suspension of BAL cells and the pulmonary homogenates

were frozen/thawed three times using liquid nitrogen and a water

bath at 37uC to obtain the EPO. The BAL fluid was centrifuged to

4uC for 10 min and serially diluted in a 96-well plate (75 ml/well)

followed by the addition of 150 ml of substrate (1.5 mM o-

phenylenediamine and 6.6 mM H2O2 in 0.05 M Tris-HCl,

pH 8.0). After 30 min at room temperature, the reaction was

stopped by the addition of 75 ml of 30% H2SO4, and the

absorbance of the samples was determined at 492 nm on an

ELISA reader.

Histopathology
At 24 hrs after the last challenge, lungs were removed from the

mice after they had been sacrified. Prior to the removal of the

lungs, the lungs and trachea were filled intratracheally with a

fixative (4% paraformaldehyde) using a ligature around the

trachea. Lung tissues were fixed with 10% (v/v) paraformalde-

hyde. The specimens were dehydrated and embedded in paraffin.

For histological examination, 4 mm sections of fixed embedded

tissues were cut on a Leica model 2165 rotary microtome (Leica,

Nussloch, Germany), placed on glass slides, deparaffinized, and

sequentially stained with hematoxylin 2 and eosin-Y (Richard-

Allan Scientific, Kalamazoo, MI), D-PAS and Alcian Blue staing

kit (Merck, Washington, NJ). The tissue inflammation was scored

in a blinded manner as shown previously [43]. The lung sections

were taken from the same lobe in each mouse and at least 3

random sections per mouse were analyzed. A inflammation score

of 0 to 4 was assigned to each section. (0: no inflammation; 1: mild;

2: moderate; 3: severe but not in all airways; 4: severe in all

airways). Airway mucus levels were quantitated by mucus index by

counting mucus containing airway cells as a percentage of total

cells [44].

Measurement of Th1/Th2 cytokines and OVA-specific IgE,
IgG2a levels

Levels of IL-4 and IL-5 were quantified in the supernatants of

BAL fluids by enzyme immunoassays performed according to the

protocol of the manufacturer (IL-4, IL-5, IL-12, IFN-c; Eotaxin

R&D Systems, Inc., Minneapolis, MN). The levels of OVA-

specific IgE and IgG2a in serum were assessed by enzyme

immunoassays according to the manufacturer’s protocol (R&D

Systems; Minneapolis, MN).

Whole body plethysmography
Airway responsiveness was measured in mice 24 hrs after the

last challenge in an unrestrained conscious state, as described

previously [15,16]. Mice were placed in a barometric plethysmo-

graphic chamber (All Medicus Co., Seoul, Korea) and baseline

readings were taken and averaged for 3 min. Aerosolized

methacholine in increasing concentrations (2.5 to 50 mg/ml)

was nebulized through an inlet of the main chamber for 3 min.

Readings were taken and averaged for 3 min after each

nebulization. Enhanced pause (Penh), calculated as (expiratory

time/relaxation time-1)6(peak expiratory flow/peak inspiratory

flow), according to protocol of the manufacturers, is a dimension-

less value that represents a function of the proportion of maximal

expiratory to maximal inspiratory box pressure signals and a

function of the timing of expiration. Penh was used as a measure of

airway responsiveness to methacholine. Results were expressed as

the percent increase of Penh following challenge with each

concentration of methacholine, where the baseline Penh (after

saline challenge) was expressed as 100%. Penh values were

averaged for 3 min after each nebulization and evaluated.

Western blot analysis
The lung tissues were homogenized, washed with PBS, and

incubated in lysis buffer plus a protease inhibitor cocktail (Sigma,

St Louis, Mo) to obtain extracts of lung proteins. The samples

were loaded to 10% SDS-PAGE gels and were separated at 120 V

for 90 minutes. The blots were incubated with an anti-STAT-6,

STAT-4, GATA-3, T-bet antibody diluted at a ratio of 1:1000,
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(Santa Cruz Biotechnology, Santa Cruz, CA) overnight at 4uC.

The membranes were stripped and reblotted with a-tubulin

antibody (Sigma) to verify the equal loading of protein in each

lane.

Detection of STAT-6 and STAT-4 by confocal microscopy
To prepare specimens for confocal microscopy, lungs were

sectioned on 4-chamber Lab-Tek II slides (Thermo Fisher

Scientific). One day later, slides were washed twice with PBS

then blocked with 1% BSA in PBS for 20 minutes at room

temperature. Slides were stained with 0.5 mg Alexa Fluor 488-

conjugated DOK-1 and Alexa Fluor 568–labeled STAT-6 or

STAT-4 in 200 ml volume for 30 minutes, washed 5 times, then

fixed in 4% formaldehyde. Specimens were washed, excess

moisture was removed, and slides were cover-slipped using

Prolong Gold with DAPI (Invitrogen). After curing overnight,

slides were sealed with acrylic nail polish. Slides were imaged using

an Olympus Fluoview FV300 laser scanning confocal microscope.

Exposure times for individual filter sets and gain multiplication

settings were established for each experiment using unstained

specimens to determine maximal settings.

Statisitcal Evaluation
Experiments were repeated at least three times with consistent

results. Unless otherwise stated, data are expressed as the mean 6

S.E.M. ANOVA was used to compare experimental groups to

control values, while comparisons between multiple groups were

performed using Tukey’s Multiple Comparison test. Statistical

significance was indicated by a P value less than 0.05.P***,0.001,

P**,0.01, P*,0.05.

Supporting Information

Figure S1 Schematic diagram of the experimental
protocol. Mice were sensitized on days 1 and 15 by

intraperitoneal injection OVA added in 1 mg of aluminum

hydroxide. After 1 week, mice were exposed to aerosolized

OVA once a day for 3 days. Lentiviral vectors containing DOK-1

specific ShRNA or DOK-1 cDNA were intraperitoneally injected

on days 18 and 19.

(TIF)
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