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1 Introduction

Weakly Interacting Massive Particles (WIMPs) have been well-motivated candidates for

dark matter (DM) and being searched for in direct detection, cosmic rays as well as collider

experiments. In particular, weak-scale interactions of DM have been strongly constrained

by direct detection experiments [1–4], although dependent on astrophysical inputs such as

the DM velocity distribution and the local DM density.

The interactions between dark matter and SM particles can be well described in terms

of effective operators at the scale of momentum transfer, typically below 100 MeV. How-

ever, the validity of the same effective interactions is in question at the freeze-out of the
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annihilation of dark matter in the early Universe or at collider experiments such as the Large

Hadron Collider (LHC). For these reasons, the mediator particles, that are responsible for

the effective interactions, have been introduced in simplified models for dark matter [5]. In

this case, integrating out the mediator particles lead to the effective operators for direct de-

tection and mediator particles can be directly produced in the early Universe or at the LHC.

Most of the proposed mediator models, however, have been focused upon spin-0 and spin-1

mediators, for which the correlated effective interactions are limited [6–9] and only the

effective operators lower than dimension-8 have been taken into account until now [10, 11].

We consider a massive spin-2 resonance as the mediator that couples to dark matter

with arbitrary spin and the SM particles through the energy-momentum tensor, as consid-

ered in refs. [12–17]. After the spin-2 mediator is integrated out, we identify the effective

interactions between dark matter and the SM quarks up to dimension-8 and match them

to the gravitational form factors for nucleons beyond a zero momentum transfer. Focusing

on fermion or scalar dark matter, we show how the non-relativistic operators between dark

matter and nucleons are correlated. We also discuss how in our model of spin-two media-

tors there is an interplay between relic density conditions, current direct detection bounds

and searches at the LHC of dijet resonances produced in association with a jet or a photon.

The paper is organized as follows. We first present the general setup for the effective

interactions between dark matter and the SM quarks in the presence of a massive spin-2

mediator and consider the matching conditions for them to the gravitational form factors

for nucleons. Then, we derive the scattering amplitudes of fermion or scalar dark mat-

ter with nucleons and compute the corresponding differential scattering events rates for

DM direct detection experiments. Next we impose the bounds from the correct relic den-

sity condition and the direct detection experiments for the parameter space of our model.

Finally, conclusions are drawn. There are three appendices reviewing the differential scat-

tering event rates, the scattering amplitudes between dark matter and nucleon, and the

nucleon matrix elements for twist-2 operators at zero momentum transfer.

2 Spin-2 mediator and dark matter

We present the interactions between dark matter and the SM particles which are mediated

by a massive spin-2 mediator. Focusing on the spin-2 mediator couplings to quarks in

the SM for direct detection experiments, we identify the effective interactions for the SM

quarks and their counterpart gravitational form factors for nucleons.

2.1 Effective interactions between dark matter and quarks

We introduce the couplings of a massive spin-2 mediator to the SM particles and dark

matter, through the energy-momentum tensor, as follows [12–15],

Lint = −cSM

Λ
GµνT SM

µν −
cDM

Λ
GµνTDM

µν . (2.1)

In this case, the mediator couplings for the SM particles can vary, depending on the location

in the extra dimension [12, 13]. Then, the tree-level scattering amplitude between DM and
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SM particles through the spin-2 mediator is given by

M = −cDMcSM

Λ2

i

q2 −m2
G

TDM
µν (q)Pµν,αβ(q)T SM

αβ (−q) (2.2)

where q is the 4-momentum transfer between dark matter and the SM particles and the

tensor structure for the massive spin-2 propagator is given by

Pµν,αβ(q) =
1

2

(
GµαGνβ +GναGµβ −

2

3
GµνGαβ

)
(2.3)

with

Gµν ≡ ηµν −
qµqν
m2
G

. (2.4)

We note that the sum of the spin-2 mediator polarizations is given by∑
s

εµν(q, s)εαβ(q, s) = Pµν,αβ(q). (2.5)

The tensor Pµν,αβ satisfies traceless and transverse conditions for on-shell spin-2 mediator,

such as ηαβPµν,αβ(q) = 0 and qαPµν,αβ(q) = 0 [12].

Due to energy-momentum conservation, qµT
µν = 0, we can replace Gµν in the scat-

tering amplitude (2.2) by ηµν . Then, the scattering amplitude is divided into trace and

traceless parts of energy-momentum tensor, as follows,

M =
icDMcSM

2m2
GΛ2

(
2TDM

µν T SM,µν − 2

3
TDMT SM

)
=
icDMcSM

2m2
GΛ2

(
2T̃DM

µν T̃ SM,µν − 1

6
TDMT SM

)
(2.6)

where T̃
SM(DM)
µν is the traceless part of energy-momentum tensor given by T̃

SM(DM)
µν =

T
SM(DM)
µν − 1

4ηµνT
SM(DM) with T SM(DM) being the trace of energy-momentum tensor.

The energy momentum tensor for the SM quarks denoted by ψ [12] is, in momentum

space,

Tψµν = −1

4
ūψ(p2)

(
γµ(p1ν + p2ν) + γν(p1µ + p2µ)− 2ηµν(/p1

+ /p2
− 2mψ)

)
uψ(p1) (2.7)

where uψ(p) is the Dirac spinor for ψ. Here, the SM fermion is incoming into the vertex

with momentum p1 and is outgoing from the vertex with momentum p2. Then, the trace

of the energy-momentum tensor for ψ is given by

Tψ = −1

4
ūψ(p2)

(
− 6(/p1

+ /p2
) + 16mψ

)
uψ(p1). (2.8)

Moreover, the traceless part of the energy-momentum tensor or the twist-2 operator for ψ

is given by

T̃ψµν = −1

4
ūψ(p2)

(
γµ(p1ν + p2ν) + γν(p1µ + p2µ)− 1

2
ηµν(/p1

+ /p2
)

)
uψ(p1). (2.9)

– 3 –
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2.2 Gravitational form factors for nucleons

For the trace part of the energy-momentum tensor, we now match to the nuclear matrix

elements as

〈N(p2)|Tψ|N(p1)〉 = −FS(q2)mN ūN (p2)uN (p1) (2.10)

where FS(q2) is the form factor for the scalar current, given at q = 0 by FS(0) = fNTψ as

in eq. (C.1) in appendix C. The momentum expansion of the scalar form factor FS(q2) is

given in refs. [10, 11].

On the other hand, the energy-momentum tensor (2.7) is matched to the nuclear matrix

elements, as follows [18–20],

〈N(p2)|Tψµν |N(p1)〉 = ūN (p2)

(
A(q2)γ(µpν) +B(q2)

1

2mN
ip(µσν)λq

λ

+C(q2)
1

mN
(qµqν − ηµνq2)

)
uN (p1)

= ūN (p2)

(
2

mN
A(q2)pµpν + (A(q2) +B(q2))

1

2mN
ip(µσν)λq

λ

+C(q2)
1

mN
(qµqν − ηµνq2)

)
uN (p1) (2.11)

where A(q2), B(q2), C(q2) are the gravitational form factors, and pµ = 1
2(p1 + p2) and

q = p2 − p1 and ( ) means the symmetrization of indices. Here we have used the Gor-

don identity in the second equality and we note that the second term is the anoma-

lous gravitational magnetic moment operator. One can check that the above form fac-

tors, A(q2), B(q2), C(q2), are the only ones that are consistent with Lorentz invariance,

qµT
ψ,µν = 0, and CP symmetry [18–20].

By using the energy-momentum tensor for on-shell nucleons,

TNµν = −1

2
ūN (p2)γ(µpν)uN (p1)

= −1

2
ūN (p2)

(
2

mN
pµpν +

1

2mN
ip(µσν)λq

λ

)
, (2.12)

where use is made of the Gordon identity in the second equality, we can rewrite the above

nuclear matrix elements in eq. (2.11) as

〈N(p2)|Tψµν |N(p1)〉 = −2(A(q2) +B(q2))TNµν (2.13)

+
1

mN
ūN (p2)

(
− 2B(q2)pµpν + C(q2)(qµqν − ηµνq2)

)
uN (p1)

where TNµν is the energy-momentum tensor for nucleons. Then, using eq. (2.13) and its

trace, we obtain the nuclear matrix elements for the twist-2 operator as

〈N(p2)|T̃ψµν |N(p1)〉 = −2(A(q2) +B(q2))T̃Nµν +
1

mN
ūN (p2)

[
− 2B(q2)

(
pµpν −

1

4
gµνp

2

)
+C(q2)

(
qµqν −

1

4
ηµνq

2

)]
uN (p1). (2.14)
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Figure 1. Gravitational form factor −FT (q2)/2 as a function of the momentum transfer q in

GeV. The black line corresponds to the exact expression obtained in ref. [20] and the same input

parameters. The red-dashed line corresponds to the quadratic approximation.

For nucleons with zero momentum transfer, the nuclear matrix elements for the twist-2

quark operator [25–27] becomes

〈N(p)|T̃ψµν |N(p)〉 = − 1

mN
FT (0)

(
pµpν −

1

4
m2
Ngµν

)
ūN (p)uN (p) (2.15)

where the form factor for the twist-2 quark operator is given by FT (0) ≡ −2A(0) =

ψ(2) + ψ̄(2), as in eq. (C.3) with eq. (C.5) and the following discussion in appendix C.

Therefore, B(q2), C(q2) remain unfixed due to lack of the extra information on the form

factors for a nonzero momentum transfer.

In a holographic description of QCD with the hard-wall or soft-wall model in a five-

dimensional Anti-de Sitter (AdS) spacetime [20], the gravitational form factors can be

described by the three-point correlation function between the zero-mode graviton and a

fermion in the bulk on the boundary of the AdS spacetime. In this case, the relation

between the gravitational form factors is given by A(q2) 6= 0 and B(q2) = C(q2) = 0 even

for a nonzero momentum transfer [20]. In this case, we can extend the matching of the

quark operators in eq. (2.14) to the nucleon form factors with a general momentum transfer

as follows,

〈N(p2)|T̃ψµν |N(p1)〉 = FT (q2)T̃Nµν (2.16)

with FT (q2) ≡ −2A(q2). Thus, the matching just relates the energy-momentum tensors

for quarks and nucleons by the overall form factor, FT (q2). This form factor has been

explicitly computed in a holographic set-up with a soft wall model. This would be the dual

of theories with a conformal UV limit and a softly broken symmetry at low energies. The

breaking is then spontaneous and the features of the soft wall allow for switching on an

non-zero expectation value for an operator with finite canonical dimension or a non-AdS

background mass of the dual fields, see e.g. [21–24].

In this context, ref. [20] finds an explicit form of the form factor, which decreases with

q2 as shown in figure 1, and admits an expansion near q2 ' 0 as follows

FT (q2) ' −2(1− q2/(0.55 GeV)2 . . .). (2.17)
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Henceforth, for simplicity, we assume that this is the case and also take FT (q2) ≈ FT (0).

Further improvements in the analysis could be done by simultaneously expanding the form

factor coupling FT (q2) and following the standard procedure of non-relativistic expansion

described in the next section.

We also remark the twist-2 gluon operator, which could be also relevant for direct

detection in the presence of the gluon couplings of the spin-2 mediator. The twist-2 gluon

operator and its matching to nucleon matrix elements at a zero momentum transfer is also

included in appendix C. In this case, we may also identify gravitational form factors for

the twist-2 gluon operator at a nonzero momentum transfer by extending the result in

eq. (C.4). But, in the current work we focus on the SM quark operators and postpone the

details on the twist-2 gluon operators for future work.

3 Effective operators for DM-nucleon scattering

In this section, we discuss the effective Lagrangian for the elastic scattering between dark

matter and nucleons due to the spin-2 mediator. We focus on the cases with fermion and

scalar dark matter in this section and present the further details for the calculation of

scattering amplitudes including the case for vector dark matter in appendix B.

3.1 Fermion dark matter

The energy-momentum tensor for a fermion DM χ is, in momentum space,

Tχµν = −1

4
ūχ(k2)

(
γµ(k1ν + k2ν) + γν(k1µ + k2µ)− 2ηµν(/k1 + /k2 − 2mχ)

)
uχ(k1) (3.1)

where the fermion DM is incoming into the vertex with momentum k1 and is outgoing from

the vertex with momentum k2. Then, the trace of the energy-momentum tensor is given by

Tχ = −1

4
ūχ(k2)

(
− 6(/k1 + /k2) + 16mχ

)
uχ(k1). (3.2)

Therefore, the traceless part of the energy-momentum tensor is given by

T̃χµν = −1

4
ūχ(k2)

(
γµ(k1ν + k2ν) + γν(k1µ + k2µ)− 1

2
ηµν(/k1 + /k2)

)
uχ(k1). (3.3)

We consider the elastic scattering between the DM fermion and the nucleon, χ(k1) +

N(p1)→ χ(k2) +N(p2). Using the nucleon matrix elements in eq. (2.16), we get

T̃χµν〈N(p2)|T̃ψ,µν |N(p1)〉 = FT (q2)T̃χµν T̃
N,µν (3.4)

where FT (q2) ≈ FT (0). From eqs. (3.2) and (2.10), the effective interactions for trace parts

are

Tχ〈N(p2)|Tψ|N(p1)〉 = mχmNFS(ūχ(k2)uχ(k1))(ūN (p2)uN (p1)). (3.5)

Thus, the trace parts contain only scalar-scalar operators. Therefore, from eqs. (B.4)

and (3.5), we get the scattering amplitude between fermion dark matter and nucleon as

follows,

Mχ =
icχcψ

2m2
GΛ2

〈N(p2)|
(

2T̃χµν T̃
ψ,µν − 1

6
TχTψ

)
|N(p1)〉, (3.6)

– 6 –
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Oi
∑

kONR
k

F (χ̄χ)
(
N̄N

)
4mχmNONR1

F (χ̄χ)
(
KνN̄iσ

νλqλN
)

4m2
χ~q

2ONR1 − 16m2
χm

2
NONR3

F (Pµχ̄iσ
µρqρχ)

(
N̄N

)
−4m2

N~q
2ONR1 + 16mχm

3
NONR5

F (χ̄iσµρqρχ)
(
N̄iσνλqλN

)
16mχmN (~q2ONR4 −m2

NONR6 )

F (Pµχ̄iσ
µρqρχ)

(
KνN̄iσ

νλqλN
)
−4mχmN (~q2ONR1 − 4m2

NONR3 )

×(~q2ONR1 − 4mχmNONR5 )

S (S∗S)(N̄N) 2mNONR1

S i(S∗∂µS − S∂µS∗)(N̄γµN) 4mSmNONR1

V N̄N 2mNf(ε1, ε
∗
2)ONR

1

V εα1,2N̄iσαλq
λN 4im2

N

(
~sN · (~ε1,2 × ~q

mN
)
)

V k1,2νN̄iσ
νλqλN mχ

(
~q2ONR

1 − 4m2
NONR

3

)
Table 1. Effective operators for fermion (F), scalar (S) and vector (V) dark matter.

the detailed form of which is given in eq. (B.6).

There appear five effective interactions between fermion dark matter and nucleon due

to the spin-2 mediator, each of which matches with non-relativistic operators [6] as in

table 1. Here, we note that the non-relativistic nucleon operators are given [6] by

ONR
1 = 1, ONR

2 = (v⊥)2, ONR
3 = i~sN ·

(
~q

mN
× ~v⊥

)
,

ONR
4 = ~sχ · ~sN , ONR

5 = i~sχ ·
(

~q

mN
× ~v⊥

)
ONR

6 =

(
~sχ ·

~q

mN

)(
~sN ·

~q

mN

)
. (3.7)

Here, ~sχ, ~sN are the spins of dark matter and nucleon, respectively, and i~q,~v⊥ are Galilean,

Hermitian invariants [6], meaning the momentum transfer and the relative velocity between

dark matter and nucleon after scattering, respectively, and the latter is related to the initial

relative velocity ~v and the momentum transfer by ~v⊥ = ~v+ ~q
2µN

with µN being the reduced

mass of the DM-nucleon system and it satisfies ~v⊥ · ~q = 0. We note that ONR
1,2,5 give rise to

only the spin-independent elastic scattering while ONR
3,4,6 lead to the spin-dependent elastic

scattering. All the appearing operators are T -even and P -even.

For the coherent scattering of nucleons, the momentum transfer is given by |~q| ≤√
mTER . 100 MeV where mT is the target nucleus mass and ER is the recoil energy of

the nucleus. Therefore, for WIMP dark matter, using the results in eq. (B.7), we obtain the

approximate interaction Lagrangian between fermion dark matter and nucleons, as follows,

Lχ,eff ≈
cχcψm

2
χm

2
N

2m2
GΛ2

[{
6FT

(
1+

~q2

3m2
N

+
~q2

3m2
χ

)
− 2

3
FS

}
ONR

1 −8FTONR
3 − 4~q2

mχmN
FTONR

4

−8mN

mχ
FT

(
1+

~q2

8m2
N

)
ONR

5 +
4mN

mχ
FTONR

6 +
4mN

mχ
FTONR

3 ONR
5

]
. (3.8)
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The scalar operatorONR
1 determines dominantly the total cross section for spin-independent

elastic scattering as will be discussed in section 5.4. Other operators also contribute to the

differential event rates, in particular, for a large momentum transfer or recoil energy, but

the momentum-dependent terms show up less than 1%.

3.2 Scalar dark matter

The energy-momentum tensor for a scalar DM S is, in momentum space,

TSµν = −
(
m2
Sηµν + Cµν,αβk

α
1 k

β
2

)
(3.9)

where

Cµν,αβ ≡ ηµαηνβ + ηναηµβ − ηµνηαβ (3.10)

and the scalar DM is incoming into the vertex with momentum k1 and is outgoing from the

vertex with momentum k2. Then, the trace of the energy-momentum tensor is given by

TS = −
(

4m2
S − 2(k1 · k2)

)
. (3.11)

Therefore, the traceless part of the energy-momentum tensor is given by

T̃Sµν = −
(
k1µk2ν + k2µk1ν −

1

2
ηµν(k1 · k2)

)
. (3.12)

We consider the elastic scattering between the DM scalar and the nucleon, S(k1) +

N(p1)→ S(k2)+N(p2). Then, similarly to the case of fermion dark matter, from eq. (2.16),

we get

T̃Sµν〈N(p2)|T̃ψ,µν |N(p1)〉 = FT (q2)T̃Sµν T̃
N,µν (3.13)

with FT (q2) ≈ FT (0). On the other hand, the effective interactions for trace parts are

4TS〈N(p2)|Tψ|N(p1)〉 = 8mNFS(2m2
S − k1 · k2) (ūN (p2)uN (p1)). (3.14)

Consequently, combining eqs. (B.10) and (3.14), we get the scattering amplitude be-

tween scalar dark matter and nucleon, as follows,

MS =
icScψ

2m2
GΛ2

〈N(p2)|
(

2T̃Sµν T̃
ψ,µν − 1

6
TSTψ

)
|N(p1)〉, (3.15)

the detailed form of which is given in eq. (B.11).

Therefore, for scalar dark matter, there appear two effective nucleon interactions at the

relativistic level, due to the spin-2 mediator, each of which matches to the non-relativistic

nucleon operator [8] as shown in table 1. Then, using eq. (B.12) with eq. (B.5), we get the

above effective Lagrangian as follows,

LS,eff =
cScψm

2
Sm

2
N

2m2
GΛ2

[
FT

(
6− ~q2

m2
S

)
− 2

3
FS

(
1− ~q2

2m2
S

)]
ONR

1 . (3.16)

Thus, we find that the effective operators for scalar dark matter are reduced to the scalar

operator ONR
1 at the non-relativistic level. We note that the above effective Lagrangian

– 8 –
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Figure 2. Differential event rates for fermionic dark matter (left) and scalar dark matter (right)

for different experiments in table 2 for Λ = 1 TeV and cχ = cψ = 1.

Nucleus Z A Exposure (Kg-day)

F 9 19 200000

Na 11 23 14000

Ge 32 73 36500

I 53 127 78000

Xe 54 129 73000

Xe 54 131 73000

Table 2. Mock experiments considered for the computation of differential scattering event rates in

this model.

shows that ~q2 terms are highly suppressed by dark matter mass, as compared to the case

for fermion dark matter in eq. (3.8) where ~q2 terms are suppressed just by nucleon mass.

But, the total cross section for spin-independent elastic scattering is determined mainly by

the scalar operator ONR
1 as for fermion dark matter, which will become manifest from the

same form of the total cross section for spin-dependent elastic scattering in section 5.4.

4 Differential scattering event rates with spin-2 mediator

In this section, we discuss the differential event rates for the spin-independent scattering

between dark matter and nucleus in our model, for mock and current experiments of dark

matter direct detection.

To compute the differential scattering event rates in our model, we take the model

parameters that are consistent with the limits from DM direct detection experiments and
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Figure 3. The same as in figure 2, but with different masses for DM and spin-2 mediators and

Λ = 3 TeV.

use the package called DMFormFactor [6, 7]. A short review on the differential scattering

event rates is given in appendix A.

The input parameters for the package of DMFormFactor [6, 7] are the spin and mass

of DM, the information about the Galactic Halo (such as the escape velocity and the local

DM density), our model parameters such as the couplings and mass of the graviton and

the scale Λ, and finally the information about the detector we are considering. In our

case, we use the parameters for different mock experiments with some of the most relevant

isotopes as shown in table 2. Using the information in table 2, the Lagrangians for the

interactions in (B.8) and (3.16) and taking a zero momentum transfer q → 0 approximation,

we obtain the results for the differential event rates as a function of the recoil energy (ER)

in units of keV as in figures (2) and (3), for the cases with fermionic and scalar dark matter

for Λ = 1 TeV and 3 TeV, respectively. For the fermionic case, the last operator in the

Lagrangian ONR
3 ONR

5 is a new type of interaction term that is allowed when the mediator

is a spin 2 particle. But, the ONR
3 ONR

5 term is velocity-suppressed so it is not included

in our study. Therefore, the differential event rates for fermion and scalar dark matter

are similar when the DM mass and the mass and coupling of the spin-2 mediator are the

same. However, as will be shown in the next section, the annihilation cross sections of dark

matter crucially depend on the spin of dark matter.

Also, we obtained similar plots, considering the detectors used in current DM ex-

periments as XENON1T [1], PandaX-II [2], SuperCDMS [3], LUX [4], CDMSlite [29],

XENON10 [30], and DarkSide-50 [33], with the detector parameters shown in table 3.

Some results for differential event rates with WIMP dark matter are shown in figures 4

and 5, for Λ = 1 TeV and 3 TeV, respectively, and with the parameters that are consistent

with relic density condition, ATLAS dijet and direct detection bounds, as will be discussed

in the next section.
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Figure 4. Differential event rates for fermionic dark matter (left) and scalar dark matter (right)

for current experiments for Λ = 1 TeV and cχ = cψ = 1.
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Figure 5. The same as in figure 4, but with different masses for DM and spin-2 mediators and

Λ = 3 TeV.

5 Bounds from relic density and direct detection

We consider the annihilation cross sections for fermion, scalar or vector dark matter in

order to determine the relic density. Then, we discuss the relic density condition for the

parameter space of our model and also impose the direct detection limits on the total spin-

independent elastic scattering cross section and the dijet bounds on the spin-2 mediator.
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Experiment (Nucleus) Z A Exposure (Kg-day)

LUX (Xe) 54 129 33500

XENON1T (Xe) 54 131 36500

PandaX-II (Xe) 54 136 54000

SuperCDMS (Ge) 32 73 1690

CDMSlite (Ge) 32 73 70

XENON10 (Xe) 54 131 15

DarkSide-50 (Ar) 18 39 46

Table 3. Detector information for the current experiments considering in this study for the com-

putation of differential scattering event rates in this model.

5.1 Fermion dark matter

The annihilation cross section for χχ̄→ ψψ̄ is given [12–14] by

(σv)χχ̄→ψψ̄ = v2 ·
Ncc

2
χc

2
ψ

72πΛ4

m6
χ

(4m2
χ −m2

G)2 + Γ2
Gm

2
G

(
1−

m2
ψ

m2
χ

) 3
2
(

3 +
2m2

ψ

m2
χ

)
. (5.1)

Thus, the annihilation of fermion dark matter into quarks becomes p-wave suppressed.

When mχ > mG, there is an extra contribution to the annihilation cross section, due to

the t-channel for both models [12–14], as follows,

(σv)χχ̄→GG =
c4
χm

2
χ

16πΛ4

(1− rχ)
7
2

r4
χ(2− rχ)2

(5.2)

with rχ =
(
mG
mχ

)2
. Then, the t-channel annihilation is s-wave, so it becomes dominant in

determining the relic density for heavy fermion dark matter.

5.2 Scalar dark matter

The annihilation cross section for SS → ψψ̄ is given [12–14] by

(σv)SS→ψψ̄ = v4 ·
Ncc

2
Sc

2
ψ

360πΛ4

m6
S

(m2
G − 4m2

S)2 + Γ2
Gm

2
G

(
1−

m2
ψ

m2
S

) 3
2
(

3 +
2m2

ψ

m2
S

)
. (5.3)

Thus, the annihilation of scalar dark matter into quarks becomes d-wave suppressed.

When mS > mG, there is an extra contribution to the annihilation cross section, due

to the t-channel for both models [12–14], as follows,

(σv)SS→GG =
4c4
Sm

2
S

9πΛ4

(1− rS)
9
2

r4
S(2− rS)2

(5.4)

with rS =
(
mG
mS

)2
.
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5.3 Vector dark matter

The annihilation cross section for XX → ψψ̄ is given [12–14] by

(σv)XX→ψψ̄ =
4Ncc

2
Xc

2
ψ

27πΛ4

m6
X

(4m2
X −m2

G)2 + Γ2
Gm

2
G

(
3 +

2m2
ψ

m2
X

)(
1−

m2
ψ

m2
X

) 3
2

. (5.5)

Thus, the annihilation of vector dark matter into quarks becomes s-wave suppressed. In

this case, smaller spin-2 mediator couplings to the SM quarks or vector dark matter can

be consistent with the correct relic density, as compared to the other cases. But, indirect

detection signals from the annihilation of vector dark matter are promising [13].

For mX > mG, there is an extra contribution to the annihilation cross section, due to

the t-channel in both models [12–14], as follows,

(σv)XX→GG =
c4
Xm

2
X

324πΛ4

√
1− rX

r4
X(2− rX)2

(
176 + 192rX + 1404r2

X − 3108r3
X

+1105r4
X + 362r5

X + 34r6
X

)
(5.6)

with rX =
(
mG
mX

)2
.

5.4 Bounds on WIMP dark matter

Taking a zero momentum transfer for the DM-nucleon scattering, we use the nucleon matrix

elements for twist-2 operators given in eq. (2.15) or the results in appendix C and simply

obtain the total cross section for spin-independent elastic scattering between dark matter

and nucleus as

σSIDM−A =
µ2
A

π

(
ZfDM

p + (A− Z)fDM
n

)2
(5.7)

where µA = mχmA/(mχ+mA) is the reduced mass of the DM-nucleus system and mA is the

target nucleus mass, Z,A are the number of protons and the atomic number, respectively,

and the nucleon form factors are given by the same formula for all the spins of dark matter as

fDM
p =

cDMmNmDM

4m2
GΛ2

( ∑
ψ=u,d,s,c,b

3cψ(ψ(2) + ψ̄(2)) +
∑

ψ=u,d,s

1

3
cψf

p
Tψ

)
, (5.8)

fDM
n =

cDMmNmDM

4m2
GΛ2

( ∑
ψ=u,d,s,c,b

3cψ(ψ(2) + ψ̄(2)) +
∑

ψ=u,d,s

1

3
cψf

n
Tψ

)
(5.9)

where DM = χ, S,X for fermion, scalar and vector dark matter, respectively. The results

are the same as those for the general effective interactions with momentum transfer taken

to zero, in eq. (B.8), (3.16) and (B.27).

The most relevant isotopes in direct detection experiments are 129,131Xe, 127I, 73Ge,
19F, 23Na, 27Al and 29Si. For instance, we get Z = 54 and A − Z = 75 for 129Xe. The

above DM-nucleus scattering cross section is related to the normalized-to-proton scatter-

ing cross section σSIDM−p, that is usually presented for experimental limits, by σSIDM−p =

(µN/µA)2σSI
DM−A/A

2 with µN = mDMmN/(mDM +mN ).
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Figure 6. Parameter space of fermion and scalar dark matter in mDM vs mG/Λ. The gray regions

are excluded by XENON1T. We took cχ = cS = cu,d,s,c,b,t = 1 and mG = 100, 150, 200 GeV on left,

middle and right, respectively.
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Figure 7. Parameter space of fermion and scalar dark matter in mDM vs mG. The gray and cyan

regions are excluded by XENON1T and ATLAS dijet searches, respectively. We took Λ = 1, 3, 5 TeV

on left, middle and right, respectively. The other parameters are the same as in figure 6.

In figure 6, we depict in the parameter space for mDM vs mG/Λ the region where the

DM relic density overcloses the Universe in red, blue and orange for fermion, scalar and

vector dark matter, respectively. The regions in gray are ruled out by the direct detection

experiment in XENON1T [1]. We have taken mG = 100, 150, 200 GeV from left to right

plots and the couplings of DM and quarks to the spin-2 mediator are the same as cχ = cS =

cu,d,s,c,b,t = 1 in all the plots. As a result, we find that the non-resonance regions saturating

the relic density, away from the resonance with mG ∼ 2mDM, are tightly constrained by

XENON1T bounds. The non-resonance regions below mDM = 200 − 300 GeV have been

already excluded but the non-resonance regions with larger DM masses and the resonance

region are less constrained by the current data. In particular, for mDM > mG, dark matter

can annihilate into a pair of spin-2 mediators so there is no need of a sizable coupling

between dark matter and SM fermions for the correct relic density. Therefore, those regions

can be probed by updated XENON1T and future direct detection experiments.

In figure 7, we impose in the parameter space for mDM vs mG the same conditions

from the relic density and the limits from XENON1T. The relic density is saturated by the
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Figure 8. Differential event rates for light fermion (left) or scalar (right) dark matter for current

experiments for Λ = 1 TeV and cχ = cψ = 1.

DM annihilation into quarks along the red, blue and orange lines, for fermion, scalar and

vector dark matter, respectively. The regions in gray are ruled out by the direct detection

experiment in XENON1T [1]. We also overlaid in cyan regions the bounds from dijet

resonance searches with mono-photon at the LHC [28]. In the case with mG > 2mDM, for

which the spin-2 mediator decays invisibly into a pair of dark matter, the ATLAS dijet

limit on Λ scales by
√

BR(G→ qq̄) =
√

15
19

(√
15
16

)
with q = u, d, s, c, b for mG > 2mt(mG <

2mt), which leads only to a very mild change in the cyan region in figure 7. We have taken

Λ = 1, 3, 5 TeV from left to right plots and the same couplings of DM and quarks to the

spin-2 mediator as cχ = cS = cu,d,s,c,b,t = 1 in all the plots. In the case with Λ = 1 TeV, the

WIMP parameter space, in particular, the non-resonance region, is tightly constrained by

both XENON1T and dijet bounds. But, for larger values of Λ = 3, 5 TeV, a wide parameter

space opens up and can be tested by updated XENON1T and future experiments.

5.5 Bounds on light dark matter

Some results for the corresponding differential event rates with light fermion or scalar dark

matter below 10 GeV are shown for CDMSlite and XENON10 experiments in figures 8

and 9. Here, we have chosen the parameters that are consistent with direct detection

bounds, in particular, from XENON10 and cryogenic direct detection experiments such as

CDMSlite and CRESST.

In figure 10, we considered the case with light dark matter of mass below 10 GeV. In

this case, cryogenic direct detection experiments [31] such as CDMSlite [29], CRESST [32]

and DarkSide-50 [33] with low thresholds for recoil energy are relevant for mDM = 1.45−
9 GeV, 0.71−9 GeV, and 1.8−6 GeV, respectively. We showed that XENON1T, CDMSlite

and DarkSide-50 experiments rule out the parameter space in gray, green and purple re-

gions, respectively. We note that the bounds from CRESST or XENON10 are less stringent
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Figure 9. The same as in figure 8, but for Λ = 3 TeV.
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Figure 10. Parameter space of light dark matter below 10 GeV. The gray, green and purple regions

are excluded by XENON1T, CDMSlite and DarkSide-50, respectively. We took Λ = 1, 3, 5 TeV on

left, middle and right, respectively. The other parameters are the same as in figure 6.

that those from other experiments, so we don’t show them in figure 10. We have taken

Λ = 1, 3, 5 TeV from left to right plots and the couplings of DM and quarks to the spin-2

mediator are the same as cχ = cS = cu,d,s,c,b,t = 1 in all the plots. As a consequence, for

a low Λ = 1 TeV, the region where dark matter annihilation into a pair of spin-2 medi-

ators explains the correct relic density is almost excluded by direct detection, except for

mDM . 2 GeV. The resonance region with mG ∼ 2mDM survives the direct detection

bounds. On the other hand, for larger values of Λ = 3, 5 TeV, the more non-resonance

region below mDM ' 6 GeV survives.

6 Conclusions

We have presented the effective interactions between dark matter and the SM quarks due

to the massive spin-2 mediator. The resulting non-relativistic operators for nucleons have
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specific correlations, depending on the spin of dark matter. We have shown the differ-

ential event rates for spin-independent DM-nucleon scattering at current direct detection

experiments for fermion and scalar dark matter in detail. We have imposed the bounds

from direct detection, relic density condition as well as LHC dijet searches to constrain the

parameter space for the mass and couplings of the spin-2 mediator for both weak-scale and

light dark matter cases.
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A Differential scattering event rate

The differential event rate per unit time per unit recoil energy for DM-nucleon elastic

scattering is given [6] by
dR

dER
=

〈
ρχmT

µ2
Tmχv

dσ

d cos θ

〉
(A.1)

where ρχ is the DM number density in the solar system, mT , µT are the nucleus mass and

the reduced mass of the DM-nucleus system, respectively, v is the relative velocity between

dark matter and nucleus, and dσ
d cos θ is the differential scattering cross section with respect

to the cosine of the scattering angle θ in the center of mass frame, given by

dσ

d cos θ
=

1

2jχ + 1

1

2j + 1

∑
s

1

32π

|M|2

(mχ +mT )2
(A.2)

where jχ, j are the spins of dark matter and nucleus, respectively, and M is the scattering

amplitude. Here, we note that 〈 〉 is the average over the halo velocity distribution, namely,∫
vmin=q/(2µT) d

3vf(v) where f(v) is the velocity distribution function and vmin is the mini-

mum relative velocity to make the nuclear recoil happen for a given momentum transfer q.

In reality, the scattering event rate at experiments depends on the detector material and

mass. The event rate per unit time per unit recoil energy per detector mass is given [6] by

dRD
dER

= NT ·
ρχmT

32πm3
χm

2
N

·

〈
1

v

∑
i,j

∑
N,N ′=n,p

c
(N)
i c

(N ′)
j F

(N,N ′)
ij (v2, q2)

〉
(A.3)

where NT is the number of target nuclei in a given detector, c
(N)
i are the coefficients of

non-relativistic nucleon operators, ONR
i , in the effective Lagrangian, and F

(N,N ′)
ij (v2, q2)

are the nucleon form factors, with symmetric property under (i,N)↔ (j,N ′).
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B DM-nucleon scattering amplitudes for dark matter

In this appendix, we present the details on the calculation of nucleon scattering amplitudes

with spin-2 mediator, in the order of fermion, scalar and vector dark matter.

B.1 Fermion dark matter

Fom eqs. (3.3), the traceless part of the effective interactions for fermion dark matter

becomes

16FT (q2)T̃χµν T̃
N,µν = FT

[
(2(p1 + p2) · (k1 + k2))(ūχ(k2)γµuχ(k1))(ūN (p2)γµuN (p1))

−(ūχ(k2)(/k1 + /k2)uχ(k1))(ūN (p2)(/p1
+ /p2

)uN (p1))

+2(ūχ(k2)(/p1
+ /p2

)uχ(k1))(ūN (p2)(/k1 + /k2)uN (p1))
]

= FT

[
(2(p1 + p2) · (k1 + k2))(ūχ(k2)γµuχ(k1))(ūN (p2)γµuN (p1))

−4mχmN (ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

+2(ūχ(k2)(/p1
+ /p2

)uχ(k1))(ūN (p2)(/k1 + /k2)uN (p1))
]

(B.1)

where use is made of Dirac equations, /puN (p) = mNuN (p) and ūN (p)/p = ūN (p)mN , etc.

Using Gordon identities,

ūχ(k2)γµuχ(k1) =
1

2mχ
ūχ(k2)

(
(k1 + k2)µ − iσµρqρ

)
uχ(k1), (B.2)

ūN (p2)γνuN (p1) =
1

2mN
ūN (p2)

(
(p1 + p2)ν + iσνλqλ

)
uN (p1), (B.3)

we can rewrite the vector operators in terms of scalar and tensor operators and obtain

16FT (q2)T̃χµν T̃
N,µν = FT

[
(P ·K)

2mχmN

(
(K · P )(ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

+(ūχ(k2)uχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

−(Pµūχ(k2)iσµρqρuχ(k1))(ūN (p2)uN (p1))

−(ūχ(k2)iσµρqρuχ(k1))(ūN (p2)iσµλq
λuN (p1))

)
−4mχmN (ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

+
1

2mχmN

(
(K · P )2(ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

−(Pµūχ(k2)iσµρqρuχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

+(K · P )(ūχ(k2)uχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

−(K · P )(Pµūχ(k2)iσµρqρuχ(k1))(ūN (p2)uN (p1))

)]
(B.4)

where Pµ ≡ (p1 + p2)µ, Kµ ≡ (k1 + k2)µ and qµ ≡ (k1 − k2)µ = (p2 − p1)µ. Using

2p1 · k1 = s −m2
N −m2

χ = 2p2 · k2 and 2p1 · k2 = −u + m2
N + m2

χ = 2p2 · k1 for nucleon

momenta, we note the approximate formula,

P ·K = (p1 + p2) · (k1 + k2) = s− u ' 4mχmN . (B.5)
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where use is made of s ' (mχ + mN )2 and u ' (mχ −mN )2 in the non-relativistic limit.

The above nucleon operators can be matched to non-relativistic nucleon operators as in

ref. [6], with the exception, the operator in the 7th line in eq. (B.4), which is suppressed

for a small momentum transfer as will be shown later.

Consequently, from eq. (3.6) with eqs. (B.4) and (3.5), we get the scattering amplitude

between fermion dark matter and nucleon as follows,

Mχ =
icχcψ

2m2
GΛ2

{
1

8
FT

[
(P ·K)

2mχmN

(
(K · P )(ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

+(ūχ(k2)uχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

−(Pµūχ(k2)iσµρqρuχ(k1))(ūN (p2)uN (p1))

−(ūχ(k2)iσµρqρuχ(k1))(ūN (p2)iσµλq
λuN (p1))

)
−4mχmN (ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

+
1

2mχmN

(
(K · P )2(ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

−(Pµūχ(k2)iσµρqρuχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

+(K · P )(ūχ(k2)uχ(k1))(Kν ūN (p2)iσνλqλuN (p1))

−(K · P )(Pµūχ(k2)iσµρqρuχ(k1))(ūN (p2)uN (p1))

)]
−1

6
mχmNFS(ūχ(k2)uχ(k1))(ūN (p2)uN (p1))

}
. (B.6)

As a result, from the scattering amplitude at the nucleon level given in eq. (B.6), the

effective interactions between fermion dark matter and nucleons are given by

Lχ,eff =
cχcψ

2m2
GΛ2

[{
FT

(
1

2
(P ·K)2 +

mχ

2mN
(P ·K)~q2 +

mN

2mχ
(P ·K)~q2−2m2

χm
2
N +

1

4
~q4

)
−2

3
FSm

2
χm

2
N

}
ONR

1 −FTmN

(
2mχ(P ·K)+mN~q

2
)
ONR

3 −FT (P ·K)~q2ONR
4 (B.7)

−FTmN

(
2mN (P ·K)+mχ~q

2
)
ONR

5 +FTm
2
N (P ·K)ONR

6 +4FTm
3
NmχONR

3 ONR
5

]
.

Then, using eq. (B.7) with eq. (B.5), we obtain the effective Lagrangian between fermion

dark matter and nucleons as follows,

Lχ,eff =
cχcψ

2m2
GΛ2

[{
FT

(
6m2

χm
2
N + 2(m2

χ +m2
N )~q2 +

~q4

4

)
− 2

3
FSm

2
χm

2
N

}
ONR

1

−FTm2
N

(
8m2

χ + ~q2
)
ONR

3 − 4mχmNFT ~q
2ONR

4 − FTmNmχ

(
8m2

N + ~q2
)
ONR

5

+4mχm
3
NFTONR

6 + 4FTm
3
NmχONR

3 ONR
5

]
. (B.8)

Here, we note that a factor
∫ d3p

(2π)3
√

2E
a

(†)
N per each nucleon state or

∫ d3p

(2π)3
√

2E
a

(†)
χ per

each dark matter state, with dimension E, are to be multiplied as overall factors such that

the above effective Lagrangian for nucleons has a dimension 4.
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B.2 Scalar dark matter

From eq. (3.12), the traceless part of the effective interactions for scalar dark matter is

given by

4FT (q2)T̃Sµν T̃
N,µν = FT

(
2ūN (p2)(/k1k2 · (p1 + p2) + /k2k1 · (p1 + p2))uN (p1)

−2mN (k1 · k2)(ūN (p2)uN (p1))
)

(B.9)

Then, using k1 · (p1 + p2) = k2 · (p1 + p2) = (s− u)/2 and Gordon identity, we can rewrite

the above result as

4FT (q2)T̃Sµν T̃
N,µν = FT

[
(P ·K)

2mN

(
(P ·K)(ūN (p2)uN (p1)) +Kν ūN (p2)iσνλqλuN (p1)

)
−2mN (k1 · k2)(ūN (p2)uN (p1))

]
. (B.10)

As a result, from eq. (3.15) with eqs. (B.10) and (3.14), the scattering amplitude

between scalar dark matter and nucleon as follows,

MS =
icScψ

2m2
GΛ2

[
FT

(
(P ·K)

4mN

(
(P ·K)(ūN (p2)uN (p1))+(Kν ūN (p2)iσνλqλuN (p1))

)
−mN (k1 ·k2)(ūN (p2)uN (p1))

)
− 1

3
mNFS(2m2

S−k1 ·k2)(ūN (p2)uN (p1))

]
. (B.11)

Here, we note that the tensor operator N̄iσνλqλN can be written as the sum of vector and

scalar operators by Gordon identity.

Consequently, from eq. (B.11), we obtain the effective Lagrangian for scalar dark mat-

ter as

LS,eff =
cScψ

2m2
GΛ2

[
2FT

(
mSmN (P ·K)−m2

N (k1 ·k2)

)
− 2

3
FSm

2
N (2m2

S−k1 ·k2)

]
ONR

1 (B.12)

B.3 Vector dark matter

The energy-momentum tensor for a vector DM X is, in momentum space,

TXµν = −
(
m2
XCµν,αβ +Wµν,αβ

)
εα(k1)ε∗β(k2) (B.13)

where εα(k) is the polarization vector for the vector DM and

Wµν,αβ ≡ −ηαβk1µk2ν − ηµα(k1 · k2 ηνβ − k1βk2ν) + ηµβk1νk2α

−1

2
ηµν(k1βk2α − k1 · k2 ηαβ) + (µ↔ ν). (B.14)

Likewise as before, the vector DM is incoming into the vertex with momentum k1 and is

outgoing from the vertex with momentum k2. Then, the trace of the energy-momentum

tensor is given by

TX = 2m2
Xηαβε

α(k1)ε∗β(k2). (B.15)

T̃Xµν = −
(
m2
XCµν,αβ +Wµν,αβ +

1

2
m2
Xηµνηαβ

)
εα(k1)ε∗β(k2). (B.16)
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Here, we note that Wµν,αβη
µν = 0, due to the fact that the energy-momentum tensor for

transverse polarizations of vector dark matter is trace-free.

We consider the elastic scattering between the vector DM and the nucleon, X(k1) +

N(p1)→ X(k2)+N(p2). First, with eq. (2.16), we note the following Lorentz contractions,

−4m2
XCµν,αβ〈N(p2)|T̃ψ,µν |N(p1)〉

= m2
XFT

(
2PβūN (p2)γαuN (p1) + 2PαūN (p2)γβuN (p1)

−2mNηαβūN (p2)uN (p1)
)
, (B.17)

−4Wµν,αβ〈N(p2)|T̃ψ,µν |N(p1)〉

= FT

[
ηαβ

(
− (K · P )ūN (p2)(/k1 + /k2)uN (p1) + 4mN (k1 · k2)ūN (p2)uN (p1)

)
−2(k1 · k2)

(
PβūN (p2)γαuN (p1) + PαūN (p2)γβuN (p1)

)
+(K · P )

(
k1βūN (p2)γαuN (p1) + k2αūN (p2)γβuN (p1)

)
+2k1βPαūN (p2)/k2uN (p1) + 2k2αPβūN (p2)/k1uN (p1)

−4mNk1βk2αūN (p2)uN (p1)
]
, (B.18)

−2m2
XηµνηαβT̃

N,µν = 0. (B.19)

Then, from the above results with eq. (B.16), the effective interactions for traceless parts are

4T̃Xµν〈N(p2)|T̃ψ,µν |N(p1)〉

= −4εα(k1)ε∗β(k2)

(
m2
XCµν,αβ +Wµν,αβ +

1

2
m2
Xηµνηαβ

)
〈N(p2)|T̃ψ,µν |N(p1)〉

= εα(k1)ε∗β(k2)FT

[
2m2

X

(
PβūN (p2)γαuN (p1) + PαūN (p2)γβuN (p1)

−mψηαβūN (p2)uN (p1)
)

+ηαβ

(
− (K · P )ūN (p2) /KuN (p1) + 4mN (k1 · k2)ūN (p2)uN (p1)

)
−2(k1 · k2)

(
PβūN (p2)γαuN (p1) + PαūN (p2)γβuN (p1)

)
+(K · P )

(
k1βūN (p2)γαuN (p1) + k2αūN (p2)γβuN (p1)

)
+2k1βPαūN (p2)/k2uN (p1) + 2k2αPβūN (p2)/k1uN (p1)

−4mNk1βk2αūN (p2)uN (p1)

]
. (B.20)

After using the Gordon identities, (B.2) and (B.3) to rewrite the vector operators in terms

of scalar and tensor operators, we obtain

4T̃Xµν〈N(p2)|T̃ψ,µν |N(p1)〉

= εα(k1)ε∗β(k2)FT

[
m2
X

mN

(
2PαPβūN (p2)uN (p1)+PαūN (p2)iσβλq

λuN (p1)

+PβūN (p2)iσαλq
λuN (p1)

)
−2m2

XmNηαβūN (p2)uN (p1)
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−(K ·P )

2mN
ηαβ

(
(K ·P )ūN (p2)uN (p1)+Kν ūN (p2)iσνλqλuN (p1)

)
+4mNηαβ(k1 ·k2)ūN (p2)uN (p1)

−(k1 ·k2)

mN

(
2PαPβūN (p2)uN (p1)+PαūN (p2)iσβλq

λuN (p1)

+PβūN (p2)iσαλq
λuN (p1)

)
+

(K ·P )

2mN

(
k1βPαūN (p2)uN (p1)+k2αPβūN (p2)uN (p1)

+k1βūN (p2)iσαλq
λuN (p1)+k2αūN (p2)iσβλq

λuN (p1)
)

+
(K ·P )

2mN

(
k1βPαūN (p2)uN (p1)+k2αPβūN (p2)uN (p1)

)
+

1

mN

(
k1βPαk2ν ūN (p2)iσνλqλuN (p1)+k2αPβk1ν ūN (p2)iσνλqλuN (p1)

)
−4mNk1βk2αūN (p2)uN (p1)

]
. (B.21)

On the other hand, from eqs. (B.15) and (2.10), the effective interactions for trace

parts are

4TX〈N(p2)|Tψ|N(p1)〉 = −8m2
XmNFS(ηαβε

α(k1)ε∗β(k2))(ūN (p2)uN (p1)). (B.22)

Consequently, we get the scattering amplitude between vector dark matter and nucleon,

as follows,

MX =
icXcψ

2m2
GΛ2
〈N(p2)|

(
2T̃Xµν T̃

ψ,µν− 1

6
TXTψ

)
|N(p1)〉

=
icXcψ

2m2
GΛ2

εα(k1)ε∗β(k2)

{
FT

[
m2
X

2mN

(
2PαPβūN (p2)uN (p1)+PαūN (p2)iσβλq

λuN (p1)

+PβūN (p2)iσαλq
λuN (p1)

)
−m2

XmNηαβūN (p2)uN (p1)

−(K ·P )

4mN
ηαβ

(
(K ·P )ūN (p2)uN (p1)+Kν ūN (p2)iσνλqλuN (p1)

)
+2mNηαβ(k1 ·k2)ūN (p2)uN (p1)

−(k1 ·k2)

2mN

(
2PαPβūN (p2)uN (p1)+PαūN (p2)iσβλq

λuN (p1)

+PβūN (p2)iσαλq
λuN (p1)

)
+

(K ·P )

4mN

(
2k1βPαūN (p2)uN (p1)+2k2αPβūN (p2)uN (p1)

+k1βūN (p2)iσαλq
λuN (p1)+k2αūN (p2)iσβλq

λuN (p1)
)

+
1

2mN

(
k1βPαk2ν ūN (p2)iσνλqλuN (p1)+k2αPβk1ν ūN (p2)iσνλqλuN (p1)

)
−2mNk1βk2αūN (p2)uN (p1)

)]
+

1

3
m2
XmNFSηαβ(ūN (p2)uN (p1))

}
. (B.23)
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The effective operators between vector dark matter and nucleon match with relativistic

operators, as follows,

N̄N → 2mNf(ε1, ε
∗
2)ONR

1 , (B.24)

εα1,2N̄iσαλq
λN → 4im2

N

(
~sN ·

(
~ε1,2 ×

~q

mN

))
, (B.25)

k1,2νN̄iσ
νλqλN → mχ

(
~q2ONR

1 − 4m2
NONR

3

)
. (B.26)

The above results for vector dark matter are also included in table 1. Here, we note that the

longitudinal polarization vector is given by εµL(k) = (|~k|, k0 ~k/|~k|)/m with εL · εL = −1, and

two transverse polarization vectors satisfy εT · εT = −1 and εT · εL = 0. Then, in the rest

frame of vector dark matter, we can take εµT = (0, 1, 0, 0), (0, 0, 0, 1) and εµL = (0, 0, 0, 1).

We find that there are ONR
1,3 operators as in the case with the fermion and scalar dark

matter, but there is a new spin-dependent interaction, ~sN · (~ε1,2 × ~q).
As a result, from eq. (B.23) with eqs. (B.24)–(B.26), we obtain the effective Lagrangian

for vector dark matter as

LX,eff =
cXcψ

2m2
GΛ2

[{
FT

(
2m2

XPαPβ−2m2
Xm

2
Nηαβ−

1

2
(K ·P )2ηαβ (B.27)

− mX

2mN
~q2((K ·P )ηαβ−Pαk1β−k2αPβ)+4m2

N ((k1 ·k2)ηαβ−k2αk1β)

−2(k1 ·k2)PαPβ

)
+

2

3
FSm

2
Xm

2
Nηαβ

}
εαε∗βONR

1

+2FTmXmN

(
(K ·P )ηαβ−Pαk1β−k2αPβ

)
εαε∗βONR

3

+FTmN

(
2m2

XPα−2(k1 ·k2)Pα+(K ·P )k2α

)
εαi

(
~sN ·
(
~ε2×

~q

mN

))
+FTmN

(
2m2

XPβ−2(k1 ·k2)Pβ+(K ·P )k1β

)
ε∗βi

(
~sN ·
(
~ε1×

~q

mN

))]
We note that for a zero momentum transfer, the above effective Lagrangian (B.27) is

reduced to scalar operators ONR
1 only.

C Twist-2 operators with zero momentum transfer

For a small momentum transfer in the DM-nucleon scattering, we can alternatively use the

nuclear matrix elements for twist-2 operators or trace parts of energy-momentum tensor

for quarks and then obtain the scattering amplitudes between dark matter and nucleons.

The traceless parts of energy-momentum tensor or twist-2 operators for quarks and

gluons, T̃ qµν and T̃ gµν , can be treated with speciality in the calculation of matrix elements

for dark matter-nucleon scattering. For a small momentum transfer, the spin-independent

effective coupling can be derived from the following matrix elements between initial and
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final nucleon states with mass mN [25–27],

〈N |mq q̄q|N〉/mN ≡ fNTq ūN (p)uN (p), (C.1)

1−
∑
u,d,s

fTq ≡ fTG, (C.2)

〈N(p)|T̃ qµν |N(p)〉 =
1

mN

(
pµpν −

1

4
m2
Ngµν

)
(q(2) + q̄(2)) ūN (p)uN (p), (C.3)

〈N(p)|T̃ gµν |N(p)〉 =
1

mN

(
pµpν −

1

4
m2
Ngµν

)
G(2) ūN (p)uN (p) (C.4)

where q(2), q̄(2) and G(2) are the second moments of the parton distribution func-

tions(PDFs) of quark, antiquark and gluon, respectively,

q(2) + q̄(2) =

∫ 1

0
dxx [q(x) + q̄(x)], (C.5)

G(2) =

∫ 1

0
dxx g(x). (C.6)

Here, we note that fNTq and fTG denote the mass fractions of light quarks and gluons in a

nucleon, respectively. The second moments of PDFs in a proton have scale dependence, so

we evaluate them at the scale µ = mZ because the effective couplings are matched at the

scale of the mediator particle [26].

The mass fractions are fpTu = 0.023, fpTd = 0.032 and fpTs = 0.020 for a proton and

fnTu = 0.017, fnTd = 0.041 and fnTs = 0.020 for a neutron [26]. On the other hand, the second

moments of PDFs are calulated at the scale µ = mZ using the CTEQ parton distribution

as G(2) = 0.48, u(2) = 0.22, ū(2) = 0.034, d(2) = 0.11, d̄(2) = 0.036, s(2) = s̄(2) = 0.026,

c(2) = c̄(2) = 0.019 and b(2) = b̄(2) = 0.012 [26].

On the other hand, the spin-dependent effective coupling is given by

aN =
∑

q=u,d,s

dq∆qN (C.7)

where dq is the effective coupling at the quark level and

2sµ∆qN ≡ 〈N |q̄γµγ5q|N〉 (C.8)

with sµ is the spin of a nucleon. Here, ∆qN denotes spin fractions of light quarks in

a nucleon and they are given by ∆up = 0.77, ∆dp = −0.49 and ∆sp = −0.15, for a

proton [26].

As a result, we get the scattering amplitude between fermion dark matter and nucleon

as follows,

Mχ =
icχcψ

2m2
GΛ2

[
2T̃χµν ·

1

mN

(
pµpν −

1

4
m2
Ngµν

)
(ψ(2) + ψ̄(2)) +

1

6
mNf

N
TψT

χ

]
=

icχcψ
2m2

GΛ2

[
− 1

mN
(ψ(2) + ψ̄(2))[p · (k1 + k2)](ūχ(k2)/puχ(k1)) (C.9)

+
1

2
mNmχ

(
ψ(2) + ψ̄(2)− 1

3
fNTψ

)
(ūχ(k2)uχ(k1))

]
ūN (p)uN (p).

– 24 –
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Moreover, the scattering amplitudes between dark matter with other spins and nucleon

can be obtained similarly, as follows,

MS =
icScψ

2m2
GΛ2

[
2T̃Sµν ·

1

mN

(
pµpν −

1

4
m2
Ngµν

)
(ψ(2) + ψ̄(2)) +

1

6
mNf

N
TψT

S

]
=

icScψ
2m2

GΛ2

[
2

mN
(ψ(2) + ψ̄(2))

(
1

2
m2
N (k1 · k2)− 2(p · k1)(p · k2)

)
−1

3
mNf

N
Tψ(2m2

S − k1 · k2)

]
ūN (p)uN (p), (C.10)

and

MX =
icXcψ

2m2
GΛ2

[
2T̃Xµν ·

1

mN

(
pµpν −

1

4
m2
Ngµν

)
(ψ(2) + ψ̄(2)) +

1

6
mNf

N
TψT

X

]
=

icXcψ
2m2

GΛ2
εα(k1)ε∗β(k2)

×
[

2

mN

{
2pαpβ(k1 · k2 −m2

X)− 1

2
m2
Nηαβ(2k1 · k2 −m2

X) + 2ηαβ(p · k1)(p · k2)

+m2
Nk1βk2α − 2pαk1β(p · k2)− 2pβk2α(p · k1)

}
(ψ(2) + ψ̄(2))

+
1

3
mNm

2
Xf

N
Tψηαβ

]
ūN (p)uN (p). (C.11)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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