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1 Introduction

Weakly Interacting Massive Particles (WIMPs) have been well-motivated candidates for
dark matter (DM) and being searched for in direct detection, cosmic rays as well as collider
experiments. In particular, weak-scale interactions of DM have been strongly constrained
by direct detection experiments [1-4], although dependent on astrophysical inputs such as
the DM velocity distribution and the local DM density.

The interactions between dark matter and SM particles can be well described in terms
of effective operators at the scale of momentum transfer, typically below 100 MeV. How-
ever, the validity of the same effective interactions is in question at the freeze-out of the



annihilation of dark matter in the early Universe or at collider experiments such as the Large
Hadron Collider (LHC). For these reasons, the mediator particles, that are responsible for
the effective interactions, have been introduced in simplified models for dark matter [5]. In
this case, integrating out the mediator particles lead to the effective operators for direct de-
tection and mediator particles can be directly produced in the early Universe or at the LHC.
Most of the proposed mediator models, however, have been focused upon spin-0 and spin-1
mediators, for which the correlated effective interactions are limited [6-9] and only the
effective operators lower than dimension-8 have been taken into account until now [10, 11].

We consider a massive spin-2 resonance as the mediator that couples to dark matter
with arbitrary spin and the SM particles through the energy-momentum tensor, as consid-
ered in refs. [12-17]. After the spin-2 mediator is integrated out, we identify the effective
interactions between dark matter and the SM quarks up to dimension-8 and match them
to the gravitational form factors for nucleons beyond a zero momentum transfer. Focusing
on fermion or scalar dark matter, we show how the non-relativistic operators between dark
matter and nucleons are correlated. We also discuss how in our model of spin-two media-
tors there is an interplay between relic density conditions, current direct detection bounds
and searches at the LHC of dijet resonances produced in association with a jet or a photon.

The paper is organized as follows. We first present the general setup for the effective
interactions between dark matter and the SM quarks in the presence of a massive spin-2
mediator and consider the matching conditions for them to the gravitational form factors
for nucleons. Then, we derive the scattering amplitudes of fermion or scalar dark mat-
ter with nucleons and compute the corresponding differential scattering events rates for
DM direct detection experiments. Next we impose the bounds from the correct relic den-
sity condition and the direct detection experiments for the parameter space of our model.
Finally, conclusions are drawn. There are three appendices reviewing the differential scat-
tering event rates, the scattering amplitudes between dark matter and nucleon, and the
nucleon matrix elements for twist-2 operators at zero momentum transfer.

2 Spin-2 mediator and dark matter

We present the interactions between dark matter and the SM particles which are mediated
by a massive spin-2 mediator. Focusing on the spin-2 mediator couplings to quarks in
the SM for direct detection experiments, we identify the effective interactions for the SM
quarks and their counterpart gravitational form factors for nucleons.

2.1 Effective interactions between dark matter and quarks

We introduce the couplings of a massive spin-2 mediator to the SM particles and dark
matter, through the energy-momentum tensor, as follows [12-15],

C C
Ling = —— "G T — TG TN, (2.1)

In this case, the mediator couplings for the SM particles can vary, depending on the location
in the extra dimension [12, 13]. Then, the tree-level scattering amplitude between DM and



SM particles through the spin-2 mediator is given by

CDMCSM 1 e
M=-"8 - TOM (q) P28 () TS5 (—q) (2.2)

where ¢ is the 4-momentum transfer between dark matter and the SM particles and the
tensor structure for the massive spin-2 propagator is given by

1 2
Puy,aB(Q) = 5 <GuaGyﬁ + GuaGuﬁ — 3Gul/Go¢6> (23)
with
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We note that the sum of the spin-2 mediator polarizations is given by

Z E,uu(% S)Eaﬁ(Q7 3) = Puu,a,@(Q)' (2'5)

S

The tensor P, s satisfies traceless and transverse conditions for on-shell spin-2 mediator,
such as 1% P, 45(q) = 0 and ¢ P, 45(q) = 0 [12].

Due to energy-momentum conservation, g, T"" = 0, we can replace G, in the scat-
tering amplitude (2.2) by 7,,. Then, the scattering amplitude is divided into trace and
traceless parts of energy-momentum tensor, as follows,
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where TE},\/I (DM) is the traceless part of energy-momentum tensor given by TE},\/I (ODM) _

T 5},\/{ (OM) _ inijSM(DM) with TSM(PM) being the trace of energy-momentum tensor.
The energy momentum tensor for the SM quarks denoted by 1 [12] is, in momentum

space,

T;fl/ = _%adJ(p?) (7#(1711/ +p2u) + 'Yl/(plu +p2“) - 277#11(@1 +Zﬁ2 — 2mw)>u¢(p1) (27)

where uy(p) is the Dirac spinor for . Here, the SM fermion is incoming into the vertex
with momentum p; and is outgoing from the vertex with momentum po. Then, the trace
of the energy-momentum tensor for v is given by

1_
T = —ip(p2) (= 6(p, + ) + 16my )y (p1). (2.8)
Moreover, the traceless part of the energy-momentum tensor or the twist-2 operator for
is given by
v — _1; L 2.9
uv _Zu’l/)(pQ) 7#(p11/ +p2y) —+ ’YV(pllL +p2#> - 5”}“’(?1 +Zé2) Uw(pl). ( . )



2.2 Gravitational form factors for nucleons

For the trace part of the energy-momentum tensor, we now match to the nuclear matrix
elements as

(N(p2)|TY|N(p1)) = —Fs(q*)mntn (p2)un (p1) (2.10)

where Fg(q?) is the form factor for the scalar current, given at ¢ = 0 by Fg(0) = f%} as
in eq. (C.1) in appendix C. The momentum expansion of the scalar form factor Fg(q?) is
given in refs. [10, 11].

On the other hand, the energy-momentum tensor (2.7) is matched to the nuclear matrix
elements, as follows [18-20],

(NITLIN 0} = a0) (AP0 + B o iund
"’C(QQ)L(QM‘]V - TMV‘IQ)) un(p1)
my
= (o) (2 AP+ (A + B g v
+C(q2)i(quqy - qu2)> un(p1) (2.11)
my

where A(¢?), B(¢?),C(¢?) are the gravitational form factors, and p, = 3(p1 + p2) and
q = p2 — p1 and () means the symmetrization of indices. Here we have used the Gor-
don identity in the second equality and we note that the second term is the anoma-
lous gravitational magnetic moment operator. One can check that the above form fac-
tors, A(q?), B(¢?),C(¢?), are the only ones that are consistent with Lorentz invariance,
q,T¥" =0, and CP symmetry [18-20].

By using the energy-momentum tensor for on-shell nucleons,

1

Ty, = — 5N (P2)Y(upryun (p1)
1_ 2 . A
= —5un(p2) <mN Pupr ¥ 5 P(uOw)x > (2.12)

where use is made of the Gordon identity in the second equality, we can rewrite the above
nuclear matrix elements in eq. (2.11) as

(N(p2)|Tj5, IN(p1)) = —2(A(¢*) + B(a*)) T, (2.13)

- ﬁN(pg)( —2B(®)pupw + C(¢*) (quqn — 77Wq2)>UN(p1)
my

where Tﬁ is the energy-momentum tensor for nucleons. Then, using eq. (2.13) and its
trace, we obtain the nuclear matrix elements for the twist-2 operator as

(NITLIN G0} = 2046 + BENTY + o a(ea)| - 286 (o~ 9,07 )

+C(q?) (qﬂqy — iquzﬂ un(p1). (2.14)



Gravitational form factor
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Figure 1. Gravitational form factor —Fr(q?)/2 as a function of the momentum transfer ¢ in
GeV. The black line corresponds to the exact expression obtained in ref. [20] and the same input
parameters. The red-dashed line corresponds to the quadratic approximation.

For nucleons with zero momentum transfer, the nuclear matrix elements for the twist-2
quark operator [25-27] becomes

- 1 1 _
(NDITLING) = - Fr) (s~ kg )anGhunt) (215
where the form factor for the twist-2 quark operator is given by Fp(0) = —2A(0) =

¥(2) 4 (2), as in eq. (C.3) with eq. (C.5) and the following discussion in appendix C.
Therefore, B(q?),C(¢?) remain unfixed due to lack of the extra information on the form
factors for a nonzero momentum transfer.

In a holographic description of QCD with the hard-wall or soft-wall model in a five-
dimensional Anti-de Sitter (AdS) spacetime [20], the gravitational form factors can be
described by the three-point correlation function between the zero-mode graviton and a
fermion in the bulk on the boundary of the AdS spacetime. In this case, the relation
between the gravitational form factors is given by A(q?) # 0 and B(¢?) = C(¢?) = 0 even
for a nonzero momentum transfer [20]. In this case, we can extend the matching of the
quark operators in eq. (2.14) to the nucleon form factors with a general momentum transfer
as follows,

(N(p2)| T}, |N (1)) = Fr(q*)T}, (2.16)
with Fr(q?) = —2A(q?). Thus, the matching just relates the energy-momentum tensors
for quarks and nucleons by the overall form factor, Frr(¢?). This form factor has been
explicitly computed in a holographic set-up with a soft wall model. This would be the dual
of theories with a conformal UV limit and a softly broken symmetry at low energies. The
breaking is then spontaneous and the features of the soft wall allow for switching on an
non-zero expectation value for an operator with finite canonical dimension or a non-AdS
background mass of the dual fields, see e.g. [21-24].

In this context, ref. [20] finds an explicit form of the form factor, which decreases with
¢ as shown in figure 1, and admits an expansion near ¢ ~ 0 as follows

Fr(q¢®) ~ —2(1 — ¢*/(0.55 GeV)?...). (2.17)



Henceforth, for simplicity, we assume that this is the case and also take Fr(q?) ~ Fr(0).
Further improvements in the analysis could be done by simultaneously expanding the form
factor coupling Fr(q?) and following the standard procedure of non-relativistic expansion
described in the next section.

We also remark the twist-2 gluon operator, which could be also relevant for direct
detection in the presence of the gluon couplings of the spin-2 mediator. The twist-2 gluon
operator and its matching to nucleon matrix elements at a zero momentum transfer is also
included in appendix C. In this case, we may also identify gravitational form factors for
the twist-2 gluon operator at a nonzero momentum transfer by extending the result in
eq. (C.4). But, in the current work we focus on the SM quark operators and postpone the
details on the twist-2 gluon operators for future work.

3 Effective operators for DM-nucleon scattering

In this section, we discuss the effective Lagrangian for the elastic scattering between dark
matter and nucleons due to the spin-2 mediator. We focus on the cases with fermion and
scalar dark matter in this section and present the further details for the calculation of
scattering amplitudes including the case for vector dark matter in appendix B.

3.1 Fermion dark matter

The energy-momentum tensor for a fermion DM y is, in momentum space,

Tify == _iﬂx(k@) (7u(klu + k?u) + ’Vu(klu + k2u) - 277,1“/(%1 + %2 - 2mx>>ux(k1) (31)

where the fermion DM is incoming into the vertex with momentum k; and is outgoing from

the vertex with momentum ko. Then, the trace of the energy-momentum tensor is given by
1_
% = = i (ko) ( = 6Ky + Ky) + 16m, )y (). (3:2)

Therefore, the traceless part of the energy-momentum tensor is given by

T'Z‘(y — *%ﬂx(l@) <’7u(k311/ + kQV) + 'Yu(klu + kQ,u) - %nuu(%l + k2)>ux(k1)' (3'3)

We consider the elastic scattering between the DM fermion and the nucleon, x(k1) +
N(p1) = x(k2) + N(p2). Using the nucleon matrix elements in eq. (2.16), we get

TX, (N (p2) [TV |N (p1)) = Fr(g?) T, TN (3.4)

where Fr(¢?) ~ Fr(0). From egs. (3.2) and (2.10), the effective interactions for trace parts
are

TX(N (p2)|TY|N (p1)) = mymn Fs(tiy (ko) uy (k1)) (@ (p2)un (p1)). (3.5)

Thus, the trace parts contain only scalar-scalar operators. Therefore, from eqs. (B.4)
and (3.5), we get the scattering amplitude between fermion dark matter and nucleon as
follows,

_ lexCy Fox L W
= ——— (N 207X TVH — —_TXT N 3.6
My = st (N o)l (20007 = G151 ) IN o), (3.6
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Table 1. Effective operators for fermion (F), scalar (S) and vector (V) dark matter.

the detailed form of which is given in eq. (B.6).

There appear five effective interactions between fermion dark matter and nucleon due
to the spin-2 mediator, each of which matches with non-relativistic operators [6] as in
table 1. Here, we note that the non-relativistic nucleon operators are given [6] by

ot =1, 03" = (), O3 = isy - (q x ﬁL),

ONR_z gv ONR_z (L5t} oM (gL (5L ). @37
4 X "°N» 5 X my 6 X my N my ( )

Here, 5\, 5N are the spins of dark matter and nucleon, respectively, and g, ¥+ are Galilean,
Hermitian invariants [6], meaning the momentum transfer and the relative velocity between
dark matter and nucleon after scattering, respectively, and the latter is related to the initial
relative velocity ¥ and the momentum transfer by 7t =7 + 5= q ~ with py being the reduced
mass of the DM-nucleon system and it satisfies 7+ - § = 0. We note that O} 1,25 give rise to
only the spin-independent elastic scattering while (’)37476 lead to the spin-dependent elastic
scattering. All the appearing operators are T-even and P-even.

For the coherent scattering of nucleons, the momentum transfer is given by |g] <
vVmrERr < 100 MeV where my is the target nucleus mass and Ep is the recoil energy of
the nucleus. Therefore, for WIMP dark matter, using the results in eq. (B.7), we obtain the
approximate interaction Lagrangian between fermion dark matter and nucleons, as follows,

¢y Cypym2m3 72 462
Lyt & WHGFT< o 3q > 3FS}ONR 8FpONR mxan FrOY®
8
_SN < ) NR | TN prOXRONR | (3.8)
my mx



The scalar operator (’)TR determines dominantly the total cross section for spin-independent
elastic scattering as will be discussed in section 5.4. Other operators also contribute to the
differential event rates, in particular, for a large momentum transfer or recoil energy, but
the momentum-dependent terms show up less than 1%.

3.2 Scalar dark matter

The energy-momentum tensor for a scalar DM § is, in momentum space,
Tlfl/ - - (m%nm/ + Cuu,aﬁk?kég) (39)

where
Cm/,a,@ = NpaMvp + Mol — MuwNas (3.10)

and the scalar DM is incoming into the vertex with momentum k; and is outgoing from the
vertex with momentum k. Then, the trace of the energy-momentum tensor is given by

TS = —(4m§ — 2k - kg)). (3.11)

Therefore, the traceless part of the energy-momentum tensor is given by
~ 1
Tiy = - <k1,uk2u + kQ,uklu - in,ul/(kl : k2)> . (3.12)

We consider the elastic scattering between the DM scalar and the nucleon, S(ki) +
N(p1) = S(k2)+N(p2). Then, similarly to the case of fermion dark matter, from eq. (2.16),
we get

T (N (p2)| TV [N (p1)) = Fr(q*) T, TN (3.13)

with Fr(g?) ~ Fr(0). On the other hand, the effective interactions for trace parts are
AT(N (p2)|T¥|N (p1)) = 8mnFs(2m — k1 - ka) (an (p2)un (p1))- (3.14)

Consequently, combining egs. (B.10) and (3.14), we get the scattering amplitude be-
tween scalar dark matter and nucleon, as follows,
1CSCy

S~ 1
= N 275 TV — ~T5TY | [N 3.15
Ms = st (N (2500 = G257 ) IN ). (3.15)

the detailed form of which is given in eq. (B.11).

Therefore, for scalar dark matter, there appear two effective nucleon interactions at the
relativistic level, due to the spin-2 mediator, each of which matches to the non-relativistic
nucleon operator [8] as shown in table 1. Then, using eq. (B.12) with eq. (B.5), we get the
above effective Lagrangian as follows,

2,2 ) )
CsCyMgMy q 2 q NR
L = Frl6——— ) —=-Fs(1——5 | |O7™ 3.16

Sieft 2m2 A2 [ r ( m%> 39 < 2m?% >} ! (3.16)

Thus, we find that the effective operators for scalar dark matter are reduced to the scalar
operator (’)lNR at the non-relativistic level. We note that the above effective Lagrangian
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Figure 2. Differential event rates for fermionic dark matter (left) and scalar dark matter (right)
for different experiments in table 2 for A = 1TeV and ¢, = ¢y = 1.

Nucleus | Z | A | Exposure (Kg-day)
F 9 | 19 200000
Na 11| 23 14000
Ge 32| 73 36500
I 53 | 127 78000
Xe 54 | 129 73000
Xe 54 | 131 73000

Table 2. Mock experiments considered for the computation of differential scattering event rates in

this model.

shows that ¢® terms are highly suppressed by dark matter mass, as compared to the case

for fermion dark matter in eq. (3.8) where ¢ terms are suppressed just by nucleon mass.

But, the total cross section for spin-independent elastic scattering is determined mainly by

the scalar operator (’)ll\IR as for fermion dark matter, which will become manifest from the

same form of the total cross section for spin-dependent elastic scattering in section 5.4.

4 Differential scattering event rates with spin-2 mediator

In this section, we discuss the differential event rates for the spin-independent scattering

between dark matter and nucleus in our model, for mock and current experiments of dark

matter direct detection.

To compute the differential scattering event rates in our model, we take the model

parameters that are consistent with the limits from DM direct detection experiments and
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Figure 3. The same as in figure 2, but with different masses for DM and spin-2 mediators and
A =3TeV.

use the package called DMFormFactor [6, 7]. A short review on the differential scattering
event rates is given in appendix A.

The input parameters for the package of DMFormFactor [6, 7] are the spin and mass
of DM, the information about the Galactic Halo (such as the escape velocity and the local
DM density), our model parameters such as the couplings and mass of the graviton and
the scale A, and finally the information about the detector we are considering. In our
case, we use the parameters for different mock experiments with some of the most relevant
isotopes as shown in table 2. Using the information in table 2, the Lagrangians for the
interactions in (B.8) and (3.16) and taking a zero momentum transfer ¢ — 0 approximation,
we obtain the results for the differential event rates as a function of the recoil energy (ERr)
in units of keV as in figures (2) and (3), for the cases with fermionic and scalar dark matter
for A = 1TeV and 3TeV, respectively. For the fermionic case, the last operator in the
Lagrangian OYRONR is a new type of interaction term that is allowed when the mediator
is a spin 2 particle. But, the OgNR(’)})\IR term is velocity-suppressed so it is not included
in our study. Therefore, the differential event rates for fermion and scalar dark matter
are similar when the DM mass and the mass and coupling of the spin-2 mediator are the
same. However, as will be shown in the next section, the annihilation cross sections of dark
matter crucially depend on the spin of dark matter.

Also, we obtained similar plots, considering the detectors used in current DM ex-
periments as XENONI1T [1], PandaX-II [2], SuperCDMS [3], LUX [4], CDMSlite [29],
XENON10 [30], and DarkSide-50 [33], with the detector parameters shown in table 3.
Some results for differential event rates with WIMP dark matter are shown in figures 4
and 5, for A = 1TeV and 3 TeV, respectively, and with the parameters that are consistent
with relic density condition, ATLAS dijet and direct detection bounds, as will be discussed
in the next section.

~10 -
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Figure 4. Differential event rates for fermionic dark matter (left) and scalar dark matter (right)
for current experiments for A = 1TeV and ¢y, = ¢y = 1.
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Figure 5. The same as in figure 4, but with different masses for DM and spin-2 mediators and
A =3TeV.

5 Bounds from relic density and direct detection

We consider the annihilation cross sections for fermion, scalar or vector dark matter in
order to determine the relic density. Then, we discuss the relic density condition for the
parameter space of our model and also impose the direct detection limits on the total spin-
independent elastic scattering cross section and the dijet bounds on the spin-2 mediator.
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Experiment (Nucleus) | Z | A | Exposure (Kg-day)
LUX (Xe) 54 | 129 33500
XENONIT (Xe) 54 | 131 36500
PandaX-II (Xe) 54 | 136 54000
SuperCDMS (Ge) 32| 73 1690
CDMSlite (Ge) 32| 73 70
XENONI10 (Xe) 54 | 131 15
DarkSide-50 (Ar) 181 39 46

Table 3. Detector information for the current experiments considering in this study for the com-
putation of differential scattering event rates in this model.

5.1 Fermion dark matter

The annihilation cross section for xy — v is given [12-14] by

3
N.c2c? mS m2\ 2 2m?2
(00) g =0° 5 i\jf 2 o (1 5 3+ ). (B
72rAt (4m3 —mg)? + Tgmeg m3 ms

Thus, the annihilation of fermion dark matter into quarks becomes p-wave suppressed.
When m, > mg, there is an extra contribution to the annihilation cross section, due to
the t-channel for both models [12-14], as follows,

4,92 7
My (1 —=r7y)

2
16w A4 7“;1((2 —7y)?

(ov)xx—»ca = (52)

2
with r, = (%) . Then, the t-channel annihilation is s-wave, so it becomes dominant in

X
determining the relic density for heavy fermion dark matter.

5.2 Scalar dark matter

The annihilation cross section for SS — ¢ is given [12-14] by

N.c2c2 6 m2 \ 2 2m?2

4 c=S™yY mg v v
ov ;= 1— — 34+ —2 . 5.3
( )SS_”W 360mA4 (mé — 4m%)2 + Fémé ( m%) ( m% (5:3)

Thus, the annihilation of scalar dark matter into quarks becomes d-wave suppressed.
When mg > mg, there is an extra contribution to the annihilation cross section, due
to the t-channel for both models [12-14], as follows,

4edm? (1 - rs)%

5.4
9 A4 T4S(2 —rg)2 (5-4)

(ov)ss—aa =
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5.3 Vector dark matter

The annihilation cross section for X X — 1) is given [12-14] by

AN c, mg‘( 2m3, m? \ 2
ov 7= 3+ —— 11— — . 5.9
( )XX_”M’ 27rA* (4m — ) + FGmG m? m? (5:5)

Thus, the annihilation of vector dark matter into quarks becomes s-wave suppressed. In

this case, smaller spin-2 mediator couplings to the SM quarks or vector dark matter can
be consistent with the correct relic density, as compared to the other cases. But, indirect
detection signals from the annihilation of vector dark matter are promising [13].

For mx > mq, there is an extra contribution to the annihilation cross section, due to
the t-channel in both models [12-14], as follows,

cmi  VI—-rx
324 5 (2 — rx)?

(ov)xx 06 = (176 +192ry + 1404r% — 3108r%

+1105r% + 362r% + 34r§(> (5.6)

2
with rx = (22"
5.4 Bounds on WIMP dark matter

Taking a zero momentum transfer for the DM-nucleon scattering, we use the nucleon matrix
elements for twist-2 operators given in eq. (2.15) or the results in appendix C and simply
obtain the total cross section for spin-independent elastic scattering between dark matter
and nucleus as

o a =4 (2N 1 (4= 2) M) (57)

where p14 = my,ma/(m,+ma) is the reduced mass of the DM-nucleus system and m 4 is the
target nucleus mass, Z, A are the number of protons and the atomic number, respectively,
and the nucleon form factors are given by the same formula for all the spins of dark matter as

f]?M_WWw( S se,@ b))+ Y ;cwfé’,w), (5:8)

2 A2
4mGA Y=u,d,s,c,b Y=u,d,s
CDMMNMDM - 1
fEM:W< Y 3e@)+d@)+ Y 3cwf’ﬂ,) (5.9)
G w:U,d,S,C,b 'l/J:u,d,S

where DM = x, .S, X for fermion, scalar and vector dark matter, respectively. The results
are the same as those for the general effective interactions with momentum transfer taken
to zero, in eq. (B.8), (3.16) and (B.27).

The most relevant isotopes in direct detection experiments are
F, 23Na, 27Al and ?°Si. For instance, we get Z = 54 and A — Z = 75 for 129Xe. The
above DM-nucleus scattering cross section is related to the normalized-to-proton scatter-

ing cross section U]:S){v[ _p that is usually presented for experimental limits, by a]*:g){\/[_p =

(un/pa)?odh /A with py = mpuamy/(mowm + ma).

129,131 Xe 1271 73 Ce
) ) )
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Figure 6. Parameter space of fermion and scalar dark matter in mpy
are excluded by XENONI1T. We took ¢, = c¢s = Cy,d,s,c,p,t = 1 and mg
middle and right, respectively.
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Figure 7. Parameter space of fermion and scalar dark matter in mpy vs mg. The gray and cyan
regions are excluded by XENONI1T and ATLAS dijet searches, respectively. We took A = 1,3,5TeV
on left, middle and right, respectively. The other parameters are the same as in figure 6.

In figure 6, we depict in the parameter space for mpy vs mg/A the region where the
DM relic density overcloses the Universe in red, blue and orange for fermion, scalar and
vector dark matter, respectively. The regions in gray are ruled out by the direct detection
experiment in XENONIT [1]. We have taken m¢g = 100,150,200 GeV from left to right
plots and the couplings of DM and quarks to the spin-2 mediator are the same as ¢, = cg =
Cu,d,s,cpt = 1in all the plots. As a result, we find that the non-resonance regions saturating
the relic density, away from the resonance with mg ~ 2mpu, are tightly constrained by
XENONIT bounds. The non-resonance regions below mpy = 200 — 300 GeV have been
already excluded but the non-resonance regions with larger DM masses and the resonance
region are less constrained by the current data. In particular, for mpy > mg, dark matter
can annihilate into a pair of spin-2 mediators so there is no need of a sizable coupling
between dark matter and SM fermions for the correct relic density. Therefore, those regions
can be probed by updated XENONI1T and future direct detection experiments.

In figure 7, we impose in the parameter space for mpy vs mg the same conditions
from the relic density and the limits from XENONI1T. The relic density is saturated by the
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Figure 8. Differential event rates for light fermion (left) or scalar (right) dark matter for current
experiments for A =1TeV and ¢, = ¢y = 1.

DM annihilation into quarks along the red, blue and orange lines, for fermion, scalar and
vector dark matter, respectively. The regions in gray are ruled out by the direct detection
experiment in XENONIT [1].
resonance searches with mono-photon at the LHC [28]. In the case with mg > 2mpw, for

We also overlaid in cyan regions the bounds from dijet

which the spin-2 mediator decays invisibly into a pair of dark matter, the ATLAS dijet
limit on A scales by /BR(G — ¢q) = @(@) with ¢ = u,d, s, ¢,b for mg > 2my(mg <
2my), which leads only to a very mild change in the cyan region in figure 7. We have taken
A =1,3,5TeV from left to right plots and the same couplings of DM and quarks to the
spin-2 mediator as ¢, = ¢ = ¢y d,5,cp¢+ = 1 in all the plots. In the case with A = 1TeV, the
WIMP parameter space, in particular, the non-resonance region, is tightly constrained by
both XENONIT and dijet bounds. But, for larger values of A = 3,5 TeV, a wide parameter
space opens up and can be tested by updated XENONI1T and future experiments.

5.5 Bounds on light dark matter

Some results for the corresponding differential event rates with light fermion or scalar dark
matter below 10GeV are shown for CDMSlite and XENON10 experiments in figures 8
and 9. Here, we have chosen the parameters that are consistent with direct detection
bounds, in particular, from XENON10 and cryogenic direct detection experiments such as
CDMSIlite and CRESST.

In figure 10, we considered the case with light dark matter of mass below 10 GeV. In
this case, cryogenic direct detection experiments [31] such as CDMSlite [29], CRESST [32]
and DarkSide-50 [33] with low thresholds for recoil energy are relevant for mpy = 1.45 —
9GeV, 0.71-9GeV, and 1.8 —6 GeV, respectively. We showed that XENON1T, CDMSlite
and DarkSide-50 experiments rule out the parameter space in gray, green and purple re-
gions, respectively. We note that the bounds from CRESST or XENON10 are less stringent
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Figure 10. Parameter space of light dark matter below 10 GeV. The gray, green and purple regions
are excluded by XENONI1T, CDMSlite and DarkSide-50, respectively. We took A =1,3,5TeV on
left, middle and right, respectively. The other parameters are the same as in figure 6.

that those from other experiments, so we don’t show them in figure 10. We have taken
A =1,3,5TeV from left to right plots and the couplings of DM and quarks to the spin-2
mediator are the same as ¢, = cg = ¢y d,cbt = 1 in all the plots. As a consequence, for
a low A = 1TeV, the region where dark matter annihilation into a pair of spin-2 medi-
ators explains the correct relic density is almost excluded by direct detection, except for
mpm S 2GeV. The resonance region with mg ~ 2mpy survives the direct detection

bounds. On the other hand, for larger values of A = 3,5TeV, the more non-resonance

region below mpy ~ 6 GeV survives.

6 Conclusions

We have presented the effective interactions between dark matter and the SM quarks due
to the massive spin-2 mediator. The resulting non-relativistic operators for nucleons have
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specific correlations, depending on the spin of dark matter. We have shown the differ-
ential event rates for spin-independent DM-nucleon scattering at current direct detection
experiments for fermion and scalar dark matter in detail. We have imposed the bounds
from direct detection, relic density condition as well as LHC dijet searches to constrain the
parameter space for the mass and couplings of the spin-2 mediator for both weak-scale and
light dark matter cases.
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A Differential scattering event rate

The differential event rate per unit time per unit recoil energy for DM-nucleon elastic

dR pxymr  do
= Al
dER < pamy v dcos 0 > (A1)

scattering is given [6] by

where p, is the DM number density in the solar system, mr, 7 are the nucleus mass and

the reduced mass of the DM-nucleus system, respectively, v is the relative velocity between

do
dcosf

to the cosine of the scattering angle 6 in the center of mass frame, given by

dark matter and nucleus, and is the differential scattering cross section with respect

do 1 1 3 1 | M2

= A2
dcost 25, +125+1 (A-2)

— 321 (my + mr)?
where j,,j are the spins of dark matter and nucleus, respectively, and M is the scattering
amplitude. Here, we note that ( ) is the average over the halo velocity distribution, namely,
fvmin:q ) d3vf(v) where f(v) is the velocity distribution function and vy, is the mini-
mum relative velocity to make the nuclear recoil happen for a given momentum transfer q.

In reality, the scattering event rate at experiments depends on the detector material and

mass. The event rate per unit time per unit recoil energy per detector mass is given [6] by

dRitp Px™mT 1 (N) (N') +(N,N'), 2 2
—— =Nr == — \ S ASAE A3
dER T 327rm§<m%\, v iZjN]V/ancz ¢; ij (v°,q°) (A.3)

EN) are the coefficients of

non-relativistic nucleon operators, O%\IR, in the effective Lagrangian, and FZ-(]N’N )(v2,q2)

where N7 is the number of target nuclei in a given detector, ¢

are the nucleon form factors, with symmetric property under (i, N) < (j, N').
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B DM-nucleon scattering amplitudes for dark matter

In this appendix, we present the details on the calculation of nucleon scattering amplitudes
with spin-2 mediator, in the order of fermion, scalar and vector dark matter.

B.1 Fermion dark matter

Fom eqgs. (3.3), the traceless part of the effective interactions for fermion dark matter
becomes

L6Fr(¢*) T8 T = FT{(Q(pl +p2) - (k1 + k2)) (U (k2)vuuy (k1)) (@n (p2)7" un (p1))
—(ty (k) (1 + Ko)uy (k1)) (@n (p2) (P, + py)un(p1))
2(iiy (k) (, + )i (k) (i (p2) Oy + o (p1) |
= Fr [(2(1?1 +p2) - (k1 + k2)) (Uy (k2)yuuy (k1)) (an (p2)y un (p1))
—4dmym (ty (k2)uy (k1)) (in (p2)un (p1))
+2(ty (k2) (P; + Py ux (k1)) (Un (p2) (K1 + %2)UN(p1))} (B.1)

where use is made of Dirac equations, puy(p) = myun(p) and uy(p)p = un(p)my, etc.
Using Gordon identities,

(2t (ky) = 5 (k) ((y + ko) — i0#g, Juy (k). (B2)
un (p2)y"un(p1) = Q;NUN(Pz)((Pl +p2)” + iU”A(JA) un (p1), (B.3)

we can rewrite the vector operators in terms of scalar and tensor operators and obtain

(P-K)
2mymy

16F7(q*) T, TN = FT[ <(K - P) (1 (k2)uy (k1)) (un (p2)un (p1))

(i (2)uy (k1)) (Kt (p2)ioc” gaun (pr))
—(Putiy (k2)io** qpuy (k1)) (un (p2)un (p1))
—(a

x<k2>wﬂpqpux<kl>><uN<p2>zmq*uN<p1>>)
—4meN (U (k2)uy (k1)) (an(p2)un(p1))
g (P ()i () ) 1)
meN

— (Pytiy (k2 )ic"* gyuy (k1)) (K, iy (p2)ic gaun (p1))
(K - P)(ty (ka)uy (k1) (K (p2)ic” g un (p1))

(K P><wa<k2>w“pqpux<k1>><aN<p2>uN<p1>>)] (B.4)

where P* = (p1 + po)H, K* = (k1 + ko))" and ¢* = (k1 — ko)* = (p2 — p1)*. Using
2p1 - k1 = s—m?\,—mi = 2pg - ko and 2p; - ko = —u+m?\,+mi = 2ps - k1 for nucleon
momenta, we note the approximate formula,

P-K=(p1+p2): (ki + ko) =5—ux~4dm,mp. (B.5)
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where use is made of s ~ (m, +my)? and u ~ (m, — my)? in the non-relativistic limit.
The above nucleon operators can be matched to non-relativistic nucleon operators as in
ref. [6], with the exception, the operator in the 7th line in eq. (B.4), which is suppressed
for a small momentum transfer as will be shown later.

Consequently, from eq. (3.6) with egs. (B.4) and (3.5), we get the scattering amplitude
between fermion dark matter and nucleon as follows,

M = QmGK {;FT [m ((K Pt (ka)ux (k1)) (@ (p2)un (p1))

(0 (k2 )uy (k1)) (K i (p2)ic” *gaun (p1))
—(Putiy (k2)ic" qpuy (k1)) (un (p2)un (p1))

—<ux<k2>w“pqpux<k1>><uN<m>quuN<p1>>)
—dmymy (ty (k2)uy (k1)) (an (p2)un (p1))
! ((K - P ity (kg (k) (i (p2)uy (1)

2mymy
—(Putiy(k2)io"P qyuq (k1)) (K tn (p2)ic”*grun (p1))

(K - P)(ty (ko) uy (k1) (K (p2)ic” grun (p1))

(K P)(Puux<k2>w“ﬂqpux<k1>><uN<p2>uN<p1>>)]

+

g (i () (k) e o) (B.6)

As a result, from the scattering amplitude at the nucleon level given in eq. (B.6), the
effective interactions between fermion dark matter and nucleons are given by

cyC 1 m my 1
Lot = X2 W FPp( =(P-K)?+—(P-K)+ —~(P-K)®—2m>m3 + - ¢*
xoeff 2mZGA2 [{ T(2( ) +2mN( )a +2mx( )a meN+4q

2 g =
—3 Smim?v}(’)ll\m —Frmy <2mX(P -K) —|—qu2> ONR — Fr(P-K)?O® (B.7)

—Frmy (2mN(P-K) —l—mX(jQ) ONR | Brm2, (P K)O6NR+4FTm§VmXO3NRO5NR] :

Then, using eq. (B.7) with eq. (B.5), we obtain the effective Lagrangian between fermion
dark matter and nucleons as follows,

_4
Cy C ~ q 9
Exell = Bug e HF ! <6mf<m?v + 2(m} +m)E + 4> 3

—FPrm? (Smi + cj’2> O —dm, myFr FOTR — Frmym, <8m?\, + cj’2> ONR

2,2 NR
FszmN }Ol

+4m,m3 FrOF® + 4FTm§’VmX03NRO5NR] . (B.8)
d3 d3
Here, we note that a factor [ (277)37P2E ag\T,) per each nucleon state or [ @rPVaE 277)3’) == agj ) per

each dark matter state, with dimension F, are to be multiplied as overall factors such that
the above effective Lagrangian for nucleons has a dimension 4.
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B.2 Scalar dark matter

From eq. (3.12), the traceless part of the effective interactions for scalar dark matter is
given by

APp(q*)T5, TN = Fr (2ﬂzv(pz)(%1k2 - (p1 + p2) + Kok1 - (p1 + p2))un (p1)
—2my (ks - ko) (@ (p2)un (p1))) (B.9)

Then, using k1 - (p1 + p2) = k2 - (p1 + p2) = (s — u)/2 and Gordon identity, we can rewrite
the above result as

4Fr(¢*)T5 TN = Fr [(Prﬁf) ((P - K)(un (p2)un(p1)) + KVUN(p2)iUVAQAUN(p1)>
o (ks - k2><aN<p2>uN<p1>>} | (B.10)

As a result, from eq. (3.15) with egs. (B.10) and (3.14), the scattering amplitude
between scalar dark matter and nucleon as follows,

Ms = QZSQGCK2 [FT<(fm[§> <(P‘K)(aN(p2)UN(p1))-I-(KyﬂN(m)ia”’\q,\uN(pl)))

(-2 (an(p)u(p0) ) = gma (2 = b -o) (ay ey 1) (B.11)

Here, we note that the tensor operator Nic?*¢ N can be written as the sum of vector and
scalar operators by Gordon identity.

Consequently, from eq. (B.11), we obtain the effective Lagrangian for scalar dark mat-
ter as

CSCy

2
Lsen = 5515 [QFT (mgmN(P-K) —m% (ky 'k2)> — S Fsmi (2m%—ky 'kg):| O} (B.12)
meg A 3

B.3 Vector dark matter

The energy-momentum tensor for a vector DM X is, in momentum space,
1 = — (13 s + Wonsas ) (k) (k2) (B.13)
where €*(k) is the polarization vector for the vector DM and

W;w,aﬁ = _naﬂklukb - Wua(kl “ k2 Mg — lekQV) + nuﬁklukm

1
_577,11,1/<k1,8k2a — k1 - kanag) + (n <> v). (B.14)

Likewise as before, the vector DM is incoming into the vertex with momentum k; and is
outgoing from the vertex with momentum ko. Then, the trace of the energy-momentum
tensor is given by

T* = 2m%nape®(k1)e (ka). (B.15)

- 1 *
T;fz(/ = - <m%(0uu,aﬁ + Wuu,aﬁ + 2m§{77,uu77a6> ea(]ﬁ)E B(kQ)' (B'lﬁ)
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Here, we note that W, ogn*" = 0, due to the fact that the energy-momentum tensor for
transverse polarizations of vector dark matter is trace-free.

We consider the elastic scattering between the vector DM and the nucleon, X (k1) +
N(p1) = X (k2)+ N(p2). First, with eq. (2.16), we note the following Lorentz contractions,

—4m% Cpu a5 (N (p2)|TV* N (p1))
=mkFr (2Pﬁfuv (P2)Yaun (p1) + 2Pyun (p2)ysun(p1)

—2magin (p2)un (p)). (B.17)
AW 0 (N (p2) TN ()
= Fr o ( = (- PYan(po) by + Ko (p1) + dmuy (ky - ko) (pe)un (p1)

—2(ky - k2)<PBﬂN( 2) YN (P1) + Patin (p2)ysun (p1 )

+(K - P) (kwuN(m)’YauN(pl) + koot (p2)ysun (p1)

+2k15Patin (p2)koun (p1) + 2k20 Patin (p2)kyun (p1)

—4dmnkigkaatin (p2)un(p1)|, (B.18)
—2m% e TV = 0. (B.19)

Then, from the above results with eq. (B.16), the effective interactions for traceless parts are
AT (N (p2)| TN (p1))
= 4 0)e"0) (% Cos + Wi + ko ) (N ) T2 o)
€ (1) (k) i | 200 Py e (1) + Pa (p2) 50 (1)
—MyNapUn (p2)uN (p1)>
+77a5< — (K - P)un(p2)Kun(p1) + 4mn (ky - kz)ﬂN(Pz)uN(p1)>
—2(k1 - ko) Pyt (p2)vatn (1) + Pt (p2)ysun (p1))

+(K - P) (kwﬂzv(m)%w(m) + kmﬁN(pQ)’YBUN(m))
+2k18Potin (p2)Koun (p1) + 2k Patin (p2) ki un (p1)

—4me15k2aﬂN(p2)uN(p1):| . (B.QO)

After using the Gordon identities, (B.2) and (B.3) to rewrite the vector operators in terms

of scalar and tensor operators, we obtain
4T3, (N (p2)| TV N (p1))
«a *3 m%{ — _ . A
=€ (k1)e"” (ko) Fr p— <2PaPBUN(p2)UN(P1)+PauN(P2)WBAq un (p1)

+P/3ﬂN(p2)i0a,\unN(p1)) —2mAmynastn (p2)un (p1)
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(é{ -P) Nas <(K -P)an (p2)un (p1) + Ky iy (p2)io” grun (p1))
my

+4dmynag (ki -k2)un (p2)un(p1)

ki-k .
( ;,LNZ) (2PaPﬂﬂN(p2)UN(p1) + Poun (p2)iogag un (p1)

+ PN (p2)ioarg un (p1)>
(K-P)
2mpy

25— (Fa Patin (p2)un (p1) + o Patin (p2)un (p1)
iy (p2)ioarg un (p1) + kzatin (p2)iosng un (p1)
K-P
L) P (pa)un (1) + ke Py (p2)un (o)
mn

1 . _ .
+m7N <k1ﬁPak2uﬂN(p2)wy’\q,\UN(101) + koo Pak1, iy (p2)ic” grun (p1)>

—4Amykigkaatin (p2)un (p1) |- (B.21)

On the other hand, from egs. (B.15) and (2.10), the effective interactions for trace
parts are

ATY (N (p2)|T?|N(p1)) = —8mimn Fs(nage” (k1)e”” (k) (@n (p2)un (p1)).  (B.22)

Consequently, we get the scattering amplitude between vector dark matter and nucleon,
as follows,

iCxCy =X b L X b
My = N 214 TYHY — AT N
X Qm%AQ ( (p2)| < uv 6 | (p1)>

icxc . m2 ,
5 e (ke 5(I<:2){FT[ X <2PQP5HN(p2)UN(p1)+PaﬂN(p2)ZUﬂ)\q>\uN(p1)
mgA 2m

N

+Pgun (pz)iaa,\unN(pl)> —mikmanapsin (p2)un(p1)
(f P) Nag ((K - Py (p2)un (p1) +KuﬂN(p2)i0”AQAuN(p1)>
my

+2mnnas(k1-k2)un (p2)un (p1)

ki -k |
(21mN2) (QPaPBfLN(m)uN(pl) + Paiiy (p2)iosrgun (p1)

+Pgiiy (p2)ioarg un (Pl))

(K-P

PP oty Pt (o) (1) + 2o P () ()
my

k1N (P2)icarg™ un (p1) + kaatin (p2)iosag un (Pl))

1 . i »
o (klﬁPakQV'aN(pQ)Zo' Agaun (p1) + koo Psk1,iin (p2)io ’\q,\uN(m))
my
_Qmelﬂk2aUN(p2)UN(pl)>:|

+;m_%(mNanaﬁ(ﬁN(pz)UN(pl))}- (B.23)
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The effective operators between vector dark matter and nucleon match with relativistic
operators, as follows,

NN — 2myf(e1, e5) YR, (B.24)
E?QNZ'O'O[,\Q)‘N — 4im?\; (gN : (51’2 X q> ), (B.25)

b mN
ko Nio" N — my, ((7201NR - 4m§V03NR). (B.26)
The above results for vector dark matter are also included in table 1. Here, we note that the
longitudinal polarization vector is given by €} (k) = (|k|, K k/|K|)/m with ef, - e, = —1, and
two transverse polarization vectors satisfy e - e = —1 and ey - ¢, = 0. Then, in the rest

frame of vector dark matter, we can take 7. = (0,1,0,0),(0,0,0,1) and €; = (0,0,0,1).
We find that there are 01N73R operators as in the case with the fermion and scalar dark
matter, but there is a new spin-dependent interaction, §x - (€12 X ).

As aresult, from eq. (B.23) with egs. (B.24)-(B.26), we obtain the effective Lagrangian
for vector dark matter as

1
Lxet = 5343 HFT <2m%(Pan —2m3mAias — 5 (K - P) o (B.27)
G
mx
—ﬁtﬁ((ff P)iag — Pakig —kaaPs) +4m% (k1 - k2)nas — k2akip)

2
—2(ky .kz)PaPB> | 3F5m§(m?\ma5}eae*5(911\m
+2FTmeN <(K . P)?]ag — Paklﬁ - kgapg> eo‘e*ﬁ(’)gNR

+Frmy (2’m§(Pa — 2(/€1 . kg)Pa + (K P)k2a> €1 (8}{[ . (52 X an> >
N

+Frmpy (Qm%(P/B — 2(]431 . kQ)PB + (K P)k‘lg) E*B’L' <S_]§[ . (51 X q> ):|
myn

We note that for a zero momentum transfer, the above effective Lagrangian (B.27) is
reduced to scalar operators ONR only.

C Twist-2 operators with zero momentum transfer

For a small momentum transfer in the DM-nucleon scattering, we can alternatively use the
nuclear matrix elements for twist-2 operators or trace parts of energy-momentum tensor
for quarks and then obtain the scattering amplitudes between dark matter and nucleons.

The traceless parts of energy-momentum tensor or twist-2 operators for quarks and
gluons, Tﬁy and Tﬁy, can be treated with speciality in the calculation of matrix elements
for dark matter-nucleon scattering. For a small momentum transfer, the spin-independent
effective coupling can be derived from the following matrix elements between initial and
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final nucleon states with mass my [25-27],

(Nlmqqa|N)/my = f7an(p)un(p), (C.1)
1- Z frq = fra. (C.2)
u,d,s
_ 1 1, o
(NOITLINGY) = o (e~ ks ) @)+ a@) anGrun@), (©3)
NOITLING) = - (s = ko )G x(hun(r) ©4)

where ¢(2),G(2) and G(2) are the second moments of the parton distribution func-
tions(PDFs) of quark, antiquark and gluon, respectively,

1
42) +a(2) = /0 dz z g(z) + 4(a)], (C5)

1
G(2):/0 dxzg(x). (C.6)

Here, we note that f:]p\; and frg denote the mass fractions of light quarks and gluons in a
nucleon, respectively. The second moments of PDF's in a proton have scale dependence, so
we evaluate them at the scale 1 = myz because the effective couplings are matched at the
scale of the mediator particle [26].

The mass fractions are fﬁ = 0.023, f%i = 0.032 and fﬁ = 0.020 for a proton and
f7, =0.017, f# = 0.041 and f7 = 0.020 for a neutron [26]. On the other hand, the second
moments of PDF's are calulated at the scale y = myz using the CTEQ parton distribution
as G(2) = 0.48, u(2) = 0.22, 4(2) = 0.034, d(2) = 0.11, d(2) = 0.036, s(2) = 5(2) = 0.026,
¢(2) = &(2) = 0.019 and b(2) = b(2) = 0.012 [26].

On the other hand, the spin-dependent effective coupling is given by

an = Z dqAgn (C.7)
q=u,d,s

where d, is the effective coupling at the quark level and

2SMAQN = <N|QVMVBQ|N> (0'8)
with s, is the spin of a nucleon. Here, Agy denotes spin fractions of light quarks in
a nucleon and they are given by Aw, = 0.77, Ad, = —0.49 and As, = —0.15, for a
proton [26].

As a result, we get the scattering amplitude between fermion dark matter and nucleon
as follows,

My = %o, L (= ) 602+ 5(2) + g T

Qm%;A2 mpy 4 6
1cyC 1 _ -
= k7 |~ g (VO PN (o Rl ) () (C.9)

gy ($(2)+00) - L ) (R ()| ) )
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Moreover, the scattering amplitudes between dark matter with other spins and nucleon

can be obtained similarly, as follows,

and

_icsey - 1 1, ~ 1 N

_ lescy [2 W(2) + B(2)) <1m?\/(k1 ko) —2(p-k1)(p- k2)>

2mZ A% | my 2
1

g S 2~ b k)| ) ). (©.10)

1CX Cy

4

My = 320 1oL (= g ) (62 + 5(2) + g T

2méA2

_ 1CXCyp o\ 4B
= €*(k1)e™” (k2)
277”%1\2

2 1
X [mN{2papﬂ(k:1 kg —m%) — im?\ma@@kl ko —m%) 4+ 2005 (p - k1) (p - k2)

+myk1gkaa — 2pak15(p - k2) — 2pgkaa(p - kl)}(”‘/f@) +9(2))

g Ftos| an (s o). (1)
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