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ABSTRACT

Abscisic acid (ABA) regulates key processes relevant to
seed germination, plant development, and biotic and abiotic
stress responses. Abiotic stress conditions such as drought
induce ABA biosynthesis initiating the signalling pathways
that lead to a number of molecular and cellular responses,
among which the best known are the expression of stress-
related genes and stomatal closure. Stomatal closure also
serves as a mechanism for pathogen defence, thereby acting
as a platform for crosstalk between biotic and abiotic stress
responses involving ABA action. Significant advances in
our understanding of ABA signal transduction have been
made with combination of approaches including genetics,
biochemistry, electrophysiology and chemical genetics.
Molecular components associated with the ABA signalling
have been identified, and their relationship in the complex
network of interactions is being dissected. We focused on
the recent progress in ABA signal transduction, especially
those studies related to identification of ABA receptors and
downstream components that lead ABA signal to cellular
response. In particular, we will describe a pathway model
that starts with ABA binding to the PYR/PYL/RCAR
family of receptors, followed by inactivation of 2C-type
protein phosphatases and activation of SnRK2-type
kinases, and eventually lead to activation of ion channels in
guard cells and stomatal closure.

Key-words: drought; hormones; pathogens; stomata.

ABSCISIC ACID IN DROUGHT AND
PATHOGEN RESPONSES

In the natural environment, plants are constantly chal-
lenged with biotic and abotic stresses, such as various patho-
gens, drought and high salinity. Plant hormone abscisic acid
(ABA) serves as a chemical signal in response to these
environmental factors and triggers changes in a number of
plant physiological and developmental processes, leading to
adaptation to the stress conditions (Finkelstein, Gampala &
Rock 2002; Robert-Seilaniantz et al. 2007; Ton, Flors &
Mauch-Mani 2009).As many review articles cover the topic
of ABA action in abiotic stress responses (Chinnusamy,

Gong & Zhu 2008; Popko et al. 2010; Sirichandra et al. 2010;
Wilkinson & Davies 2010; Joshi-Saha, Valon & Leung
2011), we focus on recent studies on ABA action in the
crosstalk of biotic and abiotic responses through regulation
of stomatal movements.

ABA-regulated stomatal closure in
drought responses

Drought adversely affects plant growth and causes severe
losses in crop production in agriculture. Plants lose water
primarily through the stomata on the leaves. ABA is a key
hormone that controls water status and stomatal function.
Upon drought conditions, plants produce and accumulate
more ABA that induces stomatal closure, thus conserving
water. The cellular and molecular mechanisms underlying
ABA-induced stomatal closure have been extensively
studied and reviewed previously (Luan 2002; Assmann
2003; Wasilewska et al. 2008; Cutler et al. 2010; Hubbard
et al. 2010; Popko et al. 2010; Wilkinson & Davies 2010).
Typically, ABA level is modulated by the balance between
ABA biosynthesis and ABA catabolism (Nambara &
Marion-Poll 2005; Nilson & Assmann 2007). The 9-cis-
epoxycarotenoid dioxygenase (NCED) genes encode key
enzymes for ABA biosynthesis. Under drought stress con-
dition, the AtNCED3 gene is strongly induced and disrup-
tion of AtNCED3 results in a decreased ABA level leading
to higher transpiration rate in the mutant Arabidopsis
plants (Iuchi et al. 2001). In contrast, overexpression of an
NCED gene leads to higher levels of ABA accumulation
and decrease in transpiration (Schwartz et al. 1997;Tan et al.
1997; Thompson et al. 2000; Iuchi et al. 2001; Schwartz, Qin
& Zeevaart 2003). For catabolism, CYP707A1 to A4 genes
encoding 8′-hydroxylase play a key role in ABA oxidation
(Kushiro et al. 2004; Umezawa et al. 2006). Genetics analysis
showed that cyp707a3-1 mutant contained higher ABA
levels, showed decreased transpiration rate, leading to
drought-tolerant phenotype (Umezawa et al. 2006).

For stomatal control, guard cell turgor is a major param-
eter that is regulated by ionic fluxes across the cell mem-
branes through K+ and anion channels. These ion channels
in guard cells thus become the major targets for regulation
by a number of environmental factors such as light/dark,
drought, CO2 levels and so on. In the case of drought, ABA
serves as a primary chemical signal that induces stomatal
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closure through second messengers such as reactive oxygen
species, nitric oxide, Ca2+, followed by activation and inac-
tivation of protein kinases/phosphatases that further target
the ion channels (Schroeder & Hagiwara 1989; Grabov &
Blatt 1998, 1999; Hamilton et al. 2000; Pei et al. 2000;
Garcia-Mata & Lamattina 2001; Garcia-Mata et al. 2003;
Sokolovski et al. 2005; Negi et al. 2008; Vahisalu et al. 2008,
2010; Ward, Maser & Schroeder 2008; Lee et al. 2009; Chen
et al. 2010; ). The most recent model that depicts signalling
pathway from ABA to stomatal closure will be discussed in
the later sections.

ABA-regulated stomatal closure in
pathogen response

The stomatal closure not only leads to water conservation
during drought but also serves as a defence mechanism
in preventing pathogen invasions. Recently, studies have
demonstrated that ABA also plays an important role in
pathogen response, and the signalling pathways overlap sig-
nificantly between pathogen resistance and abiotic stress
tolerance. In addition to ABA action in stomatal closure
that limits pathogen access, this hormone affects pathogen
responses by interacting with other hormones associated
with plant defence mechanisms (Anderson et al. 2004;
Melotto et al. 2006; Asselbergh, De Vleesschauwer & Hofte
2008; Melotto, Underwood & He 2008; Mosher et al. 2010).

Plants have innate physical and biochemical barriers
that effectively protect them from a variety of pathogens.
However,most pathogens have mechanisms that allow them
to overcome or circumvent plant mechanical barriers,
including the cell wall, leading to successful infection in
plants. A pathogen entrance to plant interior is the first
step in the effective establishment of infection. Some fungal
pathogens can directly penetrate plant tissue by applying
mechanical force or utilizing cell-wall degrading enzymes,
but bacterial pathogens require passage to enter plant tissue
(Mendgen, Hahn & Deising 1996; van Kan 2006; Ton et al.
2009). Generally, bacterial pathogens employ natural open-
ings to enter into plant tissues, such as stomata, hydathodes
and lenticels (Melotto et al. 2008).Among these, the stomata
are a major entry point for bacterial pathogens. In addition
to earlier studies, Melotto et al. (2006) also showed that
stomatal closure directly restricts bacterial pathogenic inva-
sion of plants. The pathogen-associated molecular pattern
(PAMP) is recognized by plants and triggers plant innate
immunity (Jones & Dangl 2006).Among the responses trig-
gered by PAMPs is stomatal closure that restricts pathogen
entrance (Melotto et al. 2006).By using ost1 mutant that fails
to respond to ABA (Mustilli et al. 2002) and ABA-deficient
aba3-1 mutant (Leon-Kloosterziel et al. 1996), studies
showed that stomatal closure is not induced by PAMPs in
these mutants (Melotto et al. 2006). It is thus proposed that
PAMP-induced stomatal closure requires active ABA signal
transduction pathway in guard cells. Therefore, ABA has a
positive effect on disease resistance through induction of
stomatal closure.

ABA regulation of pathogen response through
interplay with other hormones

A number of plant hormones, including salicylic acid (SA),
jasmonic acid (JA) and ethylene, function in pathogen
defence mechanisms. Typically, SA is associated with
systemic acquired resistance (SAR) and resistance to
biotrophic pathogens, whereas JA and ethylene are associ-
ated with induced systemic resistance (ISR) and resistance
to necrotrophic pathogens (Alvarez et al. 1998; Glazebrook
2005; Pieterse et al. 2009). ABA is connected to the SA, JA
and ethylene signalling pathways, and acts either synergis-
tically or antagonistically with these hormones (Anderson
et al. 2004; Mosher et al. 2010).

Studies suggest that ABA negatively regulate SA-
mediated pathogen responses. For instance, overexpression
of NCED genes, including NCED2, NCED3 and NCED5,
strongly induced accumulation of ABA and conferred a
significant increase of bacterial growth (Fan et al. 2009). In
addition, the Arabidopsis mutant aba3-1, which is impaired
in ABA biosynthesis, showed a resistant phenotype to
Pseudomonas syringae infection, whereas exogenous treat-
ments with ABA led to increased susceptibility to virulent
bacteria (Fan et al. 2009). ABA also suppressed the induc-
tion of SAR by inhibition of SA-induced gene expression
(Yasuda et al. 2008). Collectively, the available results
suggest that ABA appears to suppress SA-dependent
defence mechanisms.

The negative effect of ABA on JA- and ethylene-
dependent pathogen resistance has been previously
assessed at gene transcription level (Anderson et al. 2004).
The typical JA and ethylene marker genes, including
PDF1.2 and CHI, were induced more strongly in ABA-
deficient mutants than in wild-type Arabidopsis, whereas
these genes were down-regulated by exogenous ABA treat-
ment (Anderson et al. 2004). Additionally, ABA suppressed
ethylene response in rice (Xiong & Yang 2003). The
OsMPK5 gene encoding mitogen-activated protein kinase
is induced by ABA and biotic and abiotic stresses (Xiong &
Yang 2003). Its overexpression enhances ABA accumula-
tion, but reduces ethylene levels, and renders plants more
susceptible to the fungal pathogen Magnaporthe oryzae and
the bacterial pathogen Burkholderia glumae (Xiong &
Yang 2003; Asselbergh et al. 2008).

ABA SIGNAL TRANSDUCTION

ABA receptor

Earlier studies showed that ABA-binding proteins are
present in several locations in the cell, such as plasma mem-
brane and cytosol, suggesting that more than one ABA
receptor may exist (Pedron et al. 1998; Zhang et al. 2001;
Kitahata et al. 2005). Indeed, several ABA receptors have
been identified so far, although the function of some recep-
tors remains to be further demonstrated (Shen et al. 2006;
Liu et al. 2007; Christmann & Grill 2009; Ma et al. 2009;
Pandey, Nelson & Assmann 2009; Park et al. 2009). Here we
focus on the pyrabactin resistance (PYR)-like (PYL)/
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regulatory component of ABA receptor (RCAR) family
ABA receptors that have been shown to functionally
connect with the other known ABA regulators such as the
PP2C-type protein phosphatases and the SnRK2-type
protein kinases.

PYR/PYL or RCAR belongs to the family of the star-
related lipid-transfer (START) protein and is homologous
to the Bet v onefold protein (Ma et al. 2009; Park et al. 2009;
Santiago et al. 2009b). We refer to this family of proteins
as PYL/RCAR in this review. In the chemical genetics
approach, pyrabactin was used as an ABA analogue to
screen for mutants that were insensitive to this compound
and genes encoding PYR/PYL proteins were isolated (Park
et al. 2009). In a different approach, Ma et al. (2009) identi-
fied RCARs as direct interactors of ABI2. In both cases,
ABA was shown to directly bind PYL/RCAR proteins, thus
suggesting that they function as ABA receptors. Using
triple (pyr1:pyl1:pyl4) and quadruple (pyr1:pyl1:pyl2:pyl4)
mutants, genetic analysis demonstrated that these mutants
displayed ABA insensitivity in germination, root growth
and stomatal closure. However, ABA sensitivity was unal-
tered in a pyr1 single mutant due to genetic redundancy,
because the PYR/RCAR protein family includes 14
members (Park et al. 2009; Nishimura et al. 2010). Earlier
genetic analysis provides crucial information for connecting
PYL/RCAR function to the downstream components in the
signalling process. Because ABI-like protein phosphatases,
i.e. A-type PP2Cs, are negative regulators of ABA response
(Gosti et al. 1999; Merlot et al. 2001; Schweighofer, Hirt &
Meskiene 2004; Wasilewska et al. 2008) and PYL/RCAR
proteins directly inhibit phosphatase activity of PP2Cs in
vitro (Ma et al. 2009; Szostkiewicz et al. 2010), it is concluded
that these PP2Cs are direct target of ABA receptors in the
signalling pathway.

In addition, structural analyses (Melcher et al. 2009; Miya-
zono et al. 2009; Nishimura et al. 2009; Yin et al. 2009; San-
tiago et al. 2009a) show that PYL/RCAR proteins harbour a
ligand-binding pocket that may play a role as an ABA
binding site. In the yeast two-hybrid assays, some interac-
tions between PYL/RCARs and their target PP2Cs are
enhanced by ABA; whereas other interactions are indepen-
dent of ABA (Ma et al. 2009; Santiago et al. 2009b). These
results suggest that two potential models can account for
the function of ABA in the PYL/RCAR complexes. One
explanation is that ABA binding induces structural changes
in PYR/PYLs and ABA-bound PYR/PYL can interact
tightly with PP2Cs. The other explanation is that ABA did
not affect the structure of any proteins, and binds only to
the PYR/PYL-PP2C complex. The structural analysis of
PYR1, PYL1 and PYL2 demonstrated that PYR/PYLs bind
to ABA and create a surface that recognizes PP2Cs and
forms a complex with PP2Cs (Melcher et al. 2009; Miyazono
et al. 2009; Yin et al. 2009). In this complex, ABA-bound
PYR/PYLs interact with a phosphatase domain of PP2Cs
and inhibit PP2C activity by covering the active sites of
PP2Cs. Additionally, the tryptophan residue of PP2C stabi-
lizes this ABA-PYR/PYLs-PP2C complex and makes
contact with ABA (Melcher et al. 2009; Miyazono et al.

2009; Yin et al. 2009). These results suggest that PYR/PYLs
inactivation of PP2Cs is mediated by ABA (Ma et al. 2009;
Park et al. 2009; Santiago et al. 2009b; Szostkiewicz et al.
2010), consistent with a study showing that the binding
affinity between RCAR1 (PYL9) and ABA was enhanced
approximately 10-fold by the presence of ABI2 (Ma et al.
2009). Collectively, the genetic, physiological and structural
analyses strongly support the hypothesis that PYR/PYLs/
RCARs are bona fide ABA receptors.

SnRK2 kinases and PP2C A-type phosphatases

Protein phosphorylation and dephosphorylation events in
ABA signalling involve several protein kinases and phos-
phatases in plants (Lee et al. 2009; Vlad et al. 2009; Geiger
et al. 2009). The first reported SnRK2-type kinase was
PKABA1, which was isolated from wheat (Anderberg &
Walker-Simmons 1992).The activity of PKABA1 is induced
by ABA and is involved in the phosphorylation of the tran-
scription factor TaABF1 (Anderberg & Walker-Simmons
1992; Johnson et al. 2002). Studies indicate that
TaABF1suppresses ABA-induced gene expression in wheat
and barley (Gomez-Cadenas et al. 1999; Johnson, Shin &
Shen 2008). In a subsequent work, an ABA-activated
serine-threonine protein kinase (AAPK) was identified in
Vicia faba, using gel kinase assays (Li et al. 2000). AAPK is
also an SnRK2-type kinase and is involved in stomatal
closure via the regulation of plasma membrane slow anion
channels (Li et al. 2000). An orthologue of AAPK in Ara-
bidopsis was identified as Open Stomata 1 (OST1) by a
genetics approach (Mustilli et al. 2002). The kinase activity
of OST1 is prompted by ABA, but its expression is not
regulated by ABA (Mustilli et al. 2002; Yoshida et al. 2002).
The ost1 mutant exhibits an ABA-insensitive phenotype
and increases leaf water loss by keeping the stomata open,
even under drought conditions (Mustilli et al. 2002; Yoshida
et al. 2002). The OST1 also interacts with and phosphory-
lates ABF2 and ABF3, which bind to ABA-responsive
elements (ABRE) and control ABA-regulated gene
expression (Furihata et al. 2006; Fujii et al. 2009; Fujita et al.
2009; Sirichandra et al. 2010). In addition to OST1, two
other SnRK2-type kinases, SnRK2.2 and SnRK2.3, are
induced by ABA (Boudsocq, Barbier-Brygoo & Lauriere
2004). A snrk2.2/snrk2.3 double mutant shows ABA-
insensitive phenotypes in seed germination and root
growth, whereas each of the single mutants has no distin-
guishable phenotype, due to functional redundancy (Fujii,
Verslues & Zhu 2007). Each of these SnRK2-type kinases is
involved in ABA signalling and is activated by ABA. A
triple mutant, lacking SnRK2.2, SnRK2.3 and OST1, shows
severe phenotypes indicative of defects in ABA signalling
and water stress responses (Fujii & Zhu 2009; Fujita et al.
2009; Nakashima et al. 2009).The SnRK2.2 and SnRK2.3, as
well as OST1, thus function as positive regulators of ABA
signalling.

Genetic evidence revealed that A-type PP2Cs, such as
ABI1 and ABI2, are negative regulators of ABA signalling
in Arabidopsis (Gosti et al. 1999; Merlot et al. 2001;
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Wasilewska et al. 2008; Rubio et al. 2009). Additionally,
mutants in HAB1, HAB2, AHG1 and PP2CA were identi-
fied in seed germination screen as hypersensitive to ABA
(Nishimura et al. 2004; Saez et al. 2004, 2006; Kuhn et al.
2006; Robert et al. 2006; Yoshida et al. 2006b; Rubio et al.
2009). The PP2C functions related to ABA were initially
suggested by the dominant mutants abi1-1 and abi2-1,
which were associated with an ABA-insensitive phenotype
in seed germination, seedling growth and stomatal closure
(Koornneef, Reuling & Karssen 1984; Finkelstein & Som-
erville 1990; Leung, Merlot & Giraudat 1997; Allen et al.
1999). These dominant mutants appear to have a gain of
function effect to make the protein phosphatases constitu-
tively active, thereby leading to ABA insensitivity, a pheno-
type opposite to the loss-of-function mutants. The A-type
PP2Cs function with certain degree of specificity and redun-
dancy. While each mutant displays detectable ABA hyper-
sensitivity, some double mutants show a more profound
hypersensitive phenotype to ABA as compared with single
mutants (Merlot et al. 2001; Rubio et al. 2009).

The PP2C–SnRK2 relationship

Several studies demonstrate functional and physical inter-
actions between PP2C A-type phosphatases and SnRK2-
type kinases. Earliest indication of such interactions came
from a study by Yoshida et al. (2006a) who identified a
physical interaction between the ABI1 and ABI2 proteins
and SnRK2.6/OST1. More recent studies have established
several SnRK2–PP2C interactions that clearly function in
ABA signalling (Yoshida et al. 2006a; Fujii et al. 2009; Lee
et al. 2009; Umezawa et al. 2009; Vlad et al. 2009). For
example, the interaction of A-type PP2Cs with OST1 plays
a role in ABA-induced stomatal closure through the control
of phosphorylation status and activity of the SLAC1 anion
channel in guard cells (Lee et al. 2009; Geiger et al. 2009).
The physical interaction between the PP2Cs and OST1
renders inactivation of OST1 kinase and down-regulation
of the SLAC1 channel required for stomatal closure. The
same interactions between PP2Cs and SnRK2s also func-
tion in ABA-induced gene expression (Yoshida et al. 2006a;
Nishimura et al. 2010). In this context, studies have estab-
lished that PP2Cs, including ABI1 and PP2CA, inactivate
OST1 by physical interaction as well as dephosphorlyation
(Fujii et al. 2009; Lee et al. 2009; Umezawa et al. 2009).

The triple mutant abi1-2/hab1-1/pp2ca-1 exhibits consti-
tutive activation of SnR2.2, SnRK2.3 and OST1 (Fujii et al.
2009), indicating that the ABA-dependent activation of
SnRK2-type kinases results from removal of the inhibitory
effect of PP2Cs. Hubbard et al. (2010) suggests that the
earliest processes occurring in the ABA signal transduction
pathway comprise the interaction among PYL/RCARs,
PP2Cs and SnRK2s. The interaction between PP2C (nega-
tive regulator) and SnRK2 (positive regulator) causes
inactivation of SnRK2 and suppression of the signalling
pathway. The ABA-dependent (and sometimes ABA-
independent) binding of PYL/RCARs with the PP2Cs
breaks the physical interaction and inhibition of SnRK2s by

PP2Cs, leading to activation of SnRKs and de-repression of
the signalling pathway (Fujii et al. 2009; Lee et al. 2009; Ma
et al. 2009; Park et al. 2009; Umezawa et al. 2009).

ABA signalling to ion channel regulation and
stomatal closure

ABA-induced stomatal closure involves regulation of
several ion channels at the plasma membrane and tonoplast
(Schroeder, Kwak & Allen 2001a). Typically the S-type
anion channels and outward K-channels are activated by
ABA, whereas inward K+ channels are inactivated, leading
to net ionic efflux and decrease in guard cell turgor
(Schroeder et al. 2001b; Nilson & Assmann 2007;Ward et al.
2008; Wasilewska et al. 2008; Kim et al. 2010). When ABA
levels increase upon drought or other stress conditions,
anion efflux via the anion channels induces depolarization
and activation of outward K-channels (Ward et al. 2008;
Kim et al. 2010). Reduced ionic concentration in the cell
causes water efflux and reduces guard cell volume, thereby
leading to stomatal closure (Ward, Pei & Schroeder 1995;
Wasilewska et al. 2008).

The ABA signalling components ABI1 and ABI2 and
OST1/AAPK have long been implicated in the regulation
of guard cell ion channels (e.g. Pei et al. 1997; Li et al. 2000).
In the context of current understanding of ABA signalling
described previously, a model is proposed to connect
ABA signal to ion channel regulation and stomatal closure
(Fig. 1). Normally, the levels of ABA and PYL/RCAR pro-
teins are low. The A-type PP2C phosphatases bind to the
SnRK2-type kinases and inhibit their activity. The SLAC1
and other anion channels may be dephosphorylated and
their activity remains low. In response to drought or patho-
gen or other stress factors, ABA levels are up-regulated to
reach certain threshold that bind to PYL/RCAR-type
receptors and enhances the interaction between PYL/
RCAR with PP2Cs, thereby activating SnRK2s that in turn
interact with and phosphorylate SLAC1 and other channels
resulting in activation of the channels and efflux of the
anions. Depolarization of guard cell membrane activates
outward K-channels leading to drop in guard cell turgor
and stomatal closure (Pei et al. 1997; Lee et al. 2009; Geiger
et al. 2009, 2010). Through stomatal closure, the ABA-
induced signalling pathway intersects with both abiotic
stress factors (e.g. drought) and biotic stress factors (such as
pathogen).

Concluding remarks

The plant hormone ABA activates a complex signalling
network that regulates numerous physiological processes
including seed dormancy, development, and responses to
biotic and abiotic stresses. We discuss recent literature
and attempt to place ABA signalling in the crossroads of
biotic and abiotic stress responses. Although the crosstalk
between the signalling pathways may be too complex to
dissect at this point, it is certain that ABA-induced stomatal
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closure serves as a centre stage for such crosstalk between
biotic and abiotic stress signals. On one hand, stomatal
closure functions to conserve water in response to abiotic
stress such as drought; on the other hand, closed stomata act
as a barrier for pathogen invasion. In both cases, ABA
signalling pathway is critical for integrating signals to cellu-
lar responses. In this regard, recent work on the signalling
mechanism in response to ABA is particularly relevant to
agriculture as it provides insights into molecular events that
function in both pathogen resistance and abiotic stress tol-
erance. The molecular components in ABA signalling,
including PYR/PYL/RCAR, PP2Cs, SnRKs and SLAC1
channel, will be tentative targets for genetic engineering of
stress-tolerant crops. They also provide a starting point for
further dissecting the complexity of the signalling events.
For instance, there are 14 members of PYR/PYL/RCAR
receptors, 6–9 members of the A-type PP2Cs and at least 3
members of the SnRK2s involved in ABA signalling.There-
fore, more than 200 possible combinations exist to form
different PYL/RCAR-PP2C-SnRK2 complexes; each com-
bination may regulate the same or different downstream
targets depending on factors such as cell type, ABA con-
centrations and subcellular locations of the targets, result-
ing in enormous complexity in fine-tuning of the regulation.

Future research on this fine-tuning of signalling pathways
will help us further understand crosstalk between biotic and
abiotic stress responses.
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