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Alteromonas sp. strain SN2, able to metabolize polycyclic aromatic hydrocarbons, was isolated from a crude
oil-contaminated sea-tidal flat. Here we report the complete 4.97-Mb genome sequence and annotation of strain
SN2. These will advance the understanding of strain SN2’s adaptation to the sea-tidal flat ecosystem and its
pollutant metabolic versatility.

Members of the genus Alteromonas are increasingly recog-
nized as globally distributed heterotrophic marine bacteria,
having a copiotrophic way of life as an r-strategist, i.e., they can
grow rapidly when a new carbon source, such as crude oil, is
released into marine habitats (6, 10). Thus, it may be antici-
pated that Alteromonas species are functionally important in
the recovery of marine habitats from pollution. Alteromonas sp.
strain SN2 was isolated from a sea-tidal flat, and it was shown
to be responsible for the in situ degradation of polycyclic aro-
matic hydrocarbons (PAHs) in crude oil-contaminated marine
sediment (H. M. Jin, J. M. Kim, S. H. Lee, E. L. Madsen, and
C. O. Jeon, submitted for publication). Here we report the
complete genome sequence and annotation of strain SN2.

This genomic sequence was determined using the Roche/454
technology. The total sequence (642 Mb [130-fold coverage]
with 1,536,491 paired-end reads containing 5- to 8-kb inserts)
was generated from the GS FLX Titanium system, and the
resulting reads were assembled initially into 12 large scaffolds,
including 72 contigs, using the Newbler program. All the in-
trascaffold and interscaffold gaps were closed by sequencing
PCR products. The Phred/Phrap/Consed software (1, 2, 4) was
used for sequence assembly and quality assessment. Illumina
sequencing data were used to correct potential homopolymeric
errors, and the final whole-genome sequence was further val-
idated by Sanger sequencing of uncertain regions such as
mononucleotide runs and low-quality/depth segments. The
complete sequence was submitted to the NCBI’s Prokaryotic

Genomes Automatic Annotation Pipeline (PGAAP) for anno-
tation. Genes encoding tRNAs and rRNA operons were de-
termined by tRNAscan-SE (9) and RNAmmer 1.2 (8), respec-
tively.

Alteromonas sp. strain SN2 has a circular chromosomal ge-
nome of 4,972,148 bp with a G�C content of 43.5% and no
plasmids. The genome contains 4,355 predicted protein-coding
sequences, 64 tRNA genes, 5 complete rRNA loci, and 8 non-
coding RNAs. The coding density was 87.99%, with an average
gene length of 976 bp. Fifteen putative genomic islands (GIs)
were identified from the genome sequence using IslandViewer
(5); the largest genomic island (with 60 protein-coding genes)
harbored a PAH-degrading gene cluster, which was expressed
during PAH biodegradation (Jin et al., submitted). The pres-
ence of phage remnant-like transcription regulator AlpA
(AMBT_20760) in GI-2, GI-9, and GI-12 suggested active
phage invasion into the genome of strain SN2. The presence of
66 transposases and 13 phage integrases, scattered throughout
the genome, also supported the likelihood of active genetic
rearrangement of strain SN2’s genome. Twenty-one dioxyge-
nase genes, known to be essential for metabolizing recalcitrant
organic compounds (3, 7), were present in the genome. This
dioxygenase frequency was significantly higher than those
found in the genomes of other sequenced Alteromonas strains
(AltDE [11 dioxygenase genes] and ATCC 27126 [8 dioxyge-
nase genes] [6]) and likely indicates strain SN2’s high versatility
in pollutant metabolism.

Nucleotide sequence accession number. The complete ge-
nome sequence of strain SN2 has been deposited in GenBank
under accession no. CP002339.
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