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a b s t r a c t

This study presents an efficient incremental/decremental approach for big streams based on Kernel
Ridge Regression (KRR), a frequently used data analysis in cloud centers. To avoid reanalyzing the whole
dataset whenever sensors receive new training data, typical incremental KRR used a single-instance
mechanism for updating an existing system. However, this inevitably increased redundant computational
time, not to mention applicability to big streams. To this end, the proposed mechanism supports incre-
mental/decremental processing for both single andmultiple samples (i.e., batch processing). A large scale
of data can be divided into batches, processed by a machine, without sacrificing the accuracy. Moreover,
incremental/decremental analyses in empirical and intrinsic space are also proposed in this study to
handle different types of data either with a large number of samples or high feature dimensions, whereas
typical methods focused only on one type. At the end of this study, we further the proposedmechanism to
statistical Kernelized Bayesian Regression, so that uncertainty modeling with incremental/decremental
computation becomes applicable. Experimental results showed that computational timewas significantly
reduced, better than the original nonincremental design and the typical single incremental method.
Furthermore, the accuracy of the proposedmethod remained the same as the baselines. This implied that
the system enhanced efficiency without sacrificing the accuracy. These findings proved that the proposed
method was appropriate for variable streaming data analysis, thereby demonstrating the effectiveness of
the proposed method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Ridge regression extends linear regression techniques, where a
ridge parameter is imposed on the objective function to regularize
and prevent a model [1] from overfitting. Such regularization uses
L2 norm, or Euclidean distance, as the criterion for constraining
the searching path of objective functions. Kernel Ridge Regression
(KRR) further advances ridge regression by mapping feature space
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E-mail address: bo-wei.chen@monash.edu (B.-W. Chen).

into hyperspace with the use of kernel functions, for example,
polynomial functions andRadial Basis Functions (RBFs). Inmachine
learning, KRR and Support Vector Machines (SVMs) have been
widely used in pattern classification, especially in recent decen-
tralizedwireless sensor networks and computing platforms for the
Internet of Things (IoTs).

Although KRR has a closed-form solution, which involves the
inverse of matrices, calculating these inverse matrices degrades
computational speeds [2]. Literature reviews [1] showed that the
complexity of KRR [3] was as high as O(N3), whereas that of SVMs
was O(N2), in which N stands for the number of instances in data.
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Fig. 1. Data pooling in sink nodes for wireless sensor networks.

Such a characteristic is a burden on cloud servers, which consume
too much power for computation, not to mention online stream-
ing data analysis for the IoTs [4]. The source nodes can rapidly
collect information and transmit it to a fusion center, or a sink
node [5,6] (see Fig. 1), which is designed for data pooling [7]. The
massive amount of streams may deplete computational resources.
This requires either distributed processing [8,9] or incremental
analysis [10] to deal with big streams.

Unlike distributed processing, incremental analysis allows the
system to add new training samples and to update itself without
rescanning and reanalyzing existing datasets [11]. This is because
incremental algorithms can reserve earlier calculation results for
updating the system when new training samples arrive in the
future. To enable incremental updates, the entire mechanism in-
volves mathematical equations with differential forms. Further-
more, based on the equations, incremental mechanisms can be
classified into two types. One is single incremental (i.e., single-
instance incremental), and the other is multiple incremental
(i.e., multiple-instance incremental, or equivalently batch incre-
mental). They are both conducive to relief of computational loads.

When the size of data is too large and far beyond the capa-
bility of one machine, especially when the memory space can-
not accommodate the entire data at once, incremental analysis
is a feasible solution. As cloud computing for the IoTs receives
significant attention in recent years, more and more incremental
analyses [12–21] have been devoted to this research area. Cauwen-
berghs and Poggio [12] established a milestone for kernelized
learning as they discovered the equilibrium between existing La-
grangianmultipliers andnewly added ones. A differential formwas
derived from the cost function of SVMs and the Karush–Kuhn–
Tucker (KKT) [13] conditions. Such a differential form supported
single incremental and decremental learning. The derivation was
shown in a subsequent study [14]. A recursive procedure was
introduced to update the matrix formed by the original support
vectors and the kernel matrix when a single instance was changed.
The authors also devised a strategy called ‘‘bookkeeping’’, or the
accounting strategy mentioned in [15], to determine the largest
increment/decremental amount of existing Lagrangian multipliers
while maintaining the equilibrium. The model by Cauwenberghs
and Poggio has inspired subsequent studies, for example [14,15],
and [16]. Laskov et al. [15] summarized the methodology devel-
oped in [12] by presenting a systematic analytical solution. Such a
solution explicitly and clearly elaborated the changes in Lagrangian
multipliers with respect to three cases: Unbounded support vec-
tors, bounded support vectors, and nonsupport vectors. Each vec-
tor was associated with one Lagrangian multiplier. Furthermore,

they also presented recursive matrix updates and matrix decom-
position that were conducive to incremental/decremental matrix
computation. Karasuyama and Takeuchi [16] advanced the ap-
proach proposed by [12] and developed a strategy for multiple in-
cremental/decremental learning. Multiple incremental and decre-
mental processing were combined together during the update of
the system, without being separately executed. Karasuyama and
Takeuchi simplified the bookkeeping strategymentioned in [12] by
searching the shortest and easiest path when existing Lagrangian
multipliers were changed. The definition of the path in their work
represented a series of increment/decremental changes in the val-
ues of existing Lagrangian multipliers.

For KRR, incremental and decremental solutions become easier
when compared with those of SVMs, because KRR has a closed-
form solution. Recent works, such as [17,18] and [1], were ex-
amples for single-instance incremental regression. Based on ker-
nel concepts, Engel et al. [17] developed a kernel recursive least
squares algorithm, or incremental kernel regression. Their funda-
mental ideawas equivalent to ordinary least squares (OLS) or linear
least squares in statistics, but performed in hyperspace. The same
algorithmwas employed by Vaerenbergh et al. [18]. They furthered
incremental kernel regression and integrated it into uncertainty
analyses. However, no discussion on empirical-space or intrinsic-
space computationwasmentioned in [17] or [18]. In [1], a recursive
version of KRR was introduced. It used a single incremental mech-
anism to update the weight vectors of the cost function. Moreover,
a forgetting factor was integrated into the recursive form, where
old and new training samples had different weights.

In frequentist methodologies, linear regression assumes there
are sufficient observations. The weighting factor is calculated
based on a deterministic process. Nonetheless, unlike frequentist
concepts, Bayesian Regression concentrates on probabilistic mod-
eling and Bayesian inference [19]. Given stochastic observations
(i.e., predictor variables and dependent responses), Bayesian Re-
gression examines uncertainty of a linear system by converting
predictors and responses into statistical distributions. Posterior
distributions derived from combination of likelihood and prior
distributions are used for modeling a linear system in Bayesian
Regression. As various statistical distributions can be used for
modeling likelihood and prior distributions, resultant posterior
distributions are different.When likelihood and prior distributions
focus on Gaussian distributions, Kernelized Bayesian Regression is
equivalent to Gaussian processes [20,22]. In contrast to KRR, which
is a special case of OLS, both Kernelized Bayesian Ridge Regression
and Bayesian Ridge Regression are special cases of Bayesian Re-
gression. Incremental Kernelized Bayesian Regression is computa-
tionally intensive because it has to deal with the product of a series
of inverse matrices in the exponential form along with conditional
means and conditional covariance matrices. Quinonero-Candela
and Winther [21] proposed an incremental solution for updat-
ing the hyperparameters (i.e., means and covariance matrices) of
Gaussian distributions by devising an Expectation–Maximization
(EM) algorithmwhenmarginal likelihood distributions were com-
puted. In this study, a multiple incremental mechanism is plugged
into the updating process of Incremental Kernelized Bayesian Re-
gression.

The contributions of this study are listed as follows.

• The proposedmethod supports both incremental and decre-
mental analyses for multiple samples. A large dataset can be
divided into subsets and fed into the system batch by batch.
This enhances performance.

• The proper size of a batch for incremental and decremental
learning in intrinsic and empirical space is derived in this
article.
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• Multiple incremental and decremental analyses are inte-
grated together to update the system at the same time.
Decremental learning becomes necessary when removal of
unnecessary outliers is performed.

• The proposed mechanism furthers the earlier version
of incremental Gaussian processes by introducing incre-
mental/decremental mechanisms and batch learning. This
speeds up the uncertainty computation.

The rest of this paper is organized as follows. Section 2 intro-
duces the multiple incremental/decremental computation in in-
trinsic space for KRR, whereas Section 3 then describes the details
of computation in empirical space. Next, Section 4 extends the
proposed mechanism to Kernelized Bayesian Regression. Section
5 shows experimental results. Conclusions are finally drawn in
Section 6.

2. Incremental/decremental kernel ridge regression in intrinsic
space

KRR has two types of operationmodes. One is in intrinsic space,
and the other is in empirical space. Intrinsic space is used to
describe dispersionmatrices, also called intrinsic covariancematri-
ces, computed based on the intrinsic dimensions of samples [1,23].
In contrast, empirical space refers to dispersion matrices, or em-
pirical covariance matrices, computed based on the number of
samples [1,24].

In KRR, after feature mapping by using kernel functions φ,
intrinsic-space computation yields favorable complexity if the
number of data N is far larger than the feature dimension M .
Otherwise, empirical-space operations should be used.

Let {(xi, yi)|i = 1, . . . ,N} denote a pair of an M-dimensional
feature vector xi and its corresponding label yi, where i specifies the
indices of N training samples. The objective of KRR is to minimize
the following cost function of least squares errors (LSEs).

min
u,b

EKRR (u, b) = min
u,b

{
N∑
i=1

(
uTφ (xi) + b − yi

)2
+ ρ ∥u∥

2

}
(1)

where EKRR is the cost function,u represents a J-by-1weight vector,
φ(xi) denotes the intrinsic-space feature vector of xi, b is a bias
term, and ρ specifies the ridge parameter. Besides, T means the
conjugate operator, and ∥ · ∥

2 calculates L2 norm. Notably, J is the
degree of intrinsic space when feature vectors are transformed by
a kernel function.

Eq. (1) can be rewritten as a matrix form, i.e.,

EKRR (u, b) =
ΦTu + beT − yT

2 + ρ ∥u∥
2 (2)

where e is a row vector of all ones. Individually differentiating (16)
with respect to u and b followed by zeroing both equations gives

u =
(
ΦΦT

+ ρI
)−1

Φ
(
yT − beT

)
(3)

and

b =
1
N

(
eyT − eΦTu

)
. (4)

Notice that K = ΦTΦ instead of ΦΦT mentioned in (3). Unlike
the solution to kernel regression, i.e., u = (ΦΦT)−1Φ(yT − beT)
whereΦΦT could be singular, KRR avoids such a problemby adding
a ridge term inside. The solution to (3) and (4) can be obtained by
solving a system of linear equations.[
u
b

]
=

[
S ΦeT

eΦT N

]−1 [
ΦyT

eyT

]
(5)

where S denotes ΦΦT
+ ρI.

Based on the Schur complement theory,[
S ΦeT

eΦT N

]−1

=

[
A U
V N

]−1

=

[
M −MUN−1

−N−1VM N−1VMUN−1
+ N−1

] (6)

where

M =
(
A − UN−1V

)−1

= A−1
+ A−1U

(
N − VA−1U

)−1
VA−1

= S−1
+ S−1ΦeT

(
eeT − eΦTS−1ΦeT

)−1eΦTS−1.

(7)

This form becomes useful in the following incremental and
decremental processes as S−1 is repeatedly used in the process
rather than S.

2.1. Single incremental and decremental processes

For intrinsic space, single incremental and decremental pro-
cesses are straightforward. During the incremental phase, given a
new training sample (xc, yc), the update of (3) becomes

u [ℓ + 1] =

S[ℓ + 1]−1Φ [ℓ + 1]
(
yT [ℓ + 1] − b [ℓ + 1] eT [ℓ + 1]

) (8)

and
b [ℓ + 1] =

1
N + 1

(
e [ℓ + 1] yT [ℓ + 1] − e [ℓ + 1]ΦT [ℓ + 1]u [ℓ + 1]

) (9)

where⎧⎨⎩S[ℓ + 1]−1
=
(
S [ℓ] + φ (xc) φ(xc)T

)−1

Φ [ℓ + 1] =
[
Φ [ℓ] φ (xc)

]
y [ℓ + 1] =

[
y [ℓ] yc

]
.

(10)

In (8)–(10), ℓ denotes the current state of the system, and ℓ + 1 is
the next state. To save computation of S−1, the Sherman–Morrison
formula and Woodbury matrix identity [25] indicate that

S[ℓ + 1]−1
=
(
S [ℓ] + φ (xc) φ(xc)T

)−1

= S[ℓ]−1
−

S[ℓ]−1φ (xc) φ(xc)TS[ℓ]−1

1 + φ(xc)TS[ℓ]−1φ (xc)
.

(11)

Regarding the decremental phase, given an index r of a sample,
where r ∈ {1, . . . ,N}, a recursive form is created by considering
the rth sample:

S[ℓ − 1]−1
=
(
S [ℓ] − φ (xr) φ(xr)T

)−1

= S[ℓ]−1
+

S[ℓ]−1φ (xr) φ(xr)TS[ℓ]−1

1 − φ(xr)TS[ℓ]−1φ (xr)
.

(12)

For Φ[ℓ − 1] and y[ℓ − 1], we simply remove the corresponding
column and row from Φ[ℓ] and y[ℓ], respectively.

2.2. Multiple incremental and decremental processes

For multiple incremental and decremental processes, assume
the system is about to add |C | new samples and remove |R| existing
data. The operator |·| denotes the size. Additionally, C and R are the
sets that contain sample indices. Then, (11) and (12) respectively
become

S[ℓ + 1]−1

=
(
S [ℓ] + ΦCΦ

T
C

)−1

= S[ℓ]−1
− S[ℓ]−1ΦC

(
I + ΦT

CS[ℓ]
−1ΦC

)−1
ΦT

CS[ℓ]
−1

(13)
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and
S[ℓ − 1]−1

=
(
S [ℓ] − ΦRΦ

T
R

)−1

= S[ℓ]−1
+ S[ℓ]−1ΦR

(
I − ΦT

RS[ℓ]
−1ΦR

)−1
ΦT

RS[ℓ]
−1.

(14)

To facilitatemultiple incremental and decremental processes at
once, combination of (13) and (14) is necessary. LetΦH = [ΦC |ΦR]

represent the concatenation of all the column vectors in ΦC and
ΦR. Also denote Φ′

H = [ΦC | −ΦR]
T as the concatenation of all the

column vectors inΦC and−ΦR. Therefore, combination of (13) and
(14) becomes

S[ℓ + 1]−1

=
(
S [ℓ] + ΦCΦ

T
C − ΦRΦ

T
R

)−1

=
(
S [ℓ] + ΦHΦ′

H
)−1

= S[ℓ]−1
− S[ℓ]−1ΦH

(
I + Φ′

HS[ℓ]−1ΦH
)−1

Φ′
HS[ℓ]−1.

(15)

For Φ[ℓ + 1] and y[ℓ + 1], the system can simply remove the cor-
responding column(s) and row(s) fromΦ[ℓ] and y[ℓ], respectively.
Subsequently, new samples are appended to the end of Φ[ℓ] and
y[ℓ] to generate Φ[ℓ + 1] and y[ℓ + 1].

The batch sizes of ΦC and ΦR, i.e., |C | and |R|, can be different.
Notably, the left-hand side of the two equations in (13) and (14)
needs O(J3), whereas the inverse on the right-hand side requires
O(|C |

3) for (13) and O(|R|3) for (14), respectively [26]. To ensure
performance, when the number of samples in a batch is smaller
than the size of intrinsic-space features (i.e., |C | < J and |R| < J),
the system should perform an update if incremental and decre-
mental computation is separate. For (15), |H| should be smaller
than J . This implies a suitable batch size for time-series data, where
new samples are rapidly generated and accumulated.

3. Incremental/decremental kernel ridge regression in empiri-
cal space

According to the Learning Subspace Property in [1], the weight
vector u has the following relation between Φ and an unknown
N-dimensional vector a.

u = Φa. (16)

Combining (2) and (16) yields

E ′

KRR (a, b) =
Ka + beT − yT

2 + ρaTKa. (17)

Rearranging the equations after differentiating (17)with respect to
a and b yields

a = (K + ρI)−1 (yT − beT
)

(18)

and

b =
y(K + ρI)−1eT

e(K + ρI)−1eT
. (19)

3.1. Single incremental and decremental processes

Given a new training sample (xc, yc), the incremental phase is
listed as follows.

(K [ℓ + 1] + ρI [ℓ + 1])−1
=

[
K [ℓ] + ρI [ℓ] η:,c

ηT
:,c Kc,c + ρ

]−1

(20)

where ‘‘:’’ signifies all the training samples except the newone, and
η:,c is part of the kernel matrix only based on the new sample. For
simplicity, let Q denote K + ρI and Qc,c represent Kc,c + ρ. Then,
(20) becomes

Q−1 [ℓ + 1] =

[
Q [ℓ] η:,c

ηT
:,c Qc,c

]−1

. (21)

However, (20) does not save computational loads as the system
calculates the inverse again. According to the Sherman–Morrison
formula andWoodbury matrix identity [15,25], the inverse in (21)
can be decomposed to two states. One is the current state Q−1[ℓ],
and the other is Q−1[ℓ+1], shown as follows.

Q−1 [ℓ + 1] =

[
Q [ℓ] η:,c

ηT
:,c Qc,c

]−1

=

[
Q−1 [ℓ] + z−1G:,cGT

:,c z−1G:,c

z−1GT
:,c z−1

]
=

[
Q−1 [ℓ] 0

0 0

]
+

1
z

[
G:,c
1

] [
GT

:,c 1
]

(22)

where{
G:,c = −Q−1 [ℓ] η:,c

z = Qc,c − ηT
:,cQ

−1 [ℓ] η:,c .
(23)

Therefore, computation of the inverse in the previous state can be
reserved for the next state. The incremental forms of (18) and (19)
respectively become

a [ℓ + 1]
= (K [ℓ + 1] + ρI [ℓ + 1])−1

×
(
yT [ℓ + 1] − b [ℓ + 1] eT [ℓ + 1]

)
= Q−1 [ℓ + 1]

(
yT [ℓ + 1] − b [ℓ + 1] eT [ℓ + 1]

) (24)

and

b [ℓ + 1] =
y [ℓ + 1]Q−1 [ℓ + 1] eT [ℓ + 1]
e [ℓ + 1]Q−1 [ℓ + 1] eT [ℓ + 1]

. (25)

For the decremental phase, given an index r of a sample that is
about to be removed, where r ∈ {1, . . . ,N}, we can rearrange the
elements inQ−1, so that r lies at the bottom-right corner ofQ−1. Let
Θ, ξr , and θr respectively signify the three blocks of Q−1, shown in
(26). Besides, Θ is a matrix, ξr denotes a vector, and θr represents
a scalar. Then,

Q−1 [ℓ] =

[
Θ ξr

ξTr θr

]
=

[
Q−1 [ℓ − 1] + z−1G:,rGT

:,r z−1G:,r

z−1GT
:,r z−1

]
.

(26)

The lower part of (26) comes from (22). Comparing the four blocks
in the upper and lower parts of (22) [15] yields the following result.

Q−1 [ℓ − 1] = Θ −
ξrξ

T
r

θr

= Q−1 (1, 1) [ℓ] −
Q−1 (1, 2) [ℓ] × Q−1 (2, 1) [ℓ]

Q−1 (2, 2) [ℓ]

(27)

whereQ−1(·, ·) indicates the blocks ofQ−1. Substitution of (27) into
(24) and (25) generates decremental forms.

3.2. Multiple incremental and decremental processes

Like Section 2.2, also assume that the system adds |C | new sam-
ples and removes |R| existing data. For batch incremental learning,
(22) becomes

Q−1 [ℓ + 1] =

[
Q−1 [ℓ] + G:,CZ−1GT

:,C G:,CZ−T

Z−1GT
:,C Z−1

]
(28)

where Z and G are matrices computed based on |C | new samples.
Notably, Z is a matrix version of z in (23).

For batch decremental learning, (27) is replaced with (29).

Q−1 [ℓ − 1] = Θ − ξRθ
−1
R ξ

T
R (29)

where ξR and θR are computed based on |R| decremental samples
and the residual data. This step requires the inverse of θR. If the
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number of samples for Q−1[ℓ − 1] is smaller than |R|, direct com-
putation of Q−1[ℓ − 1] saves more time.

To integrate multiple incremental/decremental processes to-
gether, the system should remove existing data first prior to adding
new samples. Accordingly,

Q−1 [ℓ + 1] =

[
Θ − ξRθ

−1
R ξ

T
R + G:,CZ−1GT

:,C G:,CZ−T

Z−1GT
:,C Z−1

]
. (30)

4. Incremental/decremental kernelized Bayesian regression

Unlike KRR that focuses on frequentist methodologies, where
sufficient occurrences are observed, Bayesian Regression concen-
trates on uncertainty modeling. Thus, statistical distributions are
introduced in Kernelized Bayesian Regression (KBR). The observed
instances are sampled from a stochastic process that fits a statisti-
cal distribution. As Bayesian theoryworks for various distributions,
this work uses Gaussian distributions as a case study for modeling
incremental and decremental analysis.

To avoid confusion, this study uses the following notations to
describe the relation between independent variables (i.e., predic-
tors) and their conditional parameters in the subsequent functions.

• P(·|·): When the transposition operator appears in the in-
dependent variable (i.e., the first operant) of a probabilis-
tic function, the conditional parameters (i.e., the subse-
quent operants) still remain their original notationswithout
adding the transposition operator.

• N (·|·): When the transpose operator is used in the indepen-
dent variable of a normal distribution function, the subse-
quent hyperparameters reflect such a change and use the
transpose operator.

• Σ·|· or Σ·|·: The first operant in the subscript is viewed as
the independent argument of a covariance matrix function.
When there is a transposition operation, the operant dis-
plays such an operator in the notation, e.g., ΣyT|u,Φ. The
conditional operant in the subscript remains the same form
unless it is a dependent response of regression, e.g., Σu|yT,Φ

• µ·|· or µ·|·: They are based on the above-mentioned nota-
tions.

Moreover, for uncertainty modeling, b in (1) should be changed
to a random variable bi corresponding to its observed sample
(xi, yi). Consider a regression model,

yi = uTφ (xi) + bi, (31)

or in a matrix form,

y = uTΦ + b

where P(b) ∼ N (µb, Σb) and P(φ(xi) ∈ Φ) ∼ N (µΦ,ΣΦ). Besides,
µb and Σb are scalars, and the dimensions of µΦ and ΣΦ are J-
by-1 and J-by-J , respectively. Furthermore, for simplicity, assume
µb = 0. Also, assume xi and bi are independent. Thus,

µy = uTµΦ + µb
= uTµΦ

(32)

and

Σy = uTΣΦu + Σb
= uTΣΦu + σ 2

b .
(33)

Furthermore, µy and Σy are scalars, and ΣΦy = ΣΦ × u. The
sample mean and the sample covariance matrix, µΦ and ΣΦ, are
respectively

µΦ =
1
N

N∑
i=1

φ (xi)

and

ΣΦ =
1

N − 1

N∑
i=1

(φ (xi) − µΦ) (φ (xi) − µΦ)T.

For homoscedasticity, this study assumes that the covariance
between residues (i.e., bi) are the same. The intrinsic covariance
matrix and the empirical covariance matrix are respectively

Σb = E
[
(b − µb) (b − µb)

T]
= σ 2

b

and

Ψb =

⎡⎢⎣σ 2
1 0 0

0
. . . 0

0 0 σ 2
N

⎤⎥⎦ =

⎡⎢⎣σ 2
b 0 0

0
. . . 0

0 0 σ 2
b

⎤⎥⎦ = σ 2
b I.

Consequently,

ΣbT = Ψb = Σb × I.

This equation is subsequently used in (40).

4.1. Training stage

In Bayesian inference, prior information serves as a model or
function parameters to interpret the likelihood probability of ob-
served data (xi, yi). The training stage uses Bayesian inference to
estimate the posterior distribution of u, which consists of two
parts. One is the likelihood probability ‘‘P(yT|u,Φ)’’, and the other
is the prior probability ‘‘P(u)’’.

It is worth noting that the dimensions of two independent
variables should fit their joint probability, i.e., P([u yT]). Therefore,
the transpose of y is used herein.

P (u|Φ, y) =
P
(
yT|u,Φ

)
P (u)

P
(
yT|Φ

)
∝ P

(
yT|u,Φ

)
P (u)

(34)

where the marginal likelihood is

P
(
yT|Φ

)
=

∫
P
(
yT|u,Φ

)
P (u) du. (35)

The following steps establish the posterior distribution by com-
puting the likelihood and prior probabilities.

• Computation of the Likelihood Probability

As P(b) ∼ N (0, σ 2
b ) and P(φ(xi)) ∼ N (µΦ,ΣΦ), the Gaussian

distribution of the likelihood P(y|u,Φ) is N (µy|u,Φ, Σy|u,Φ) ∼

N (uTΦ, σ 2
b ) based on the following conditional expectation and

conditional covariance of a linear Gaussian system [26]. That is,

Σy|Φ = Σy − ΣyΦΣ
−1
Φ ΣΦy

= σ 2
b

(36)

and

µy|Φ = µy + ΣyΦΣ
−1
Φ (Φ − µΦe)

= uTΦ + µb
= uTΦ

(37)

where µy|Φ = µy|Φ × e, µy = µy × e, and µb = µb×e.
Besides, µy|Φ and Σy|Φ are scalars, and µy|Φ is a 1-by-N vector. Let
tr(·) denote trace operations and det(·) represent the determinant.
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Accordingly,
P (y|u,Φ)

=

N∏
i=1

P (yi|u,Φ)

=
1√

2π · det
(
Σy|u,Φ

) exp
(

−
1
2

∑
i

(
yi − µy|u,Φ

)T
Σ−1

y|u,Φ

(
yi − µy|u,Φ

))

=
1(√

2π · det
(
Σy|u,Φ

))N
exp

(
−

1
2
tr
((

y − µy|u,Φ

)T
Σ−1

y|u,Φ

(
y − µy|u,Φ

)))
=

1(√
2π · det

(
σ 2
b
))N exp

(
−

1
2
tr
((

y − uTΦ
)T (

σ−2
b
) (

y − uTΦ
)))

=
1(√

2πσ 2
b

)N exp
(

−
1

2σ 2
b
tr
((

y − uTΦ
)T (y − uTΦ

)))
.

(38)

• Computation of the Prior Probability

Theoretically, the prior probability can be any distribution. However,
such selection would result in posterior distributions without analytical
solutions [27]. This benefits no computation. As the likelihood probability
is a Gaussian distribution, we can use conjugate prior distributions to model
the system for convenience of computation. When the generated posterior
distribution and the selected prior distribution belong to the same class of
distributions, such a prior distribution is a conjugate prior distribution [28].
There is a systematic analytical model for conjugate prior distributions [29].

To generate a Gaussian posterior distribution, this study selects a Gaus-
sian prior distribution (39) for P(u) ∼ N (µu,Σu). The parameters, µu and
Σu, can be set to 0 and σ 2

u I, respectively, for simplicity. The dimensions of
them are, respectively, J-by-1 and J-by-J .

P (u) =
1√

(2π)J · det (Σu)
exp

(
−

1
2
tr
[
(u − µu)

TΣ−1
u (u − µu)

])
. (39)

• Computation of the Posterior Probability

It is worth noting that the likelihood P(y|u,Φ) is N (µy|u,Φ =

uTΦ, Σy|u,Φ = σ 2
b ), and the prior probability P(u) is N (µu,Σu). According

to Gaussian identities in [20,28–30], the posterior distribution is Gaussian.
To fit the joint probability of y and u, plugging P

(
yT|u,Φ

)
∼

N
(
yT|µyT|u,Φ

,ΣyT|u,Φ

)
= N

(
yT|µyT|u,Φ

,Ψy|u,Φ

)
into (34) yields

P (u|Φ, y) ∝ P
(
yT|u,Φ

)
P (u)

= N
(
yT|µyT|u,Φ

,ΣyT|u,Φ

)
N (u|µu,Σu)

= N
(
yT|ΦTu, σ 2

b I
)
N (u|µu,Σu)

∝ N
(
u|µu|yT,Φ

,Σu|yT,Φ

) (40)

where

Σu|yT,Φ
= Σu − ΣuΦ

(
ΦTΣuΦ + ΣbT

)−1
ΦTΣu

=
(
Σ−1

u + σ−2
b ΦΦT)−1 (41)

and

µu|yT,Φ
= µu + ΣuΦ

(
ΦTΣuΦ + ΣbT

)−1 (yT − µTy
)

= µu +

(
Σ−1

u + ΦΣ
−1
bT

ΦT
)−1

ΦΣ
−1
bT
(
yT − µTy

)
= µu + Σu|yTΦΣ

−1
bT
(
yT − µTy

)
= Σu|yT

(
Σ

−1
u|yT
µu + ΦΣ

−1
bT
(
yT − µTy

))
= Σu|yT,Φ

(
Σ−1

u µu + σ−2
b Φ(y − b)T

)
.

(42)

Moreover, µu|yT,Φ
is a J-by-1 vector, and Σu|yT,Φ

is a J-by-J matrix. Assume
that the prior information changes with time. Subsequently,

Σu|yT,Φ
[ℓ + 1]

=

(
Σ

−1
u|yT,Φ

[ℓ] + σ−2
b
(
ΦΦT) [ℓ])−1

= Σu|yT,Φ
[ℓ] − σ−2

b Σu|yT,Φ
[ℓ]

×

(
I + σ−2

b
(
ΦΦT) [ℓ]Σu|yT,Φ

[ℓ]
)−1 (

ΦΦT) [ℓ]Σu|yT,Φ
[ℓ]

(43)

where(
ΦΦT) [ℓ] =

(
ΦΦT) [ℓ − 1] + ΦHΦ′

H

and

µu|yT,Φ
[ℓ + 1]

= Σu|yT,Φ
[ℓ + 1]

(
Σ

−1
u|yT,Φ

[ℓ] µu|yT,Φ
[ℓ]

+ σ−2
b Φ [ℓ]

(
yT [ℓ] − bT [ℓ]

))
.

(44)

When existing training samples change, ΦΦT and ΦyT in (43) and (44),
respectively, should be accordingly updated. Otherwise, only prior informa-
tion is updated. The posterior probability reflects themodification in training
samples and prior information.

4.2. Predictive stage

As the training stage already generates the posterior distribution and the
uncertainty of u, the posterior predictive distribution ‘‘P((y∗)T|φ(x∗),Φ, y)’’
is then used to model the uncertainty of the predictive output. The posterior
predictive distribution can be rewritten as the marginal distribution of
‘‘P((y∗)T|φ(x∗),u)’’ and ‘‘P(u|Φ, y)’’. Let y∗ represent the scalar predictive
output of themodelwhen anM-by-1 testing sample x∗ is input. Applying the
product rule and the integral rule of Gaussian identities [30] to themarginal
distribution yields the following form.

P
((

y∗
)T

|φ
(
x∗
)
,Φ, y

)
=

∫
P
((

y∗
)T

|φ
(
x∗
)
,u
)
P (u|Φ, y) du

=

∫
N
((

y∗
)T

|φ
(
x∗
)Tu, σ 2

b

)
N
(
u|µu|y,Φ,Σu|y,Φ

)
du

∝ N
((

y∗
)T

|φ
(
x∗
)T
µu|y,Φ, σ 2

b + φ
(
x∗
)T
Σu|y,Φφ

(
x∗
))

= N
((

y∗
)T

|µ∗, Ψ ∗

)
.

(45)

Notably, although y∗ is a scalar, (45) still uses the transpose of y∗ for clar-
ity. If P((y∗)T|φ(x∗),u) follows the distribution of the training data P(yT|u,Φ)
due to the need for analytical solutions, the predictive distribution becomes
Gaussian. Accordingly,

P
((

y∗
)T

|φ
(
x∗
)
,Φ, y

)
=

1
√
2π · det (Ψ ∗)

exp
(

−
1
2
tr
(((

y∗
)T

− µ∗

)T(
Ψ ∗
)−1

((
y∗
)T

− µ∗

))) (46)

where

Ψ ∗
= σ 2

b + φ
(
x∗
)T
Σu|y,Φφ

(
x∗
)

(47)

and

µ∗
= φ

(
x∗
)T
µu|y,Φ. (48)

Moreover, µ∗ and Ψ ∗ are scalars. When existing training samples change,
Σu|y,Φ in (47) and µu|y,Φ in (48) need updates, respectively. Subsequently, a
new posterior predictive distribution is generated.

When variable prior information is involved in the update, (47) and (48)
become

Ψ ∗
= σ 2

b + φ
(
x∗
)T
Σu|y,Φ [ℓ]φ

(
x∗
)

(49)

and

µ∗
= φ

(
x∗
)T
µu|y,Φ [ℓ] . (50)

5. Experimental results

Experiments on open datasetswere carried out for evaluating the perfor-
mance. The information of these datasets is listed in Table 1. The first column
shows the name. The rest columns specify the number of classes, samples,
and dimensions, respectively. Dataset ‘‘MIT/BIH ECG’’ is available at Phys-
ioNet (www.physionet.org), and ‘‘Dorothea (DRT)’’ was downloaded from
the UC Irvine (UCI) Machine Learning Repository (archive.ics.uci.edu/ml/).
The datasets show two typical data, where both N > M and M > N are
presented, respectively.

http://www.physionet.org
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Fig. 2. KRR comparison between multiple incremental (blue), single incremental
(red) and nonincremental (green) learning with the use of the ECG dataset and the
poly2 kernel. The computational time (log10) was cumulative. The accuracy rates
were all 94.71%. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. KRR comparison between multiple incremental (blue), single incremental
(red) and nonincremental (green) learning with the use of the ECG dataset and the
poly3 kernel. The computational time (log10) was cumulative. The accuracy rates
were all 97.37%. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Attributes of the datasets.

Name #Classes #Samples #Dimensions

ECG 2 104033 21
DRT 2 800 1000000

Table 2
Settings of incremental/decremental computation.

Name Basic training size Multiple incremental/decremental size

ECG 83226 +4/−2
DRT 640 +4/−2

Fig. 4. KRR comparison between multiple incremental (blue), single incremental
(red) and nonincremental (green) learning with the use of the DRT dataset and the
poly2 kernel. The computational time (log10) was cumulative. The accuracy rates
were all 90.00%. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

The experiment used approximately 80.00% of the data for training
and 20.00% of the data for testing. Furthermore, +4 and −2 samples were
randomly selected for incremental and decremental computation at the
same time. Tables 2 and 9 summarize the incremental and decremental
settings. The algorithmic details are listed in Table 9. Ridgeswere empirically
set in the experiments. Regarding KBR settings, µu and µb were 0 and 0,
respectively. Besides, both σ 2

u and σ 2
b were set to 0.01.

Two baselines, ‘‘nonincremental analysis’’ and ‘‘single incremental algo-
rithm’’, along with the proposed method ‘‘multiple incremental approach’’
were used for comparison. In total, ten rounds of data operations (i.e., data
insertion and deletion) were evaluated, and computational time in log10
was calculated. For the nonincremental part, it recomputed the weight of
the system based on the new dataset after one round of data operations.
Regarding the single incremental part, it reanalyzed the new dataset every
time when data insertion or deletion occurred. Besides, only when one
round of data operations was complete, cumulative computational timewas
measured.

Figures 2–6 display the incremental/nonincremental results, where the
horizontal axis is the round, and the vertical axis represents the cumulative
computational time in log10. The unit was seconds. The green curve rep-
resents the nonincremental analysis, and the red curve indicates the single
incrementalmethod. The proposed approach is shown by the blue curve. For
the computational time of a single round, Tables 3–7 display the details of
single rounds, and average computational time is summarized in Table 8.
Examining the result in Table 8 reveals that the proposed mechanism could
improve the efficiency in intrinsic space by more than 3.71 times and the
performance in empirical space by more than 2.56 times, compared with
the single incremental algorithm.

As for KBR, the same dataset along with the same settings was used
for evaluation. The details are listed at the beginning of this section.
Figures 7–8 show the cumulative computational time based on the proposed

Table 3
KRR computational time (log10) based on the ECG dataset and the poly2 kernel in a single round.

#Samples 83226 83228 83230 83232 83234 83236 83238 83240 83242 83244

Multiple −0.537544 −0.665259 −0.659984 −0.635436 −0.651824 −0.645394 −0.634669 −0.622588 −0.643913 −0.623469
Single 0.047783 0.043765 0.050801 0.038683 0.040046 0.041661 0.039198 0.036630 0.042320 0.041475
None 3.376356 3.314288 3.316463 3.317598 3.315914 3.317286 3.317168 3.317430 3.326118 3.331818
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Table 4
KRR computational time (log10) based on the ECG dataset and the poly3 kernel in a single round.

#Samples 83226 83228 83230 83232 83234 83236 83238 83240 83242 83244

Multiple 4.211003 0.297297 0.314129 0.314672 0.364845 0.361343 0.334149 0.354265 0.340383 0.337915
Single 4.224946 1.058435 1.056797 1.056978 1.056486 1.059564 1.058412 1.055703 1.057832 1.061875
None 4.211003 4.214649 4.214517 4.219702 4.219394 4.224266 4.226119 4.230048 4.226973 4.241862

Table 5
KRR computational time (log10) based on the DRT dataset and the poly2 kernel in a single round.

#Samples 640 642 644 646 648 650 652 654 656 658

Multiple 3.053674 0.846649 0.720064 0.850986 0.845865 0.853454 0.851205 0.855350 0.856517 0.797779
Single 3.051355 1.373776 1.351769 1.373161 1.400000 1.426793 1.422169 1.445650 1.453737 1.452745
None 3.053674 3.196123 3.196231 3.201359 3.201729 3.206425 3.211160 3.178982 3.217578 3.217389

Table 6
KRR computational time (log10) based on the DRT dataset and the poly3 kernel in a single round.

#Samples 640 642 644 646 648 650 652 654 656 658

Multiple 0.853478 0.718077 0.856490 0.878286 0.862960 0.851657 0.903701 0.898904 0.901134 0.841226
Single 1.373330 1.348596 1.371429 1.393420 1.406572 1.424955 1.421473 1.444416 1.459492 1.454026
None 3.194155 3.198641 3.214183 3.208231 3.209122 3.213412 3.247027 3.212538 3.250765 3.228786

Table 7
KRR computational time (log10) based on the DRT dataset and the RBF in a single round.

#Samples 640 642 644 646 648 650 652 654 656 658

Multiple 0.888406 0.776181 0.852696 0.851705 0.848764 0.853636 0.852904 0.854650 0.858440 0.801611
Single 1.419054 1.394077 1.419183 1.439993 1.450303 1.468781 1.466268 1.478293 1.485936 1.487907
None 3.225958 3.218848 3.201681 3.206244 3.208604 3.207531 3.210940 3.179368 3.217160 3.218175

Table 8
KRR average computational time in a single round.

Multiple Single None Improvement (Fold)

ECG–Poly2 0.234105 1.102187 2115.546985 3.71
ECG–Poly3 2.160822 11.429962 16743.767084 4.29
DRT–Poly2 6.838521 25.827835 1597.192878 2.78
DRT–Poly3 7.234008 25.777343 1652.188852 2.56
DRT–RBF 6.997008 28.316223 1620.388448 3.05

RBFs are inapplicable to intrinsic space due to infinite dimensions. Improvement is computed based on comparison
between multiple and single incremental analyses.

Table 9
Algorithmic settings.

Name Kernel Ridge

Intrinsic-space KRR Poly2 & Poly3 0.5
Empirical-space KRR Poly2, Poly3, & RBF 0.5

RBFs are inapplicable to intrinsic space due to infinite dimensions. The radius of
RBFs is 50.00.

method and the single incremental algorithm. The detailed time is listed in
Tables 10–11. The average computational time is listed in Table 12.

6. Conclusion

This work presents an efficient incremental/decremental mechanism
for updating the weight vector of KRR functions. The proposed mechanism
combines data insertion and deletion together in the same equation, such

that operations on data modifications are performed in the same round.
This mechanism is conducive to improvement of computational loads, and
it becomes more efficient than typical single-instance incremental analysis.
Moreover, this work also presents intrinsic-space and empirical-space up-
dates. The former is suitable for the case with N > M , whereas the latter fits
the case when N < M . This study also suggests an appropriate batch size
duringmultiple incremental/decremental analyses in intrinsic and empirical
space. For intrinsic space, the mathematical model shows that the size of
each batch should be smaller than the feature dimensional size after kernel
mapping. Furthermore, in empirical space when decremental computation
is performed, the size of the residual data should be larger than that of
samples that are about to be removed. Otherwise, both situations save no
computation. Finally, this study employed the developed incremental and
decremental mechanism for KBR to speed up uncertainty calculation.

Open benchmark datasets, consisting of two typical datasets where
N>M and M>N , were used to evaluate the computational performance.
Compared with the single incremental algorithm, the computational speed
of the proposed method for KRR was enhanced by more than 3.71 times in

Table 10
KBR computational time (log10) based on the ECG dataset and the poly2 kernel in a single round.

#Samples 83226 83228 83230 83232 83234 83236 83238 83240 83242 83244

Multiple −0.433992 −0.432390 −0.386889 −0.407412 −0.425207 −0.416759 −0.411944 −0.435774 −0.419782 −0.430701
Single 0.316193 0.308310 0.304919 0.306496 0.311477 0.316939 0.309808 0.304631 0.309345 0.308108

Table 11
KBR computational time (log10) based on the ECG dataset and the poly3 kernel in a single round.

#Samples 83226 83228 83230 83232 83234 83236 83238 83240 83242 83244

Multiple 0.647582 0.670926 0.664598 0.687889 0.675405 0.656299 0.670020 0.650114 0.637448 0.647175
Single 1.385879 1.390621 1.395218 1.395784 1.387192 1.395385 1.390216 1.392410 1.401707 1.388583
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Fig. 5. KRR comparison between multiple incremental (blue), single incremental
(red) and nonincremental (green) learning with the use of the DRT dataset and the
poly3 kernel. The computational time (log10) was cumulative. The accuracy rates
were all 90.00%. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. KRR comparison between multiple incremental (blue), single incremental
(red) and nonincremental (green) learning with the use of the DRT dataset and the
RBF. The computational time (log10) was cumulative. The accuracy rates were all
90.00%. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 7. KBR comparison between multiple incremental (blue) and single incre-
mental (red) learning with the use of the ECG dataset and the poly2 kernel. The
computational time (log10) was cumulative. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

intrinsic space and by more than 2.56 times in empirical space. For KBR,
computational speed was 3.38-fold faster than the single incremental one
on average. Such findings have established the effectiveness of the multiple
incremental/decremental analyses.

Fig. 8. KBR comparison between multiple incremental (blue) and single incre-
mental (red) learning with the use of the ECG dataset and the poly3 kernel. The
computational time (log10) was cumulative. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 12
KBR average computational time in a single round.

Multiple Single Improvement (Fold)

ECG–poly2 0.380326 2.040052 4.36
ECG–poly3 4.581399 24.678768 4.39

RBFs are inapplicable to intrinsic space due to infinite dimensions.
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