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Optimal Algorithms for Finding Density-Constrained Longest and
Heaviest Paths in a Tree∗

Sung Kwon KIM†a), Member

SUMMARY Let T be a tree with n nodes, in which each edge is associ-
ated with a length and a weight. The density-constrained longest (heaviest)
path problem is to find a path of T with maximum path length (weight)
whose path density is bounded by an upper bound and a lower bound. The
path density is the path weight divided by the path length. We show that
both problems can be solved in optimal O(n log n) time.
key words: algorithms, density-constrained paths, heaviest paths, longest
paths

1. Introduction

DNA sequences are strings of four letters, A, C, G, and T.
The GC-ratio of a DNA sequence is the sum of the numbers
of C and G in the sequence divided by the length of the se-
quence. It is known that subsequences of a DNA sequence
with relatively high GC-ratios are biologically meaningful.
A promoter of a gene is a subsequence of the DNA sequence
containing the gene that facilitates the transcription of the
gene, which is usually found near the gene. Promoters are
often associated with one or more CpG islands. CpG islands
are subsequences with a high frequency of GC residues.
Therefore, identifying CpG islands (or subsequences with
certain GC ratios) of a newly found DNA sequence is an
important task in bioinformatics, which is usually done with
the help of computer programs [3], [10].

The task of locating CpG islands can be generalized
and formally formulated. Let A = ((l1,w1), . . . , (ln,wn)) be
a sequence of n pairs of reals, in which li > 0 and wi are
called length and weight, respectively. For a subsequence
((li,wi), . . . , (l j,wj)) of A with i ≤ j, its length and weight
are li + · · ·+ l j and wi + · · ·+wj, respectively, and its density
is wi+···+w j

li+···+l j
.

A subsequence of A with maximum density can be
found in O(n) time [5], [6]. These algorithms can be used
to identify CpG islands of a DNA sequence. Longest and
shortest subsequences whose density is constrained by a
lower bound can be located in linear time [3]. The problems
of finding longest and shortest subsequences with upper and
lower density bounds require Ω(n log n), and [9] gives op-
timal algorithms for the problems. When both length and
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weight are constrained with both upper and lower bounds,
longest and shortest subsequences can be computed in opti-
mal O(n log n) time [12].

The problems defined on sequences can be defined on
trees as more generalized forms. Let T be a tree with
n nodes. Each edge e ∈ T is associated with two reals
le > 0 and we, called its length and weight, respectively.
For two nodes u and v, let π(u, v) be the path between them.
The length (weight) of π(u, v) is the sum of the lengths
(weights) of the edges in it, that is, the length of π(u, v) is
l(u, v) =

∑
e∈π(u,v) le, and its weight is w(u, v) =

∑
e∈π(u,v) we.

The density of π(u, v) is defined as w(u, v)/l(u, v).
Locating the longest path of T with non-negative

weight can be done in O(n log n) time [11]. A path of T
with maximum weight can be obtained in optimal O(n log n)
time [2], and a path with maximum density can also be
found in O(n log n) time [18]. Both of these algorithms work
even if both upper and lower bound constraints are placed on
length. When the lengths are restricted to positive integers,
instead of reals, dynamic programming algorithms can be
developed as in [7], [8], [17]

Related with these problems on a tree, another two
problems are addressed in this paper. Given two reals D1

and D2, D1 ≤ D2, a path is said to be density-constrained
if its density is at least D1 and at most D2. A path of T is
called a longest (heaviest) path if its length (weight) is the
largest among the lengths (weights) of the paths in T .

Problem DCLP (density-constrained longest path):
Given a tree T and density bounds D1 and D2, find a density-
constrained longest path in T .

Problem DCHP (density-constrained heaviest path):
Given a tree T and density bounds D1 and D2, find a density-
constrained heaviest path in T .

Note that the answers to Problems DCLP and DCHP
with the same input tree and density bounds are usually not
identical. For example, consider a path with three edges,
or a sequence of three pairs, A = ((1, 1), (1, 1), (1,−1)),
and let D1 = 0 and D2 = 1. The DCLP of A is
((1, 1), (1, 1), (1,−1)) whose density is 1

3 and length is 3 and
its DCHP is ((1, 1), (1, 1)) whose density 1 and weight is 2.

Problem DCLP is a generalized version of the prob-
lems studied in [3], [9] (mentioned earlier), which are de-
fined on sequences. A restricted version of Problem DCHP
is studied in [4], which proposes an optimal O(n log n) time
algorithm for the case where T is a path, i.e., a sequence. All
of [3], [4] and [9] are motivated by the observation that con-
straining density with upper and lower bounds is necessary
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to locate good-quality subsequences of DNA sequences,
which are further analyzed to be confirmed as CpG islands.

In this paper, we present optimal O(n log n) time al-
gorithms for both of Problems DCLP and DCHP. Our al-
gorithms are based on divide-and-conquer approaches. In
Sect. 2, centroid decomposition is reviewed, which is used
as our method of partitioning trees. In Sects. 3 and 4, the
algorithms for Problems DCLP and DCHP, respectively, are
described. We conclude with final remarks and future works
in Sect. 5.

2. Centroid Decomposition

In a binary tree every internal node has degree at most three.
As in [18], an arbitrary tree can be transformed into a binary
tree by introducing edges of zero length and zero weight so
that a solution for the tree can be induced from a solution
for the binary tree. From now on, we may assume that T is
a binary tree with n nodes.

A component of T is a connected subgraph of T . Let C
be a component of T . Define |C| to be the number of nodes
in C. Deleting a node and its adjacent edges from C leaves
at most three components, C1, C2, and C3. A node is called
a centroid of C, if its removal results in that |Ci| ≤ |C|/2 for
i = 1, 2, 3. A component has one or two centroids [13]. Let
u be a centroid of C. Let C1 be the one such that |C1| ≥ |C2|
and |C1| ≥ |C3|. Let v ∈ C1 be the node that is adjacent to
u. Deleting the edge (u, v), but not the nodes, from C leaves
two components C′ = C1 and C′′ = C −C′. Then, it is easy
to verify that

1
3
|C| ≤ |C′| ≤ |C′′| ≤ 2

3
|C|. (1)

The edge (u, v) is called the wire of C, and v and u are called
the connector of C′ and C′′, respectively.

A centroid decomposition of T works as follows: If
T consists of a single node only, then the process finishes.
Otherwise, partition T into T ′ and T ′′ by locating the wire
of T and recursively decompose T ′ and T ′′. This procedure
of a centroid decomposition of T can be modeled as a rooted
binary tree, CTT . The root of CTT represents T , and CTT ′

and CTT ′′ are the left and right subtrees of the root, respec-
tively. CTT has n leaves and its height is O(log n) by (1). For
each node a ∈ CTT , let Ca be the component represented by
a, and let qa be the connector of Ca.

Assume that every edge e ∈ T is assigned a real num-
ber se, called its score. The score of a path π(u, v) is the
sum of the scores of the edges in the path, i.e., s(u, v) =
∑

e∈π(u,v) se. Consider a node a ∈ CTT . For a node u ∈ Ca,
let {〈s(u, v), v〉 | v ∈ Ca} be a list of score-destination pairs
such that s(u, v) is the score of the path from u to v. Sort the
list on increasing order of scores, and let S (u,Ca) denote it.
If u = qa, then simply S a = S (qa,Ca). For a real number
s, we define s ⊕ S (u,Ca) = {〈s + s′, v〉 | 〈s′, v〉 ∈ S (u,Ca)}.
Note that s ⊕ S (u,Ca) is also sorted.

We show that S a can be computed in linear time pro-
vided that S b for all descendants b of a in CTT have been

Fig. 1 A subtree of CTT and a diagram showing inclusions between
components.

computed and are stored for reference. Note that an un-
sorted version of S a, {〈s(qa, v), v〉 | v ∈ Ca}, can be obtained
in linear time, without the help of the descendants of a, by
traversing Ca in postorder after making Ca a rooted tree with
root qa. To get S a (sorted) in linear time, we need to merge
the sorted lists of some of the descendants of a. If a is a leaf
in CTT , then S a = ∅. Let b and c be the children of a in
CTT . Wlog, assume that qa ∈ Cb. Refer to Fig. 1. Then,

S a = MERGE(S (qa,Cb), s(qa, qc) ⊕ S c),

where MERGE(·, ·) merges two sorted lists. s(qa, qc) can
be computed in O(|Cb|) time, and since S c is available,
s(qa, qc) ⊕ S c can be obtained in O(|S c|) = O(|Cc|) time.
If Cb consists of a single node only, then S (qa,Cb) = ∅.
Otherwise, S (qa,Cb) is recursively computed: S (qa,Cb) =
MERGE(S (qa,Cc′ ), s(qa, qb′ ) ⊕ S b′ ), where b has two chil-
dren b′ and c′, and qa ∈ Cc′ .

Let L(|Ca|) be the time for computing S a. Then, L(1) =
1, and L(|Ca|) = L(|Cb|) + α|Ca| for constant α > 0. Since
1
3 |Ca| ≤ |Cb| ≤ 2

3 |Ca| by (1), we have L(|Ca|) ≤ L( 2
3 |Ca|) +

α|Ca| and L(|Ca|) ≥ L( 1
3 |Ca|) + α|Ca|. Solving these two

inequalities gives 3
2α|Ca| ≤ L(|Ca|) ≤ 3α|Ca|.

Lemma 1: i) S a for some a ∈ CTT can be computed in
linear time provided that S b for all descendants b of a in
CTT are available for reference. ii) S a for all a ∈ CTT can
be computed in O(n log n) time.

Proof: We traverse CTT in postorder and compute S a

whenever a is visited. Since CTT has O(log n) levels and
∑

a at level i |S a| ≤ n,
∑

a∈CTT
|S a| is bounded by O(n log n). �

Note: In Lemma 1, scores could be lengths, weights, or
any real-numbered values associated with edges if the score
of a path is the sum of the scores of the edges on the path.
The lemma says that a sorted list of the scores of the paths
in Ca from its connector to every node in Ca can be obtained
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in linear time if the sorted lists for the descendants of a in
CTT are available.

3. Algorithm for Problem DCLP

Our algorithm for Problem DCLP on a binary tree T is a
divide-and-conquer algorithm based on centroid decompo-
sitions.

(i) Decompose T into two components T1 and T2 by
locating the wire ê = (q, q′) of T , q ∈ T1 and q′ ∈ T2, and
deleting it.

(ii) Recursively solve the subproblems on T1 and T2.
(iii) Combine the subsolutions from (ii) to find a solu-

tion for T .
After Step (ii), we have a density-constrained longest

path π1 (π2), both of whose end nodes are in T1 (T2). In
Step (iii), we have to find a density-constrained longest path
π3 such that one of its end nodes is in T1 and the other is in
T2, and return the longest one of {π1, π2, π3} as a solution for
T .

Let M(n) be the execution time of our algorithm on
a tree with n nodes. M(1) = 1 and, for n > 1, M(n) =
M(n1) + M(n2) + Divide(n) + Combine(n), where n1 = |T1|,
n2 = |T2|, Divide(n) is time for Step (i), and Combine(n)
is time for Step (iii). By (1), 1

3 n ≤ n1, n2 ≤ 2
3 n. We have

Divide(n) = O(n) as a centroid of a tree can be found in O(n)
time [15], [19]. If we are able to show that Combine(n) =
O(n), then we have M(n) = O(n log n). In the remainder of
this section, we explain how to find π3 in linear time.

To find π3, consider two nodes, u ∈ T1 and v ∈ T2,
in Fig. 2. For π(u, v) to be a candidate for π3, it has to be
density-constrained, which states that

D1 ≤ w(u, v)
l(u, v)

≤ D2, (2)

or equivalently,

D1l(u, v) ≤ w(u, v) ≤ D2l(u, v)

as l(u, v) > 0.
Define d1(u, v) = w(u, v) − D1l(u, v) and d2(u, v) =

w(u, v) − D2l(u, v) for u ∈ T1 and v ∈ T2. Then, (2) can
be written as

d1(u, v) ≥ 0 and d2(u, v) ≤ 0. (3)

Since d1(u, v) = d1(q, u) + d1(q, v) and d2(u, v) = d2(q, u) +
d2(q, v), (3) is equivalent to

d1(q, u) ≥ −d1(q, v) and − d2(q, u) ≥ d2(q, v). (4)

On a two-dimensional plane, a point may be defined
by specifying its x- and y-coordinates. Define a blue point
bu = (x(bu), y(bu)) = (d1(q, u),−d2(q, u)) for each u ∈ T1

and a red point rv = (x(rv), y(rv)) = (−d1(q, v), d2(q, v)) for
each v ∈ T2. We say that a point (x(p), y(p)) dominates an-
other point (x(p′), y(p′)) if x(p) ≥ x(p′) and y(p) ≥ y(p′).
Then, (4) is equivalent to saying that bu dominates rv. In

Fig. 2 Finding π3 = π(u, v).

other words, π(u, v) for u ∈ T1 and v ∈ T2 is density-
constrained if and only if bu dominates rv. Hence, π3 can
be found by locating a blue-red pair of points bu and rv such
that bu dominates rv and l(u, v) is as large as possible.

We need to enumerate, for each blue point, all red
points that are dominated by it and to find one that max-
imizes the length of the path between them. Before this,
some blue points and red points that are useless may be
eliminated from further consideration.

Let B = {bu | u ∈ T1} and R = {rv | v ∈ T2}. For
bu ∈ B, x(bu) + y(bu) = d1(q, u) − d2(q, u) = w(q, u) −
D1l(q, u) − (w(q, u) − D2l(q, u)) = (D2 − D1)l(q, u). Con-
sider two blue points bu and bu′ such that bu dominates bu′ .
Since by the definition of dominance, xu ≥ xu′ and yu ≥ yu′ ,
we have xu + yu ≥ xu′ + yu′ and thus, (D2 − D1)l(q, u) ≥
(D2 − D1)l(q, u′), which implies that l(q, u) ≥ l(q, u′). In
other words, if bu dominates bu′ , then l(q, u) ≥ l(q, u′). Since
every red point dominated by bu′ is also dominated by bu and
l(q, u) ≥ l(q, u′), bu′ is useless in the sense that its elimina-
tion from B does not affect final solution.

Similarly, for rv ∈ R, x(rv) + y(rv) = −d1(q, v) +
d2(q, v) = −(D2 − D1)l(q, v). If rv dominates rv′ , then
x(rv) + y(rv) ≥ x(rv′ ) + y(rv′ ) ⇐⇒ −(D2 − D1)l(q, v) ≥
−(D2 − D1)l(q, v′) ⇐⇒ l(q, v) ≤ l(q, v′). In this case, rv

is useless and may be removed from R without affecting fi-
nal solution. Useless points in B and R can be deleted in
linear time provided that each of B and R is sorted on x-
coordinates. This is called the maxima of a point set in the
literature [14], [16].

Since both B and R have no useless points, each makes
a “downward staircase” as in Fig. 3. If the red points, in
increasing order of x-coordinates, are stored into an array,
then the red points dominated by each blue point forms
an interval or a subarray in the array. For example, in
Fig. 3, bu dominates three red points, i.e., the third, fourth,
and fifth red points. The intervals can be found by merg-
ing the two downward staircases of B and R. For each
blue point bu, find a red point rv(u) such that l(q, v(u)) =
max{l(q, v) | bu dominates rv}. This can be done by locating
the maximum of the values l(q, v) in each interval. Then,
max{l(q, u) + l(q, v(u)) | bu ∈ B} is the length of π3. Except
for sorting B and R on x-coordinates, the work for comput-
ing π3 is linear.

To obtain x-sorted lists of B and R, we use Lemma 1.
Define a score se = we − D1le for each e ∈ T . The score
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Fig. 3 Computing rv(u) for bu.

of a path is s(u, v) =
∑

e∈π(u,v) se = w(u, v) − D1l(u, v).
Then, d1(u, v) = s(u, v). S (q,T1) is a sorted list of the x-
coordinates of the blue points, and sê ⊕ S (q′,T2) is a sorted
list of the x-coordinates of the red points. Remember that
ê = (q, q′), and q and q′ are the connectors of T1 and T2, re-
spectively. By Lemma 1, S (q,T1) and S (q′,T2) can be com-
puted in O(|T1|) and O(|T2|) time, respectively. sê⊕S (q′,T2)
can also be obtained in O(|T2|) time.

The recursion of our algorithm stops and returns a path
of length −∞ when the component has only one node or
when the component consists of edges of zero length only.
The former is obvious because no further partition of the
component is possible, and the reason for the latter is that a
component without an edge of positive length does not need
to be further considered. Remember that the edges of an in-
put tree have positive lengths and edges of zero length were
added in the transformation of the input tree into a binary
tree in Sect. 2.

Our algorithm for solving Problem DCLP is in Fig. 4.
Since we have shown that Combine(n) = O(n), the follow-
ing theorem is proved.

Theorem 1: Problem DCLP on a tree with n nodes can be
solved in O(n log n) time which is optimal.

Proof: An Ω(n log n) lower bound proof is in [9]. �

4. Algorithm for Problem DCHP

Problem DCHP on T can be solved as follows.
(i) Decompose T into T1 and T2 by locating the wire

ê = (q, q′) of T , q ∈ T1 and q′ ∈ T2, and deleting it.
(ii) Recursively solve the subproblems on T1 and T2.
(iii) Combine the subsolutions from (ii) to find a solu-

tion for T .
Density-constrained heaviest paths π1 and π2 of T1 and

T2, respectively, are recursively obtained by Step (ii). In
Step (iii), π3, a density-constrained heaviest path with one
end node in T1 and the other in T2, has to be found, and the
heaviest one among πi, i = 1, 2, 3, is returned as a density-
constrained heaviest path of T . Step (i) is the same as the
one in Sect. 3. We show in the remainder of this section that

Algorithm DCLP
Input: A binary tree T with each edge e associated with we

and le, and D1 and D2 with D1 ≤ D2.
Output: 〈l, u, v〉 such that π(u, v) is a density-constrained

longest path of T and l is its length.

DCLP(T )
for each e ∈ T

se ← we − D1le.
〈l, u, v〉 ← computeDCLP(T ).

computeDCLP(T )
if T consists of a single node only or

T has no edge of positive length,
return 〈 − ∞,NULL,NULL〉.

locate the wire ê = (q, q′) of T .
decompose T into T1 and T2 so that q ∈ T1 and q′ ∈ T2.
〈l1, u1, v1〉 ← computeDCLP(T1).
〈l2, u2, v2〉 ← computeDCLP(T2).
compute S 1 ← S (q,T1) and S 2 ← S (q′,T2).
compute w(q, u) and l(q, u) for each u ∈ T1.
compute w(q′, v) and l(q′, v) for each v ∈ T2.
B← ∅.
for each 〈s, u〉 ∈ S 1 // scan S 1 in increasing order of s.

s′ ← −w(q, u) + D2l(q, u).
add blue point bu = (s, s′) into B.

R← ∅.
for each 〈s, v〉 ∈ S 2 // scan S 2 in decreasing order of s.

s← s + sê.
s′ ← w(q′, v) − D2l(q′, v) + wê − D2lê.
add red point rv = (−s, s′) into R.

eliminate useless points from B and from R.
compute v(u) for all bu ∈ B.
l3 ← −∞.
for each bu ∈ B

l′ ← l(q, u) + l(q′, v(u)) + lê.
if l′ > l3

〈l3, u3, v3〉 ← 〈l′, u, v(u)〉.
li ← max{l1, l2, l3}.
return 〈li, ui, vi〉.

Fig. 4 Algorithm for Problem DCLP.

π3 can be found in linear time, which results in an O(n log n)
time algorithm for the problem.

For u ∈ T1 and v ∈ T2, π(u, v) has to satisfy (2) to
be density-constrained. We have five cases according to the
signs of D1 and D2. Remember that D1 ≤ D2.

4.1 D1 > 0

Since both D1 and D2 are positive, it has to be w(u, v) > 0
and thus (2) can be rewritten as

w(u, v)
D2

≤ l(u, v) ≤ w(u, v)
D1

. (5)

Define h1(u, v) = w(u,v)
D1
− l(u, v) and h2(u, v) = w(u,v)

D2
− l(u, v).

Then, (5) is equivalent to h1(u, v) ≥ 0 and h2(u, v) ≤ 0. Since
h1(u, v) = h1(q, u)+h1(q, v) and h2(u, v) = h2(q, u)+h2(q, v),
we have

h1(q, u) ≥ −h1(q, v) and − h2(q, u) ≥ h2(q, v).
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Define a blue point bu = (h1(q, u),−h2(q, u)) for each
u ∈ T1, and a red point rv = (−h1(q, v), h2(q, v)) for each v ∈
T2. π(u, v) is density-constrained if and only if bu dominates
rv. Moreover, if a blue point bu dominates another blue point
bu′ , then bu′ is useless as

x(bu) + y(bu) ≥ x(bu′ ) + y(bu′ )
⇐⇒ h1(q, u) − h2(q, u) ≥ h1(q, u′) − h2(q, u′)
⇐⇒ ( 1

D1
− 1

D2
)w(q, u) ≥ ( 1

D1
− 1

D2
)w(q, u′)

⇐⇒ w(q, u) ≥ w(q, u′).

Similarly, if a red point rv dominates another red point
rv′ , then rv is useless as

x(rv) + y(rv) ≥ x(bv′ ) + y(bv′ )
⇐⇒ −h1(q, v) + h2(q, v) ≥ −h1(q, v′) − h2(q, v′)
⇐⇒ −( 1

D1
− 1

D2
)w(q, v) ≥ −( 1

D1
− 1

D2
)w(q, v′)

⇐⇒ w(q, v) ≤ w(q, v′).

As in Sect. 3, useless points in B and R can be removed
in linear time if both B and R are sorted on x-coordinates.
After removing useless points, we merge B and R to find, for
each blue point bu, a red point rv(u) such that bu dominates
rv(u) and w(u, v(u)) is as large as possible. This can be done
in linear time. Obtaining x-sorted lists of blue and red points
can be done by using Lemma 1 as in Sect. 3.

Figure 5 shows our algorithm for Problem DCHP with
D1 > 0, which runs in O(n log n) time. The algorithm, as the
algorithm in Fig. 4, stops its recursion when the component
consists of a single node or the component has no edge of
positive length.

4.2 D1 = 0

Since D1 = 0, (2) can be expressed as

0 ≤ w(u, v) ≤ D2l(u, v). (6)

Define d(u, v) = w(u, v) − D2l(u, v). Then, (6) can be rewrit-
ten as w(u, v) ≥ 0 and d(u, v) ≤ 0, which is equivalent to

w(q, u) ≥ −w(q, v) and − d(q, u) ≥ d(q, v)

as w(u, v) = w(q, u) + w(q, v) and d(u, v) = d(q, u) + d(q, v).
Define a blue point bu = (w(q, u),−d(q, u)) for each

u ∈ T1 and a red point rv = (−w(q, v), d(q, v)) for each v ∈
T2. Then, π(u, v) is density-constrained if bu dominates rv.
Hence, π3 is π(u, v) such that bu dominates rv and w(u, v)
is as large as possible. Since w(u, v) = w(q, u) + w(q, v) =
x(bu)−x(rv), maximizing w(u, v) is equivalent to maximizing
x(bu) − x(rv), which is the x-distance between bu and rv.

If bu dominates bu′ , then bu′ is useless because every
red point dominated by bu′ is also dominated by bu and
x(bu) ≥ x(bu′ ). Similarly, if rv dominates rv′ , then rv is use-
less because every blue point dominating rv also dominates
rv′ and x(rv′ ) ≤ x(rv).

As in Sect. 3, useless points in B and R can be removed
in linear time if the x-sorted lists of B and of R are avail-
able. With B and R having no useless points, we can find,

Algorithm DCHP
Input: A binary tree T with each edge e associated with we

and le, and D1 and D2 with D1 ≤ D2.
Output: 〈w, u, v〉 such that π(u, v) is a density-constrained

heaviest path of T and w is its weight.

DCHP(T )
for each e ∈ T

se ← we/D1 − le.
〈w, u, v〉 ← computeDCHP(T ).

computeDCHP(T )
if T consists of a single node only or

T has no edge of positive length,
return 〈 − ∞,NULL,NULL〉.

locate the wire ê = (q, q′) of T .
decompose T into T1 and T2 so that q ∈ T1 and q′ ∈ T2.
〈w1, u1, v1〉 ← computeDCHP(T1).
〈w2, u2, v2〉 ← computeDCHP(T2).
compute S 1 ← S (q,T1) and S 2 ← S (q′,T2).
compute w(q, u) and l(q, u) for each u ∈ T1.
compute w(q′, v) and l(q′, v) for each v ∈ T2.
B← ∅.
for each 〈s, u〉 ∈ S 1 // scan S 1 in increasing order of s.

s′ ← −w(q, u)/D2 + l(q, u).
add blue point bu = (s, s′) into B.

R← ∅.
for each 〈s, v〉 ∈ S 2 // scan S 2 in decreasing order of s.

s← s + sê.
s′ ← w(q′, v)/D2 − l(q′, v) + wê/D2 − lê.
add red point rv = (−s, s′) into R.

eliminate useless points from B and from R.
compute v(u) for all bu ∈ B.
w3 ← −∞.
for each bu ∈ B

w′ ← w(q, u) + w(q′, v(u)) + wê.
if w′ > w3

〈w3, u3, v3〉 ← 〈w′, u, v(u)〉.
wi ← max{w1,w2,w3}.
return 〈wi, ui, vi〉.

Fig. 5 Algorithm for Problem DCHP with D1 > 0.

for each bu ∈ B, rv(u) in R such that bu dominates rv(u) and
x(bu) − x(rv(u)) is as large as possible. Getting the blue and
red points sorted on x-coordinates can be done by using
Lemma 1 as in Sect. 3. In this case, we set se = we for each
e ∈ T . An algorithm, similar to the one in Fig. 5, can be
written (omitted) for this case, which also runs in O(n log n)
time.

4.3 D2 < 0

Since both D1 and D2 are negative, (2) is now equivalent to

−D2 ≤ −w(u, v)
l(u, v)

≤ −D1. (7)

Since both −D1 and −D2 are positive, the algorithm in
Sect. 4.1 can be used if, for each edge e ∈ T , its weight
we is replaced by −we.
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4.4 D2 = 0

Since D2 = 0, (2) can be written as D1l(u, v) ≤ w(u, v) ≤ 0,
which is equal to

0 ≤ −w(u, v) ≤ −D1l(u, v).

Since −D1 ≥ 0, the algorithm in Sect. 4.2 can be used after
we for e ∈ T is replaced by −we.

4.5 D1 < 0 and D2 > 0

The range [D1,D2] is divided into two subranges [D1, 0] and
[0,D2]. With [D1, 0] (D2 = 0), the algorithm in Sect. 4.4 is
applied to get π′3, and, with [0,D2] (D1 = 0), the algorithm
in Sect. 4.2 is applied to get π′′3 . π3 is the heavier one of π′3
and π′′3 .

Combining the results from Sects. 4.1–4.5, we have
completed our proof that π3 can be found in linear time,
which leads to the theorem.

Theorem 2: Problem DCHP on a tree with n nodes can be
solved in O(n log n) time which is optimal.

Proof: [4] has an Ω(n log n) lower bound proof. �

5. Conclusions

We have studied the problems of finding a longest or heav-
iest path of a tree with its density constrained by upper and
lower bounds. The problems have been shown to be solved
in optimal O(n log n) time, where n is the size of the input
tree.

One possible future work is finding a longest path of a
tree with both length and weight constrained by both upper
and lower bounds. More generally, one may develop a gen-
eral framework which can be used to solve the problems of
finding paths that optimize a certain objective function un-
der constraints on length, weight, or density, as Bernholt et
al. [1] do on sequences.
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