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A B S T R A C T

Approximate number sense (ANS) refers to the ability to approximately estimate and manipulate relatively large
numerical quantity representations. An accurate ANS is hypothesized to facilitate a precise mapping between
symbolic numbers and their corresponding magnitude and thereby can lead to an advantage in representing and
working with symbolic numbers. This is referred to as the ANS mapping theory. ANS mapping is one of the
mechanisms through which symbolic number meaning is thought to be learned. In the present study, we aimed
to examine whether the mediating role of number-to-magnitude mapping precision differs depending on the
domain of mathematics in adults and children. We found that mapping precision fully mediated the relationship
between ANS acuity and math achievement in certain domains (Quantitative Reasoning in adults and Arithmetic
in children). These results suggest that ANS acuity indirectly affects only certain domains of math achievement
through its contribution to number-to-magnitude mapping precision, and that mapping precision differentially
contributes to distinct domains of mathematics throughout development.

1. Introduction

What helps us to be good at math? There has long been much in-
terest in the foundation of mathematical achievement. Recently, the
basic ability to instantly determine and operate upon approximate
numerical quantity (i.e., approximate number sense; hereafter ANS) has
been proposed to serve as one of the critical building blocks of math
achievement (Cantlon, Platt, & Brannon, 2009; Dehaene, 1997;
Feigenson, Dehaene, & Spelke, 2004; Halberda, Mazzocco, & Feigenson,
2008). ANS has also been found in animals such as pigeons, monkeys,
fish, dolphins, etc. and also in indigenous people who do not formally
learn math (Agrillo, Piffer, & Bisazza, 2011; Brannon, Wusthoff,
Gallistel, & Gibbon, 2001; Kilian, Yaman, von Fersen, & Güntürkün,
2003; Nieder & Dehaene, 2009; Pica, Lemer, Izard, & Dehaene, 2004).
Therefore, ANS is thought to have evolved because of its importance in
hunting, gathering, and territorial fight, etc. (Halberda et al., 2008; Pica
et al., 2004). (But see Discussion for an alternative theory proposing
that discrete and continuous magnitudes may be processed holistically
due to inevitable correlations between them.)

Individual differences in ANS acuity can be expressed as a minimum
ratio of the two numerical magnitudes that are readily distinguishable

(Dehaene, 1997; Feigenson et al., 2004; Halberda & Feigenson, 2008).
This ratio is called the Weber fraction. The Weber fraction represents
one's accuracy in discriminating between two physical magnitudes
(following Weber's law indicating that discriminability depends on the
difference between magnitudes relative to the absolute magnitude of
the stimuli.) The fact that numerosity discrimination follows the We-
ber's law which is common to the discrimination of physical magnitudes
supports the hypothesis that numerosities are represented as approx-
imate, analogue mental magnitudes (Piazza, Izard, Pinel, Le Bihan, &
Dehaene, 2004; Pica et al., 2004).

Dehaene (1997) proposed that the ANS reflects the ability to men-
tally represent and manipulate numerosities on a mental number line,
an analogue mental representation of numbers. The ANS has been
proposed to serve as a foundation for mathematics and to have a cer-
ebral substrate (in an area known as the intraparietal sulcus (IPS)). In
line with this hypothesis, children's understanding of exact, numerical
symbols seems to build on their ANS (Brannon, 2006; Cantlon et al.,
2009; Dehaene, 2007), therefore having good ANS acuity may help
develop an accurate mapping between symbolic numbers and their
corresponding quantity. A large body of neuroimaging and neu-
ropsychological evidence suggests that the ANS (and the associated
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neural system in the IPS) is engaged during symbolic mathematical
problem solving (Dehaene, 1997; Halberda et al., 2008), and more
generally whenever the semantic (i.e., quantitative) meaning of sym-
bolic numbers are accessed (Dehaene, Spelke, Pinel, Stanescu, &
Tsivkin, 1999; Kiefer & Dehaene, 1997; Pinel, Dehaene, Riviere, &
LeBihan, 2001). Taken together, ANS and its neural representation in
the IPS are theorized to contribute to mathematical cognition by pro-
viding the quantitative meaning of numbers.

1.1. Investigation of the relationship between ANS acuity and math
achievement

The ‘ANS theory’ refers to the hypothesis that ANS acuity con-
tributes to higher level mathematical achievement. The literature is
mixed with reports that do (Bonny & Lourenco, 2013; DeWind &
Brannon, 2012; Feigenson, Libertus, & Halberda, 2013; Halberda, Ly,
Wilmer, Naiman, & Germine, 2012; Libertus, Feigenson, & Halberda,
2011; Libertus, Feigenson, & Halberda, 2013; Libertus, Odic, &
Halberda, 2012; Lourenco, Bonny, Fernandez, & Rao, 2012; Lyons &
Beilock, 2011; Mazzocco, Feigenson, & Halberda, 2011b; Starr,
Libertus, & Brannon, 2013) and do not (Gilmore et al., 2013; Price,
Palmer, Battista, & Ansari, 2012; Sasanguie, De Smedt, Defever, &
Reynvoet, 2012) support the ANS theory. Several recent meta-analyses
concluded that there exists a weak but significant link between ANS
acuity and math achievement (Chen & Li, 2014; Fazio, Bailey,
Thompson, & Siegler, 2014; Schneider et al., 2017). First, there have
been a number of studies reporting concurrent and predictive re-
lationships between ANS acuity and mathematical achievement in
children (Gilmore, McCarthy, & Spelke, 2007; Halberda et al., 2008;
Inglis, Attridge, Batchelor, & Gilmore, 2011; Libertus et al., 2011;
Mazzocco et al., 2011b; Starr et al., 2013). Secondly, children with
developmental dyscalculia (DD) show ANS impairment in behavioral
performance and in brain activity related to numerical processing
(Mazzocco, Feigenson, & Halberda, 2011a; Mussolin, De Volder, et al.,
2010; Mussolin, Mejias, & Noël, 2010; Piazza et al., 2010; Price,
Holloway, Räsänen, Vesterinen, & Ansari, 2007). Lastly, several studies
report that ANS training leads to improvement in ANS acuity and also
in math achievement in various populations (Hyde, Khanum, & Spelke,
2014; Käser et al., 2013; Obersteiner, Reiss, & Ufer, 2013; Park &
Brannon, 2013). These findings together support the hypothesis that
ANS may form the foundation for higher level mathematical cognition.

However, unbiased attention should be given to reports of null
correlations between ANS acuity and math achievement (Price et al.,
2012; Sasanguie et al., 2012; see De Smedt, Noël, Gilmore, & Ansari,
2013 for review) or the impact of executive function (e.g., inhibition)
on this relationship (Fuhs & McNeil, 2013; Gilmore et al., 2013; Szűcs,
Devine, Soltesz, Nobes, & Gabriel, 2014; Bugden & Ansari, 2016;
Leibovich & Ansari, 2016; Leibovich, Katzin, Harel, & Henik, 2017).
Efforts to understand the underlying cause of the discrepancy across
studies will enable a deeper understanding of the role of ANS in the
development of mathematical cognition. Recent approaches include
testing whether the contribution of ANS acuity or inhibition ability to
math achievement depends on how ANS acuity was tested (e.g., whe-
ther or not incongruent conditions were included), the domain of
mathematics (Inglis et al., 2011; Jang & Cho, 2016; Lourenco et al.,
2012; Park & Cho, 2017) and age (Inglis et al., 2011). Thus, until en-
ough evidence is accumulated to construct a complete picture, we
should cautiously hypothesize that “ANS acuity may differentially con-
tribute to certain domains of math ability depending on the stage of
development”.

1.2. Theories on how children learn the meaning of symbolic numbers

There is also controversy on how symbolic number meaning is
learned (the symbol grounding problem) and the mechanism through
which it contributes to math achievement (Leibovich et al., 2017;

Leibovich & Ansari, 2016). The ANS mapping theory states that the
semantic meaning of symbolic numbers is initially learned by being
mapped onto the ANS (Barth, La Mont, Lipton, & Spelke, 2005; Barth,
Starr, & Sullivan, 2009; Brannon, 2006; De Smedt et al., 2013; Dehaene,
2007; Izard & Dehaene, 2008; Libertus, 2015; Libertus, Odic,
Feigenson, & Halberda, 2016; Lipton & Spelke, 2005; Verguts & Fias,
2004). Based on the ANS mapping theory, a person with an accurate
ANS is expected to establish an accurate understanding of symbolic
numbers based on a precise number-to-magnitude mapping. Having an
accurate understanding of symbolic numbers will lead to better ability
to work with numbers in general. This developmental chain of
achievements, starting from good ANS acuity to accurate symbolic
number representations and then to better ability to manipulate num-
bers is believed to be one mechanism through which ANS contributes to
high level math achievement. This idea is currently debated given in-
consistent findings in the literature (Fuhs & McNeil, 2013; Gilmore
et al., 2013; Leibovich et al., 2017; Leibovich & Ansari, 2016; Price
et al., 2012; Sasanguie et al., 2012; Szűcs et al., 2014). Some studies
propose an alternative explanation of the symbol grounding problem.
According to Carey (2001), the meaning of small number words may
initially be learned via mapping through the object tracking system
(OTS) and the counting routine, followed by gradual acquisition of the
principles of the number system (e.g., ordered relations, etc.) (Carey,
2001). Afterwards, the meaning of larger number symbols is hypothe-
sized to be learned through symbol-to-symbol relations (including or-
dinality) and application of learned principles (Reynvoet & Sasanguie,
2016). Researchers in favor of this alternative account argue that re-
presentations of symbol-to-symbol order contributes to math achieve-
ment. Some studies reported that symbol-to-symbol number processing
is more efficient compared to symbol-to-ANS mapping (Lyons, Ansari, &
Beilock, 2012) and that not all measures of mapping precision were
correlated with math ability (Lyons, Price, Vaessen, Blomert, & Ansari,
2014). In line with this alternative account, Lyons and Beilock (2013)
reported that symbolic and non-symbolic order processing were asso-
ciated with distinct brain regions (Lyons & Beilock, 2013). Given these
contradicting theories each with their own supporting evidence, we
believe that these two theories may not be mutually exclusive. With
regards to the learning of the meaning of small numbers within sub-
itizing range, it is highly likely that children map small number words
to its exact cardinality through the OTS. For symbolic numbers that are
beyond subitizing range, it is possible that both ANS mapping and
symbol-to-symbol associations are involved. Regardless of whether
learning the semantic meaning of symbolic numbers occurs through
symbol-to-ANS or symbol-to-symbol mapping, Leibovich and Ansari
(2016) emphasizes that cognitive control is a critical component
(Leibovich & Ansari, 2016). That being said, the present study focused
on testing the ANS mapping account controlling for the confounding
influence of children's inhibition ability and to examine whether the
domain of mathematics matters to this issue.

1.3. Examination of the ANS mapping account in children

Behavioral evidence in support of the ANS mapping account comes
from studies demonstrating that the precision of (or fluency in) the
mapping between symbolic and nonsymbolic magnitude representa-
tions are correlated with or predict symbolic math skills (Brankaer,
Ghesquière, & De Smedt, 2014; De Smedt, Verschaffel, & Ghesquière,
2009; Holloway & Ansari, 2009; Libertus et al., 2016; Mundy &
Gilmore, 2009; Pinheiro-Chagas et al., 2014; Rousselle & Noël, 2007).
Mundy and Gilmore (2009) measured mapping between symbolic and
nonsymbolic magnitudes by using a two-alternative forced-choice
quantity matching task and showed that children's accuracy of mapping
was related to math achievement over and above the influence of
symbolic and nonsymbolic comparison performance (Mundy &
Gilmore, 2009). Recently, the variability of children's verbal estimation
was found to predict formal math abilities, and to mediate the
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relationship between ANS and overall math achievement (Libertus
et al., 2016). Similarly, Pinheiro-Chagas et al. (2014) reported that
children's verbal estimation ability partly mediated the relation be-
tween ANS and symbolic arithmetic (Pinheiro-Chagas et al., 2014). In
addition, children's number line estimation accuracy was correlated
with symbolic mathematical abilities (Booth & Siegler, 2008) and
mental arithmetic (Lyons et al., 2014). Taken together, the relation-
ships among ANS, number-to-magnitude mapping and math achieve-
ment may depend on how ANS and mapping ability was measured
(Brankaer et al., 2014; De Smedt et al., 2013; Holloway & Ansari, 2009;
Libertus et al., 2016; Mazzocco et al., 2011a), which domain of
mathematics was tested (Holloway & Ansari, 2009; Libertus et al.,
2016) and the range of numbers studied (Brankaer et al., 2014).

1.4. Examination of the ANS mapping account in adults

Reports of the association between mapping precision and symbolic
math achievement in the adult population also do not converge onto a
consistent conclusion as to whether the quality of mapping between
symbolic and nonsymbolic magnitudes relates to math achievement.
Castronovo and Göbel (2012) measured both ANS acuity and mapping
precision and examined their respective relationships to symbolic math
abilities (i.e., symbolic number knowledge and four basic arithmetic
operations) in adults (Castronovo & Göbel, 2012). These researchers
measured mapping precision using numerosity production and nu-
merosity perception tasks which required participants to map quantities
between a dot array and an Arabic numeral. In this study, mapping
precision (but not ANS acuity) was correlated with symbolic arithmetic
ability. The authors interpreted their results as supporting the idea that
the precision of symbolic number representations and arithmetic ability
is associated with the quality of the mapping between symbolic num-
bers and their corresponding magnitude. Sasanguie and Reynvoet
(2014) measured mapping precision using (audio-to-visual) ‘number
word-to-dots’ vs. ‘number word-to-numeral’ matching task, which re-
quired participants to determine whether a number word matched the
numerosity of a dot array or an Arabic numeral, respectively. In this
study, the precision of the mapping between ‘number word-to-nu-
meral’, but not ‘number word-to-dots’ was correlated with arithmetic
ability. These results were interpreted as indicating that adults' math
competence is based on the precision of symbolic number representa-
tions which have been detached from the underlying nonsymbolic
magnitude representation (Lyons et al., 2012). As such, there exists
inconsistency in reports of the relationship between ANS acuity and
math achievement in adults (Agrillo, Piffer, & Adriano, 2013; DeWind &
Brannon, 2012; Gilmore, Attridge, & Inglis, 2011; Guillaume, Nys, &
Mussolin, 2013; Halberda et al., 2012; Inglis et al., 2011; Jang & Cho,
2016; Leibovich & Ansari, 2016; Libertus et al., 2012; Lourenco et al.,
2012; Price et al., 2012).

1.5. Possible explanations for inconsistencies across studies

These discrepancies may reflect differences among distinct domains
of math achievement tested and how ANS acuity or mapping precision
was measured (including the range of numerical magnitudes tested)
across studies. For instance, gaining expertise in arithmetic through
efficient retrieval of arithmetic facts in well-educated adults is expected
to be more dependent on the verbal mathematical system rather than
the analogue magnitude system (Ansari, 2008; Cho, Ryali, Geary, &
Menon, 2011; Dehaene, 2009; Grabner, Ansari, Koschutnig, Reishofer,
& Ebner, 2013; Grabner et al., 2009; Taillan et al., 2015). In other
words, the mechanism of retrieval-based, drilled arithmetic is reported
to be qualitatively different from effortful, strategic, quantitative rea-
soning. Quantitative reasoning1 refers to the ability to analyze

quantitative information and to devise a step-by-step strategy for
mathematical problem solving based on understanding of quantitative
information and knowledge of mathematical concepts (Dwyer,
Gallagher, Levin, & Morley, 2003; Karaali, Villafane Hernandez, &
Taylor, 2016; National Council of Teachers of Mathematics, 2000; Sons,
1996). Quantitative reasoning, but not drilled arithmetic engages the
fronto-parietal quantity processing networks because it requires
thinking about the semantic meaning of numbers and their inter-re-
lationships (Cho et al., 2011; Dehaene, 2009; Dehaene & Cohen, 1995;
Dehaene, Piazza, Pinel, & Cohen, 2003; Delazer et al., 2005; Grabner
et al., 2009; Grabner et al., 2013; Jang & Cho, 2016; Taillan et al., 2015;
Zamarian, Ischebeck, & Delazer, 2009). Several neuroimaging studies
also demonstrated that as arithmetic training progresses, activity of the
verbal fact retrieval system including the angular gyrus increases, while
activation of the fronto-parietal quantity system decreases (Delazer
et al., 2005; Taillan et al., 2015; Zamarian et al., 2009). Furthermore,
Jang and Cho (2016) reported that ANS acuity is correlated with
mathematical problem solving ability only when it involves strategic
processing of quantitative information and not when overlearned ar-
ithmetic facts are effortlessly retrieved (e.g., as in Arithmetic Fluency
tests) (Jang & Cho, 2016). In this sense, the non-significant correlations
between ANS acuity and symbolic arithmetic ability in previous studies
may have been due to the inclusion of basic arithmetic problems in the
measurement of math achievement (Castronovo & Göbel, 2012;
Sasanguie & Reynvoet, 2014).

1.6. Aims and hypotheses of the present study

The aims of the present study were to examine whether Mapping
Precision mediates the relationship between ANS acuity and multiple
domains of math achievement in adults (Experiment 1) and children
(Experiment 2). We hypothesize that ANS acuity and number-to-mag-
nitude mapping precision (hereafter Mapping Precision) may con-
tribute differently to distinct domains of math achievement. We expect
that ANS acuity and Mapping Precision will be more related to
Quantitative Reasoning rather than Arithmetic Fluency, especially in
well-educated adults. Furthermore, we hypothesized that Mapping
Precision will mediate the relationship between ANS acuity and
Quantitative Reasoning in adults. In relation to children, however, we
hypothesized that ANS acuity and Mapping Precision will correlate
with overall math achievement given that they are just beginning to
learn the quantitative meaning of numbers via number-to-magnitude
mapping. In addition, we hypothesized that Mapping Precision will
mediate the relationship between ANS acuity and children's overall
math achievement.

2. Experiment 1

The main purpose of Experiment 1 was to test whether Mapping
Precision mediates the relationship between ANS acuity and math
achievement in adults. Based on previous studies, the domains of math
achievement tested in adults were classified into two categories; 1)
Quantitative Reasoning and 2) Arithmetic Fluency. The Quantitative
Reasoning test assesses the ability to analyze and interpret quantitative
information and to devise a strategy to solve problems based on
knowledge of mathematical concepts. In contrast, the Arithmetic
Fluency test measures the efficiency of drilled arithmetic based on four
basic operations (addition, subtraction, multiplication, division). We
hypothesized that ANS acuity will be correlated with Quantitative
Reasoning and that this relationship will be mediated by Mapping
Precision. Secondly, we hypothesized that Arithmetic Fluency is

1 Quantitative reasoning includes 1) understanding and interpreting quantitative

(footnote continued)
information presented in various formats; 2) drawing inferences based on quantitative
information; 3) strategically solving problems using arithmetic, algebraic, geometric, or
statistical methods, etc.
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unlikely to be associated with ANS acuity because of reduced engage-
ment of quantitative processing in well-educated adults. As such, we
expected no mediating effect of Mapping Precision in the relationship
between ANS acuity and Arithmetic Fluency.

2.1. Materials and methods

2.1.1. Participants
Fifty-three undergraduate and graduate students (23 females; age

range from 19 to 27, mean age= 22.434, SD=2.099, 33 in Social
Science/Humanities, 20 in Natural Science/Engineering majors) parti-
cipated in the study. Our sample size was determined by a power
analysis using G power software based on pilot data (see Supplementary
Methods). All participants had normal or corrected to normal vision.
Written informed consent was obtained from all participants. All par-
ticipants received monetary reward upon completion of the experiment.

2.1.2. The dots vs. number (DN) task (nonsymbolic vs. symbolic number
comparison)

The DN task required subjects to compare the numerosity of a dot
array and an Arabic numeral. Each trial started with a fixation period of
1000ms, and then a dot array and a numeral appeared side by side
simultaneously on the computer screen for 200ms (Fig. 1). The subject
was asked to choose the stimulus representing the larger magnitude
within 10 s. Participants responded by pressing one of two keyboard
buttons (press “3” for stimulus on left and “8” for stimulus on right).
Each button was labeled with a sticker labeled “Left” or “Right”. The
left-right order of the stimuli was counterbalanced across trials, re-
sulting in equal numbers of Dots (left) vs. Number (right) and Number
(left) vs. Dots (right) trials. The font size of the symbolic number was 30
points. The dot array appeared within a 217 × 290 pixel rectangular
frame. No corrective feedback was given after five practice trials. The
magnitude of each stimulus (numerosity and numeral) ranged from 6 to
49. The ratio between the magnitude of the stimuli varied from 1:2 to
10:11 (1:2, 3:4, 4:5, 5:6, 6:7, 7:8, 8:9, 9:10, and 10:11). Each subject
performed 10 trials in each ratio bin for each condition (ND and DN)
adding up to a total of 180 trials (10 trials × 9 ratio bins× 2 condi-
tions= 180 trials). The order of trials from each ratio/condition was
randomly intermixed. Accuracy (ACC) and Response Time (RT) (rather
than w) were used as main dependent variables because they have been
reported to be a more reliable measure of numerical comparison ability
(Geary & vanMarle, 2016; Inglis & Gilmore, 2014; see Supplementary
Methods for further details.).

2.1.3. The dots vs. dots (DD) task (nonsymbolic number comparison)
DD task required subjects to compare between the numerosity of a

pair of dot arrays (Fig. 1). The procedure of the task was otherwise the
same as in the DN task. As already noted by many researchers, it is
practically impossible for any one study to control for the influence of
all possible continuous visual variables using the DD task format
(Dietrich, Huber, & Nuerk, 2015; Gebuis & Reynvoet, 2012; Leibovich &
Henik, 2013). Therefore, we chose to actively control for cumulative

area and average dot size and randomized the influence of other visual
variables such as density (average spacing between dots) and convex
hull (the smallest convex envelope that contains all dots). Each dot was
randomly placed within a fixed rectangular frame ensuring equal
average inter-dot spacing between arrays (Halberda et al., 2008;
Halberda & Feigenson, 2008). In order to control for the possible con-
founding influence of cumulative area and average size of dots, we used
two control conditions that effectively controlled for each of these
variables. The average performance of both control conditions was
taken as a measure of one's ANS acuity as in previous studies (Halberda
et al., 2008; Halberda & Feigenson, 2008; Libertus et al., 2012;
Lourenco et al., 2012; Odic, Libertus, Feigenson, & Halberda, 2013). In
the condition controlling for cumulative area (hereafter AREA-con-
trolled condition), the cumulative area of dots was equivalent between
arrays but the array with more dots inevitably had a smaller average
dot size (dot size was negatively correlated with numerosity). Average
diameter of individual dot size ranged from 8 to 23 pixels. The purpose
of this control condition was to prevent the subject from using the total
area of dots as a cue for estimating numerosity. In the condition con-
trolling for average dot size (hereafter SIZE-controlled condition), the
average diameter of dot size was equivalent (approximately 8 pixels)
between arrays but the array with more dots inevitably had larger cu-
mulative area (total area was positively correlated with numerosity).
This control condition prevents the subject from using average dot size
as a cue for numerosity estimation. Trials from each control condition
were randomly intermixed so that subjects could not consistently rely
on any continuous visual cue to guess numerosity (Maloney, Risko,
Preston, Ansari, & Fugelsang, 2010).

The ratio between the numerosities of the dot arrays, the total
number of trials and the range of numerosities were the same as in the
DN task. After five trials of practice, corrective feedback was not pro-
vided during the main experiment. As in the DN task, ACC and RT
(rather than w) were used as dependent variables.

2.1.4. Mathematical achievement test
Two tests were administered to measure math achievement in

adults. First, one section of the Quantitative Reasoning subtest of the
Graduate Record Examination was used to measure Quantitative
Reasoning ability (ETS, 2010). This test includes 25 questions on al-
gebra, probability, statistics, geometry and data analysis, etc. Secondly,
an Arithmetic Fluency test based on the Calculation subtest of the
Work-Net Job Aptitude Test by the Korean Employment Information
Service was administered (Park, Kim, Song, Jeong, & Jeong, 2008). This
test included problems that require fast and accurate arithmetic com-
putations using natural numbers, decimal numbers, fractions, square
roots, etc. The time limit was 40min for the Quantitative Reasoning
and 8min for the Arithmetic Fluency test.

2.1.5. Fluid intelligence test
An abbreviated version of the Raven's Advanced Progressive

Matrices test (Arthur, Tubre, Paul, & Sanchez-Ku, 1999) was used. This
test consisted of 15 questions including 3 practice questions. The time

Fig. 1. Example stimuli of the DN (Dots vs. Number) & DD (Dots vs. Dots) tasks.

S. Jang, S. Cho Learning and Individual Differences 64 (2018) 113–124

116



limit for this test was 15min. The total accuracy score was used in the
analyses.

2.1.6. General procedure
Each participant performed computer-based ANS acuity tasks (DN

and DD task), and two (paper and pencil) mathematical achievement
tests in a quiet room. The order of task administration was counter-
balanced across participants. The computer-based tasks were adminis-
tered while the subject was seated approximately 60 cm away from the
computer monitor. The entire procedure of the study was approved by
the Institutional Review Board of the authors' institution.

2.1.7. Analysis
First, differences between performance of the DN and DD tasks and

ratio effects from both tasks were tested with a repeated measures one-
way ANOVA. The effects of gender (female, male) and major (Social
Science/Humanities, Natural Science/Engineering) on math achieve-
ment were tested with a 2 by 2, two-way ANOVA. Pearson's correlation
analyses were conducted between all measurements. When a significant
correlation was found between DN or DD performance and math
achievement, hierarchical regression analyses were conducted to test
whether certain task performance predicts math achievement while
controlling for age, gender, and fluid intelligence. Next, bootstrapping
mediation analyses were conducted using AMOS 20.0 (10,000 re-
samples, standardized Z scores were used for all variables) to test the
mediating effect of Mapping precision in the relationship between ANS
acuity and math achievement. We determined whether or not a “full-
mediation” effect exists based on the following three criteria; (1) 95%
BCa CI of the indirect effect does not contain 0, (2) the two-tailed p
value of the indirect effect is lower than 0.05, and (3) the BCa CI of the
direct effect contains 0 and the two-tailed p value of the direct effect is
not lower than 0.05 (Baron & Kenny, 1986; Rucker, Preacher, Tormala,
& Petty, 2011).

2.2. Results

2.2.1. Descriptive statistics of task performance
In the DN task, mean accuracy (hereafter DNacc) was 0.711

(SD=0.062) and mean correct trial RT (hereafter DNRT) was 1100ms
(SD=300ms). Ratio effects from both DNacc and DNRT were highly
significant (accuracy: F(8, 416)= 46.911, p < 0.001, η2= 0.474; RT:
F(8, 45)= 7.859, p < 0.001, η2= 0.583). Mean accuracy (ACC) from
each ratio were all above chance level (ps < 0.001).

In the DD task, mean correct trial RT (DDRT) was 647ms
(SD=149ms) and mean ACC (hereafter DDacc) was 0.758
(SD=0.059). Ratio effects from DDacc and DDRT were both highly
significant (DDacc: F(8, 45)= 123.218, p < 0.001, η2= 0.956; DDRT: F
(8, 45)= 12.357, p < 0.001, η2= 0.687). DDacc were all above chance
level (ps < 0.001).

2.2.2. Comparison between DN vs. DD task performance
Repeated measures ANOVA was conducted to test for the difference

between DD vs. DN task performance. The main effect of task was

significant from both ACC and RT revealing better performance on the
DD task (ACC: F(1, 52)= 26.209, p < 0.001, η2= 0.335; RT: F(1,
52)= 124.809, p < 0.001, η2= 0.706). Performance measures from
the DN and DD task were respectively correlated with each other (ACC:
r(52)= 0.310, p=0.024; RT: r(52)= 0.280, p=0.042).

2.2.3. The results of ANOVA and correlation tests with mathematical
achievement

The mean of the Quantitative Reasoning score was 18.358 (± 2.675
SD, range: 12–24). Two-way ANOVA (gender×major) on Quantitative
Reasoning scores revealed no significant main or interaction effects
(ps > 0.05). The correlation between age and Quantitative Reasoning
scores was also not significant (r(52)=−0.110, p=0.431). Fluid in-
telligence scores were significantly correlated with Quantitative
Reasoning scores (r(52)= 0.478, p < 0.001).

The mean score of the Arithmetic Fluency test was 19.622 (± 4.133
SD, range: 10–25). The same two-way ANOVA on Arithmetic Fluency
scores revealed no significant main effects of gender or major (ps >
0.3). The two way interaction effect was also not significant (p > 0.5).
The correlation between age and Arithmetic Fluency scores was not
significant (p > 0.1). Fluid intelligence was significantly correlated
with Arithmetic Fluency scores (r(52)= 0.280, p=0.042).

2.2.4. The correlations between DN/DD performance and mathematical
achievement

The correlations between Quantitative Reasoning scores and DNacc

or DDacc were both significant (DNacc: r(52)= 0.347, p=0.011; DDacc:
r(52)= 0.302, p=0.024; Table 1). On the other hand, Arithmetic
Fluency scores did not correlate with either DNacc or DDacc (DNacc: r
(52)= 0.105, p=0.453; DDacc: r(52)= 0.131, p=0.349; Table 1).
DNRT was significantly correlated with Quantitative Reasoning (r
(52)=−0.362, p=0.008), but not Arithmetic Fluency (r
(52)=−0.249, p=0.072) scores (Table S1). DDRT was not correlated
with any math achievement score (ps > 0.2; Table S1).

2.2.5. Hierarchical regression analyses on math achievement
Hierarchical regression analyses were carried out to investigate the

predictive effects of DN/DD performance on math achievement after
controlling for the effects of age, major, and fluid intelligence. Thus,
age, major and fluid intelligence were first entered into the model. To
compare the predictive strength of Mapping Precision and ANS acuity
on Quantitative Reasoning, DNacc and DDacc were entered into the
model as the second or third predictor in two separate analyses (Table 2
model 1 vs. model 2). Regardless of the order, entering DNacc sig-
nificantly changed explained variance (R2) of the model, while DDacc

did not (Table 2).

2.2.6. Mediation analysis
As shown in Fig. 2, DNacc fully mediated the relation between DDacc

and Quantitative Reasoning. The indirect effect of DDacc on Quantita-
tive Reasoning through mediation by DNacc was significant (BCa CI:
0.004 to 0.246, p=0.033; PM=0.289) while the direct effect of DDacc

Table 1
Correlations between performance on the DN/DD tasks and mathematical
achievement.

Variable 1 2 3 4

1. DNacc

2. DDacc 0.310⁎

3. Quantitative reasoning 0.347⁎ 0.302⁎

4. Arithmetic fluency 0.105 0.131 0.529⁎⁎

N=53.
⁎ p < 0.05.
⁎⁎ p < 0.01.

Table 2
Hierarchical regression predicting Quantitative Reasoning scores controlling for
age, major and fluid intelligence.

Model Predicting variables β ΔR2 Significance of ΔR2

1 (1) Age −0.121 0.288 0.001
Major 0.241
Fluid intelligence 0.398

(2) DNacc 0.286 0.078 0.019
(3) DDacc 0.120 0.012 0.337

2 (2) DDacc 0.191 0.035 0.124
(3) DNacc 0.252 0.056 0.046

N=53. Outcome variable=Quantitative Reasoning scores.
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on Quantitative Reasoning became nonsignificant (BCa CI: −0.028 to
0.502, p=0.086). Since the BCa CI of the indirect effect did not include
zero, the results of mediation analysis indicates full mediation, given
that the relationship between DDacc and Quantitative Reasoning was
not significant with the mediation effect (Baron & Kenny, 1986; Hayes,
2013; Rucker et al., 2011; Fig. 2). This mediation effect was still sig-
nificant when the influence of Arithmetic Fluency was controlled for
(BCa CI: 0.004 to 0.215, p=0.031, PM=0.320; Fig. S1). Note, the
indirect effect of DNacc on Quantitative Reasoning through the med-
iating effect of DDacc was not significant (BCa CI: −0.009 to 0.595,
p=0.069; PM=0.191). DDRT was not used in a mediation analysis
given its null correlation with math achievement scores. Likewise, the
mediation analysis using Arithmetic Fluency as the dependent variable
was not conducted given its null correlation with DN/DD task perfor-
mance.

2.3. Discussion

In Experiment 1, we investigated whether ANS acuity and Mapping
Precision respectively correlate with mathematical achievement in
young adults. In addition, we examined whether Mapping Precision
mediates the relationship between ANS acuity and math achievement
and whether this mediation effect depends on the domain of mathe-
matics (Quantitative Reasoning vs. Arithmetic Fluency).

Correlation and regression analyses revealed that both ANS acuity
and mapping precision were correlated with Quantitative Reasoning,
but not Arithmetic Fluency scores. Although ANS acuity was correlated
with Quantitative Reasoning ability, when Mapping Precision was
considered together as a predictor in hierarchical regression, there was
no significant relationship between ANS acuity and Quantitative
Reasoning ability (Table 2). Moreover, the mediation analysis con-
firmed that the relationship between ANS acuity and Quantitative
Reasoning ability was fully mediated by Mapping Precision (Fig. 2B).
These findings support the idea that ANS acuity may serve as one of the
foundational abilities for Quantitative Reasoning by contributing to an
accurate mapping between symbolic numbers and their corresponding
magnitude in adults (Barth et al., 2005; Brannon, 2006; Dehaene,
2007).

Arithmetic Fluency was not correlated with any measure of DD or
DN task performance. These findings confirm our hypothesis that ANS
may contribute to Quantitative Reasoning ability, but not Arithmetic
Fluency in adults. Many items of the Arithmetic Fluency test required
understanding of the relationships between symbolic numbers (rather

than their corresponding magnitude) for efficient problem solving. For
example, in order to solve “0.1− 0.12− 0.13− 0.14”, knowing that
0.12 equals 0.01 and that 0.13 equals 0.001, etc. greatly helps solve the
problem. Thus, the Arithmetic Fluency test is likely to be more de-
pendent on the verbal, symbolic math system and knowledge of symbol-
to-symbol associations rather than the ANS. Our results and inter-
pretation are consistent with those of Castronovo and Göbel (2012) and
Sasanguie and Reynvoet (2014) which also reported nonsignificant
correlations between ANS acuity and symbolic arithmetic ability. It is
possible that the Arithmetic Fluency in well-educated adults is better
explained by symbol-to-symbol associations rather than by ANS acuity
or Mapping Precision (Goffin & Ansari, 2016; Lyons & Ansari, 2015;
Lyons, Vogel, & Ansari, 2016; Reynvoet & Sasanguie, 2016).

3. Experiment 2

Several studies reported that a precise mapping between numerical
magnitude and symbolic number predicts math achievement in chil-
dren (Brankaer et al., 2014; Holloway & Ansari, 2009; Mundy &
Gilmore, 2009). However, it remains to be verified whether Mapping
Precision mediates the relationship between ANS acuity and math
achievement in young elementary school children, and whether the
contribution of Mapping Precision to math achievement differs de-
pending on the specific domain of mathematics (Park & Cho, 2017).
Mundy and Gilmore (2009) measured math achievement with the
composite scores from symbolic number knowledge, arithmetic (addi-
tion, subtraction, & multiplication), and word problems and found that
the composite scores correlate with mapping accuracy measured from a
dot-array estimation task (Mundy & Gilmore, 2009). Holloway and
Ansari (2009) examined 6 to 8 year-old children's math achievement
using Mathematics Fluency and Calculation subtests of the Woodcock-
Johnson III Tests of Achievement. They found that individiual differ-
ences in symbolic (but not non-symbolic) numerical distance effect
significantly predicted Mathematics Fluency (but not Calculation).
Other studies showed that children's Mapping Precision measured with
verbal estimation (Libertus et al., 2016) or digit-to-array mapping task
(Brankaer et al., 2014) was correlated with overall math achievement
(Brankaer et al., 2014; Libertus et al., 2016) or arithmetic fluency
(Brankaer et al., 2014). These results suggest that ANS acuity and
Mapping Precision is related to children's fluency in manipulating
symbolic numbers. However, the contribution of children's ANS acuity
and Mapping Precision may depend on the domain of mathematics and
the specific pattern of results may differ from that of adults. It remains

Fig. 2. A mediation model of the relationship between
DD task performance (ANS acuity) and Quantitative
Reasoning through mediation by DN task performance
(Mapping Precision). Note, β denotes regression coeffi-
cient. (A) The direct effect of DDacc (ANS acuity) on
Quantitative Reasoning. DDacc significantly predicted
Quantitative Reasoning (β=0.302, t=2.259,
p=0.028). (B) DDacc significantly predicted DNacc

(mapping precision) (β=0.310, t=2.329, p=0.019).
When DNacc and DDacc were simultaneously entered as
predictors, the effect of DDacc was no longer significant
(β=0.214, t=1.575, p=0.108; BCa CI of direct effect:
−0.028 to 0.502, p=0.086), while that of DNacc re-
mained significant (β=0.281, t=2.063, p=0.035).
The strength of the direct relationship between DDacc and
Quantitative Reasoning was significantly weaker than
that of the relationship between DNacc and Quantitative
Reasoning (BCa CI: 0.044 to 0.246, p=0.033,
PM=0.289). This test revealed that DNacc significantly
mediated the relationship between DNacc and
Quantitative Reasoning. This result supports the inter-
pretation that DDacc indirectly predicts Quantitative

Reasoning through the mediating effect of DNacc.
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to be verified whether ANS acuity and Mapping Precision relates to
multiple (but only certain) domains of mathematical achievement and
whether Mapping Precision mediates this relationship, since previous
studies examined mostly symbolic arithmetic ability or the composite
math achievement score in children (Brankaer et al., 2014; Holloway &
Ansari, 2009; Libertus et al., 2016; Mundy & Gilmore, 2009; Peng,
Yang, & Meng, 2017). Considering previous reports of the influence of
inhibition ability on the relationship between ANS acuity and children's
math achievement (Fuhs & McNeil, 2013; Gilmore et al., 2013; Szűcs
et al., 2014, but see Keller & Libertus, 2015), we controlled for the
influence of inhibition ability in a hierarchical regression in order to
test whether ANS acuity/mapping precision uniquely contributes to
math achievement. Thus, in Experiment 2, we investigated the re-
lationship among ANS acuity, Mapping Precision and multiple domains
of math achievement, while controlling for the influence of age, fluid
intelligence and inhibition ability in children.

3.1. Materials and methods

3.1.1. Participants
Fifty 1st grade elementary school students participated in

Experiment 2. Our sample size was determined by a power analysis
using G power software based on a meta-analysis by Schneider et al.
(2017) (see Supplementary Methods). Data from three participants
were excluded due to missing data points. Thus, data from 47 children
(26 girls, mean age= 7.53, SD=0.31) were included in the data
analysis. The experiment was conducted during winter break during
which all paricipants had completed the first grade curriculum. The
entire procedure of the study was approved by the Institutional Review
Board of the authors' institution. Written informed consent to partici-
pate was obtained from all children and their parents.

3.1.2. The DN task
In the DN task of Experiment 2, only the Dots vs. Number condition

(in which the dot array was on the left and the Arabic numeral was on
the right) was used given that the left vs. right position of the array and
numeral was not found to influence performance in Experiment 1. The
duration of stimulus presentation was 1000ms. The total number of
trials was 72 (6 ratio conditions (1:2, 3:4, 5:6, 6:7, 7:8, 8:9) × 12
trials). The procedure of the DN task was otherwise identical to that of
Experiment 1.

3.1.3. The DD task
The total number of trials was 120 (6 ratio conditions (1:2, 3:4, 5:6,

6:7, 7:8, 8:9) × 2 control conditions (AREA-controlled, SIZE-con-
trolled) × 10 trials). Except for the increased stimulus presentation
time of 1000ms, the procedure of the DD task was otherwise identical
to that of Experiment 1.

3.1.4. Mathematical achievement test
Three subtests (i.e., Number Concepts, Arithmetic and Quantative

Reasoning) of the standard mathematical achievement test for Korean
elementary school students (KISE-BAAT; Park et al., 2008) were used
(see Supplementary Materials for example questions). The Number
Concepts test includes problems that measure children's knowledge of
symbolic (Arabic) numbers (e.g., understanding of cardinality/ordin-
ality principles, the ability to read large numbers, etc.). The Arithmetic
test measures basic addition and subtraction abilities. Items of the
Quantitative Reasoning test are described in words and require the
child to think about the quantitative meaning of numbers and their
inter-relationships and then to devise step by step stategies for problem
solving. The difficulty level of the problems gradually increased after
each correct response. All math problems were printed on paper and
were provided to the children throughout the test. An experimenter
verbally explained each problem to the child on a one-on-one setting.
Children were asked to verbally state their answer to all questions.

There was no time limit for any of the subtests. If a child made five
incorrect responses in a row, the test was terminated. The total number
of correct answers was recorded. Raw scores from each subtest was
used in the analyses.

3.1.5. Fluid intelligence test
The number of correctly solved problems of the Raven's Advanced

Progressive Matrices (Raven's APM) test was used to measure fluid in-
telligence (Raven & Lewis, 1996).

3.1.6. Measure of inhibition ability
In order to rule out possible confounding influence of children's

inhibition ability, we measured performance on a computerized nu-
merical Stroop test (N=45; 25 girls, mean age= 7.533, SD=0.314).
(Note, we could not include data from two children who did not com-
plete the task.) This task required subjects to choose the stimulus which
was either numerically or physically larger within a pair of symbolic
numbers. There were two factors; Congruency (Congruent vs. Neutral
vs. Incongruent) and Instruction (“choose the numerically vs. physically
larger stimulus”). In the Congruent (or Incongruent) condition, the
numerically larger number was also physically larger (or smaller). In
the Neutral condition, the two numbers were either equivalent in nu-
merical or physical size. The range of numbers was from 2 to 9, and the
total number of trials was 192. The Inverse Efficiency Score (IES) cal-
culated by RT divided by proportion correct was used as a measure of
inhibition ability (Bruyer & Brysbaert, 2011).

3.1.7. Analysis
All analysis procedures were identical to Experiment 1.

3.2. Results

3.2.1. Descriptive statistics of task performance
In the DN task, DNacc was 0.603 (SD=0.0719) and DNRT was 1832

(SD=580). Repeated measures ANOVA revealed a significant main
effect of ratio from DNacc (F(5, 46)= 13.942, p < 0.001, η2= 0.233).
The ratio effect from DNRT was not significant (F(5, 46)= 2.015,
p=0.077, η2= 0.042). (Given that there was a floor-like effect in DN
task performance, we excluded data from the two conditions with the
lowest performance for quality control). Therefore, DNacc and DNRT

were recalculated based on the following ratios 1:2, 3:4, 5:6, and 7:8
(DNacc= 0.628, SD=0.082; DNRT= 1804, SD=560).

In the DD task, DDacc was 0.748 (SD=0.084) and DDRT was 1535
(SD=279). Repeated measures ANOVA revealed a significant ratio
effect from both DDacc (F(5, 46)= 53.309, p < 0.001, η2= 0.537) and
DDRT (F(5, 42)= 7.942, p < 0.001, η2= 0.486).

3.2.2. Comparison between DN vs. DD task performance
As in adults, the performance on the DN task was significantly worse

than that of the DD task (Accuracy: F(1, 46)= 72.385, p < 0.001,
η2= 0.611; RT: F(1, 46)= 11.342, p=0.002, η2= 0.198). The corre-
lations between performance measures from the DN and DD tasks were
significant (RT: r(46)= 0.293, p=0.046, Accuracy: r(46)= 0.320,
p=0.028).

3.2.3. The results of ANOVA and correlation tests with mathematical
achievement

The mean standardized scores from the Number Concepts,
Arithmetic, and Quantitative Reasoning subtests were 13.020
(SD=2.642), 15.110 (SD=3.453), and 14.960 (SD=4.324), respec-
tively. The main effect of gender on math achievement scores were not
significant (ps > 0.1). Age was significantly correlated with Number
Concepts (r(46)= 0.357, p=0.014) and Arithmetic (r(46)= 0.427,
p=0.003), but not Quantitative Reasoning (r(46)= 0.195, p=0.190)
scores. Fluid intelligence was significantly correlated with all math
achievement scores (Number Concepts: r(46)= 0.477, p=0.001;
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Arithmetic: r(46)= 0.447, p=0.002; Quantitative Reasoning: (r
(46)= 0.404, p=0.005)). Inhibition ability was negatively correlated
with Arithmetic (r(44)=−0.382, p=0.010), but not with Number
Concepts (r(44)=−0.132, p=0.387) and Quantitative Reasoning (r
(44)=−0.063, p=0.681) scores.

3.2.4. The relationship between DN/DD performance and mathematical
achievement

DDacc was significantly correlated with Arithmetic (r(46)= 0.356,
p=0.014; Table 3), but not Number Concepts (r(46)= 0.198,
p=0.182) or Quantitative Reasoning (r(46)= 0.236, p=0.110;
Table 3) scores. DNacc was significantly correlated with Number Con-
cepts (r(46)= 0.389, p=0.007; Table 3) and Arithmetic (r
(46)= 0.472, p=0.001), but not Quantitative Reasoning (r
(46)= 0.198, p=0.181; Table 3) scores. DDRT was not correlated with
any math achievement score (ps > 0.1; Table S2). DNRT was sig-
nificantly correlated with Number Concepts (r(46)= 0.345,
p=0.018), Arithmetic (r(46)= 0.356, p=0.014) and Quantitative
Reasoning (r(46)= 0.358, p=0.014) scores (Table S2).

3.2.5. Hierarchical regression analyses on math achievement
Hierarchical regression analysis was conducted on Arithmetic scores

with DD and DN performance measures as predictors, while controlling
for the influence of age, fluid intelligence and inhibition ability. Thus,
age, fluid intelligence and inhibition ability were entered first and then
DDacc and DNacc were added next. DNacc reliably changed the sig-
nificance of the model regardless of whether it was added before or
after DDacc (Table 4 model 1 vs. model 2). However, DDacc did not make
any significant change to any model (Table 4).

3.2.6. Mediation analysis
The mediation analysis revealed that the indirect effect of Mapping

Precision on the relationship between ANS acuity and Arithmetic was
significant (BCa CI of the indirect effect: 0.025 to 0.337, p=0.013,
PM=0.359; Fig. 3). The direct effect of ANS acuity on Arithmetic be-
came non-significant when Mapping Precision was entered as a med-
iating variable (BCa CI: −0.052 to 0.429, p=0.096). This reveals a
full-mediation effect of Mapping Precision on the relationship between

ANS acuity and Arithmetic (Fig. 3). The mediating effect of ANS acuity
on the relationship between Mapping Precision and Arithmetic was not
significant (BCa CI: −0.001 to 0.213, p=0.054; PM=0.155).

3.3. Discussion

In Experiment 2, we investigated whether children's ANS acuity and
Mapping Precision relates to different domains of math achievement
(i.e., Number Concepts, Arithmetic, and Quantitative Reasoning) and
whether Mapping Precision mediates the relationship between ANS
acuity and math achievement. The predictive effects of ANS acuity and
Mapping Precision on Arithmetic were significant when each predictor
was separately entered into a hierarchical regression model controlling
for age, fluid intelligence and inhibition ability. However, the pre-
dictive effect of ANS acuity was non-significant when both ANS acuity
and Mapping Precision were entered together as predictors for
Arithmetic (Table 4). This result was confirmed by a mediation analysis
demonstrating that Mapping Precision fully mediated the relationship
between ANS acuity and Arithmetic (Fig. 3). These results not only
support previous reports of the relationship between Mapping Precision
and Arithmetic during childhood but reveals a more direct contribution
of Mapping Precision (compared to that of ANS acuity) to children's
symbolic math abilities. After controlling for age, fluid intelligence,
inhibition ability and Mapping Precision, ANS acuity was no longer a
significant predictor for Arithmetic. On the other hand, Mapping Pre-
cision was a significant predictor for Arithmetic regardless of the in-
fluence of ANS acuity, age, fluid intelligence and inhibition ability. The
results of the present study serve as strong evidence that accurate
mapping between numbers and their corresponding magnitude con-
tribute to children's learning of symbolic mathematics (De Smedt et al.,
2013; Libertus, 2015; Sasanguie et al., 2012).

A novel finding of the present study is that the contribution of ANS
acuity and Mapping Precision differed depending on the domain of
mathematics, despite strong correlations among all math subtest scores
(Table 3). Unlike Arithmetic, Number Concepts was significantly cor-
related with Mapping Precision but not ANS acuity. An important dif-
ference between the Number Concepts and Arithmetic subtest is that
the former measures the mastery level of mathematical principles such
as cardinality or ordinality, whereas the latter measures the fluency of
simple arithmetic. In all subtests, the difficulty level of the problems
gradually increased towards the end. On the first few questions of the
Number Concepts test, the child needed to apply the counting principle
to answer how many items were in a picture (e.g., cardinality). Mas-
tering the cardinality principle is one of the most important compo-
nents of early quantitative competency (Geary & vanMarle, 2016;
vanMarle, Chu, Li, & Geary, 2014). The later part of the Number
Concepts test presented questions that require knowledge of symbol-
symbol associations (e.g., ordinality) and large numbers (e.g., Fill in the
blank to complete the pattern in “5 8 __ 14” or Read “231,654”). All
children succeeded in solving earlier questions related to cardinality,
thus most of the variance in the Number Concepts scores reflected in-
dividual differences in their understanding of symbolic numbers.
Therefore, it is likely that Mapping Precision, but not ANS acuity itself,
contributed to individual differences in Number Concept scores
(vanMarle et al., 2014). In contrast, both ANS acuity and Mapping
Precision are likely to contribute substantially to 1st grade children's
basic symbolic arithmetic ability, given that they are just beginning to
learn the quantitative meaning of symbolic numbers via number-to-
magnitude mapping (Libertus, 2015).

Contrary to our hypothesis, neither ANS acuity nor Mapping
Precision was correlated with children's Quantitative Reasoning ability.
This is likely due to the fact that the Quantitative Reasoning test con-
sisted of verbally described problems which made heavy demands on
linguistic and domain-general cognitive abilities such as working
memory, long-term memory, attention, language ability, reading and
concept formation, thereby reducing the unique contribution of ANS

Table 3
Correlations between accuracies of DN/DD tasks and mathematical achieve-
ment.

Variable 1 2 3 4 5

1. DNacc

2. DDacc 0.320⁎

3. Number concepts 0.389⁎⁎ 0.198
4. Arithmetic 0.472⁎⁎ 0.356⁎ 0.709⁎⁎

5. Quantitative Reasoning 0.198 0.189 0.581⁎⁎ 0.545⁎⁎

N=47.
⁎ p < 0.05.
⁎⁎ p < 0.01.

Table 4
Hierarchical regression on Arithmetic after controlling for age, fluid in-
telligence and inhibition ability in Experiment 2.

Model Predicting variables β ΔR2 Significance of ΔR2

1 (1) Age 0.230 0.480 < 0.001
Fluid intelligence 0.512
Inhibition ability −0.402

(2) DNacc 0.290 0.078 0.012
(3) DDacc 0.106 0.009 0.366

2 (2) DDacc 0.159 0.021 0.197
(3) DNacc 0.271 0.065 0.020

N=45. Outcome variable=Arithmetic score.
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acuity/Mapping Precision (Fuchs et al., 2006; Swanson & Beebe-
Frankenberger, 2004).

4. General discussion

The primary purpose of the present study was to test the ‘ANS
mapping theory’ based on multiple domains of mathematics in adults
and children. First, we investigated whether ANS acuity and Mapping
Precision respectively correlate with mathematical achievement in
adults (Experiment 1) and children (Experiment 2) across multiple
domains of mathematics. Next, we examined whether Mapping
Precision explains unique variance in math achievement while con-
trolling for the influence of ANS acuity, age, fluid intelligence and other
related variables. Finally, we tested whether Mapping Precision med-
iates the relationship between ANS acuity and math achievement in
adults (Experiment 1) and children (Experiment 2).

4.1. The mediating role of mapping precision in the relationship between
ANS acuity and math achievement

In both adults and children, ANS acuity was correlated with math
achievement (Quantitative Reasoning in adults and Arithmetic in chil-
dren). However, this relationship was no longer significant when
Mapping Precision was considered together in hierarchical regression
(Tables 2, 4). Moreover, mediation analyses confirmed that the re-
lationship between ANS acuity and math achievement was fully medi-
ated by Mapping Precision (Figs. 2, 3). These results are consistent with
the ANS mapping theory which states that the semantic meaning of
symbolic numbers (beyond subitizing range) is first learned by being
mapped onto underlying analogue magnitude representations. Given
that ANS acuity may reflect the precision of the mental number line,
individuals with better ANS acuity may be able to obtain a more ac-
curate understanding of symbolic numbers. By extension, an accurate
understanding of numbers will contribute to better ability to manip-
ulate numbers in mathematical activities. Thus, the present study sup-
ports the idea that ANS acuity serves as one of the foundations for
higher level math achievement by contributing to an accurate mapping
between symbolic numbers and their corresponding magnitude (Barth
et al., 2005; Brannon, 2006; Dehaene, 2007).

4.2. Developmental changes in the mediating role of mapping precision on
the relationship between ANS and math achievement

Full mediation effects of Mapping Precision in children and adults

demonstrate a developmental continuity in the mediating role of
Mapping Precision in the relationship between ANS acuity and certain
domains of math achievement. Specifically, Mapping Precision served a
mediating role for the relationship between the ANS acuity and dif-
ferent domains of mathematics in adults vs. children. Mapping
Precision contributed to adults' Quantitative Reasoning (but not
Arithmetic Fluency) and children's Arithmetic (but not Quantitative
Reasoning or Number Concepts) abilities. We believe that this differ-
ence reflects distinct cognitive processes engaged by math achievement
tests depending on the level of mathematical learning and expertise.
Adults are likely to process the quantitative meaning of symbolic
numbers while they solve problems of the Quantitative Reasoning test
(Jang & Cho, 2016). In contrast, 1st grade children's linguistic and
general cognitive ability to comprehend verbal descriptions may have
greatly affected their performance on the Quantitative Reasoning test.
Thus, the unique contribution of Mapping Precision to children's
quantitative reasoning ability may have been reduced. On the other
hand, well-educated adults who are fluent in arithmetic are not likely to
activate underlying quantity representations for simple arithmetic, but
would rather use their verbal, symbolic math system (to access
knowledge of arithmetic facts and symbol-symbol associations) for ef-
ficient retrieval-based problem solving (Lyons et al., 2012; Lyons &
Beilock, 2011; Reynvoet & Sasanguie, 2016). In contrast, first-grade
children are in the beginning stage of learning the quantitative meaning
of symbolic numbers, thus are expected to heavily depend on number-
to-magnitude mapping when working with symbolic numbers. These
findings are consistent with the ANS mapping theory stating that ANS
acuity and number-to-magnitude mapping is one of the foundations for
early stages of learning symbolic math skills. After a certain level of
mastery is reached, the contribution of ANS acuity and mapping pre-
cision to simple arithmetic seem to become secondary to knowledge of
symbolic principles (e.g., ordinality) and symbol-symbol associations
(Geary, 2013; Lyons et al., 2012; vanMarle et al., 2014). We carefully
speculate that simple arithmetic skills may become less dependent on
the ANS or mapping precision around mid-elementary school years
during which a shift from cardinality to ordinality based processing
seem to occur (Lyons et al., 2014). Interestingly, the present results
revealed that ANS acuity continued to contribute to complex quanti-
tative reasoning via number-to-magnitude mapping in adulthood.

4.3. Limitations and future directions

One limitation of the current study is that we could not more
completely address methodological issues in relation to the validity and

Fig. 3. A mediation model of the relationship between
DD task performance (ANS acuity) and Arithmetic
through mediation by DN task performance (Mapping
Precision) in children. (A) DDacc (ANS acuity) sig-
nificantly predicted Arithmetic (β=0.356, t=2.556,
p=0.014). (B) The predictive effect of DDacc (ANS
acuity) on DNacc (Mapping Precision) was significant
(β=0.320, t=2.266, p=0.022). When ANS acuity and
Mapping Precision were simultaneously entered as pre-
dictors of Arithmetic, the effect of ANS acuity became
non-significant (β=0.228, t=1.571, p=0.087; BCa CI
of direct effect: −0.052 to 0.429, p=0.096), while that
of Mapping Precision remained significant (β=0.399,
t=2.920, p=0.003). The strength of the direct re-
lationship between DDacc (ANS acuity) and Arithmetic
was significantly weaker than that between DNacc and
Arithmetic (BCa CI of indirect effect: 0.025 to 0.337,
p=0.013, PM=0.359). Mapping Precision fully medi-
ated the relationship between ANS acuity and math
achievement, i.e., ANS acuity indirectly predicted
Arithmetic through the mediating effect of Mapping
Precision.
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reliability of the DD task format (Dietrich et al., 2015; Gebuis, Kadosh,
& Gevers, 2016; Gebuis & Reynvoet, 2012; Leibovich & Henik, 2013;
Leibovich, Vogel, Henik, & Ansari, 2016). Although we implemented
multiple control conditions and randomization procedures to minimize
possible confounding influences, it would have been better to experi-
mentally or statistically control for the influence of non-numerical vi-
sual characteristics of the dot arrays (such as convex hull size and inter-
dot spacing). Recent studies report that convex hull size, especially, can
have a stronger impact on numerosity processing compared to other
visual properties of the dot arrays (Clayton, Gilmore, & Inglis, 2015;
Gilmore, Cragg, Hogan, & Inglis, 2016). Thus, it would have been ideal
to hold convex hull size constant across all arrays and to control for as
many non-numerical visual magnitudes as possible and to statistically
regress out any variables that could not be systematically controlled. In
addition, we could not include data from two children in the hier-
archical regression of Experiment 2, because they did not complete the
numerical Stroop task. Finally, although our sample size exceeded the
minimum number of participants determined by power analysis, it was
not large enough to allow correction for multiple tests. We acknowledge
these as limitations of the present study.

The present demonstration of the mediating role of mapping pre-
cision in the development of mathematical competence by no means
excludes the possibility that other foundational abilities may contribute
to mathematical achievement (Fazio et al., 2014; Geary & vanMarle,
2016; vanMarle et al., 2014). Although the present study only focused
on ANS acuity and Mapping Precision, future studies would benefit
from a multi-mediator structural equation modeling approach to un-
cover the complex relationship among multiple building blocks of
mathematical cognition and math achievement across different stages
of development.

Furthermore, we emphasize that future work should be directed
towards testing an alternative theory proposing that discrete and con-
tinuous magnitudes are inevitably correlated and thus are holistically
processed by a ‘sense of magnitude’ (Leibovich et al., 2017). This ‘sense
of magnitude’ theory proposes that the ability to process continuous
magnitudes is innate and that the development of language and cog-
nitive control enables acquisition of number concept, thereby providing
an alternative view on the symbol grounding problem. Though not
mutually exclusive with the ANS theory, the ‘sense of magnitude’
theory raises many important questions that challenge basic assump-
tions of the ANS theory. We believe that efforts to test and reconcile
these competing theories will bring about major advancement of our
knowledge of numerical cognition.

5. Conclusions

Overall, the results of our study indicate that ANS acuity may
contribute to children's symbolic arithmetic and adults' quantitative
reasoning ability but only through the mediating effect of Mapping
Precision. However, ANS acuity or Mapping Precision should not be
taken as the only foundational factor that contributes to math
achievement. For instance, understanding ordinality or symbol-symbol
associations are known to be critical factors that contribute to higher-
level mathematical abilities (Goffin & Ansari, 2016; Lyons & Ansari,
2015; Lyons & Beilock, 2011; Price & Fuchs, 2016). Multiple founda-
tional abilities are likely to contribute to different domains of mathe-
matical achievement at different stages of development. We look for-
ward to continued efforts to discover other basic abilities that
contribute to mathematical learning and how the interplay between
them together enable mathematical learning throughout development.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.lindif.2018.05.005.
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