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Abstract

The ability to determine the origin of soybeans is an important issue following the inclusion

of this information in the labeling of agricultural food products becoming mandatory in South

Korea in 2017. This study was carried out to construct a prediction model for discriminating

Chinese and Korean soybeans using Fourier-transform infrared (FT-IR) spectroscopy and

multivariate statistical analysis. The optimal prediction models for discriminating soybean

samples were obtained by selecting appropriate scaling methods, normalization methods,

variable influence on projection (VIP) cutoff values, and wave-number regions. The factors

for constructing the optimal partial-least-squares regression (PLSR) prediction model were

using second derivatives, vector normalization, unit variance scaling, and the 4000–400

cm–1 region (excluding water vapor and carbon dioxide). The PLSR model for discriminating

Chinese and Korean soybean samples had the best predictability when a VIP cutoff value

was not applied. When Chinese soybean samples were identified, a PLSR model that has

the lowest root-mean-square error of the prediction value was obtained using a VIP cutoff

value of 1.5. The optimal PLSR prediction model for discriminating Korean soybean sam-

ples was also obtained using a VIP cutoff value of 1.5. This is the first study that has com-

bined FT-IR spectroscopy with normalization methods, VIP cutoff values, and selected

wave-number regions for discriminating Chinese and Korean soybeans.

Introduction

The soybean (Glycine max) is a useful plant crop with high lipid and protein contents [1]. Soy-

beans can be used to produce soybean oil, as a protein source, or as a good source of nutrients.

They are also pharmacologically active, with these effects originating from their constituent
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isoflavones [2]. The beneficial health effects of soybean isoflavones include reducing the risks

of cardiovascular problems [3,4], cancer [5–7], and osteoporosis [8,9].

In Korea, soybeans are cooked and used to prepare foodstuffs such as doenjang (fermented

soybean paste), cheonggukjang (fast-fermented soybean paste), and gochujang (fermented red

pepper paste) [10]. Soybeans are frequently used in Korean cuisine. However, there are many

cases where the country of origin of the beans is unclear, and relatively inexpensive foreign

soybeans are often imported and labeled as Korean soybeans. The National Agricultural Prod-

ucts Quality Management Service introduced an agricultural food country-of-origin labeling

system in 1991 to protect domestic agricultural producers and consumers [11]. Soybeans have

been included in that system since 2017, and merchants must now indicate the origin of any

soybeans that they advertise for sale [12]. This situation means that technology for discriminat-

ing Chinese and Korean soybean is needed.

The quality of soybeans depends on several factors such as their variety and where they

were cultivated, and these factors must be considered when determining where particular soy-

beans originate from. However, it is difficult to consider all soybean varieties because there are

hundreds of varieties spread over a vast area [13]. We assumed that soybeans cultivated for

thousands of years within a particular region would have become well adapted to the local

environmental conditions, and hence that the soybeans could be discriminated based on geo-

graphical factors rather than varietal differences.

Metabolomics can be used to discriminate genetic and environmental differences based on

the comprehensive profiling and analysis of plant metabolites [14]. This can be implemented

using established tools such as gas chromatography/mass spectrometry, nuclear magnetic reso-

nance (NMR) spectroscopy, liquid chromatography/mass spectrometry, Fourier-transform

infrared (FT-IR) spectroscopy, and direct-infusion mass spectrometry [15]. These tools can be

used to discriminate the geographical origin of plants. For example, a method employing a so-

called electronic nose and combined gas chromatography/mass spectrometry/olfactometry

with principal-components analysis has been used to discriminate the geographical origin of

chrysanthemum flower teas [16]. 1H-NMR spectroscopy has been combined with statistical

analysis to discriminate the geographical origin of Chinese, Indian, and Korean sesame oils

[17]. Four different geographical origins of Lycium barbarum fruit (China, Mongolia, and two

locations in Tibet) were discriminated using liquid chromatography coupled with quadrupole

time-of-flight mass spectrometry for metabolite profiling [18]. Near-infrared reflectance (NIR)

spectroscopy has been used to discriminate Korean soybeans from soybeans of various origins

[19].

We chose FT-IR spectroscopy for the present study because it is a fast, convenient, and non-

destructive analytical tool. These characteristics make FT-IR spectroscopy suitable for the

rapid identification of foods and agricultural products [20]. However, the physical characteris-

tics of samples (particle size and thickness) affect the obtained FT-IR spectra [21,22], and so

the obtained raw data need to be normalized. Four normalization methods can be applied to

FT-IR spectral data: area normalization, amide normalization, minimum-maximum (min-

max) normalization, and vector normalization. Constructing more-precise prediction models

for the discrimination of Chinese and Korean soybeans requires suitable normalization and

scaling methods to be determined, and then a prediction model selected by comparing the pre-

dictive power of each cutoff for the variable influence on projection (VIP).

NMR spectroscopy has previously been used to discriminate between soybeans originating

from China and Korea [23], while NIR spectroscopy was used to discriminate Korean soy-

beans and soybeans of various origins [19]. However, the present study is the first to investi-

gate a prediction model that can discriminate between Chinese and Korean soybeans using
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FT-IR spectroscopy combined with scaling methods, optimal normalization methods, the

selection of an appropriate wave-number region, and a VIP cutoff value.

Materials and methods

Soybean materials and sample preparation

As shown in Fig 1, 21 soybean samples collected from Korea (8 samples) and China (13 sam-

ples) were prepared for analysis by FT-IR spectroscopy. Korean soybeans were obtained from

the National Agricultural Products Quality Management Service (Fig 2, S1 Table), and Chinese

soybeans were obtained from a Chinese market (Fig 3, S1 Table). The 8 Korean soybean sam-

ples had been cultivated in Gyeonggi-do Anseong, Gangwon-do Yeongwol, Chungcheong-

buk-do Eumseong, Chungcheongnam-do Cheonan, Jeollabuk-do Imsil, Jeollanam-do

Yeonggwang, Gyeongsangbuk-do Uiseong, and Gyeongsangnam-do Geochang. The 13 Chi-

nese soybean samples were obtained from Neimenggu, Heilongjiang, Jilin, Liaoning, Hebei,

Shandong, Anhui, Hubei, Zhejiang, Jiangxi, Fujian, Guangdong, and Guangxi. The provinces,

cities, and geographic coordinates of soybean samples were listed in S1 Table. Ten individual

soybeans were randomly selected for each region, frozen rapidly in liquid nitrogen, ground

into a fine powder using a mixer, and stored at −80˚C before further analysis.

FT-IR spectroscopy analysis and spectral data preprocessing

Soybean powder was loaded onto an FT-IR spectrometer (NICOLET iS50, Thermo Fisher Sci-

entific, Kyoto, Japan) equipped with an attenuated total reflection (ATR) accessory for

Fig 1. Map showing the origin of the Chinese and Korean soybeans used in the experiments. (A) Map of China. The Chinese provinces were divided into three

regions: northeastern, eastern, and southeastern. The northeastern region comprises four provinces: (a) Neimenggu, (b) Heilongjiang, (c) Jilin, and (d) Liaoning.

The eastern region comprises four provinces: (e) Hebei, (f) Shandong, (g) Anhui, and (h) Hubei. The southeastern region comprises five provinces: (i) Zhejiang, (j)

Jiangxi, (k) Fujian, (l) Guangdong, and (m) Guangxi. (B) Map of South Korea. The South Korean provinces were divided into three regions: upper, left side, and

right side. The upper region comprises three provinces: (1) Gyeonggi-do, (2) Gangwon-do, and (3) Chungcheongbuk-do. The left-side region comprises three

provinces: (4) Chungcheongnam-do, (5) Jeollabuk-do, (6) and Jeollanam-do. The right-side region comprises two provinces: (7) Gyeongsangbuk-do and (8)

Gyeongsangnam-do.

https://doi.org/10.1371/journal.pone.0196315.g001
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recording the FT-IR spectra. The OMNIC program (version 8.2.0.387, Thermo Scientific, Wal-

tham, Massachusetts, USA) was used to obtain all of the FT-IR spectra. Sixty-four scans were

recorded in order to obtain average analytical results and enhance the signal-to-noise ratio. Each

spectrum was scanned between 4000 and 400 cm–1 and had a spectral resolution of 4 cm–1.

The following four normalization methods that are widely used in FT-IR spectroscopy anal-

ysis were used to process the FT-IR spectra: area normalization, min-max normalization,

amide normalization, and vector normalization. In vector normalization, all spectra are con-

verted from transmittance to absorbance, and the FT-IR absorbance spectra were converted

into first and second derivatives using the Savitzky-Golay derivative with nine smoothing

points in OMNIC. For vector normalization, the absorbance values of FT-IR spectral data

were divided by the Euclidean norm to calculate the vector normalization value. For the other

normalization processes, all spectra were converted from transmittance to absorbance, and

then ATR correction was applied using OMNIC. For area normalization, each absorbance

value at a specific wave number was divided by the total (integrated) absorbance area of the

spectrum. For min-max normalization, each absorbance value was divided by the difference

between the highest and lowest absorbance values. For amide normalization, each absorbance

value was divided by the difference between the highest amide band and the lowest absorbance

value.

Multivariate statistical analysis

After the FT-IR spectral data had been normalized, we used the SIMCA-P+ software (version

13.0, Umetrics, Umeå, Sweden) to carry out multivariate statistical analysis. Partial-least-

squares discriminant analysis (PLS-DA), partial-least-squares regression (PLSR), and hierar-

chical cluster analysis (HCA) were conducted using SIMCA-P+. Both the single linkage

method and Ward’s clustering method were employed to carry out HCA. Cross-validation

and permutation tests were applied to the PLS-DA and PLSR models. Cross-validation was

performed to evaluate the predictability of the models and to prevent overfitting. The models

were evaluated using the R2Y and Q2Y parameters as obtained by cross-validation. Permuta-

tion tests were conducted 20 times using SIMCA-P+. Permutation test parameters such as the

R2Y and Q2Y intercepts were obtained to evaluate the statistical significance of the models.

Results and discussion

Band assignment of the FT-IR spectra

FT-IR spectral data were obtained for each soybean sample. A representative FT-IR spectrum

—from the sample from Inner Mongolia Autonomous Region province in China—is shown in

Fig 4, which contained 12 noticeable bands that could be assigned as follows (Table 1):

1. One at 3304 cm–1 due to N-H protein stretching [24].

2. One at 3009 cm–1 due to C = H stretching of unsaturated lipids [25].

3. One at 2925 cm–1 due to asymmetric C-H stretching of lipids [26].

4. One at 2854 cm–1 due to symmetric C-H stretching of lipids [26].

5. One at 1745 cm–1 due to C = O stretching of lipids [27].

6. One at 1645 cm–1 due to C-O and C-N protein stretching [24]. This is known as the amide

I band and is the main amide band.

Discrimination and prediction of the origin of soybeans using FT-IR with multivariate statistical analysis
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7. One at 1538 cm–1 due to C-N stretching and N-H bending modes of protein. This is known

as the amide II band [24].

8. One at 1456 cm–1 due to CH2 bending of lipids [26].

9. One at 1398 cm–1 due to CH3 bending of protein and COO−symmetric stretching of fatty

acids and amino acids [25,28].

10. One at 1239 cm–1, which is the amide III band that contains contributions from PO2–

asymmetric stretching [28].

11. One at 1155 cm–1 due to CO-O-C asymmetric stretching of cholesterol ester and C-O

stretching of oligosaccharides and triacylglycerols [25,29].

12. One at 1051 cm–1 due to C-O stretching of starch [30].

In addition to the bands arising from soybean components, three bands arising from the

environment were detected. The tiny band between 4000 and 3500 cm–1 is attributable to

water-vapor O-H stretching, and the other two bands correspond to carbon dioxide: O-C-O

stretching at 2442–2208 cm–1 and O-C-O bending at 914–400 cm–1 [31]. As listed in Table 1

and shown in Fig 1, the peaks associated with lipids (2925, 2854, 1745, and 1456 cm–1) and

proteins (3304, 1645, 1538, and 1239 cm–1) could be clearly discriminated.

Fig 2. Morphological characteristics of the eight Korean soybean samples. (1) Gyeonggi-do Anseong, (2) Gangwon-do

Yeongwol, (3) Chungcheongbuk-do Eumseong, (4) Chungcheongnam-do Cheonan, (5) Jeollabuk-do Imsil, (6)

Jeollanam-do Yeonggwang, (7) Gyeongsangbuk-do Uiseong, and (8) Gyeongsangnam-do Geochang.

https://doi.org/10.1371/journal.pone.0196315.g002
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Determination of normalization and scaling methods

To determine the optimal normalization and scaling methods, permutation tests were carried

out using two components. The normalization methods used were area normalization, amide

normalization, min-max normalization, and vector normalization. Two types of scaling meth-

ods were employed: unit variance (UV) and Pareto scaling.

Fig 3. Morphological characteristics of the 13 Chinese soybean samples.

https://doi.org/10.1371/journal.pone.0196315.g003

Fig 4. Representative FT-IR spectral data of soybeans from Neimenggu province.

https://doi.org/10.1371/journal.pone.0196315.g004

Discrimination and prediction of the origin of soybeans using FT-IR with multivariate statistical analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0196315 April 24, 2018 6 / 16



The permutation parameters of the PLS-DA models are listed in Table 2. The R2Y and Q2Y

values, which indicate the model fit and predictability, respectively, range between 0 and 1.0. A

PLS-DA model with a high R2Y value is regarded as providing a good fit to the data. A Q2Y

value from 0.5 to 0.9 indicates good predictability, while one greater than 0.9 is considered to

indicate excellent predictability. Permutation tests were performed to obtain the R2Y and Q2Y

intercepts. The models were regarded as valid when the R2Y and Q2Y intercepts were less than

0.4 and 0.05, respectively [32].

The optimal PLS-DA models were selected after comparing the R2Y and Q2Y values. The

optimal normalization and scaling methods for the model involved applying vector normaliza-

tion after the second differentiation and UV scaling methods. The results are presented in

Table 2, which indicates that this procedure yielded highest R2Y and Q2Y values of 0.938 and

0.912, respectively, for the comparison between Chinese and Korean soybean samples, of 0.747

and 0.701 for the comparison of Chinese soybean samples, and of 0.809 and 0.771 for the com-

parison of Korean soybean samples.

Table 2 indicates that both the R2Y and Q2Y values were highest when using the vector nor-

malization method, which is possibly due to the derivative process used in vector normaliza-

tion revealing minute differences between similar spectra [33]. This hypothesis is supported by

the use of second derivatives allowing better discrimination of the minute differences in the

FT-IR spectra compared to using first derivatives.

Development of a PLSR model for determining the origin of soybeans

using appropriate wave-number selection

PLSR can be employed to construct a prediction model for the origin of soybeans. Soybean-

origin PLSR models were developed by applying suitable vector normalization after a second

differentiation and UV scaling, and using two components. Apart from normalization, scaling

Table 1. FT-IR spectrum band assignments of soybeans cultivated in Neimenggu province.

Wavenumber

(cm-1)

Vibration Suggested biomolecular assignment Reference

4000–3500 O-H stretching H2O [31]

3304 N-H stretching Amide A (protein) [24]

N-H and O-H stretching Polysaccharides, proteins [26]

3009 C = H stretching Unsaturated lipids [25]

2925 C-H stretching (asym) Lipids (mainly), proteins, carbohydrates [26]

2854 C-H stretching (sym) Lipids (mainly), proteins, carbohydrates [26]

2442–2208 O-C-O stretching CO2 [31]

1745 C = O stretching Lipids [27]

1645 C-O, C-N stretching Amide I (protein) [24]

1538 C-N stretching, N-H bending Amide II (protein) [24]

1456 CH2 bending Lipids [26]

1398 CH3 bending Proteins [28]

COO- stretching (sym) Fatty acids, amino acids [25]

1239 PO2- stretching (asym) Amide III [28]

1155 CO-O-C stretching (asym) Cholesterol ester [25]

C-O stretching Oligosaccharides, triacylglycerols [29]

1051 PO2- stretching (sym) Nucleic acids [28]

C-O stretching Starch [30]

914–600 O-C-O bending CO2 [31]

https://doi.org/10.1371/journal.pone.0196315.t001
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methods, and the number of components, the VIP cutoff value was used to establish the most-

precise prediction model. Training sets (six replicates) and a test set (one replicate) were pre-

pared to construct the PLSR models. Both sets were used to obtain root-mean-square error

(RMSE) values, including the root-mean-square error of estimation (RMSEE) and the root-

mean-square error of prediction (RMSEP). RMSEE can be obtained from training sets, and its

value is used to evaluate the accuracy of a PLSR model. RMSEP, which can be obtained from

the test set, is employed to assess the predictability of PLSR models. These RMSE values range

from 0 to 1, with smaller values indicating higher model accuracy and predictability.

Because FT-IR spectra may be affected by environmental factors such as water vapor and

carbon dioxide, PLSR models constructed using different wave-number regions were

Table 2. Selection of PLS-DA models according to various normalization and scaling methods for the differentiation of soybean samples.

Normalization methods Scaling R2Y Q2Y R2Y intercept Q2Y intercept

China vs. Korea

Area UV 0.362 0.343 0.017 -0.094

Par 0.200 0.194 0.025 -0.080

Amide UV 0.534 0.317 -0.001 -0.078

Par 0.082 0.071 0.017 -0.063

Min-max UV 0.398 0.347 0.018 -0.072

Par 0.104 0.102 0.031 -0.070

Vector

(first)

UV 0.812 0.802 0.157 -0.129

Par 0.772 0.762 0.079 -0.113

Vector

(second)

UV 0.938 0.912 0.337 -0.187

Par 0.883 0.861 0.251 -0.163

Three groups of Chinese provinces

Area UV 0.390 0.384 -0.015 -0.128

Par 0.408 0.405 -0.048 -0.155

Amide UV 0.373 0.364 -0.031 -0.147

Par 0.383 0.378 -0.022 -0.119

Min-max UV 0.349 0.339 -0.026 -0.126

Par 0.328 0.320 0.002 -0.101

Vector

(first)

UV 0.495 0.467 0.050 -0.176

Par 0.456 0.444 0.024 -0.150

Vector

(second)

UV 0.747 0.701 0.133 -0.220

Par 0.606 0.563 0.089 -0.181

Three groups of Korean provinces

Area UV 0.330 0.278 0.042 -0.185

Par 0.336 0.326 0.000 -0.115

Amide UV 0.312 0.281 0.039 -0.109

Par 0.302 0.249 -0.002 -0.138

Min-max UV 0.352 0.334 0.011 -0.158

Par 0.353 0.309 -0.005 -0.144

Vector

(first)

UV 0.588 0.545 0.101 -0.156

Par 0.527 0.494 0.083 -0.182

Vector

(second)

UV 0.809 0.771 0.220 -0.255

Par 0.809 0.771 0.220 -0.255

Two components were used to analyze in all PLS-DA models. The Chinese provinces are the northeastern, eastern, and southeastern regions. Korean provinces are the

upper, left-side, and right-side regions. PLS-DA: partial least square discrimination analysis, UV: unit variance, and Par: Pareto.

https://doi.org/10.1371/journal.pone.0196315.t002
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compared to identify the best prediction model. Three wave-number regions were used to

obtain prediction models: 4000–400 cm–1, 4000–400 cm–1 excluding the water vapor and car-

bon dioxide regions, and 2000–400 cm–1.

As listed in Tables 3–5, numerous VIP cutoff values were used to select better prediction

models based on the RMSEP values. The permutation parameters of the PLSR models for com-

paring Chinese and Korean soybeans are listed in Table 3, while those for comparisons of Chi-

nese soybeans and of Korean soybeans are listed in Tables 4 and 5, respectively.

The PLSR models were compared to identify the PLSR models that satisfied the R2Y and

Q2Y intercepts and had the lowest RMSEP values. The FT-IR spectral region between 4000

and 400 cm–1 that excluded the water vapor and carbon dioxide regions was the best. The

PLSR model that did not apply a VIP cutoff value was selected for the prediction model pre-

sented in Table 3 for discriminating Chinese and Korean soybeans because it had the smallest

RMSEP value (= 0.120). Table 4 indicates that the PLSR model with a VIP cutoff value of 1.5

was the optimal prediction model for discriminating Chinese soybeans, having an RMSEP

value of 0.293, while Table 5 indicates that the PLSR model for discriminating Korean soy-

beans had the lowest RMSEP value of 0.170 for a VIP cutoff value of 1.5.

HCA dendrograms were constructed to evaluate the similarity of the samples using the

optimal PLSR models for discriminating the soybean samples. As shown in Fig 5A, the Chi-

nese and Korean soybean samples could be clearly discriminated using the single linkage

Table 3. List of permutation parameters of the PLSR models obtained using variables selected by vector normalization applied after the second differentiation, UV

scaling, and with various VIP cutoff values using different wavenumber areas for the comparison of Chinese and Korean soybeans.

Normalization method VIP cutoff Total wavenumber RMSEE RMSEP R2Y Q2Y R2Y intercept Q2Y intercept

4000–400 cm-1

Vector (second) total 7469 0.123 0.146 0.938 0.912 0.342 -0.212

1.0 2297 0.148 0.176 0.909 0.898 0.193 -0.217

1.2 1636 0.156 0.193 0.900 0.889 0.156 -0.169

1.5 951 0.164 0.216 0.889 0.877 0.116 -0.125

1.8 542 0.175 0.229 0.873 0.860 0.059 -0.145

1.9 443 0.177 0.232 0.870 0.857 0.048 -0.124

2.0 359 0.172 0.228 0.877 0.865 0.052 -0.121

4000–400 cm-1 except water vapor, carbon dioxide region

Vector (second) Total 7469 0.108 0.120 0.952 0.935 0.297 -0.163

1.0 1868 0.127 0.139 0.933 0.927 0.197 -0.166

1.2 1313 0.135 0.147 0.924 0.919 0.152 -0.129

1.5 729 0.142 0.155 0.917 0.911 0.148 -0.147

1.8 403 0.190 0.217 0.891 0.886 0.064 -0.132

1.9 306 0.167 0.188 0.885 0.881 0.048 -0.132

2.0 252 0.167 0.193 0.884 0.880 0.047 -0.123

2000–400 cm-1

Vector (second) total 7469 0.151 0.146 0.906 0.886 0.272 -0.189

1.0 1049 0.166 0.164 0.886 0.879 0.105 -0.181

1.2 780 0.175 0.174 0.873 0.866 0.065 -0.141

1.5 441 0.187 0.185 0.855 0.849 0.009 -0.158

1.8 228 0.197 0.202 0.840 0.834 0.009 -0.146

1.9 181 0.196 0.203 0.841 0.837 0.008 -0.109

2.0 150 0.200 0.208 0.834 0.830 0.017 -0.123

Two components were used to analyze in all PLSR models. VIP: variable influence on projection. UV: unit variance.

https://doi.org/10.1371/journal.pone.0196315.t003
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method. Fig 5B shows that the soybean samples from the northeastern and eastern provinces

of Chinese were clustered in the same clade using Ward’s method, whereas those from the

southeastern provinces comprised the other clade. As shown in Fig 5C, three regions (upper,

right side, and left side) were clustered using Ward’s method. Because the soybeans from the

right- and left-side provinces appeared to be similar, the Korean provinces could be simply

divided into upper and lower provinces. This result suggests that Chinese and Korean soybean

samples can be discriminated by latitude-dependent climatic factors without consideration of

the plant variety.

Practical application of the PLSR model for predicting the origin of

soybeans

The results presented in Tables 3–5 indicate that it is not only possible to discriminate between

Chinese and Korean soybeans but also to identify the region in which soybeans have been cul-

tivated. There is a wide diversity of soybean varieties used in China and Korea, but the present

results indicate that it is possible to determine the origin of soybeans without considering their

variety.

Our results indicate that it is possible to discriminate where soybeans originate from

because they reflect regional characteristics. The soybean samples from China could be divided

Table 4. List of permutation parameters of the PLSR models obtained using variables selected by vector normalization applied after the second differentiation, UV

scaling, and with various VIP cutoff values using different wavenumber areas for the comparison of the three groups of Chinese provinces.

Normalization method VIP cutoff Total wavenumber RMSEE RMSEP R2Y Q2Y R2Y intercept Q2Y intercept

4000–400 cm-1

Vector (second) total 7469 0.270 0.389 0.898 0.867 0.369 -0.217

1.0 3176 0.333 0.396 0.844 0.824 0.181 -0.173

1.2 2199 0.368 0.411 0.810 0.794 0.182 -0.159

1.5 517 0.323 0.368 0.854 0.840 0.233 -0.184

1.8 64 0.382 0.528 0.795 0.758 0.189 -0.178

1.9 36 0.497 0.720 0.654 0.594 0.177 -0.140

2.0 17 0.580 0.759 0.529 0.479 0.063 -0.195

4000–400 cm-1 except water vapor, carbon dioxide region

Vector (second) Total 7469 0.255 0.317 0.909 0.884 0.360 -0.141

1.0 2718 0.344 0.381 0.834 0.815 0.212 -0.152

1.2 1783 0.380 0.402 0.798 0.782 0.151 -0.156

1.5 290 0.262 0.293 0.904 0.891 0.258 -0.143

1.8 51 0.418 0.594 0.755 0.715 0.170 -0.181

1.9 28 0.501 0.719 0.648 0.601 0.078 -0.228

2.0 14 0.595 0.729 0.504 0.466 0.062 -0.190

2000–400 cm-1

Vector (second) total 7469 0.310 0.384 0.865 0.838 0.298 -0.185

1.0 1567 0.359 0.413 0.820 0.801 0.134 -0.193

1.2 969 0.386 0.423 0.791 0.777 0.090 -0.166

1.5 110 0.276 0.339 0.893 0.884 0.166 -0.266

1.8 17 0.279 0.341 0.891 0.882 0.201 -0.215

1.9 6 0.273 0.356 0.895 0.886 0.201 -0.227

2.0 1 0.273 0.366 0.896 0.886 0.202 -0.230

Two components were used to analyze in all PLSR models. The Chinese provinces are grouped into northeastern, eastern, and southeastern regions. VIP: variable

influence on projection. UV: unit variance.

https://doi.org/10.1371/journal.pone.0196315.t004
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into those from the northeastern provinces (Neimenggu, Heilongjiang, Jilin, and Liaoning),

Huang-Huai-Hai (Hebei, Shandong, and Anhui), Yangtze River (Hubei), and the southeastern

provinces (Zhejiang, Jiangxi, Fujian, Guangdong, and Guangxi). If Huang-Huai-Hai and the

Yangtze River region are considered to be the same province (due to their geographical prox-

imity), the separations of the Chinese provinces are highly consistent with the predictions

based on dividing the soybean regions into the northeastern, eastern, and southeastern prov-

inces. The samples from South Korea were divided into those from the central provinces

(Gyeonggi-do, Gangwon-do, Chungcheongbuk-do, and Chungcheongnam-do), Honam prov-

inces (Jeollabuk-do and Jeollanam-do), and Youngnam provinces (Gyeongsangbuk-do and

Gyeongsangnam-do). The results in Table 5 indicate that it was possible to separate three prov-

inces (upper, left side, and right side) if Chungcheongnam-do (a central province) was

grouped with Honam province.

The flow chart in Fig 6 shows a method for discriminating the country of origin using pre-

diction models when identifying unknown soybean samples. It is unclear where some of the

soybeans available in Korean markets originate from, often because they are substituted by

cheaper Chinese soybeans. The present results indicate that the flow chart in Fig 6 can be used

to verify the origin of any suspect soybeans. Moreover, in addition to discriminating between

Chinese and Korean soybeans, it is possible to discriminate between various production

Table 5. List of permutation parameters of the PLSR models obtained using variables selected by vector normalization applied after the second differentiation, UV

scaling, and with various VIP cutoff values using different wavenumber areas for the comparison of the three groups of Korean provinces.

Normalization method VIP cutoff Total wavenumber RMSEE RMSEP R2Y Q2Y R2Y intercept Q2Y intercept

4000–400 cm-1

Vector (second) total 7469 0.138 0.199 0.971 0.947 0.527 -0.318

1.0 3054 0.197 0.249 0.940 0.922 0.327 -0.335

1.2 1934 0.234 0.291 0.915 0.897 0.352 -0.263

1.5 616 0.237 0.277 0.914 0.895 0.346 -0.234

1.8 118 0.294 0.289 0.867 0.848 0.203 -0.274

1.9 70 0.342 0.386 0.820 0.783 0.202 -0.236

2.0 40 0.368 0.467 0.792 0.729 0.150 -0.225

4000–400 cm-1 except water vapor, carbon dioxide region

Vector (second) Total 7469 0.158 0.215 0.961 0.940 0.512 -0.267

1.0 2363 0.134 0.192 0.972 0.965 0.368 -0.232

1.2 1470 0.138 0.189 0.971 0.965 0.332 -0.199

1.5 482 0.129 0.170 0.974 0.968 0.350 -0.197

1.8 119 0.113 0.192 0.980 0.967 0.297 -0.172

1.9 73 0.137 0.257 0.971 0.943 0.269 -0.196

2.0 45 0.148 0.293 0.966 0.937 0.215 -0.242

2000–400 cm-1

Vector (second) total 7469 0.186 0.292 0.947 0.922 0.350 -0.330

1.0 1414 0.176 0.284 0.952 0.944 0.291 -0.201

1.2 794 0.179 0.278 0.951 0.944 0.230 -0.229

1.5 200 0.120 0.237 0.978 0.965 0.298 -0.287

1.8 53 0.190 0.358 0.944 0.931 0.176 -0.299

1.9 28 0.285 0.373 0.875 0.838 0.147 -0.213

2.0 19 0.317 0.319 0.845 0.809 0.092 -0.265

Two components were used to analyze in all PLSR models. The Korean provinces are grouped into upper, left-side, right-side regions. VIP: variable influence on

projection. UV: unit variance.

https://doi.org/10.1371/journal.pone.0196315.t005
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regions in a single country. Our flow chart can be applied to identify the original location of

cultivation and detect the adulteration of the cultivation origin of soybeans.

Conclusion

In this study we investigated whether FT-IR spectroscopy analysis can be combined with mul-

tivariate statistical analysis to predict the country of origin of soybean samples. This is the first

study to discriminate the origin of soybeans using various factors including scaling methods,

normalization methods, VIP cutoff, and wave-number region. These particular factors were

selected since they allow the origin of soybeans to be determined easily and precisely. Our

experimental results showed that this method could discriminate not only the country of ori-

gin but also the region of production within a country. The best PLSR prediction models for

discriminating the origins employed UV scaling, vector normalization (second derivative),

and the wave-number region from 4000 to 400 cm–1 excluding the water vapor and carbon

dioxide regions. The PLSR prediction model for discriminating the country of origin (Chinese

vs. Korean soybeans) was more precise when a VIP cutoff was not used. When the PLSR pre-

diction models were constructed using a VIP cutoff within a single country, a VIP cutoff value

of 1.5 was found to be optimal for discriminating the origin of soybeans.

Various soybean varieties and landraces are provided and grown worldwide according to

the demands of both growers and consumers. Soybean cultivars reportedly have a short market

life; for example, 54% of the cultivars submitted to the Varietal Information Program for Soy-

beans (the program supported by the Illinois Soybean Association of the US) are new [34]. In

addition, various types of soybean seed are utilized in the production of products such as meal,

tofu, soymilk, and edamame, and these seeds can exhibit various differences such as in their

texture, color, and hilum characteristics. It is also thought that soybean germ plasm has been

exchanged internationally. Therefore, PLSR models for predicting or differentiating soybean

Fig 5. Hierarchical cluster analysis derived from the most suitable prediction models for the discrimination of soybean samples. (A) Chinese vs. Korean

soybean samples (single linkage), (B) discrimination of Chinese soybean samples (Ward), and (C) discrimination of Korean soybean samples (Ward).

https://doi.org/10.1371/journal.pone.0196315.g005
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samples should be updated regularly (at least every 4–5 years) by sampling and analyzing the

available samples using FT-IR spectroscopy. We suggest the application of additional objective

criteria for the differentiation of various soybean seeds (varieties and landraces), such as the

basic and novel protocols for differentiation and prediction as used in this study based on the

optimization of preprocessing methods using FT-IR spectroscopy.

Fig 6. Flow chart for discrimination of unidentified soybean origin using FT-IR.

https://doi.org/10.1371/journal.pone.0196315.g006
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The practical application of these methods will require further studies using soybean sam-

ples from other countries. Once soybeans from many countries have been investigated, it

might be possible to discriminate the countries of origin of unidentified soybean samples by

using FT-IR spectroscopy combined with multivariate statistical analysis.
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