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Abstract We consider a simple extension of the Standard
Model with flavor-dependent U (1)′, that has been proposed
to explain some of B-meson anomalies recently reported at
LHCb. The U (1)′ charge is chosen as a linear combination
of anomaly-free B3 − L3 and Lμ − Lτ . In this model, the fla-
vor structure in the SM is restricted due to flavor-dependent
U (1)′ charges, in particular, quark mixings are induced by
a small vacuum expectation value of the extra Higgs dou-
blet. As a result, it is natural to get sizable flavor-violating
Yukawa couplings of heavy Higgs bosons involving the bot-
tom quark. In this article, we focus on the phenomenology
of the Higgs sector of the model including extra Higgs dou-
blet and singlet scalars. We impose various bounds on the
extended Higgs sector from Higgs and electroweak preci-
sion data, B-meson mixings and decays as well as unitarity
and stability bounds, then discuss the productions and decays
of heavy Higgs bosons at the LHC.

1 Introduction

The observed fermion masses and mixing angles are well
parametrized by the Higgs Yukawa couplings in the Stan-
dard Model (SM). However, the neutrino masses and mixing
angles call for the addition of right-handed (RH) neutrinos or
physics beyond the SM and, moreover, the flavor structures
of quarks and leptons are not understood yet. As there is no
flavor changing neutral current at tree level in the SM due
to the GIM mechanism, the observation of flavor violation
is an important probe of new physics up to very high energy
scales and it can be complementary to direct searches at the
LHC. In particular, the violation of lepton flavor universality
would be a strong hint at new physics.
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Recently, there have been interesting reports on the
anomalies in rare semileptonic B-meson decays at LHCb
such as RK [1], RK ∗ [2–4], P ′

5 [5,6]. The reported value of
RK = B(B → Kμ+μ−)/B(B → Ke+e−) is

RK = 0.745+0.097
−0.082, 1 GeV2 < q2 < 6 GeV2, (1.1)

which deviates from the SM prediction by 2.6σ . On the other
hand for vector B-mesons, RK ∗ = B(B → K ∗μ+μ−)/B
(B → K ∗e+e−) is

RK ∗ = 0.66+0.11
−0.07(stat) ± 0.03(syst),

0.045 GeV2 < q2 < 1.1 GeV2,

RK ∗ = 0.69+0.11
−0.07(stat) ± 0.05(syst),

1.1 GeV2 < q2 < 6.0 GeV2, (1.2)

which again differs from the SM prediction by 2.1–2.3σ and
2.4–2.5σ , depending on the energy bins. Explaining the B-
meson anomalies would require new physics violating the
lepton flavor universality at a few 100 GeV up to a few
10 TeV, depending on the coupling strength of new parti-
cles to the SM. We also note that there have been inter-
esting anomalies in B → D(∗)τν decays, the so called
RD(∗) = B(B → D(∗)τν)/B(B → D(∗)�ν) with � = e,
μ, whose experimental values are deviated from the SM val-
ues by more than 2σ [7–11].

Motivated by the B-anomalies RK (∗) , some of the authors
recently proposed a simple extension of the SM with extra
U (1)′ gauge symmetry with flavor-dependent couplings [12].
The U (1)′ symmetry is taken as a linear combination of
U (1)Lμ−Lτ

and U (1)B3−L3 , which might be a good symme-
try at low energy and originated from enhanced gauge sym-
metries such as in the U (1) clockwork framework [13]. In
this model, the quark mixings and neutrino masses/mixings
require an extended Higgs sector, which has one extra Higgs
doublet and multiple singlet scalars beyond the SM. As
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Table 1 U (1)′ charges of fermions and scalars

q3L u3R d3R �2L e2R ν2R �3L e3R ν3R

Q′ 1
3 x

1
3 x

1
3 x y y y −x − y −x − y −x − y

S H1 H2 �1 �2 �3

Q′ 1
3 x 0 − 1

3 x −y x + y x

a result, nonzero off-diagonal components of quark mass
matrices are obtained from the vacuum expectation value
(VEV) of the extra Higgs doublet and correct electroweak
symmetry breaking is ensured by the VEV of one of the sin-
glet scalars.

In this paper, we study the phenomenology of the heavy
Higgs bosons in the flavored U (1)′ model mentioned above.
We first show that the correct flavor structure of the SM is
well reproduced in the presence of the VEV of the extra
Higgs doublet. In particular, in the case with a small VEV
of the extra Higgs doublet or small tan β, we find that the
heavy Higgs bosons have sizable flavor-violating couplings
to the bottom quark and reduced flavor-conserving Yukawa
couplings to the top quark such that LHC searches for heavy
Higgs bosons can be affected by extra or modified production
and decay channels. We also briefly mention the implication
of our extended Higgs sector for RD(∗) anomalies. We discuss
various constraints on the extended Higgs sector from Higgs
and electroweak precision data, flavor data such as the B-
meson mixings and decays, as well as unitarity and stability
bounds. For certain benchmark points that can evade such
bounds, we study the productions and decays of the heavy
Higgs bosons at the LHC and show distinct features of the
model with flavor-violating interactions in the Higgs sector.

This paper is organized as follows. First, we begin with a
summary of the U (1)′ model with the extended Higgs sector
and new interactions. The Higgs spectrum and Yukawa cou-
plings for heavy Higgs bosons are presented in Sect. 3. We
then discuss various theoretical and phenomenological con-
straints on the Higgs sector are studied in Sect. 4, and collider
signatures of the heavy Higgs bosons at the LHC are stud-
ied in Sect. 5. Finally, conclusions are drawn. There are four
appendices dealing with the extended Higgs sector, unitarity
bounds, quark Yukawa couplings, and theU (1)′ interactions.

2 Flavored U(1)′ model

We consider a simple extension of the SM withU (1)′, where
a new gauge boson Z ′ couples specifically to heavy fla-
vors. It is taken as a linear combination of U (1)Lμ−Lτ

and
U (1)B3−L3 with

Q′ ≡ y(Lμ − Lτ ) + x(B3 − L3)

for real parameters x and y [12].1 Introducing two Higgs
doublets H1,2 is necessary to have right quark masses and
mixings. We add one complex singlet scalar S for a correct
vacuum to break electroweak symmetry and U (1)′. More-
over, in order to cancel the anomalies, the fermion sector is
required to include at least two RH neutrinos νi R (i = 2, 3).
One more RH neutrino ν1R with zeroU (1)′ charge as well as
extra singlet scalars, �a (a = 1, 2, 3), with U (1)′ charges
of −y, x + y, x , respectively, are also necessary for neutrino
masses and mixings. As Lμ − Lτ is extended to RH neutri-
nos, Lμ−Lτ and L2 −L3 can be used interchangeably in our
model. The U (1)′ charge assignments are given in Table 1.

The Lagrangian of the model is given as

L = −1

4
Z ′

μν Z
′μν − 1

2
sin ξ Z ′

μνB
μν + LS + LY (2.1)

with

LS = |DμH1|2+|DμH2|2+|DμS|2+
3∑

a=1

|Dμ�a |−V (φi ),

(2.2)

where Z ′
μν = ∂μZ ′

ν − ∂ν Z ′
μ is the field strength of the U (1)′

gauge boson, sin ξ is the gauge kinetic mixing betweenU (1)′
and SM hypercharge, and Dμφi = (∂μ − igZ ′Q′

φi
Z ′

μ)φi are
covariant derivatives. Here Q′

φi
is the U (1)′ charge of φi ,

gZ ′ is the extra gauge coupling. The scalar potential V (φi )

is given by V = V1 + V2 with

V1 = μ2
1|H1|2 + μ2

2|H2|2 − (μSH†
1 H2 + h.c.)

+ λ1|H1|4 + λ2|H2|4 + 2λ3|H1|2|H2|2
+ 2λ4(H

†
1 H2)(H

†
2 H1)

+ 2|S|2(κ1|H1|2 + κ2|H2|2) + m2
S|S|2 + λS|S|4,

(2.3)

V2 =
3∑

a=1

(μ2
�a

|�i |2 + λ�a |�a |4)

1 We note that we can take two independent parameters for the Z ′
couplings to be either (xgZ ′ , ygZ ′ ) or (x/y, gZ ′ ) by absorbing y into
gZ ′ . Our following discussion does not depend on the choice of the Z ′
couplings.
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+ (λS3S
3�

†
3 + μ4�1�2�

†
3 + h.c.)

+ 2
3∑

a=1

|�a |2(βa1|H1|2 + βa2|H2|2 + βa3|S|2)

+ 2
∑

a<b

λab|�a |2|�b|2. (2.4)

The extended Higgs sector is presented in the next section and
studied in more detail in Appendix A. For a set of quartic cou-
plings for S and H1,2 that are relevant for electroweak sym-
metry andU (1)′ breaking, we have collected unitarity bounds
in Appendix B, which are used to constrain the parameter
space of the Higgs sector in Sect. 4.

The Yukawa Lagrangian for quarks and leptons is given
by

−LY = q̄i (y
u
i j H̃1 + hui j H̃2)u j + q̄i (y

d
i j H1 + hdi j H2)d j

+ y�
i j �̄i H1e j + yν

i j �̄i H̃1ν j R

+ (νi R)c(Mi j + �az
(a)
i j )ν j R + h.c. (2.5)

with H̃1,2 ≡ iσ2H∗
1,2. After electroweak symmetry and

U (1)′ are broken by the VEVs of scalar fields, 〈H1,2〉 =
v1,2/

√
2 with v2

1 + v2
2 = v2 = (246 GeV)2 , 〈S〉 = vs/

√
2

and 〈�a〉 = ωa/
√

2, the quark and lepton mass terms are
given as

LY = −ūMuu − d̄Mdd − �̄M�� − �̄MDνR − (νR)cMRνR + h.c.

(2.6)

with the following flavor structure:

Mu =
⎛

⎜⎝
yu11〈H̃1〉 yu12〈H̃1〉 0
yu21〈H̃1〉 yu22〈H̃1〉 0

hu31〈H̃2〉 hu32〈H̃2〉 yu33〈H̃1〉

⎞

⎟⎠ , (2.7)

Md =
⎛

⎜⎝

yd11〈H1〉 yd12〈H1〉 hd13〈H2〉
yd21〈H1〉 yd22〈H1〉 hd23〈H2〉

0 0 yd33〈H1〉

⎞

⎟⎠ , (2.8)

M� =
⎛

⎜⎝

y�
11〈H1〉 0 0

0 y�
22〈H1〉 0

0 0 y�
33〈H1〉

⎞

⎟⎠ , (2.9)

MD =

⎛

⎜⎜⎝

yν
11〈H̃1〉 0 0

0 yν
22〈H̃1〉 0

0 0 yν
33〈H̃1〉

⎞

⎟⎟⎠ , (2.10)

MR =

⎛

⎜⎜⎝

M11 z(1)
12 〈�1〉 z(2)

13 〈�2〉
z(1)

21 〈�1〉 0 z(3)
23 〈�3〉

z(2)
31 〈�2〉 z(3)

32 〈�3〉 0

⎞

⎟⎟⎠ . (2.11)

Since the mass matrix for charged leptons is already diago-
nal, the lepton mixings come from the mass matrix of RH
neutrinos. There are four other categories of neutrino mixing
matrices [14,15], that are compatible with neutrino data. In
all the cases, we need at least three complex scalar fields with
different U (1)′ charges, similarly to the case given in (2.11).
The quark Yukawa couplings to Higgs bosons are summa-
rized in Appendix C.

We find the Z -like (Z1) and Z ′-like (Z2) masses as

m2
Z1,2

= 1

2

(
m2

Z + m2
22 ∓

√
(m2

Z − m2
22)

2 + 4m4
12

)
,

(2.12)

where m2
Z ≡ (g2 + g2

Y )v2/4, and

m2
22 ≡ m2

Z s
2
W t2

ξ + m2
Z ′/c2

ξ − c−1
W egZ ′Q′

H2
v2
wtξ /cξ ,

m2
12 ≡ m2

Z sW tξ − 1

2
c−1
W s−1

W egZ ′Q′
H2

v2
2/cξ (2.13)

with

m2
Z ′ = g2

Z ′

(
1

9
x2v2

s + y2ω2
1 + (x + y)2ω2

2 + x2ω2
3

)
.

(2.14)

Here sϕ ≡ sin ϕ, cϕ ≡ cos ϕ, and tϕ ≡ tan ϕ. The modified
Z boson mass can receive constraints from electroweak pre-
cision data, which is studied in Sect. 4. We note that for a
small mass mixing, the Z ′-like mass is approximately given
by m2

Z2
≈ m2

Z ′ and we can treat mZ ′ and gZ ′ to be inde-
pendent parameters due to the presence of nonzero ωi ’s. The
U (1)′ interactions are collected in Appendix D.

3 Higgs spectrum and Yukawa couplings

We here specify the Higgs spectrum of our model and
identify the quark and lepton Yukawa couplings of neutral
and charged Higgs bosons for studies in next sections. The
expressions are based on results in Appendices A and C .

3.1 The Higgs spectrum

The Higgs sector of our model has two Higgs doublets, which
are expressed in components as

Hj =
(

φ+
j

(v j + ρ j + iη j )/
√

2

)
( j = 1, 2), (3.1)

and the complex singlet scalar decomposed into S =
(vs + SR + i SI ) /

√
2.
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In the limit of negligible mixing with the CP-even sin-
glet scalar, the mass eigenstates of CP-even neutral Higgs
scalars, h and H , are given by

h = − sin α ρ1 + cos α ρ2,

H = cos α ρ1 + sin α ρ2. (3.2)

The general case where the CP-even part of the singlet
scalar S mixes with the Higgs counterpart is considered
in Appendix A. The mass eigenvalues of CP-even neutral
Higgs scalars are denoted as mh1,2,3 with mh1 < mh2 < mh3 ,
alternatively, mh ≡ mh1 , mH ≡ mh2 and ms ≡ mh3 , and
there are three mixing angles, α1,2,3: α1 = α in the limit
of a decoupled CP-even singlet scalar, while α2 and α3

are mixing angles between ρ1,2 and SR , respectively. For
2κ1v1vs ≈ μv2/

√
2 and 2κ2v2vs ≈ μv1/

√
2, the mixing

between ρ1,2 and SR can be neglected. For a later discussion,
we focus mainly on this case.

TheCP-odd parts of the singlet scalars, S and �a , can mix
with the Higgs counterpart due to a nonzero U (1)′ charge of
the second Higgs H2, but for a small x and small VEV of
H2, the mixing effect is negligible. In this case, the neutral
Goldstone boson G0 and the CP-odd Higgs scalar A0 are
turned out to be

G0 = cos β η1 + sin β η2,

A0 = sin β η1 − cos β η2 (3.3)

with tan β ≡ v2/v1. The massless combination of η1 and η2

is eaten by the Z boson, while a linear combination of SI and
other pseudoscalars of �a is eaten by the Z ′ boson if the Z ′
mass is determined dominantly by the VEV of S. The other
combination of the CP-odd scalars from two Higgs doublets
has the mass of

m2
A = μ sin β cos β√

2vs

(
v2 + v2

s

sin2 β cos2 β

)
. (3.4)

On the other hand, the charged Goldstone bosons G+ and
charged Higgs scalar H+ identified as

G+ = cos β φ+
1 + sin β φ+

2 ,

H+ = sin β φ+
1 − cos β φ+

2 (3.5)

with nonzero mass eigenvalue given by

m2
H+ = m2

A −
(

μ sin β cos β√
2vs

+ λ4

)
v2. (3.6)

We remark that in the limit of μvs � v2, the heavy scalars
in the Higgs doublets become almost degenerate as m2

A ≈
m2

H ≈ m2
H+ ≈ μvs/(

√
2 sin β cos β) and m2

s ≈ 2λSv
2
s from

Eqs. (3.4), (3.6) and (A.5). In this limit, the mixing angles
between the SM-like Higgs and extra scalars can be negligi-
bly small and the resulting Higgs spectrum is consistent with
Higgs data and electroweak precision tests (EWPT) as will
be discussed in Subsec 4.2. But, as μvs is constrained by per-
turbativity and unitarity bounds on the quartic couplings with
Eqs. (A.7) or (A.9), as will be discussed in Sect. 4, the extra
scalars in our model remain non-decoupled. Since it is suffi-
cient to take almost degenerate masses for two of mA, mH ,
and mH+ for EWPT, we henceforth consider more general
scalar masses but with small mixings between the SM-like
Higgs and the extra neutral scalars.

3.2 Quark mass matrices

We now consider the quark mass matrices and their diagonal-
ization. After two Higgs doublets develop VEVs, we obtain
the quark mass matrices from Eqs. (2.7) and (2.8) as

(Mu)i j = 1√
2
v cos β

⎛

⎜⎜⎝

yu11 yu12 0

yu21 yu22 0

0 0 yu33

⎞

⎟⎟⎠

+ 1√
2
v sin β

⎛

⎜⎜⎝

0 0 0

0 0 0

hu31 hu32 0

⎞

⎟⎟⎠ , (3.7)

(Md)i j = 1√
2
v cos β

⎛

⎜⎜⎝

yd11 yd12 0

yd21 yd22 0

0 0 yd33

⎞

⎟⎟⎠

+ 1√
2
v sin β

⎛

⎜⎜⎝

0 0 hd13

0 0 hd23

0 0 0

⎞

⎟⎟⎠ . (3.8)

The quark mass matrices can be diagonalized by

U †
LMuUR = MD

u =
⎛

⎝
mu 0 0
0 mc 0
0 0 mt

⎞

⎠ ,

D†
LMdDR = MD

d =
⎛

⎝
md 0 0
0 ms 0
0 0 mb

⎞

⎠ , (3.9)

thus the CKM matrix is given as VCKM = U †
L DL . We

note that the Yukawa couplings of the second Higgs doublet
are sources of flavor violation, which could be important
in meson decays/mixings and collider searches for flavor-
violating top decays and/or heavy Higgs bosons [16–19].
The detailed derivation of flavor-violating Higgs couplings
is presented in the next section.
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Since hu31 and hu32 correspond to rotations of right-handed
up-type quarks, we can take UL = 1, so VCKM = DL . In
this case, we have an approximate relation for the down-
type quark mass matrix, Md ≈ VCKMMD

d , up to md,s/mb

corrections. Then the Yukawa couplings between the third
and first two generations are given as follows.

hd13 =
√

2mb

v sin β
Vub, hd23 =

√
2mb

v sin β
Vcb. (3.10)

For Vub � 0.004 
 Vcb � 0.04, we have hd13 
 hd23. The
down-type Yukawa couplings are determined as

yd11 =
√

2md

v cos β
Vud , yd12 =

√
2ms

v cos β
Vus ,

yd21 =
√

2md

v cos β
Vcd , yd22 =

√
2ms

v cos β
Vcs , yd33 =

√
2mb

v cos β
Vtb.

(3.11)

On the other hand, taking UL = 1 as above, we find
another approximate relation for the up-type quark mass
matrix: Mu = MD

u U †
R . Then the rotation mass matrix for

right-handed down-type quarks becomesU †
R = (MD

u )
−1

Mu ,
which is given as

U †
R = 1√

2

⎛

⎜⎜⎝

v
mu

cos β yu11
v
mu

cos β yu12 0

v
mc

cos β yu21
v
mc

cos β yu22 0

v
mt

sin β hu31
v
mt

sin β hu32
v
mt

cos β yu33

⎞

⎟⎟⎠ .

(3.12)

From the unitarity condition of UR we further find the fol-
lowing constraints on the up-type quark Yukawa couplings:

|yu11|2 + |yu12|2 = 2m2
u

v2 cos2 β
, (3.13)

|yu21|2 + |yu22|2 = 2m2
c

v2 cos2 β
, (3.14)

|yu33|2 + tan2 β(|hu31|2 + |hu32|2) = 2m2
t

v2 cos2 β
, (3.15)

yu11(y
u
21)

∗ + yu12(y
u
22)

∗ = 0, (3.16)

yu21(h
u
31)

∗ + yu22(h
u
32)

∗ = 0, (3.17)

yu11(h
u
31)

∗ + yu12(h
u
32)

∗ = 0. (3.18)

3.3 Quark Yukawa couplings

Using the results in Appendix C, we get the Yukawa interac-
tions for the SM-like Higgs boson h and heavy neutral Higgs
bosons H , A as

−Lh/H/A
Y = cos(α − β)√

2 cos β
b̄R(h̃d∗

13dL + h̃d∗
23 sL)h

+ λhb√
2
b̄RbLh + λht√

2
t̄R tLh

+ sin(α − β)√
2 cos β

b̄R(h̃d∗
13dL + h̃d∗

23 sL)H

+ λH
b√
2
b̄RbL H + λH

t√
2
t̄R tL H

− i√
2 cos β

b̄R(h̃d∗
13dL + h̃d∗

23 sL)A

+ iλA
b√
2
b̄RbL A − iλA

t√
2
t̄R tL A + h.c. (3.19)

where

λhb = −
√

2mb sin α

v cos β
+ h̃d33 cos(α − β)

cos β
, (3.20)

λht = −
√

2mt sin α

v cos β
+ h̃u33 cos(α − β)

cos β
, (3.21)

λH
b =

√
2mb cos α

v cos β
+ h̃d33 sin(α − β)

cos β
, (3.22)

λH
t =

√
2mt cos α

v cos β
+ h̃u33 sin(α − β)

cos β
, (3.23)

λA
b =

√
2mb tan β

v
− h̃d33

cos β
, (3.24)

λA
t =

√
2mt tan β

v
− h̃u33

cos β
. (3.25)

We note that h̃d ≡ D†
Lh

d DR and h̃u ≡ U †
Lh

uUR . Thus, by

taking UL = 1 we get h̃u = huUR and h̃d = V †
CKMhd . In

this case, as compared to two-Higgs-doublet model type I,
extra Yukawa couplings are given by

h̃u33 =
√

2mt

v sin β

(
1 − v2 cos2 β

2m2
t

|yu33|2
)

, (3.26)

h̃d13 = 1.80 × 10−2
(

mb

v sin β

)
, (3.27)

h̃d23 = 5.77 × 10−2
(

mb

v sin β

)
, (3.28)

h̃d33 = 2.41 × 10−3
(

mb

v sin β

)
. (3.29)

We find that the flavor-violating couplings for light up-type
quarks vanish, while the top quark Yukawa can have a siz-
able modification due to nonzero h̃u33. On the other hand, the
flavor-violating couplings for down-type quarks can be large
if tan β is small, even though the couplings have the sup-
pression factors of CKM mixing and smallness of bottom
quark mass. The couplings can be constrained by bounds
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from B-meson mixings and decays as is discussed in the
next section. We note that the flavor-violating interactions of
the SM-like Higgs boson are turned off in the alignment limit
where α = β − π/2.

The Yukawa terms of the charged Higgs boson are given
as

− LH−
Y = b̄(λH−

tL PL + λH−
tR PR)t H−

+ b̄(λH−
cL PL + λH−

cR PR)cH−

+ λH−
uL b̄PLuH

− + h.c., (3.30)

where

λH−
tL =

√
2mb tan β

v
V ∗
tb − (VCKMh̃d)∗33

cos β
, (3.31)

λH−
tR = −

(√
2mt tan β

v
− h̃u33

cos β

)
V ∗
tb, (3.32)

λH−
cL =

√
2mb tan β

v
V ∗
cb − (VCKMh̃d)∗23

cos β
, (3.33)

λH−
cR = −

√
2mc tan β

v
V ∗
cb, (3.34)

λH−
uL =

√
2mb tan β

v
V ∗
ub − (VCKMh̃d)∗13

cos β
(3.35)

with

VCKMh̃d =

⎛

⎜⎜⎝

0 0 Vud h̃d13 + Vus h̃d23 + Vubh̃d33

0 0 Vcd h̃d13 + Vcs h̃d23 + Vcbh̃d33

0 0 Vtd h̃d13 + Vts h̃d23 + Vtbh̃d33

⎞

⎟⎟⎠ . (3.36)

If yu33 = ySM
t = √

2mt/v, the Higgs coupling to top quark
becomes

λH
t = ySM

t cos(α − β), (3.37)

and λA
t = λH−

tR = 0.

3.4 Lepton Yukawa couplings

As seen in (2.9), the mass matrix for charged leptons e j is
already diagonal due to theU (1)′ symmetry. Thus, the lepton
Yukawa couplings are in a flavor-diagonal form given by

−L�
Y = − mej sin α

v cos β
ē j e j h + mej cos α

v cos β
ē j e j H

+ ime j tan β

v
ē jγ

5e j A
0

+
√

2mej tan β

v

(
ν̄ j PR e j H

+ + h.c.
)

(3.38)

4 Constraints on the Higgs sector

In this section we consider various phenomenological con-
straints on the model coming from B-meson mixings and
decays as well as Higgs and electroweak precision data on
top of unitarity and stability bounds on the Higgs sector.
We also show how to explain the deficits in RK and RK ∗
in the B-meson decays at LHCb in our model, and discuss
the predictions for RD and RD∗ through the charged Higgs
exchange.

4.1 Unitarity and stability bounds

Before considering the phenomenological constraints, we
consider unitarity and stability bounds for the Higgs sector.
As derived in Appendix B, the conditions for perturbativity
and unitarity are

|λ1,2,3,S| ≤ 4π, |κ1,2| ≤ 4π,

|λ3 ± λ4| ≤ 4π, |λ3 + 2λ4| ≤ 4π,
√

λ3(λ3 + 2λ4) ≤ 4π,

|λ1 + λ2 ±
√

(λ1 − λ2)2 + 4λ2
4| ≤ 8π

a1,2,3 ≤ 8π, (4.1)

where a1,2,3 are the solutions to Eq. (B.7). The vacuum sta-
bility conditions of the scalar potential can be obtained by
considering the potential to be bounded from below along
the directions of large Higgs doublet and singlet scalar fields.
Following Refs. [20–22], we obtain the stability conditions
as follows:

λ1,2,S > 0
√

λ1λ2 + λ3 + λ4 > 0,
√

λ1λ2 + λ3 > 0,
√

λ1λS + κ1 > 0,
√

λ2λS + κ2 > 0,
√

(κ2
1 − λ1λS)(κ

2
2 − λ2λS) + λ3λS > κ1κ2,

√
(κ2

1 − λ1λS)(κ
2
2 − λ2λS) + (λ3 + λ4)λS > κ1κ2. (4.2)

The stability conditions along the other scalar fields �a can
be obtained in the similar way, but they are not relevant for our
study because �a’s do not couple directly to Higgs doublets
as long as the extra quartic couplings for �a are positive and
large enough.

The unitarity and stability bounds are depicted in Figs. 1
and 2 for the parameter space in terms of mh2 and tan β, or vs
and μ, with assuming the alignment limit, cos(α−β) = 0.05,
and zero mixing between heavy CP-even scalars. In each
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Fig. 1 Parameter space in terms of mh2 and tan β. The gray regions
are excluded by unitarity and stability bounds. vs = 2mh3 = 1 TeV and
cos(α − β) = 0.05 with mh2 = mA and mH± = 500 GeV in the left,

and mh2 = mH± and mA = 140 GeV in the right panel. The mixing
between heavy CP-even scalars is taken to be zero

[ ]

[
]

= = = ( − )=

[ ]

[
]

= = = ( − )=

Fig. 2 Parameter space in terms of vs and μ for mh3 = mH± = mh2 = 0.5 TeV and cos(α−β) = 0.05. The gray regions are excluded by unitarity
and stability bounds. tan β = 1 (0.5) in the left (right) panel. The mixing between heavy CP-even scalars is taken to be zero

figure, the gray region corresponds to the parameter space
excluded by the unitarity and stability conditions. In Fig. 1,
we have taken the different choices of Higgs masses: mh2 =
mA and mH± = 500 GeV in the left, while mh2 = mH±
and mA = 140 GeV in the right panel. On the other hand,
the parameter space in terms of vs and μ has been shown in
Fig. 2, with setting mh3 = mH± = mh2 = 0.5 TeV, but tak-
ing different values of tan β. We note that the unitarity and
stability bounds are sensitive to the choice of tan β, while

insensitive to the mixing angle of heavy CP-even scalars,
in constraining the mass parameters. The allowed parame-
ter space for mass parameters becomes narrower as tan β is
smaller.

4.2 Higgs and electroweak precision data

Provided that the Higgs mixings with the singlet scalar are
small, the mixing angle α between CP-even Higgs scalars
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Fig. 3 Parameter space for sin α and tan β allowed by Higgs data
within 1σ (green), 2σ (yellow), and 3σ (dark gray). The gray regions
corresponds to the unitarity and stability bounds. yu33 = ySM

t in the left

and yu33 = ySM
t / cos β in the right panel. mh2 = mH± = 450 GeV,

mA = 140 GeV and vs = 1 TeV has been taken in all panels

are constrained by Higgs precision data [23–32]. The param-
eter space for sin α and tan β allowed by the Higgs data is
shown in Fig. 3. We take the (33) component of the up-type
Higgs Yukawa coupling to be yu33 = ySM

t in the left, and
yu33 = ySM/ cos β in the right panel. For illustration, we
have also imposed unitarity and stability bounds discussed
in the previous subsection for mh2 = mH± = 450 GeV,
mA = 140 GeV and vs = 1 TeV. As a result, we find
a wide parameter space close to the line of the alignment,
α = β − π/2, that is consistent with both the Higgs data
and unitarity/stability bounds for tan β � 0.1. Thus, hence-
forth, for the phenomenology of the extra Higgs scalars,
we focus on the parameter space near the alignment limit,
cos(α − β) ∼ 0.

To see bounds from electroweak precision data, we obtain
effective Lagrangian after integrating out W and Z bosons
as follows [33,34]:

Leff = − 4GF√
2g2 sec2 θW

(
sec2 θW Jμ

W+ JW−,μ + ρ Jμ
Z JZ ,μ

+ 2aJμ
Z JZ ′,μ + bJμ

Z ′ JZ ′,μ
)

+ · · · , (4.3)

where Jμ
Z = Jμ

3 − sin2 θ∗ Jμ
EM with θ∗ being the modified

Weinberg angle. Here the non-oblique terms, a and b, are
determined at tree level as

a = ρ sin ζ sec ξ

cos ζ + sin θW tan ξ sin ζ
, b = a2

ρ
. (4.4)

From the Z -boson like mass given in Eq. (D.6) and the Z–Z ′
mixing angle in Eq. (D.7), we find the correction to the ρ

parameter as

�ρ = m2
W

m2
Z1

cos2 θW
(cos ζ + sin θW tan ξ sin ζ )2 − 1

� sin2 θW

cos2 ξ

m2
Z

m2
Z ′

[(
2Q′

H2

gZ ′

gY

)2
sin4 β − sin2 ξ

]
, (4.5)

where we assumed that tan 2ζ � 2m2
12/m

2
Z2


 1. Taking
the limit of zero gauge kinetic mixing, i.e. sin ξ = 0, we have

�ρ = m2
W

m2
Z cos2 θW

− 1

� 10−4
( x

0.05

)2
g2
Z ′ sin4 β

(
400 GeV

mZ ′

)2

, (4.6)

which is consistent with the result in Ref. [12]. Therefore,
for tan β � 1, gZ ′ � 1, and x � 0.05, Z ′ with the mass
mZ ′ � 400 GeV is consistent with electroweak precision
data. The mass splittings between extra Higgs scalars can
also be constrained by the electroweak precision data, but it
can be easily satisfied if we take mh2 = mH± or mh2 = mA,
and a small mixing between CP-even scalars.

4.3 B-meson anomalies from Z′

Before considering constraints from B-meson mixings and
decays, we show how to explain the B-meson anomalies in
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our model and identify the relevant parameter space for that.
This section is based on the detailed results onU (1)′ interac-
tions presented in Appendix D and phenomenological find-
ings in Ref. [12].

From the relevant Z ′ interactions for B-meson anomalies
and the Z ′ mass term,

L′
Z ′ = gZ ′ Z ′

μ

(
1

3
x V ∗

tsVtb s̄γ
μPLb + h.c. + yμ̄γ μμ

)

+1

2
m2

Z ′ Z ′2
μ , (4.7)

we get the classical equation of motion for Z ′ as

Z ′
μ = − gZ ′

m2
Z ′

(
1

3
x V ∗

tsVtb s̄γμPLb + h.c. + yμ̄γμμ

)
.

(4.8)

Then, by integrating out the Z ′ gauge boson, we obtain the
effective four-fermion interaction for b̄ → s̄μ+μ− as fol-
lows.

Leff,b̄→s̄μ+μ− = − xyg2
Z ′

3m2
Z ′

V ∗
tsVtb (s̄γ μPLb)(μ̄γμμ) + h.c.

(4.9)

Consequently, as compared to the effective Hamiltonian with
the SM normalization,

�Heff,b̄→s̄μ+μ− = −4GF√
2

V ∗
tsVtb

αem

4π
Cμ,NP

9 Oμ
9 (4.10)

with Oμ
9 ≡ (s̄γ μPLb)(μ̄γμμ) and αem being the electro-

magnetic coupling, we obtain new physics contribution to
the Wilson coefficient,

Cμ,NP
9 = −8xyπ2αZ ′

3αem

(
v

mZ ′

)2

(4.11)

with αZ ′ ≡ g2
Z ′/(4π), and vanishing contributions to other

operators, Cμ,NP
10 = C ′μ,NP

9 = C ′μ,NP
10 = 0. We note that

xy > 0 is chosen for a negative sign of Cμ
9 , being consis-

tent with B-meson anomalies. Requiring the best-fit value,
Cμ, NP

9 = −1.10 [35–41], (while taking [−1.27,−0.92] and
[−1.43,−0.74] within 1σ and 2σ errors), to explain the B-
meson anomalies yields

mZ ′ = 1.2 TeV ×
(
xy

αZ ′

αem

)1/2

. (4.12)

Therefore, mZ ′ � 1 TeV for xy � 1 and αZ ′ � αem. For
values of xy less than unity or αZ ′ � αem, Z ′ can be even
lighter.

Various phenomenological constraints on the Z ′ interac-
tions coming from dimuon resonance searches, other meson
decays and mixing, tau lepton decays and neutrino scattering
have been studied in Ref. [12], leading to the conclusion that
the region of xgZ ′ � 0.05 for ygZ ′ � 1 and mZ ′ � 1 TeV is
consistent with the parameter space for which the B-meson
anomalies can be explained.

4.4 Bounds from B-meson mixings and decays

We now consider the bounds from B-meson mixings and
decays. After integrating out the heavy Higgs bosons, the
effective Lagrangian for Bs(d) → μ+μ− from the flavor-
violating Yukawa interactions in (3.19) is

�Leff,Bs(d)→μ+μ− = −
√

2mμ sin(α − β) cos α

2m2
Hv cos β

× ((h̃d23)
∗b̄RsL + (h̃d13)

∗b̄RdL + h.c.)(μ̄μ)

−
√

2mμ tan β

2m2
Av cos β

× ((h̃d23)
∗b̄RsL + (h̃d13)

∗b̄RdL + h.c.)(μ̄γ 5μ). (4.13)

The extra contributions to the effective Hamiltonian for
Bs → μ+μ− are thus

�Heff,Bs→μ+μ− = −G2
Fm

2
W

π

×[CBSM
S (b̄PLs)(μ̄μ) + CBSM

P (b̄PLs)(μ̄γ 5μ)] (4.14)

with

CBSM
S = − π

G2
Fm

2
W

√
2mμ sin(α − β) cos α

2m2
Hv cos2 β

· (h̃d23)
∗,

CBSM
P = − π

G2
Fm

2
W

√
2mμ tan β

2m2
Av cos β

· (h̃d23)
∗. (4.15)

In the alignment limit with α = β − π/2 and mA � mH ,
the Wilson coefficients become identical and suppressed for
a small tan β. The effective Hamiltonian in the above leads
to the corrections of the branching ratio for Bs → μ+μ− as
follows [42]:

B(Bs → μ+μ−) = G4
Fm

4
W

8π5

(
1 − 4m2

μ

m2
Bs

)1/2

mBs f
2
Bsm

2
μ τBs

×
⎡

⎣
∣∣∣∣∣
m2

Bs
(CP − C ′

P )

2(mb + ms)mμ

− (CA − C ′
A)

∣∣∣∣∣

2

+
∣∣∣∣∣
m2

Bs
(CS − C ′

S)

2(mb + ms)mμ

∣∣∣∣∣

2 (
1 − 4m2

μ

m2
Bs

)⎤

⎦ ,

(4.16)
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where mBs , fBs , and τBs are mass, decay constant, and life-

time of Bs-meson, respectively. C (′)
A ,C (′)

S ,C (′)
P are Wilson

coefficients of the effective operators, O(′)
A = [b̄γμPL(R)s]

[μ̄γ μγ 5μ], O(′)
S = [b̄PL(R)s][μ̄μ] and O(′)

P = [b̄PL(R)s]
[μ̄γ μγ 5μ], respectively. We note that there is no contribu-
tion from Z ′ interactions to Bs → μ+μ− since the muon
couplings to Z ′ are vector-like. On the other hand, in the
alignment limit the bounds obtained from Bs,d → μ+μ− in
Ref. [42] can be translated to our case as

∣∣∣h̃d23

∣∣∣ < 3.4 × 10−2
(

cos β

tan β

) ( mH,A

500 GeV

)2
,

∣∣∣h̃d13

∣∣∣ < 1.7 × 10−2
(

cos β

tan β

) ( mH,A

500 GeV

)2
. (4.17)

From Eqs. (3.27) and (3.28), we find that flavor constraints
are satisfied as far as

sin β <

√

1 − 0.033

(
500 GeV

mH,A

)2

. (4.18)

This leads to tan β < 5.4 for mH,A = 500 GeV.
The flavor-violating Yukawa couplings of heavy Higgs

bosons as well as Z ′ interactions [12] can modify the Bs–B̄s

mixing. The additional effective Hamiltonian relevant for the
mixing is given by

�Heff,Bs−B̄s = C ′
2(s̄αPRbα)(s̄β PRbβ)

+G2
Fm

2
W

16π2 (V ∗
tsVtb)

2 CNP
V LL

×(s̄αγ μPLbα)(s̄βγμPLbβ), (4.19)

with

C ′
2 = h̃d23

4 cos2 β m2
H

×
(
m2

H

m2
A

− sin2(α − β) − m2
H cos2(α − β)

m2
h

)
,

(4.20)

CNP
V LL = 16π2

9

(xgZ ′)2v4

m2
Z ′m2

W

= 0.27
( xgZ ′

0.05

)2
(

300 GeV

mZ ′

)2

. (4.21)

The mass difference in the Bs system becomes

�MBs = 2

3
mBs f

2
Bs B

s
123(μ)

×
[
G2

Fm
2
W

16π2 (V ∗
tsVtb)

2
(
CSM
V LL + CNP

V LL

)
+ |C ′

2|
]

,

(4.22)

where Bs
123(μ) is a combination of bag-parameters [43] and

CSM
V LL � 4.95 [44]. The SM prediction and the experimental

values of �Ms are given by (�MBs )
SM = (17.4±2.6) ps−1

[44] and (�MBs )
exp = (17.757 ± 0.021) ps−1 [45], respec-

tively. Then, taking into account the SM uncertainties, we
obtain the bounds on �MBs as 16 (13) ps−1 < �MBs <

21 (23) ps−1 or (�MBs )
BSM < 3.0 (5.6) ps−1 at 1σ (2σ )

level for new physics. We also note that the most recent lat-
tice calculations show considerably large values for the bag
parameters, leading to (�MBs )

SM = (20.01 ± 1.25) ps−1

[46]. It needs an independent confirmation, but if it is true,
the new physics contributions coming from the heavy Higgs
bosons and Z ′ would be constrained more tightly.

Taking the SM prediction as (�MBs )
SM = (17.4 ±

2.6) ps−1 [44], from Eq. (4.22) with Eqs. (4.20) and (4.21),
we get the bound on the flavor-violating Yukawa coupling in
the alignment limit of heavy Higgs bosons as

|h̃d23|
cos β

∣∣∣∣
m2

H

m2
A

− 1

∣∣∣∣
1/2(500 GeV

mH

)
< 4.6(6.4) × 10−3

×
√

1 − 0.1(0.06)
( xgZ ′

0.05

)2
(

300 GeV

mZ ′

)2

. (4.23)

Here, since we need to choose xgZ ′ � 0.05 for mZ ′ � 1 TeV
to satisfy the B-meson anomalies and the LHC dimuon
bounds at the same time as discussed in the previous sec-
tion, we can safely ignore the contribution of Z ′ interactions
to the Bs–B̄s mixing on the right-hand side of Eq. (4.23).
Furthermore, with the Z ′ contribution ignored, the Bd–B̄d

mixing leads to a similar bound [43]:

∣∣∣h̃d13

∣∣∣ < 0.91(1.3)×10−3 cos β

∣∣∣∣
m2

H

m2
A

−1

∣∣∣∣
−1/2( mH

500 GeV

)
.

(4.24)

Comparing to the bounds from Bs → μ+μ− in (4.17), the
B–B̄ mixings could lead to tighter constraints on the flavor-
violating Yukawa couplings for down-type quarks unlessmH

and mA are almost degenerate. The upper frames of Fig. 4
show that a wide range of heavy Higgs masses up to 600–
700 GeV are allowed for mh2 = mA and tan β = O(1).
On the other hand, for tan β = 0.5, the neutral Higgs boson
can be as heavy as 400 GeV, but the charged Higgs mass is
constrained as 240 GeV � mH± � 650 GeV. For illustration,
the case with mh2 = mH± has also been shown in the lower
frames of Fig. 4, where the narrower region is allowed as
compared with the case with mh2 = mA.

Another important bound comes from the inclusive radia-
tive decay, B → Xsγ . The effective Hamiltonian relevant
for the b → sγ transition is
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Fig. 4 Parameter space in terms of mh2 and mH± (upper frames), and
mA (lower frames). tan β = 1 in the left and 0.5 in the right panels. We
have chosen vs = 2mh3 = 1 TeV, cos(α − β) = 0.05, and yu33 = ySM

t
in all frames. The mixing between heavy CP-even scalars is taken to be

zero. The gray regions are excluded by unitarity and stability bounds.
The magenta regions are excluded by B → Xsγ , and cyan region is
excluded by Bs → μ+μ−. The yellow and orange regions are excluded
by Bs and Bd mixings, respectively

Heff,b→sγ = −4GF√
2

VtbV
∗
ts(C7O7 + C8O8) (4.25)

with

O7 = e

16π2 mb s̄σ
μν PRb Fμν,

O8 = gs
16π2 mb s̄σ

μν PRT
ab Ga

μν. (4.26)

The charged Higgs contributions to the Wilson coefficients
are given by [19,47]

CBSM
7 = v2

2m2
t

(λH−
tR )∗λH−

tR

VtbV ∗
ts

C (1)
7 (xt )

+ v2

2mtmb

(λH−
tL )∗λH−

tR

VtbV ∗
ts

C (2)
7 (xt ),

CBSM
8 = v2

2m2
t

(λH−
tR )∗λH−

tR

VtbV ∗
ts

C (1)
8 (xt )

+ v2

2mtmb

(λH−
tL )∗λH−

tR

VtbV ∗
ts

C (2)
8 (xt ) (4.27)
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Fig. 5 Parameter space for mH± and tan β excluded by B → Xsγ within 2σ (red) and unitarity bounds (gray) with yu33 = ySM
t for mA = mh2 =

160 GeV (left panel) and mA = mh2 = 350 GeV (right panel)

with xt ≡ (mt/mH±)2, and

C(1)
7 (x) = x

72

{
−8x3 + 3x2 + 12x − 7 + (18x2 − 12) ln x

(x − 1)4

}
,

C(2)
7 (x) = x

12

{
−5x2 + 8x − 3 + (6x − 4) ln x

(x − 1)3

}
,

C(1)
8 (x) = x

24

{
−x3 + 6x2 − 3x − 2 − 6x ln x

(x − 1)4

}
,

C(2)
8 (x) = x

4

{
−x2 + 4x − 3 − 2 ln x

(x − 1)3

}
. (4.28)

Here λH−
tL ,R

are given by Eqs. (3.31) and (3.32). The Wil-

son coefficients in the SM at one loop are given by CSM
7 =

3C (1)
7 (m2

t /m
2
W ) and CSM

8 = 3C (1)
8 (m2

t /m
2
W ). CBSM

8 mixes
into the CBSM

7 at the scale of μb = mb through the renormal-
ization group equations and contribute toB(B → Xsγ ) [48].
The next-to-next-leading order SM prediction for B(B →
Xsγ ) is [49,50]

B(B → Xsγ ) = (3.36 ± 0.23) × 10−4, (4.29)

whereas the experimentally measured value ofB(B → Xsγ )

from HFAG is [45]

B(B → Xsγ ) = (3.43 ± 0.21 ± 0.07) × 10−4. (4.30)

As a result, the SM prediction for B → Xsγ is consistent
with experiments, so we obtain the bounds on the modified
Wilson coefficients as −0.032 < CBSM

7 (μb) < 0.027 at 2σ

level [51]. This constrains tan β in terms of charged Higgs

mass as shown in Fig. 5, where unitarity and stability bounds
are displayed as well. We also find that the case with yu33 =
ySM
t / cos β has been excluded by B → Xsγ , hence the case

with yu33 = ySM
t is considered in Figs. 4 and 5 and collider

studies in the next section.

4.5 Predictions for RD and RD∗

We briefly discuss the implications of flavor-violating cou-
plings with charged Higgs on RD and RD∗ . The effective
Hamiltonian relevant for B → D(∗)τν in our model is given
as follows:

Heff = Ccb
SM(c̄LγμbL)(τ̄Lγ μνL) + Ccb

R (c̄LbR)(τ̄RνL)

+Ccb
L (c̄RbL)(τ̄RνL), (4.31)

where the Wilson coefficient in the SM is Ccb
SM = 2Vcb/v2,

and the new Wilson coefficients generated by charged Higgs
exchanges are

Ccb
R = −

√
2mτ tan β

vm2
H±

(λH−
cL )

∗
,

Ccb
L = −

√
2mτ tan β

vm2
H±

(λH−
cR )

∗
. (4.32)

See Eqs. (3.33) and (3.34) for λH−
cL ,R

.

The ratios of the branching ratios for B → D(∗)τν to
B → D(∗)�ν with � = e, μ are defined by

RD(∗) = B(B → D(∗)τν)

B(B → D(∗)�ν)
. (4.33)
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Fig. 6 The ratios of RD/RD,SM and RD∗/RD∗,SM as the functions of
charged Higgs mass for given tan β

The SM expectations are RD = 0.300 ± 0.008 and RD∗ =
0.252 ± 0.003 [52], but the experimental results for RD(∗)

are deviated from the SM values by more than 2σ [7–11].
Including the additional contributions from charged Higgs
exchanges, we find the simplified forms for RD and RD∗ as
follows [47,53]:

RD = RD,SM

⎡

⎣1 + 1.5 Re

(
Ccb
R + Ccb

L

Ccb
SM

)
+

∣∣∣∣∣
Ccb
R + Ccb

L

Ccb
SM

∣∣∣∣∣

2
⎤

⎦ ,

RD∗ = RD∗,SM

[
1 + 0.12 Re

(
Ccb
R − Ccb

L

Ccb
SM

)

+ 0.05
∣∣∣
Ccb
R − Ccb

L

Ccb
SM

∣∣∣
2
]

. (4.34)

As can be seen in Fig. 6, a light charged Higgs is neces-
sary to have large deviations of RD and RD∗ . However, it is
excluded by B → Xsγ . [See Fig. 5]. Therefore, our model
cannot explain the experimental results for RD(∗) simultane-
ously with the other bounds.

5 Productions and decays of heavy Higgs bosons at the
LHC

We investigate the main production channels for heavy Higgs
bosons at the LHC, including the contributions from flavor-
violating interactions of quarks. The decay modes of the
heavy Higgs bosons for some benchmark points are also stud-
ied, and we discuss smoking gun signals for heavy Higgs
searches at the LHC. In this section, mixings with singlet
scalar have been neglected and the heavy neutral Higgs
boson H denotes h2. h ≡ h1 is the SM-like Higgs with
mh = 125 GeV.

5.1 Heavy neutral Higgs boson

The main channels for neutral Higgs productions are the
gluon fusion gg → H , bottom-quark fusion bb̄ → H , and
additional productions through the flavor-violating interac-
tions for the bottom quark, bd̄i → H and di b̄ → H , where di
denotes light down-type quarks, di = d, s. There are bottom
quark associated productions, bg → bH and di g → bH , as
well.

The leading-order cross section for the gluon fusion pro-
cess at parton level is

σ̂ (gg → H) = α2
s m

2
H

576πv2

×
∣∣∣∣∣
3

4

∑

q

(
cos α

cos β
+ v sin(α − β)√

2mq cos β
h̃q33

)
AH

1/2(τq)

∣∣∣∣∣

2

×δ(ŝ − m2
H ), (5.1)

where τq = m2
H/(4m2

q). The loop function AH
1/2(τ ) is given

in Ref. [54]. ŝ is the partonic center-of-mass energy. Here
the contributions of only top and bottom quarks have been
taken into account. Note that the top quark contribution is
vanishing if one takes yu33 = ySM

t and the alignment limit as
can be seen in Eq. (3.37). The parton-level cross section for
bottom-quark fusion bb̄ → H is

σ̂ (bb̄ → H) = πm2
b

18v2

(
cos α

cos β
+ v sin(α − β)√

2mb cos β
h̃d33

)2

×
(

1 − 4m2
b

m2
H

)1/2

δ(ŝ − m2
H ). (5.2)

There are other single Higgs production channels through the
flavor-violating interactions, bd̄i → H and di b̄ → H . The
corresponding cross section is given by

σ̂ (di b̄ → H) = π |h̃di3|2 sin2(α − β)

72 cos2 β
δ(ŝ − m2

H ), (5.3)

and σ̂ (bd̄i → H) = σ̂ (di b̄ → H) at parton level.
The bottom quark associated production of the Higgs

boson can occur by initial states with a bottom quark, that
is, bg → bH , through the flavor-conserving interactions or
initial states with a light down-type quark, di g → bH , via
the flavor-violating interactions. The former is nonvanishing
even if all the components of h̃d are zero. The diagrams of
the bottom quark associated production are shown in Fig. 7.
The differential cross section for bg → bH at parton level is

dσ̂

dt̂
(bg → bH) = αs(λ

H
b )2

96(ŝ − m2
b)

2

[
2F1 − F2

2 − 2G1G2

(ŝ − m2
b)(t̂ − m2

b)

+2m2
b

(
G1

(ŝ − m2
b)

2
+ G2

(t̂ − m2
b)

2

)]
, (5.4)
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Fig. 7 Diagrams of the bottom quark associated productions of neutral Higgs bosons

Fig. 8 Production cross sections of the heavy neutral Higgs H at 14 TeV proton-proton collisions. We have chosen tan β = 1 (left panel) and
tan β = 0.5 (right panel) with cos(α − β) = 0.05 and yu33 = ySM

t

where

F1 = ŝ t̂ − m4
b, F2 = ŝ + t̂ − 2m2

b,

G1 = m2
H − m2

b − ŝ, G2 = m2
H − m2

b − t̂,

and λH
b is given in (3.22). For the di g → bH process, it is

dσ̂

dt̂
(di g → bH) = αs |h̃di3|2

96ŝ2(t̂ − m2
b)

sin2(α − β)

cos2 β

×
[

2F1 − F2
2 − 2G1G2

ŝ
+ 2m2

bG2

t̂ − m2
b

]

(5.5)

with

F1 = ŝ t̂, F2 = ŝ+ t̂ −m2
b, G1 = m2

H −m2
b − ŝ, G2 = m2

H − t̂ .

And again, σ̂ (d̄i g → b̄H) = σ̂ (di g → bH) at parton level.
We perform the integration by using the Monte Carlo

method to obtain the production cross sections at proton-

proton collisions of 14 TeV and employ the NNPDF2.3 par-
ton distribution function (PDF) set [55] via the LHAPDF
6 library [56]. The renormalization and factorization scales
are set to mH , and mb = 4.7 GeV. The resulting production
cross sections as a function of mH are shown in Fig. 8. In
all frames we set cos(α − β) = 0.05, close to the alignment
limit, and yu33 = ySM

t . A constant K -factor of 2.5 has been
multiplied to the gluon fusion production cross section, while
the leading-order expressions have been used for the other
production channels.

In the alignment limit, the neutral Higgs coupling to the
top quarks λH

t is vanishing as can be seen in Eq. (3.37).
In this case, the single Higgs production through the gluon
fusion process is suppressed compared to the SM case,
though nonvanishing due to the bottom quarks in the loop.
Still, the gluon fusion production convoluted with PDF is
the most dominant channel for the single Higgs production
and bb̄ → H is the subdominant one for tan β � O(0.1).
On the other hand, for smaller tan β, the flavor-violating
Higgs couplings to light quarks become larger and contribu-
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tions from the initial states with the light down-type quarks
di b̄ → H is subdominant, and become even the most dom-
inant channel in the case of very small tan β = O(0.01).
However, since we find that such scenarios with very small
tan β have been excluded by bounds from the experimen-
tal results on B-meson mixings and decays, particularly by
B → Xsγ as seen in the previous section, we have cho-
sen tan β = 1 and 0.5 as benchmarks for this study. For
mH = 200 GeV and tan β = 1 (0.5), σpp→H � 225.2
(110.5) fb, and (σbd̄i→H + σdi b̄→H )/σgg→H = 0.62%
(1.6%), while (σbd̄i→H +σdi b̄→H )/σbb̄→H � 1.6% (10.9%)
at the LHC. As the neutral Higgs gets heavier, the produc-
tion cross sections rapidly decreases. For mH = 400 GeV
and tan β = 1 (0.5), σpp→H � 38.4 (31.7) fb.

As can be seen in Fig. 8, the production cross section
of the bottom quark associated process increases as tan β

is smaller since the effect of the flavor-violating couplings
become larger. In particular, if mH � 200 GeV the produc-
tion cross section is O(10) fb, so it can be served as a good
search channel at the LHC. Meanwhile, if mH � 2mt , the
cross section decreases down to � O(1) fb.

We now turn to the decay widths of the neutral Higgs
bosons and obtain their branching ratios. Ignoring the mixing
among the SM-like Higgs and singlet scalar, the partial decay
widths to quarks are

�(H → bd̄i ) = �(H → di b̄)

= 3|h̃di3|2 sin2(α − β)

32π cos2 β
mH

(
1 − m2

b

m2
H

)2

,

�(H → qq̄) = 3(λH
q )

2

16π
mH

(
1 − 4m2

q

m2
H

)3/2

, (5.6)

where q = t , b, c. λH
b and λH

t are given in (3.22) and (3.23),
and

λH
c =

√
2mc cos α

v cos β
. (5.7)

On the other hand, the Higgs interactions to the charged lep-
tons are flavor-conserving and the corresponding decay width
is given as

�(H → τ+τ−) = m2
τ cos2 α

8πv2 cos2 β
mH

(
1 − 4m2

τ

m2
H

)3/2

. (5.8)

The partial widths to electroweak gauge bosons V = W ,
Z are given as

�(H → VV ) = δVm3
H cos2(α − β)

32πv2

×
(

1 − 4m2
V

m2
H

)1/2 (
1 − 4m2

V

m2
H

+ 12m4
V

m4
H

)
, (5.9)

where δW = 2 and δZ = 1. These partial widths are vanishing
in the alignment limit. If mH > 2mZ ′ , the decay mode of
H → Z ′Z ′ opens. Ignoring the small mixing with the Z
boson, the decay width is

�(H → Z ′Z ′) = g4
Z ′x4m3

Hv2 sin2 β sin2 α

2592πm4
Z

(
1 − 4m2

Z ′

m2
H

)1/2

×
(

1 − 4m2
Z ′

m2
H

+ 12m4
Z ′

m4
H

)
. (5.10)

However, we find that this decay mode is almost negligible
for small gZ ′x � O(0.05) andmZ ′ � 400 GeV, which would
be necessary to evade constraints from the Z ′ searches at the
LHC.

The neutral Higgs boson can also decay into γ γ and gg
through fermion or gauge boson loops. At leading order, the
decay widths are given as

�(H → γ γ ) = α2m3
H

256π3v2

∣∣∣∣
∑

q=t, b

3Q2
q

λH
q v√
2mq

AH
1/2(τq)

+ cos α

cos β
AH

1/2(ττ ) + cos(α − β)AH
1 (τW )

∣∣∣∣
2

,

�(H → gg) = α2
s m

3
H

72π3v2

∣∣∣∣∣∣
3

4

∑

q=t, b

λH
q v√
2mq

AH
1/2(τq)

∣∣∣∣∣∣

2

,

(5.11)

where Qq is the electric charge of the quark and τi ≡
m2

H/(4m2
i ). The loop functions AH

1/2 and AH
1 can be found

in Ref. [54].
If mH > 2mh , the heavy neutral Higgs can decay into a

pair of SM-like Higgs bosons.2 The triple interaction comes
from the scalar potential in (2.3),

V1 ⊃ gHhhv

2
Hhh, (5.12)

where

gHhh = 3(λ1 sin α cos β + λ2 cos α sin β) sin(2α)

+ (λ3 + λ4) [3 cos(α + β) cos(2α) − cos(α − β)] .

(5.13)

2 If the singlet scalar h3 = S is light enough, additional decay modes
such as H → Sh can occur and become important channels (See, for
example, [57,58]). Here we assume that S is heavy, mS � 0.5–1 TeV,
and the mixings with doublet Higgs bosons are negligible.
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Fig. 9 Branching ratios of the heavy neutral Higgs H . tan β = 1 and μ = 200 GeV (left panel), and tan β = 0.5 and μ = 50 GeV (right panel)
have been taken. vs = 1 TeV and cos(α − β) = 0.05 for both panels

The decay width for the H → hh process is given as

�(H → hh) = g2
Hhhv

2

32πmH

(
1 − 4m2

h

m2
H

)1/2

. (5.14)

The quartic couplings in the Higgs potential can be eval-
uated by choosing values of μvs , tan β, sin α, and mH if
mixing with the singlet scalar is negligible, α2 � α3 � 0.
See Appendix A.

By combining all the decay widths, we obtain the branch-
ing ratio of each decay mode. Fig. 9 shows the branching
ratios of the neutral Higgs boson H for cos(α − β) = 0.05
and vs = 1 TeV, but with different values of μ to sat-
isfy the unitary and stability bounds studied in Sect. 4.1.
We observe that H → bd̄i /di b̄ is the predominant decay
mode if mH < 2mh , whereas the di-Higgs mode H → hh
becomes the most important if the mode is kinematically
allowed, irrespective of tan β. In practice, the branching ratio
of di-Higgs mode B(H → hh) depends on the choice of
μvs value. If we take a smaller μvs value, for instance,
μ = 200 GeV and vs = 500 GeV with tan β = 1, we
find that H → bd̄i /di b̄ is always the most dominant decay
mode. The dip near mH = 580 GeV in the left panel of
Fig. 9 is due to the accidental cancellation in the Higgs triple
coupling (5.13). The position of dip also depends on the
value of μvs for given tan β and cos(α − β). On the other
hand, the bb̄ mode and diboson modes such as WW/Z Z are
subdominant.

From these observations, we expect that the search strate-
gies would be different depending on the mass of the heavy
Higgs boson. For mH < 2mh , pp → H → bd̄i /di b̄, i.e.,
dijet final states containing one b jet is the most important,
but for mH > 2mh , the di-Higgs channel, and possibly in

conjunction with the dijet channel with one b jet, is important
to search the heavy neutral Higgs boson at the LHC. Thus,
the neutral Higgs boson with mH < 250 GeV can receive
constraints from dijet searches [59–61]. Although the dijet
channel has typically been used to seek for heavy resonances
in a few TeV scales, it can probe lower scales if it is associ-
ated with a hard photon or jet from initial state radiations. The
ATLAS collaboration has searched light resonance with dijet
invariant mass down to 200 GeV in the final states of dijet in
association with a photon [62,63]. In our case, gluon fusion
production is the most dominant channel and it is not associ-
ated with a hard photon. It can have a hard jet from the gluons
in the initial states, but the mass region below 250 GeV has
not been searched yet in the final states of dijet in association
with a hard jet. For mH > 250 GeV, bounds from di-Higgs
searches can be imposed, but we find that they do not have
enough sensitivities for heavy neutral Higgs bosons in our
model yet [64–67].

5.2 Heavy charged Higgs boson

One of the conventional search channels for the heavy
charged Higgs with mH± > mt at hadron colliders is the
top quark associated production, bg → t H−, by the similar
diagrams as bg → bH . Since the charged Higgs boson can
have enhanced couplings with the light up-type quarks due
to nonzero components of h̃d , we can also have a sizable pro-
duction cross section of the bottom quark associated process
from the initial states with light up-type quarks, ui g → bH+
where ui = u, c.3

3 We note that there have been collider studies on the production of
heavy Higgs bosons due to flavor-violating interactions for up-type
quarks. See, for instance, Refs. [17,18].
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Fig. 10 Production cross sections of the heavy charged Higgs H± at 14 TeV proton-proton collisions. We have chosen tan β = 1 (left panel) and
tan β = 0.5 (right panel) with yu33 = ySM

t

The differential cross section for bg → t H− at parton
level is

dσ̂

dt̂
= αs

48(ŝ − m2
b)

2

[(
|λH−

tL |2 + |λH−
tR |2

)

×
(

2F1 − F2
2 − 2G1G2

(ŝ − m2
b)(t̂ − m2

t )
+ 2m2

bG1

(ŝ − m2
b)

2
+ 2m2

t G2

(t̂ − m2
t )

2

)

+
(
λH−
tL (λH−

tR )∗ + λH−
tR (λH−

tL )∗
) 4mbmtm2

H±

(ŝ − m2
b)(t̂ − m2

t )

×
(

1 − F1F2

m2
H±(ŝ − m2

b)(t̂ − m2
t )

)]
, (5.15)

where

F1 = ŝ t̂ − m2
bm

2
t , F2 = ŝ + t̂ − m2

b − m2
t ,

G1 = m2
H± − m2

t − ŝ, G2 = m2
H± − m2

b − t̂ . (5.16)

Since the diagrams contributing to bottom quark associ-
ated processes has the same Lorentz structure as those for
bg → t H−, we can obtain their parton-level cross sections
by replacing λH−

tL ,R
with λH−

ui L ,R
, mb with mui � 0, and mt with

mb. They are given as

dσ̂

dt̂
(ui g → bH+) = αs(|λH−

ui L |2 + |λH−
ui R |2)

48ŝ2(t̂ − m2
b)

×
[

2F1 − F2
2 − 2G1G2

ŝ
+ 2m2

bG2

t̂ − m2
b

]
(5.17)

with

F1 = ŝ t̂, F2 = ŝ + t̂ − m2
b, G1 = m2

H± − m2
b − ŝ,

G2 = m2
H± − t̂ . (5.18)

The leading-order cross sections evaluated by convoluting
the partonic cross section with the PDFs at proton-proton
collisions of 14 TeV are shown in Fig. 10. In each figure,
σ(pp → H±q) = σ(pp → H+q) + σ(pp → H−q). The
production cross sections are quite sensitive to tan β. For
tan β = 1, the top quark associated production, pp → H±t ,
is the dominant channel, while the bottom quark associated
production, pp → H±b, which is the characteristic channel
of our model, can also be served as a good channel to search
the charged Higgs boson at the LHC. On the other hand,
for smaller tan β, the bottom quark associated production
becomes the dominant channel due to the enhanced charged-
Higgs couplings with light up-type quarks. The suppression
of top quark associated production is also due to the partial
cancellation of two terms in λH−

tL .
Concerning the decays of charged Higgs, the most impor-

tant fermionic decay mode is H+ → t b̄. The decay width
is

�(H+ → t b̄) = �(H− → bt̄)

= 3

16π
mH±

[(
1 − (mt + mb)

2

m2
H±

)(
1 − (mt − mb)

2

m2
H±

)]1/2

×
[(

|λH−
tL |2 + |λH−

tR |2
)(

1 − m2
t + m2

b

m2
H±

)

−2
(
λH−
tL (λH−

tR )∗ + λH−
tR (λH−

tL )∗
) mtmb

m2
H±

]
. (5.19)

By replacing mt with mc or mu and λH−
tL ,R

with λH−
cL ,R

or

λH−
uL ,R

, one can obtain the decay widths of H+ → cb̄ and
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Fig. 11 Branching ratios of the heavy charged Higgs H±. tan β = 1 (left panel) and tan β = 0.5 (right panel) have been taken. cos(α −β) = 0.05
and yu33 = ySM

t for both panels

H+ → ub̄. The other fermionic decay modes are H+ → cs̄
and cd̄ , whose decay widths are proportional to tan2 β|Vcs |2
and tan2 β|Vcd |2, respectively. The decay widths of leptonic
decay modes are given as

�(H+ → �+ν) = �(H− → �−ν̄)

= m2
� tan2 β

8πv2 mH±

(
1 − m2

�

m2
H±

)2

. (5.20)

Meanwhile, if H+ → W+A and W+H are kinematically
forbidden, the only non-fermionic decay mode is H+ →
W+h. The decay width is

�(H+ → W+h) = �(H− → W−h)

= g2 cos2(α − β)m3
H±

64πm2
W

×
⎡

⎣
(

1 − m2
W

m2
H±

− m2
h

m2
H±

)2

− 4m2
Wm2

h

m4
H±

⎤

⎦
3/2

. (5.21)

By combining all the decay modes in the above we obtain
the branching ratios of the heavy charged Higgs, which are
shown in Fig. 11. Interestingly, the dominant decay mode of
the charged Higgs boson is H+ → W+h if it is kinemati-
cally allowed, although we have taken the alignment limit.
H+ → t b̄ is subdominant. Together with the production,
we expect that pp → H±b → W±h + b can be served as
the important process to probe the charged Higgs boson at
the LHC and future hadron colliders. Most LHC searches for
W+h have been dedicated to heavy resonances [68–70] that
decay directly into W+h, so our model is not constrained
by W+h at the moment. On the other hand, the t b̄ mode is

next-to-dominant and this is not constrained by the current
LHC data [71,72], because the production cross section for
the heavy charged Higgs in our model is less than 10 fb in
most of the parameter space.

6 Conclusions

We have considered an extra local U (1) with flavor-
dependent couplings as a linear combination of B3 − L3

and Lμ − Lτ , that has been recently proposed to explain the
B-meson anomalies. In our model, we have reproduced the
correct flavor structure of the quark sector due to the VEV
of the second Higgs doublet, at the expense of new flavor
violating couplings for quarks and the violation of lepton
universality.

The extra gauge boson leads to flavor violating interac-
tions for down-type quarks appropriate for explaining B-
meson anomalies in RK (∗) whereas heavy Higgs bosons ren-
der up-type quarks have modified flavor-conserving Yukawa
couplings and down-type quarks receive flavor-violating
Yukawa couplings. We also found that the B-meson anoma-
lies in RD(∗) cannot be explained by the charged Higgs boson
in our model, due to small flavor-violating couplings.

We showed how the extended Higgs sector can be con-
strained by unitarity and stability, Higgs and electroweak
precision data, B-meson decays/mixings. Taking the align-
ment limit of heavy Higgs bosons from Higgs precision data,
we also investigated the production of heavy Higgs bosons
at the LHC. We found that there are reductions in the cross
sections of the usual production channels in 2HDM, such as
pp → H and pp → H±t at the LHC. In addition, new
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production channels such as pp → Hb and pp → H±b
become important for tan β � 1. Decay products of heavy
Higgs bosons lead to interesting collider signatures due to
large branching fractions of bd+bs modes for neutral Higgs
bosons and W±h mode for charged Higgs boson if kinemat-
ically allowed, thus requiring a more dedicated analysis for
the LHC.
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Appendix A: The extended Higgs sector

By using the minimization condition of the Higgs potential
given by

μ2
1=

√
2μv2vs − 2λ1v

3
1 − 2λ3v1v

2
2 − 2λ4v1v

2
2 − 2κ1v1v

2
s

2v1
,

μ2
2=

√
2μv1vs − 2λ3v

2
1v2 − 2λ4v

2
1v2 − 2λ2v

3
2 − 2κ2v2v

2
s

2v2
,

m2
s=

√
2μv1v2 − 2κ1v

2
1vs − 2κ2v

2
2vs − 2λSv

3
s

2vs
, (A.1)

the mass matrix for CP-even scalars can be written as

MS =

⎛

⎜⎜⎜⎜⎝

2λ1v2
1 + μv2vs√

2v1
2v1v2(λ3 + λ4) − μvs√

2
2κ1v1vs − μv2√

2

2v1v2(λ3 + λ4) − μvs√
2

2λ2v2
2 + μv1vs√

2v2
2κ2v2vs − μv1√

2

2κ1v1vs − μv2√
2

2κ2v2vs − μv1√
2

2λSv2
s + μv1v2√

2vs

⎞

⎟⎟⎟⎟⎠
.

(A.2)

We introduce a rotation matrix R to change the interaction
basis (ρ1, ρ2, SR) to the physical mass eigenstates, h1, h2

and h3 as

⎛

⎝
h1

h2

h3

⎞

⎠ = R

⎛

⎝
ρ1

ρ2

SR

⎞

⎠ .

The mass matrix MS can be then diagonalized as

RMSR
T = diag(m2

h1
,m2

h2
,m2

h3
). (A.3)

We use a convention such that the mass eigenstates are
ordered as mh1 < mh2 < mh3 . Here, the orthogonal matrix
R is parametrized in terms of the mixing angles α1 to α3 as

R =
⎛

⎝
cα1cα2 sα1cα2 sα2

−(cα1sα2sα3 + sα1cα3 ) cα1cα3 − sα1sα2sα3 cα2sα3

−cα1sα2cα3 + sα1sα3 −(cα1sα3 + sα1sα2cα3) cα2cα3

⎞

⎠ ,

(A.4)

where sαi ≡ sin αi and cαi ≡ cos αi . Without loss of gener-
ality the angles can be chosen in the range of

−π

2
≤ α1,2,3 <

π

2
.

In the text we focus mainly on the situation where mixings
between ρ1,2 and SR are small.

The mass eigenvalues of CP-even neutral scalars are
given by

m2
h1

= 1

2
(a + b − √

D) ≡ m2
h,

m2
h2

= 1

2
(a + b + √

D) ≡ m2
H ,

m2
h3

= 2λSv
2
s + μv1v2√

2vs
≡ m2

s , (A.5)

where

a≡2λ1v
2
1 + μv2vs√

2v1
, b≡2λ2v

2
2 + μv1vs√

2v2
, D≡(a−b)2 +4d2

(A.6)

with d ≡ 2v1v2(λ3+λ4)−μvs/
√

2. We can trade off quartic
couplings, λ1,2,3,4 and κ1,2, for mixing angles and Higgs
masses.

λ1 = 2
∑

i m
2
hi
R2
i1 − √

2μvs tan β

4v2 cos2 β
,

λ2 = 2
∑

i m
2
hi
R2
i2 − √

2μvs cot β

4v2 sin2 β
,

λ3 + λ4 =
√

2μvs + 2
∑

i m
2
hi
Ri1Ri2

4v2 sin 2β
,

λS = 2vs
∑

i m
2
hi
R2
i3 − √

2μv2 sin β cos β

4v3
s

,

κ1 =
√

2μv sin β + 2
∑

i m
2
hi
Ri1Ri3

4vvs cos β
,

κ2 =
√

2μv cos β + 2
∑

i m
2
hi
Ri2Ri3

4vvs sin β
. (A.7)
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In the case when the Higgs mixings with the singlet scalar
are negligible, α2 � α3 � 0, the rotation matrix can be
simplified as

R ≈
⎛

⎝
cos α sin α 0

− sin α cos α 0
0 0 1

⎞

⎠ , (A.8)

where α = α1. Then the Higgs quartic couplings are given
by

λ1 ≈ 2(m2
h cos2 α + m2

H sin2 α) − √
2μvs tan β

4v2 cos2 β
,

λ2 ≈ 2(m2
h sin2 α + m2

H cos2 α) − √
2μvs cot β

4v2 sin2 β
,

λ3 + λ4 ≈ (m2
h − m2

H ) sin 2α + √
2μvs

4v2 sin 2β
. (A.9)

Here h = h1 withmh = 125 GeV and H = h2. This relations
show that the values of quartic couplings can be evaluated
solely by mH if one chooses a benchmark point in terms of
μvs , tan β, and sin α.

Appendix B: Unitarity bounds

The initial scattering states can be classified by hyper-
charges and isospins [73–75]. In the basis of (φ+

1 φ−
1 ,

φ+
2 φ−

2 , η1η1/
√

2, ρ1ρ1/
√

2, η2η2/
√

2, ρ2ρ2/
√

2, SRSR/
√

2,
SI SI /

√
2), the scattering amplitude is

M1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4λ1 2(λ3 + λ4)
√

2λ1
√

2λ1
√

2λ3
√

2λ3
√

2κ1
√

2κ1

2(λ3 + λ4) 4λ2
√

2λ3
√

2λ3
√

2λ2
√

2λ2
√

2κ2
√

2κ2√
2λ1

√
2λ3 3λ1 λ1 λ3 + λ4 λ3 + λ4 κ1 κ1√

2λ1
√

2λ3 λ1 3λ1 λ3 + λ4 λ3 + λ4 κ1 κ1√
2λ3

√
2λ2 λ3 + λ4 λ3 + λ4 3λ2 λ2 κ2 κ2√

2λ3
√

2λ2 λ3 + λ4 λ3 + λ4 λ2 3λ2 κ2 κ2√
2κ1

√
2κ2 κ1 κ1 κ2 κ2 3λS λS√

2κ1
√

2κ2 κ1 κ1 κ2 κ2 λS 3λS

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.1)

whose eigenvalues are 2λ1, 2λ2,λ1+λ2±
√

(λ1 − λ2)2 + 4λ2
4,

and 2λS .
In the basis of (φ+

1 SR , φ+
2 SR , φ+

1 SI , φ
+
2 SI ), the submatrix

is given by

M2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

2κ1 0 0 0

0 2κ2 0 0

0 0 2κ1 0

0 0 0 2κ2

⎞

⎟⎟⎟⎟⎟⎟⎠
(B.2)

with eigenvalues being 2κ1,2.
In the basis of (ρ1η1, ρ2η2, SRSI ), the matrix is

M3 =

⎛

⎜⎜⎜⎝

2λ1 0 0

0 2λ2 0

0 0 2λS

⎞

⎟⎟⎟⎠ (B.3)

with eigenvalues being 2λ1,2,s .
In the basis of (φ+

1 φ−
2 , φ+

2 φ−
1 , ρ1η2, ρ2η1, η1η2, ρ1ρ2),

we have

M4 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 2λ3 + 2λ4 iλ4 −iλ4 λ4 λ4

2λ3 + 2λ4 0 −iλ4 iλ4 λ4 λ4

iλ4 −iλ4 2λ3 + 2λ4 0 0 0
−iλ4 iλ4 0 2λ3 + 2λ4 0 0
λ4 λ4 0 0 2λ3 + 2λ4 0
λ4 λ4 0 0 0 2λ3 + 2λ4

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(B.4)
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with eigenvalues being 2λ3, 2(λ3 + λ4), 2(λ3 + 2λ4), and
±2

√
λ3(λ3 + 2λ4).

Finally, in the basis of (ρ1φ
+
1 , ρ2φ

+
1 , η1φ

+
1 , η2φ

+
1 , ρ1φ

+
2 ,

ρ2φ
+
2 , η1φ

+
2 , η2φ

+
2 ), we obtain the matrix as

M5 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2λ1 0 0 0 0 λ4 0 iλ4

0 2λ3 0 0 λ4 0 −iλ4 0
0 0 2λ1 0 0 −iλ4 0 λ4

0 0 0 2λ3 iλ4 0 λ4 0
0 λ4 0 −iλ4 2λ3 0 0 0
λ4 0 iλ4 0 0 2λ2 0 0
0 iλ4 0 λ4 0 0 2λ3 0

−iλ4 0 λ4 0 0 0 0 2λ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B.5)

with eigenvalues being 2λ1, 2λ2, 2λ3, 2(λ3 ± λ4), and λ1 +
λ2 ±

√
(λ1 − λ2)2 + 4λ2

4.
The eigenvalues obtained in the above are constrained by

unitarity as

|2λ1,2,3,S| ≤ 8π, |2κ1,2| ≤ 8π,

|2(λ3 ± λ4)| ≤ 8π, |2(λ3 + 2λ4)| ≤ 8π,

|2√
λ3(λ3 + 2λ4)| ≤ 8π,

|λ1 + λ2 ±
√

(λ1 − λ2)2 + 4λ2
4| ≤ 8π,

a1,2,3 ≤ 8π. (B.6)

Here a1,2,3 are three other solutions of the following equa-
tion:

x3 − 2x2(3λ1 + 3λ2 + 2λS)

− 4x
(

2κ2
1 + 2κ2

2 − 9λ1λ2 − 6λ1λS

−6λ2λS + 4λ2
3 + 4λ3λ4 + λ2

4

)

+ 16
(

3κ2
1 λ2 − 2κ1κ2(2λ3 + λ4) + 3κ2

2 λ1

+λS

(
(2λ3 + λ4)

2 − 9λ1λ2

))
= 0. (B.7)

Appendix C: The quark Yukawa couplings

The quark Yukawa couplings in the interaction basis are given
by

−Lq
Y = 1√

2
ūL((ρ1 − iη1)y

u + (ρ2 − iη2)h
u)uR

+ 1√
2
d̄L((ρ1 + iη1)y

u + (ρ2 + iη2)h
u)dR

− d̄L(yu(φ+
1 )∗ + hu(φ+

2 )∗)uR

+ ūL(ydφ+
1 + hdφ+

2 )dR + h.c. (C.1)

In the basis of mass eigenstates the quark Yukawa interactions
of the CP-even neutral scalars are

−Lq
Y = (ū′

LY
u
Hi
u′
R + d̄ ′

LY
d
Hi
d ′
R)Hi + h.c., (C.2)

where primed fields are mass eigenstates, and

Yu
H1

= − R11

v cos β
MD

u + R11 tan β − R12√
2

h̃u,

Yd
H1

= − R11

v cos β
MD

u + R11 tan β − R12√
2

h̃d ,

Yu
H2

= − R21

v cos β
MD

u + R21 tan β − R22√
2

h̃u,

Yd
H2

= − R21

v cos β
MD

d + R21 tan β − R22√
2

h̃d ,

Yu
H3

= − R31

v cos β
MD

u + R31 tan β − R22√
2

h̃u,

Yd
H3

= − R31

v cos β
MD

d + R31 tan β − R22√
2

h̃d , (C.3)

Assuming the singlet scalars are decoupled and using
Eqs. (3.2) to (3.5), the above quark Yukawa interactions
become

−Lq,Y = (ū′
LY

u
h u

′
R + d̄ ′

LY
d
h d

′
R)h + (ū′

LY
u
Hu

′
R + d̄ ′

LY
d
Hd

′
R)H

+ i(ū′
LY

u
Au

′
R + d̄ ′

LY
d
Ad

′
R)A0

+ ū′(Y2,H+ PR + Y1,H+ PL)d ′H+ + h.c., (C.4)

where

Yu
h = − sin α

v cos β
MD

u + cos(α − β)√
2 cos β

h̃u,

Yd
h = − sin α

v cos β
MD

d + cos(α − β)√
2 cos β

h̃d ,

Yu
H = cos α

v cos β
MD

u + sin(α − β)√
2 cos β

h̃u,

Yd
H = cos α

v cos β
MD

d + sin(α − β)√
2 cos β

h̃d ,

Yu
A = − tan β

v
MD

u + 1√
2 cos β

h̃u,

Yd
A = tan β

v
MD

d − 1√
2 cos β

h̃d ,

Y1,H+ = −
(√

2 tan β

v
MD

u − 1

cos β
(h̃u)†

)
VCKM,

Y2,H+ = VCKM

(√
2 tan β

v
MD

d − 1

cos β
h̃d

)
(C.5)

with

h̃u ≡ U †
Lh

uUR, h̃d ≡ D†
Lh

d DR . (C.6)
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For UL = 1, we have h̃u = huUR . As a result,

h̃u31 = 1√
2

v cos β

mu
(hu31(y

u
11)

∗ + hu32(y
u
12)

∗) = 0,

h̃u32 = 1√
2

v cos β

mc
(hu31(y

u
21)

∗ + hu32(y
u
22)

∗) = 0,

h̃u33 = 1√
2

v sin β

mt
(|hu31|2 + |hu32|2)

=
√

2mt

v sin β

(
1 − v2 cos2 β

2m2
t

|yu33|2
)

, (C.7)

where use is made of Eqs. (3.15), (3.17), and (3.18). Other
components of h̃u are vanishing. Moreover, with h̃d =
V †

CKMhd and using Eq. (3.10) for hd13 and hd23, we obtain
nonzero components of h̃u as

h̃d13 = V ∗
udh

d
13 + V ∗

cdh
d
23 =

√
2mb

v sin β
(V ∗

udVub + V ∗
cdVcb)

= 1.80 × 10−2
(

mb

v sin β

)
,

h̃d23 = V ∗
ush

d
13 + V ∗

csh
d
23 =

√
2mb

v sin β
(V ∗

usVub + V ∗
csVcb)

= 5.77 × 10−2
(

mb

v sin β

)
,

h̃d33 = V ∗
ubh

d
13 + V ∗

cbh
d
23 =

√
2mb

v sin β
(V ∗

ubVub + V ∗
cbVcb)

= 2.41 × 10−3
(

mb

v sin β

)
. (C.8)

Appendix D: U(1)′ interactions

The gauge kinetic terms and mass terms forU (1)′ andU (1)Y
are

Lg.kin = − 1

4
BμνB

μν − 1

4
Z ′

μν Z
′μν − 1

2
sin ξ Z ′

μνB
μν

− 1

2
V T

μ M2
V V

μ, (D.1)

where Vμ = (Bμ,W 3
μ, Z ′

μ)T, and

M2
V =

⎛

⎜⎜⎜⎜⎜⎜⎝

m2
Z s

2
W −m2

ZcW sW
1

2
c−1
W egZ ′Q′

H2
v2

2

−m2
ZcW sW m2

Zc
2
W −1

2
s−1
W egZ ′Q′

H2
v2

2

1

2
c−1
W egZ ′Q′

H2
v2

2 −1

2
s−1
W egZ ′Q′

H2
v2

2 m2
Z ′

⎞

⎟⎟⎟⎟⎟⎟⎠
. (D.2)

After diagonalizing the terms simultaneously with

⎛

⎝
Bμ

W 3
μ

Z ′
μ

⎞

⎠ =
⎛

⎝
cW −sW −tξ
sW cW 0
0 0 1/cξ

⎞

⎠

⎛

⎝
1 0 0
0 cζ sζ
0 −sζ cζ

⎞

⎠

⎛

⎝
Aμ

Z1μ

Z2μ

⎞

⎠

=
⎛

⎝
cW −sW cζ + tξ sζ −sW sζ − tξ cζ

sW cWcζ cW sζ
0 −sζ /cξ cζ /cξ

⎞

⎠

⎛

⎝
Aμ

Z1μ

Z2μ

⎞

⎠ ,

(D.3)

where ζ is the mass mixing angle and sW ≡ sin θW , cW ≡
cos θW , etc, we obtain the mass eigenvalues for massive
gauge bosons:

m2
Z1,2

= 1

2

(
m2

Z + m2
22 ∓

√
(m2

Z − m2
22)

2 + 4m4
12

)
. (D.4)

Here m2
Z ≡ (g2 + g2

Y )v2/4 and

m2
22 ≡ m2

Z s
2
W t2

ξ + m2
Z ′/c2

ξ − c−1
W egZ ′Q′

H2
v2
wtξ /cξ ,

m2
12 ≡ m2

Z sW tξ − 1

2
c−1
W s−1

W egZ ′Q′
H2

v2
2/cξ . (D.5)

We can rewrite the Z -boson like mass in terms of the heavy
Z ′ mass and the mixing angle ζ as

m2
Z1

= 2m2
Z sec 2ζ + m2

Z2
(1 − sec 2ζ )

1 + sec 2ζ
, (D.6)

and the mixing angle as

tan 2ζ = 2m2
12(m

2
Z2

− m2
Z )

(m2
Z2

− m2
Z )2 − m4

12

. (D.7)

We note that the modified Z -boson mass is constrained by
electroweak precision data, in particular, �ρ or T parameter.

The current interactions including Z ′ are given by

Lg = Bμ J
μ
B + W 3

μ J
μ
3 + Z ′

μ J
μ

Z ′ = Aμ J
μ
EM + Z1μ

×
(
tξ sζ cW Jμ

EM + (cζ − tξ sζ sW )Jμ
Z − sζ J

μ

Z ′/cξ

)

+ Z2μ

(
−tξ cζ cW Jμ

EM+(sζ −tξ cζ sW )Jμ
Z + cζ J

μ

Z ′/cξ

)

(D.8)
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with

Jμ
EM = e f̄ γ μQ f f,

Jμ
Z = e

2cW sW
f̄ γ μ(σ 3 − 2s2

W Q f ) f,

Jμ

Z ′ = gZ ′ f̄ γ μQ′
f f. (D.9)

Here Q f is the electric charge and Q′
f is the U (1)′ charge

of fermion f . For a small gauge kinetic mixing and/or the
mass mixing ζ , the Z ′-like gauge boson Z2μ couples to the
electromagnetic current with the overall coefficient of ε =
tξ cζ cW .

Ignoring the Z–Z ′ mixing, the interaction terms for Z ′
interactions is

LZ ′ = gZ ′ Z ′
μ

(
1

3
x t̄γ μt + 1

3
x b̄γ μb + yμ̄γ μμ

+ y ν̄μγ μPLνμ − (x + y) τ̄ γ μτ

− (x + y) ν̄τ γ
μPLντ + y ν̄2Rγ μPRν2R

− (x + y) ν̄3Rγ μPRν3R

)
. (D.10)

Now we change the basis into the one with mass eigenstates
by dR = DRd ′

R , uR = URu′
R , dL = DLd ′

L and uL = ULu′
L

such that VCKM = U †
L DL . Taking DR = UL = 1 and DL =

VCKM, the above Z ′ interactions become

LZ ′ = gZ ′ Z ′
μ

(
1

3
x t̄ ′γ μPLt

′ + 1

3
x

v2 cos2 β|yu33|2
2m2

t
t̄ ′γ μPRt

′

+ 1

3
x d̄ ′

iγ
μ�dL

i j PLd
′
j + 1

3
x b̄′γ μPRb

′

+ yμ̄γ μμ − (x + y) τ̄ γ μτ + y ν̄μγ μPLνμ

− (x + y) ν̄τ γ
μPLντ

+ y ν̄2Rγ μPRν2R − (x + y) ν̄3Rγ μPRν3R

)
,

(D.11)

where

�dL ≡ V †
CKM

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ VCKM

=

⎛

⎜⎜⎝

|Vtd |2 V ∗
tdVts V

∗
tdVtb

V ∗
tsVtd |Vts |2 V ∗

tsVtb

V ∗
tbVtd V ∗

tbVts |Vtb|2

⎞

⎟⎟⎠ . (D.12)

Considering the general mixing of CP-even scalars while
ignoring the Z–Z ′ mixing, we obtain the interaction between
neutral massive electroweak gauge bosons (V = W , Z ) and
Z ′ as

Lhi
V = 2m2

W

v

[
(cos βRi1 + sin βRi2)hi + 1

2v
h2
i

]
WμW

μ

+ m2
Z

v

[
(cos βRi1 + sin βRi2)hi + 1

2v
h2
i

]
ZμZ

μ.

(D.13)

For a negligible mixing with the singlet scalar, the above
couplings become

Lh/H/A0

V = 2m2
W

v

[
− sin(α − β)h + cos(α − β)H

+ 1

2v
(h2 + H2 + (A0)2)

]
WμW

μ

+ m2
Z

v

[
− sin(α − β)h + cos(α − β)H

+ 1

2v
(h2 + H2 + (A0)2)

]
ZμZ

μ. (D.14)

One can see that in the alignment limit with α = β − π/2
the gauge interactions of h are the same as for the SM Higgs
while the triple couplings of heavy Higgs boson to gauge
bosons vanish.
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