
1260
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.6 JUNE 2009

PAPER

Online Timing Correlation of Streaming Data with Uncertain
Timestamps∗

Chan-gun LEE†, Member, Aloysius K. MOK††, and Prabhudev KONANA††, Nonmembers

SUMMARY We introduce the interval timing correlation, which can
establish timing correlation conditions to handle interval timing times-
tamps. Interval timestamps are adopted to handle the temporal uncertain-
ties in the timestamps of stream data. A probabilistic querying approach
is taken in order to support timing predicates such as deadline, delay, and
within over interval timestamps. A timing correlation condition entails a
desired confidence threshold (minimum satisfaction probability). We de-
fine the interval timing correlation and discuss how to implement the al-
gorithm. We present an analysis result which can effectively identify only
tuples that need to be considered in determining the correlation. The per-
formance of the proposed algorithm is shown.
key words: timing, correlation, uncertainty, timestamp, interval

1. Introduction

There are many emerging applications requiring the func-
tionality of processing streaming data with timestamps.
Typical applications are sensor data processing, position
tracking for moving objects, log analysis for telephone
records, network packet analysis, and stock trend analysis.
The streaming data are semi-ordered by their timestamps
and arrive in real-time [1].

We address the problem of determining the timing cor-
relation of streaming data especially with interval times-
tamps in this paper. The timing correlation resembles typi-
cal stream join operator but it is extended to handle the tem-
poral uncertainty. We can specify the degree of certainty
that a temporal condition should satisfy, which is assessed
over the pairs of interval timestamps of streaming data from
different sources. We adopt interval timestamps rather than
point-based timestamps because the former can represent
the temporal uncertainties that may reside in the timestamps
of stream data. The uncertainties can be included due to var-
ious reasons such as different granularities for time stamp-
ing between systems, imprecise occurrence times of events,
etc [2].

The point-based timestamps fail to capture the uncer-
tainty information in their representation and may lead the
system to produce erroneous answers regarding the tempo-
ral properties. As noted in [2], few studies have been done

Manuscript received April 25, 2008.
Manuscript revised February 11, 2009.
†The author is with the Faculty of Chung-Ang University,

Seoul, 156–756 Korea.
††The authors are with the Faculty of Univ. of Texas at Austin,

TX 78712, U.S.A.
∗A preliminary version of this paper is included in Lee’s dis-

sertation.
DOI: 10.1587/transinf.E92.D.1260

to support incomplete temporal information (temporal inde-
terminacy) for database systems compared to the abundance
of research on the incomplete information. This trend seems
to continue in research on streaming data processing despite
the imperative of supports for the emerging applications. We
imagine there will be many practical situations where the
data from sources of stream data, typically sensors, have
incomplete temporal information due to the inherent limi-
tations of their hardware or unexpected hardships from its
running environment.

Before presenting our approach in detail, we present
a scenario where the timing correlation can be applied. As-
sume that there are two types of sensors, each of which is de-
signed for sensing temperature and noise respectively. They
are randomly distributed in a region. Each sensor emits an
event containing the measured value and time whenever the
measured value deems significant. The limitations of the
sensors force the timestamps of the events to have interval
forms. We want to collect only the cases where the two dif-
ferent type of sensor detect an object simultaneously, e.g.
each detection time is within 2 second. Since the timestamp
is in the interval form, we also want to limit to the cases
where the satisfaction probability is over 60 percent.

The above example requires handling streaming data
and temporal uncertainties. At first glance, the studies on
the stream query processing [3] for incomplete values may
seem to be directly applied to the above example. In case
the processing is done in off-line, obviously timestamps can
be treated in the same manner as regular attributes; however,
timestamps should be handled differently in case of on-line
processing. There are extra information (or constraints) we
can exploit when processing is done in on-line. For ex-
ample, “current time” is always related to the timestamps
of “currently incoming” stream data. There must be some
bounds on the maximum discrepancies between timestamps
of data from different streams. When to discard stream data
from the stream buffers is also dependent on their times-
tamps. We shall use these properties in designing the algo-
rithm for timing correlations later in this paper.

An interval timestamp consists of two time points de-
limiting the possible occurrence ranges of a data. The prob-
ability distribution in an interval is assumed to be uniform;
any time point in it has the same chance of occurrence.

As mentioned above, the timestamps of stream data are
intervals; thus, we need to devise a mechanism to quantita-
tively compare interval timestamps. We adopt a probabilis-
tic approach in evaluating and assessing timing conditions

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

LEE et al.: ONLINE TIMING CORRELATION OF STREAMING DATA WITH UNCERTAIN TIMESTAMPS
1261

on timestamps of data. For example, we can say that a times-
tamp I1 is less than I2 by 30 percent if the probability of the
occurrence of such an event is 30 percent. We shall show
how to compute such a probability† in Sect. 3.

Main contributions made in this paper are shown in the
following:

• Defining the interval timing correlation and showing
how to calculate the satisfaction probabilities of timing
predicate over interval timestamps
• Analyzing the satisfaction probability for the “within”

predicate
• Showing the effectiveness of using the analysis of sat-

isfaction probability in performing interval timing cor-
relations

The rest of this paper is organized as follows. Section 2
presents related work. In Sect. 3, we define the interval tim-
ing correlation and present how to evaluate timing predi-
cates. Section 4 presents the analysis result of the satisfac-
tion probability. In Sect. 5 we validate the idea of using the
analysis result in performing interval timing correlations.
Future work and summary are presented in Sect. 6.

2. Related Work

Recently there have been many efforts for developing vari-
ous components and architectures of stream data manage-
ment systems (SDMSs). We shall briefly introduce only
some of them which discuss stream join operators. Inter-
ested readers are invited to refer to [4], [5] for the extensive
introduction to stream data processing and recent advances.

In Aurora [6], users can express their queries by arrang-
ing boxes and connecting them with links. Each box corre-
sponds to a stream query operator and each link directs a
stream output of a box to an input of another box. A join
operator includes parameters such as a join predicate, a time
window size, and ordering information about each stream.
Ordering information about a stream specifies the tolerance
of disorder††.

Hammad et al. [7] introduces variations of sliding win-
dow joins (referred to as W-joins). Two types of multi-
way join algorithms, the BEW-join and the FEW-join, are
shown and their characteristics are discussed. Their under-
lying assumption is that streaming data are always delivered
in timestamp-sorted order although there can be delays in
transmission; there is no out-of-order data. Utilizing this
assumed property, the FEW-join computes a time point Ft

based on a “period” composed of tuples from all streams;
if a newly arrived tuple t has the timestamp earlier than the
Ft, then t is guaranteed to join with other data in the pe-
riod. Hence repeated evaluations for the time window can
be avoided.

Kang et al. [8] designs a unit-time basis cost model for
sliding window joins and study efficient join strategies based
on the analysis of their cost model and simulation results. In
addition, effective resource-allocation schemes for improv-
ing the efficiency of the join processing under various sce-

narios are presented.
Srivastava and Widom [9] addresses the need for heart-

beat in stream data management systems. On receiving a
heartbeat with a timestamp τ from a stream, SDMS can as-
sure that any incoming data from the stream will have times-
tamps greater than τ. A novel modeling technique capturing
the bounds of timestamp skew, out-of-ordered timestamps,
and transmission latency is introduced and a heartbeat gen-
eration algorithm is shown.

In [2] there is a study similar to our problem in the
context of valid-time databases. In valid-time databases, a
data is associated with a timestamp during which the data is
valid. In order to cover indeterminacy in timestamps, the au-
thors adopt a probabilistic approach like ours. They present
an algorithm to compute the probability of the comparison
operator before for interval timestamps with arbitrary prob-
ability distributions. Note that their algorithm is designed
for off-line use. Hence timestamps are treated as regular at-
tributes in their algorithm..

In order to handle the inherent uncertainties in times-
tamps, we adopt interval timestamps and assume that the
probability distribution in a given interval is uniform. In our
own earlier work [10], [11], we proposed the algorithms for
monitoring timing constraints where timestamps of events
are time intervals. [10] presents two new modalities, certain
and possible for specifying timing constraints on interval
timestamps. [11] adopts a probabilistic approach in monitor-
ing timing constraints. A timing constraint is defined over
interval timestamps with a deadline/delay and a desired min-
imum satisfaction probability. The formulae for calculating
the satisfaction probability from given two interval times-
tamps and a deadline/delay constraint are shown.

Recently Mok et al. [12] proposes a general approach
for probabilistic timing join over streaming data with uncer-
tain timestamps. In contrast to the approach, we limit our
focus to special cases where the probabilities of the timing
uncertainties can be modeled in uniform distributions in this
paper. The solutions presented in this paper are in closed
form and are easy to use in practice. Various implementa-
tions of the timing correlation are discussed and their per-
formances are compared.

3. Interval Timing Correlation for Streaming Data

Given two sets of stream data with interval timestamps, a
typical condition for interval timing correlation is specified
with a timing predicate on interval timestamps and a mini-
mum satisfaction probability††† for which the timing pred-
icate should meet. An interval timing correlation produces
streams of joined data satisfying the timing condition with a
probability not less than the confidence threshold.

Each data from stream sources comes with its own in-

†We use the term satisfaction probability.
††slack in [6] is different from our maximum latency in that

slack is defined in terms of the maximum number of tuples which
can be out of order.
†††It is referred to as a confidence threshold later.

1262
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.6 JUNE 2009

terval timestamp. There are two possible ways to timestamp
a stream data; at the stream processor or at the source of
stream data. Our assumption is that the time stamping is
done at the source of stream data, which we believe is more
realistic and has many relevant applications.

Before presenting the definition of the interval timing
correlation formally, let us introduce an example and explain
its meaning informally. The following SQL-like statement
is an example query of the interval timing correlation:

SELECT *

FROM Stream A, Stream B

WHERE | @A - @B | <= 10 sec over 80%

DELAY Stream A < 1 sec, Stream B < 2 sec

It specifies that we want to join stream data if their tim-
ing difference is less than 10 seconds and the satisfaction
probability is at least 80 percent. It also states that there can
be delays during the transmission to the stream data man-
agement system from the sources; the maximum one second
for the data from stream A and two seconds from stream B.

We use the event model proposed in [10] to cap-
ture the uncertainties in event occurrence times. In this
event model, the timestamp of an event is represented as
a time interval, which consists of a pair of time values
(min time,max time) where min time is the earliest possi-
ble time of occurrence of the event and max time is the lat-
est possible time of occurrence of the event. The probability
distribution in an interval is assumed to be uniform. min(I)
function is defined to extract the min time from the times-
tamp I = (min time,max time). Similarly, max(I) func-
tion returns max time. length(I) function returns the value
max(I) − min(I). Two important parameters needed to be
determined in system design time are π and ρ. They rep-
resent the maximum and the minimum possible length of
any timestamp in the system respectively. Formally, ∀I,
ρ ≤ len(I) ≤ π where I is an interval timestamp.

Definition 1: We define three types of timing predicates;
within (e.g., |I1 − I2| ≤ d), deadline (e.g., I1 + d ≥ I2), and
delay (e.g., I2 − d ≥ I1) where I1 and I2 are timestamps of
data. d is zero or an positive constant. The within predicate
imposes a mutual range condition d on two timestamps. The
deadline predicate requires the timestamp I2 to be no later
than I1 by d. The delay predicate requires the timestamp I2

not to be within d after timestamp I1.

Definition 2: Satisfaction probability of a timing predi-
cate tp, prob(tp) is the probability for which tp is satisfied.

Definition 3: A timing condition is a pair of tp and ct,
denoted by (tp, ct), where tp is a timing predicate and ct is a
confidence threshold requirement for tp ranging from 0% to
100%. A timing condition (tp, ct) is satisfied iff prob(tp) ≥
ct. A timing condition (tp, ct) is violated iff prob(tp) < ct.

In what follows, we use the symbol “@” in front of a stream
name to denote the timestamp of any tuple from that stream.
In case “@” is used with a tuple e, it means the timestamp
of the tuple e. For example a timing correlation condition

(|@A−@B| < 30, 50%) means that we want to join any tuple
pairs (ea,eb) where ea and eb are tuples from stream A and
B respectively and the difference of their timestamps is less
than 30 with the minimum satisfaction probability of 50%.
A timing predicate @e1 + 10 ≥ @e2 specifies a deadline 10
from @e1 to @e2.

We now show how to calculate the satisfaction proba-
bility of a within predicate. The main idea is to convert a
within predicate into two deadline predicates by following
the definition of the within predicate.

Theorem 1: Assume there are timing predicates c : |I1 −
I2| ≤ d, c1 : I1 + d ≥ I2, and c2 :I2 + d ≥ I1. Then prob(c) =
prob(c1) ∗ prob(c2|c1) = prob(c2) ∗ prob(c1|c2).

In this paper we assume that any deadlines specified
in timing predicates are larger than π the maximum interval
length in the system. Similarly any delays are smaller than
−π. This assumption makes the computation of a within
predicate simple as shown in the following:

Corollary 1: Given two timestamps I1 and I2, prob(|I1 −
I2| ≤ d) = prob(I1 + d ≥ I2) if min(I1) ≤ min(I2) and d ≥ π.
Proof:
min(I1) + π ≤ min(I2) + π ≤ min(I2) + d and max(I1) ≤
min(I1) + π. Hence, max(I1) ≤ min(I2) + d. Therefore,
prob(I2 + d ≥ I1) = 100% ≥ prob(I1 + d ≥ I2) holds.
By Theorem 1, prob(|I1 − I2| ≤ d) = prob(I1 + d ≥ I2). �

4. Efficient Timing Correlation

Assume an interval timing correlation condition c = (|@A−
@B| ≤ d, ct) is given for streams A and B. Upon receiving a
tuple e1 with a timestamp I1 from stream A†, we need to do
the following three jobs.

1. Insert e1 into the buffer for stream A.
2. Find tuples from stream B satisfying the timing condi-

tion c with I1 and output the paired results.
3. Drop expired tuples from the buffers.

In what follows, we call the newly arrived tuple, e.g. tuple e1

in the above example, base tuple and the stream from which
the base tuple came is referred to as base stream. Assuming
that there are two streams, the other stream is called target
stream.

To improve the performance of the interval timing cor-
relation, we present an efficient technique; upon receiving
a base tuple with a timestamp I1 from stream A, the pro-
posed technique finds the regions in the target stream B de-
termining the satisfiability of the within timing condition,
c : (|@A −@B| ≤ d, ct). Specifically, we identify three re-
gions Rs, Rv, and Rp in the target stream and they have the
following properties:

1. A target tuple with a timestamp I2 belonging to Rs is
guaranteed to satisfy the given timing condition c, i.e.
prob(|I1 − I2| ≤ d) ≥ ct.

†The case receiving a data from stream B is symmetric, hence
is omitted here.

LEE et al.: ONLINE TIMING CORRELATION OF STREAMING DATA WITH UNCERTAIN TIMESTAMPS
1263

2. A target tuple with a timestamp I2 belonging to Rv is
guaranteed to violate the given timing condition c, i.e.
prob(|I1 − I2| ≤ d) < ct.

3. A target tuple with a timestamp I2 belonging to Rp

cannot be decided unless the satisfaction probability is
computed.

We define that a timestamp I belongs to a range [tmin, tmax]
iff tmin ≤ max(I) ≤ tmax, (tmin, tmax] iff tmin < max(I) ≤
tmax, [tmin, tmax) iff tmin ≤ max(I) < tmax, and (tmin, tmax) iff
tmin < max(I) < tmax respectively. A tuple with a timestamp
I belongs to a region R = {r1, r2, . . . , rn} iff ∃i such that I
belongs to a range ri where 1 ≤ i ≤ n.

To find such regions for interval timestamps, we ex-
tend the results in [11]. One of the main results in those
paper is the maximum satisfaction probability (MSP) func-
tion for a timing predicate c. Given the input parameters
I1 and t where I1 is a interval timestamp and t is a time
value, MS P(I1, t) |c returns the maximum satisfaction prob-
ability of c : @e1 + d ≥ @e2 provided that @e1 = I1 and
max(@e2) = t. Also, it is shown that MS P(I1, t) |c is a
monotonic non-increasing function w.r.t. a time value t for
any timestamp I1 and timing predicate c. By rearranging the
MS P, given a confidence threshold value ct, we can com-
pute the maximum x such that there exist a timestamp I2,
max(I2) = x, and prob(@e1 + d ≥ I2) ≥ ct. Thus, it can be
identified that Rv = (x,∞) from the above.

One limitation of this result is that it provides the infor-
mation about “future” tuples only; it is always the case that
max(@e1) ≤ x. Another limitation is that Rs is not iden-
tified. This is because ρ is not assumed in those previous
work.

Now we extend our prior analysis to address those lim-
itations as shown in Fig. 1. We assume that the system has a
timing correlation condition (tp, ct) where the timing pred-
icate tp = |@A −@B| ≤ d and the confidence threshold ct
for stream A and B. In the figure, we assume that a base

Fig. 1 The maximum and minimum achievable satisfaction probabilities
of |@e1 −@e2 | ≤ d where @e1 = I1 and max(@e2) = max2.

tuple with the timestamp I1 = (min1,max1) has arrived from
stream A. It presents the maximum and minimum achiev-
able satisfaction probabilities (in the Y-axis) for each possi-
ble max2 = max(I2) where I2 is the timestamp of a tuple in
the target stream. The formulae used in the figure are shown
in below:

αβ′min =
(min1 − (d + max2))2

2πlen(I1)
,

αγ′min =
2d + 2max2 − min1 − max1

2π
,

βγ′min = 1 − (d − max1 + max2 − π)2

2len(I1)π
,

αβ′max =
(min1 − (d + max2))2

2ρlen(I1)
,

ββ′max =
2d + 2max2 − ρ − 2min1

2len(I1)
,

βγ′max = 1 − (d − max1 + max2 − ρ)2

2len(I1)ρ
,

βγmax = 1 − (d − max2 + min1)2

2πlen(I1)
,

ββmax =
2d + max1 + min1 − 2max2 + 2π

2π
,

αβmax =
(d + max1 − max2 + π)2

2len(I1)π
,

βγmin = 1 − (d − max2 + min1)2

2ρlen(I1)
,

αγmin =
2d + 2max1 − 2max2 + ρ

2len(I1)
,

αβmin =
(max2 − ρ − (d + max1))2

2len(I1)ρ
.

Figure 2 identifies the following three regions; Rs =

{[LL,RL]} - satisfaction region, Rv = {(−∞, LH), (RH ,∞)} -
violation region, and Rp = {[LH , LL), (RL,RH]} - probe re-
gion. It is easy to see that any target tuple with a timestamp
belonging to the region Rs is guaranteed to satisfy the given

Fig. 2 Finding regions of violation, probe, and satisfaction.

1264
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.6 JUNE 2009

join condition because its minimum satisfaction probability
is above the requested confidence threshold. Similarly, any
target tuple with a timestamp belonging to Rv is guaranteed
to violate the given join condition. However, the target tuple
with a timestamp belonging to the Rp needs further com-
putations because its satisfaction probability can be either
above or below the confidence threshold. In the following
we show how to derive the formulae used in Fig. 1.

Lemma 1: Suppose a deadline predicate, c : I1 + d ≥ I2

where d ≥ 0. Let Ile
1 = (min(I1) − δ,max(I1)) where δ > 0,

i.e. an interval created by decreasing min(I1) by δ. Let cle be
the predicate Ile

1 + d ≥ I2. Similarly, assume the followings
hold. Ils

1 = (min(I1)+δ,max(I1)), Ire
1 = (min(I1),max(I1)+δ),

Irs
1 = (min(I1),max(I1)−δ), cls

1 = Ils
1 +d ≥ I2, cre

1 = Ire
1 +d ≥ I2,

crs
1 = Irs

1 + d ≥ I2. Then, prob(cle
1) ≤ prob(c), prob(cls

1) ≥
prob(c), prob(cre

1) ≥ prob(c), and prob(crs) ≤ prob(c)
hold.
Similarly, assume the following timestamps and tim-
ing predicates: Ile

2 = (min(I2) − δ,max(I2)), Ils
2 =

(min(I2) + δ,max(I2)), Ire
2 = (min(I2),max(I2) + δ), Irs

2 =

(min(I2),max(I2)−δ), cle
2 = I1+d ≥ Ile

2 , cls
2 = I1+d ≥ Ils

2 , cre
2

= I1 + d ≥ Ire
2 , crs

2 = I1 + d ≥ Irs
2 . Then, prob(cle

2) ≥ prob(c),
prob(cls

2) ≤ prob(c), prob(cre
2) ≤ prob(c), and prob(crs

2) ≥
prob(c) hold.
Proof:
The proof is done in [11] by showing prob(c) − prob(cle) ≥
0. The other cases can be proved similarly. �

Given a timing predicate, the following two corollaries iden-
tify the upper bound and lower bound of the value of min(I1)
to achieve the maximum or minimum satisfaction probabil-
ity of a deadline predicate I1 + d ≥ I2. The following two
corollaries can be derived from Lemma 1 and the definitions
of π and ρ. They identify the lower bound and upper bound
of the satisfaction probability of a timing predicate.

Corollary 2: Assume timing predicates ch : I1 + d ≥ Ih

where Ih = (tmax − π, tmax) and cl : I1 + d ≥ Il where Il =

(tmax−ρ, tmax). For any timing timing predicate c : I1+d ≥ I2

where I2 = (tmin, tmax) and tmin, tmax are time values, it is
always the case that prob(cl) ≤ prob(c) ≤ prob(ch).

Corollary 3: Assume timing predicates ch : Ih + d ≥ I2

where Ih = (tmax − ρ, tmax) and cl : Il + d ≥ I2 where Il =

(tmax−π, tmax). For any timing timing predicate c : I1+d ≥ I2

where I1 = (tmin, tmax) and tmin, tmax are time values, it is
always the case that prob(cl) ≤ prob(c) ≤ prob(ch).

Now assume a tuple with a timestamp I1 = (min1,max1)
arrived from stream A. Our goal is to determine ranges of
max2 which can tell whether the given timing predicate (|I1−
I2| ≥ d, p) is satisfied or violated where I2 = (min2,max2).
Let the timing predicates |I1− I2| ≥ d, I1+d ≥ I2, I2+d ≥ I1

be c, c1, and c2 respectively.
We first identify two extreme cases where max2 <

min1 − d and max2 > max1 + d + π. In either case,
clearly prob(c) is zero. Let us derive some common proper-
ties which will be used in the derivation. By Corollary 2,

prob(c2) reaches its upper bound and lower bound when
min2 = max2 − ρ and min2 = max2 − π respectively. Sim-
ilarly, prob(c1) reaches its upper bound and lower bound
when min2 = max2 − π and min2 = max2 − ρ respec-
tively. In case I2 belongs to the range [(1),(5)], min2 ≤ min1

holds because min2 ≤ max2 ≤ min1 − d + π ≤ min1.
prob(c) = prob(c2) in this range by Corollary 1. In case
I2 belongs to the range [(7),(12)], min1 ≤ min2 holds be-
cause min1 + d ≤ max2 ≤ min2 + d. prob(c) = prob(c1) in
this range by Corollary 1.

In what follows, we shall first focus on the the maxi-
mum curve (drawn with a solid line) in the figure.
(1)-(2): min1−d ≤ max2 ≤ min1−d+ρ. prob(c) = prob(c2)
in this range. A timing predicate c2 is in αβ configura-
tion and we get the upper bound of prob(c2) when min2 =

max2 − ρ. Therefore, αβ′min represents the maximum satis-
faction probabilities in this range.
(2)-(3): min1 − d + ρ ≤ max2 ≤ max1 − d. The timing
predicate c2 is in ββ configuration when min2 = max2 − ρ.
Therefore, ββ′min represents the maximum satisfaction prob-
abilities in this range.
(3)-(4): max1 − d ≤ max2 ≤ max1 − d + ρ. c2 is in βγ
configuration when min2 = max2 − ρ. βγ′max represents the
maximum satisfaction probabilities in this range.
(4)-(7): max1 −d+ρ ≤ max2 ≤ min1 +d. In this range if we
set min2 = max2 − ρ, then min2 + d = max2 − ρ+ d ≥ max1;
it means that prob(c2) = 1. In case max1 − d + ρ ≤ max2 ≤
min1 + ρ, min2 ≤ max2 − ρ ≤ min1 holds. Therefore,
prob(c) = prob(c2) = 1. In case min1+ρ ≤ max2 ≤ min1+d,
min1 + d ≥ max2 holds, which means that prob(c1) = 1.
Since prob(c2) = 1, prob(c) = 1. Therefore, the maximum
of prob(c) is one in this range.
(7)-(12): min1 + d ≤ max2 ≤ max1 + d + π In this range
prob(c) = prob(c1) as explained in the beginning of this
proof. The derivation of maximum satisfaction probabilities
in this range for prob(c1) is in [11], hence is omitted.

Similarly, we can derive the formulae identifying the
minimum satisfaction probabilities.

5. Experimental Results

In this section, we measure the effectiveness of the use of
the minimum-maximum satisfaction probability for interval
timing correlation.

We implement a stream simulation system as shown in
Fig. 3. This system is a common test bed on which vari-
ous implementations of the interval timing correlation are
running. Including this simulation system, all implemen-
tations are coded in Java. The experiments were done on
a Xeon 1.8 Mhz based PC with 1 GB main memory run-
ning Sun JDK 1.3.2 on Windows XP professional. To mea-
sure the performances of various algorithms for the interval
timing correlation on the same conditions, we create data
streams on data files before run-time and feed the same data
files to the interval timing correlation operator. In the fig-
ure, each stream provider thread reads a data file, generates
data stream, and insert the data to the corresponding stream

LEE et al.: ONLINE TIMING CORRELATION OF STREAMING DATA WITH UNCERTAIN TIMESTAMPS
1265

Fig. 3 Experiment set-up.

buffer. The stream buffer is implemented in a circular array.
Front points the location of the first tuple† in the buffer and
Rear points the position where a new tuple is going to be
placed. A stream buffer grows by advancing its Rear to the
clockwise direction. Similarly, a stream buffer shrinks by
advancing its Front clockwise.

In the following, we use base stream buffer to denote
the buffer for a stream from which a new tuple (or a block
of tuples) arrived. The buffer for the other stream is referred
to as target stream buffer.

The simple correlation is the most simplest one among
the interval timing correlations discussed here. When a tuple
e arrives at the base stream, every tuple in the target stream
buffer is examined and the satisfaction probability is calcu-
lated. While the system is visiting the tuples in the target
stream buffer, obsolete tuples are marked. Then the marked
tuples are removed from the target stream buffer and e is
inserted into the base stream buffer.

It is too expensive to remove obsolete tuples from
stream buffers and shift the remainder physically. The im-
plementation for removing obsolete tuples in the simple cor-
relation is done by finding consecutively located obsolete
tuples from the front of a stream buffer and advancing the
pointer Front beyond the end of such tuples. The simple
sort correlation expects longer consecutively located obso-
lete tuples than the simple correlation does by keeping tu-
ples in stream buffers sorted in their max timestamps order.

The eager correlation uses the analysis result of satis-
faction probability presented in the previous section. Every
time a tuple e arrives, the system computes LH , LL,RL and
RH based on e. We shall use LH(e) to denote the value of LH

computed based on e††. LL(e), RL(e), and RH(e) can be in-
terpreted similarly. As illustrated in the previous section, all
tuples belonging to [LL(e), RL(e)] in the target stream buffer
are guaranteed to be in the result. The tuples belonging to
[LH(e), LL(e)) or (RL(e), RH(e)] in the target stream buffer
should be probed further.

To determine the block of invalid tuples, we first set
@einv to (CurrentT ime − delaybase − π,CurrentT ime −
delaybase) and compute LH based on einv. Since the tuples
belonging to (−∞, LH(einv)) in the target buffer are guaran-
teed not to match with any incoming future tuples from the
base stream, they can be removed from the buffer. For the
efficient searching in stream buffers, we use binary search

Fig. 4 The total execution times under various arrival rates.

Fig. 5 The average response times under various arrival rates.

hence stream buffers should be sorted; after completing a
correlation, a new tuple is inserted into the base stream
buffer in a sorted order.

To measure the performance of each algorithm un-
der different workloads, we use the data files r12.dat,
r24.data, . . ., r1600.dat of which arrival rates are from 12
tuples/second to 1600 tuples/second. We measured the to-
tal execution times (Fig. 4) and the average response times
(Fig. 5). In this experiment, we set π = 300, ρ = 20. The
response time of a tuple (ea, eb) is computed by the correla-
tion completion time minus MAX(arrival time of ea, arrival
time of eb).

From the figures, it is evident that the eager correlation
outperforms the simple correlation and the simple sort cor-
relation (SSORT in the figure). The main reason is that the
eager correlation full utilizes the analysis result of satisfac-
tion probability. Hence it saves significant execution time by
avoiding the computation of satisfaction probabilities for the
tuples belonging to the satisfaction and violation regions.

We can also notice that the simple sort correlation is
faster than the simple correlation. This is mainly because
the invalidation process is much effective in the simple sort
correlation.

Figure 6 shows the performance under varying confi-
†Roughly speaking it is the oldest tuple, i.e., the one with the

smallest max timestamp, if the buffer is sorted.
††The parameters ct, distance, ρ, and π are also used in the com-

putation, however we shall omit these parameters in expressions
for the brevity.

1266
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.6 JUNE 2009

Fig. 6 The execution times under various confidence thresholds.

dence thresholds (ct). We deliberately composed the data
file such that all tuples are ordered in the max values of their
timestamps. In this experiment, we varied ct from 1.0 to
0.2. The execution time increases as ct decreases. This can
be explained by the fact that the candidate range for timing
correlation becomes larger as ct decreases. Also, the probe
region is increased proportionally.

6. Conclusions

We introduced interval timing correlation, a variant of the
join operator for streaming data. The interval timing correla-
tion enables users to assess timing conditions over streaming
data with interval timestamps. The interval timestamps are
adopted to express temporal uncertainties which may exist
in the timestamps of stream data. The proposed timing con-
dition consists of a timing predicate and a confidence thresh-
old. The timing predicate specifies a timing correlation be-
tween two timestamps in forms of “deadline”, “delay”, and
“within”. The confidence threshold states the minimum sat-
isfaction probability for the associated timing predicate. If
the satisfaction probability of the timing predicate is lower
than the confidence threshold, then the timing condition is
evaluated to be false.

Based on the results in previous work [11], this paper
extends the analysis of satisfaction probability for the within
predicate. In designing algorithms for the interval timing
correlation, we utilized this information to effectively iden-
tify only data to evaluate. The performances of the proposed
algorithm under different workloads were measured and an-
alyzed.

For the future work, applying the techniques developed
in this paper to practical applications such as intrusion de-
tection would be interesting. For example, there have been
efforts for utilizing temporal correlations between the events
related to the security for detecting intrusion detection [13],
[14].

Acknowledgements

This research was supported by a grant (CR070019) from
Seoul R&BD Program funded by the Seoul Development
Institute of Korean government.

References

[1] L. Golab and M.T. Ozsu, “Processing sliding window multi-joins in
continuous queries over data streams,” Proc. International Confer-
ence on Very Large Data Bases (VLDB), pp.500–511, 2003.

[2] C.E. Dyreson and R.T. Snodgrass, “Supporting valid-time indeter-
minacy,” ACM Trans. Database Syst., vol.23, no.1, pp.1–57, March
1998.

[3] R. Cheng, D.V. Kalashnikov, and S. Prabhakar, “Evaluating proba-
bilistic queries over imprecise data,” Proc. ACM SIGMOD Interna-
tional Conference on Management of Data, pp.551–562, 2003.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” Proc. ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pp.1–16,
2002.

[5] L. Golab and M.T. Ozsu, “Issues in data stream management,” SIG-
MOD Rec., vol.32, no.2, pp.5–14, 2003.

[6] D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S.B. Zdonik, “Aurora: A
new model and architecture for data stream management,” VLDB
Journal, vol.12, no.2, pp.120–139, 2003.

[7] M.A. Hammad, W.G. Aref, and A.K. Elmagarmid, “Stream window
join: Tracking moving objects in sensor-network databases,” Proc.
International Conference on Scientific and Statistical Database Man-
agement, pp.75–84, 2003.

[8] J. Kang, J.F. Naughton, and S. Viglas, “Evaluating window joins
over unbounded streams,” Proc. International Conference on Data
Engineering, pp.341–352, 2003.

[9] U. Srivastava and J. Widom, “Flexible time management in data
stream systems,” Proc. ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, pp.263–274, 2004.

[10] A.K. Mok, C.G. Lee, H. Woo, and P. Konana, “The monitoring of
timing constraints on time intervals,” Proc. IEEE Real-Time Sys-
tems Symposium (RTSS), pp.191–200, 2002.

[11] C.G. Lee, A.K. Mok, and P. Konana, “Monitoring of timing con-
straints with confidence threshold requirements,” IEEE Trans. Com-
put., vol.56, no.7, pp.977–991, 2007.

[12] A.K. Mok, H. Woo, and C.G. Lee, “Probabilistic timing join over
uncertain event streams,” Proc. IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2006.

[13] A. Jones and S. Li, “Temporal signatures for intrusion detection,”
Proc. Annual Computer Security Applications Conference, pp.252–
261, 2001.

[14] V.C.S. Lee, J.A. Stankovic, and S.H. Son, “Intrusion detection
in real-time database systems via time signatures,” Proc. Real-
Time Technology and Applications Symposium (RTAS), pp.124–
133, 2000.

LEE et al.: ONLINE TIMING CORRELATION OF STREAMING DATA WITH UNCERTAIN TIMESTAMPS
1267

Chan-gun Lee is Assistant Professor in
the Dept. of Computer Science and Engineering
at Chung-Ang University, Korea. He received
the BS degree in 1996 from Chung-Ang Univer-
sity, Korea, the MS degree in 1998 from Korea
Advanced Institute of Science and Technology
(KAIST), Korea, and the PhD degree in 2005
from the University of Texas at Austin, all in
computer science. He was a recipient of a schol-
arship from the Korea Foundation for Advanced
Studies during his Ph.D. study. He worked as

a senior software engineer at Intel, Hillsboro for two years after getting
his PhD degree. His research interests include real-time systems, software
engineering for time-critical systems, and streaming data processing.

Aloysius K. Mok is Quincy Lee Centen-
nial Professor in Computer Science at the Uni-
versity of Texas at Austin. He received the S.B.
in electrical engineering, the S.M. in electrical
engineering and computer science and the Ph.D.
degrees in computer science, all from the Mas-
sachusetts Institute of Technology. Since 1983,
Dr. Mok has been on the faculty of the Depart-
ment of Computer Sciences at the University of
Texas at Austin. Professor Mok has done exten-
sive research on computer software systems and

is internationally known for his work in real-time systems. He is a past
Chairman of the Technical Committee on Real-Time Systems of the Insti-
tute of Electrical and Electronics Engineers, and has served on numerous
national and international research and advisory panels. His current inter-
ests include real-time and embedded systems, robust and secure network-
centric computing and real-time knowledge-based systems. Dr. Mok re-
ceived in 2002 the IEEE TC on Real-Time Systems Award for his out-
standing technical contributions and leadership achievements in real-time
systems.

Prabhudev Konana is Associate Professor
of MIS and Distinguished Teaching Professor at
the McCombs School of Business, the Univer-
sity of Texas at Austin. He has an MBA and a
Ph.D. from the University of Arizona. His re-
search interests are in electronic business value,
electronic brokerages, online investor satisfac-
tion, outsourcing and offshoring of IT and busi-
ness processes, and online supply chain man-
agement. His research is supported by grants
from NSF CAREER Award, NSF Information

Technology Research, Dell, Intel and IBM. He has received numerous
teaching awards. He has published over 60 papers in journals and confer-
ence proceedings including Management Science, Sloan Management Re-
view, Management Information Systems Quarterly, Information Systems
Research, Communications of the ACM, INFORMS Journal on Comput-
ing, Information Systems. He serves in the program committee of numer-
ous conferences in the management of information technology and systems
area.

