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ABSTRACT

Subcellular localization is one of the key functional
characteristics of proteins. An automatic and effici-
ent prediction method for the protein subcellular
localization is highly required owing to the need for
large-scale genome analysis. From a machine
learning point of view, a dataset of protein localiza-
tion has several characteristics: the dataset has too
many classes (there are more than 10 localizations
in a cell), it is a multi-label dataset (a protein may
occur in several different subcellular locations), and
it is too imbalanced (the number of proteins in each
localization is remarkably different). Even though
many previous works have been done for the predic-
tion of protein subcellular localization, none of them
tackles effectively these characteristics at the same
time. Thus, a new computational method for protein
localization is eventually needed for more reliable
outcomes. To address the issue, we present a
protein localization predictor based on D-SVDD
(PLPD) for the prediction of protein localization,
which can find the likelihood of a specific localiza-
tion of a protein more easily and more correctly.
Moreover, we introduce three measurements for the
more precise evaluation of a protein localization
predictor. As the results of various datasets which
are made from the experiments of Huh et al. (2003),
the proposed PLPD method represents a different
approach that might play a complimentary role to
the existing methods, such as Nearest Neighbor
method and discriminate covariant method. Finally,
after finding a good boundary for each localization
using the 5184 classified proteins as training data,
we predicted 138 proteins whose subcellular local-
izations could not be clearly observed by the
experiments of Huh et al. (2003).

INTRODUCTION

Recent advances in large-scale genome sequencing have
resulted in the huge accumulation of protein amino acid
sequences (1). Currently, many researchers are trying either
to discover or to clarify the unknown functions of these
proteins. Since knowing the subcellular localization where a
protein resides can give important insight into its possible
functions (2), it is indispensable to identify the subcellular
localization of a protein. However, it is time consuming
and costly to identify the subcellular localizations of newly
found proteins entirely by performing experimental tests.
Thus, a reliable and efficient computational method is highly
required to directly extract localization information.

From a machine learning point of view, a task that predicts
the subcellular localizations of given proteins has several
characteristics which demonstrate the task’s complexity
(see Table 1). First, there are too many localizations in a cell.
For example, according to the work of Huh et al. (3), there
are 22 distinct subcellular localization categories in budding
yeast. It means that the possibility of correct prediction of one
localization is <4.55% with a random guess. Second, the pre-
diction task is a ‘multi-label’ classification problem; some
proteins may have several different subcellular localizations
(1). For instance, the YBR156C can be located either in
‘microtubule’ or ‘nucleus’ according to the work of Huh
et al. (3). Thus, a computational method should be able to
handle the multi-label problem. Finally, the number of pro-
teins in each localization is too different making a protein
localization data set highly ‘imbalanced’. It is generally
accepted that proteins located in some organelles are much
more abundant than in others (2). It also can be checked with
the data of Huh et al. (3); the number of proteins in ‘cyto-
plasm’ is 1782, while the number of proteins in ‘ER to Golgi’
is only 6 (see the second column of Table 1). All these three
characteristics make the task difficult. Thus, not only good
features for a protein but also a good computational algorithm
is ultimately needed for the reliable prediction of protein
subcellular localization.

Actually, many works have been done during the last
decade or so in this field. The efforts in these works have
followed several trends (see Table 2).
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1) Feature Extraction: one trend is to try to extract good
information (or features) from given proteins. One category
of the features used is based on amino acid composition
(AA) (1,2,4–14,15–22). Many works have used AA as the
unique feature or the complementary feature of a protein
owing to its simplicity and its high coverage. Prediction
based on only AA features would lose sequence order
information. Thus, to give sequential information to the
AA, Nakashima and Nishikawa (4) also used amino acid
pair composition (PairAA), Chou (5) used pseudo amino
acid composition (PseAA) using sequence-order correlation
(SOC) factor (6), and Park and Kanehisa (18) also used
gapped amino acid composition (GapAA). For more
sequence order effect, Pan et al. (19) used digital signal pro-
cessing filter technique to the PseAA. These features based on
AA have the advantage of achieving a very high coverage but
may have limit on the high performance. Other researchers
have used several kinds of motif information as the feature
of proteins (1,9–12,23,24–26). Since Nakai and Horton (23)
used protein sorting signal motifs in the N-terminal portion
of a protein, some researchers (24) have used the motif in
the prediction of localization. Using the 2005 functional
domain sequences of SBASE-A which is a collection of
well known structural and functional domain types (28),
Chou and Cai (9,25) represented a protein as a vector with
a 2005-dimensional functional domain composition
(SBASE-FunD). They also introduced the dimensional func-
tional domain composition (InterPro-FunD) (1,11) using the
InterPro database (29). In contrast, Nair and Rost (26)

represented a protein with functional annotations from the
SWISS-PROT database (30). Recently, for higher prediction
accuracy Cai and Chou (1,11) used Gene Ontology (GO) term
as a auxiliary feature of a protein. Even though motif
information and GO can improve the prediction accuracy,
the information has a limited coverage of the proteins.

2) Class coverage extension: another trend is to increase
the coverage of protein localization for practical use. At the
beginning, Nakashima and Nishikawa (4) distinguished
between intracellular proteins and extracellular proteins
using the AA and the PairAA features. After that, many
researchers enlarged the number of localization classes to 5
classes (13), to 8 classes (27), to 11 classes (23), to 12 classes
(2), then to 14 classes (14). Recently Chou and Cai (1) used
up to 22 localization classes using the dataset of Huh et al.
(3), which is the biggest coverage of protein localization up
to now.

3) Computational algorithm: to improve the prediction
quality, another trend is to try to use an efficient computa-
tional algorithm in the prediction stage. Current computa-
tional methods include the following: a Least Distance
Algorithm using various distance measures [a distance in
PlotLock (31) that is modified from Mahalanobis distance
originally introduced by Chou in predicting protein structural
class (32), a Covariant discriminant algorithm (CD) in (2,27),
and an augmented CD in (6)], an Artificial Neural Network
approach in (15,20), a Nearest Neighbor approach in
(1,11,17,23,26), a Markov Model (MM) in (21), a Bayesian
Network (BN) approach in (24), and Support Vector
Machines (SVMs) approach in (7,9,16,18,25). In (12), three
algorithms, such as SVMs, a Hidden MM and a BN are
used for improving prediction accuracy.

Even though many previous works have been done for
the prediction of protein subcellular localization, none of
them tackled effectively the three characteristics of
protein localization prediction at the same time. For example,
many existing predictors use only less than five different
subcellular localizations. Moreover, very few predictors
deal with the issue of multiple-localization proteins except
for Chou and Cai (1). The majority only assumed that there
is no multiple-localization protein. Furthermore, almost all
previous methods did not consider the imbalanced problem
in a given dataset. That means these methods achieve high
accuracy only for the most populated localizations, such as
the ‘nucleus’ and ‘cytosol’. They, however, are generally
less accurate on the numerous localizations containing
fewer individual proteins. Thus, a new computational method
is eventually needed for more reliable prediction which
should have the following characteristics: (i) it can show
relatively good performance in case many classes exist,
(ii) it can handle a multi-label problem and (iii) it should
be robust in an imbalanced dataset. Our study is aimed to
address these issues.

To achieve the purpose, we developed a PLPD method
which can predict better the localization information of pro-
teins using a Density-induced Support Vector Data Descrip-
tion (D-SVDD) approach. The PLPD stands for ‘Protein
Localization Predictor based on D-SVDD’. The D-SVDD
(33) is a general extension of conventional Support Vector
Data Description (C-SVDD) (34–36) inspired by the SVMs
(37). According to the work of Lee et al. (33), D-SVDD

Table 1. The number of proteins in the original Huh et al. Dataset (2003)

and three training datasets

Subcellular
localization

Huh et al.
Dataset

Dataset-I Dataset-II Dataset-III

1. Actin 32 32 27 27
2. Bud 25 25 19 19
3. Bud neck 61 61 48 48
4. Cell periphery 130 130 98 98
5. Cytoplasm 1782 1782 1472 1472
6. Early golgi 54 54 39 39
7. Endosome 46 46 37 37
8. ER 292 292 207 207
9. ER to golgi 6 6 5 5
10. Golgi 41 41 30 30
11. Late golgi 44 44 38 38
12. Lipid particle 23 23 15 15
13. Microtubule 20 20 17 17
14. Mitochondrion 522 522 389 389
15. Nuclear periphery 60 60 38 38
16. Nucleolus 164 164 122 122
17. Nucleus 1446 1446 1126 1126
18. Peroxisome 21 21 16 16
19. Punctate composite 137 137 91 91
20. Spindle pole 61 61 27 27
21. Vacuolar membrane 58 58 47 47
22. Vacuole 159 159 124 124
Total number of

classified proteins, ~NN
5184 5184 4032 4032

Total number of
different proteins, N

3914 3914 3017 3017

Dimension of features 9620D 2372D 11992D
Coverage 100% 77.08%�

3017
3914

� 77.08%�
3017
3914

�
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highly outperformed the C-SVDD. D-SVDD is one of
one-class classification methods whose purpose is to give a
compact description of a set of data referred to as target
data. One-class classification methods are suitable for imbal-
anced datasets since find compact descriptions for target data
independently from other data (33,36). Moreover, they are
easily used for the dataset whose number of classes is big
owing to linear complexity with regard to the number of
classes. However, original D-SVDD is not for a multi-class
and multi-label problem. For the protein localization prob-
lem, thus, we propose the PLPD method by extending the
original D-SVDD method using the likelihood of a specific
protein localization.

The structure of the paper is organized as follows: First, we
briefly provide the information on the C-SVDD and the
D-SVDD in Section 2. In this section, we also introduce
the proposed PLPD method for protein localization predic-
tion. Section 3 highlights the potentials of the proposed
approach through experiments with datasets from the work
of Huh et al. (3). Concluding remarks are presented in
Section 4.

MATERIALS AND METHODS

Conventional support vector data description

Since C-SVDD is not well introduced in bioinformatics fileds,
we first briefly describe the basic ideas of the C-SVDD. Sup-
pose a dataset containing n target data, {xi j i ¼ 1, . . . , n}, is
given in the task of one-class classification. The basic idea
of a C-SVDD (36) is to find the hypersphere (a, R) with mini-
mum volume which includes most of the target data, where a
and R are respectively the center and the radius of the solution
(the hypersphere) as shown in Figure 1. To permit xi to be
located in the outside of a hypersphere, the C-SVDD intro-
duces a slack variable xi > 0 for each target data point analo-
gous to SVMs (38). Thus the solution of the C-SVDD is
obtained by minimizing the objective function O:

O ¼ R2 þ Cþ
Xn

i¼1

xi ð1Þ

subject to (xi � a) · (xi � a) < R2 + xi where the parameter
C+ > 0 gives the trade-off between volume of a

Table 2. The previous researches in the prediction of protein subcellular localization

Author(s) Algorithm Feature # of Classes Multi-label Imbalance

Nakashima and Nishikawa (4) Scoring System AAk, PairAAl 2 x x
Cedano et al. (13) LDa (Mahalanobis) AAk 5 x x
Reinhardt and Hubbard (20) ANNc Approach AAk 3, 4 x x
Chou and Elrod (2) CDd AAk 12 x x
Yuan (21) Markov Model AAk 3, 4 x x
Nakai and Horton (23) k-NNe Approach Signal Motif 11 x x
Emanuelsson et al. (10) Neural network Signal Motif 4 x x
Drawid et al. (27) CDd Gene Expression Pattern 8 x x
Drawid and Gerstein (24) BNb Approach Signal Motif, HDEL motif 5, 6 x x
Cai et al. (8) SVMsi AAk 12 x x
Chou (6) Augumented CDd AAk, SOCn factor 5, 7, 12 x x
Hua and Sun (16) SVMsi AAk 4 x x
Chou and Cai (25) SVMsi SBASE-FunDo 12 x x
Nair and Rost (26) NNe Approach functional annotation 10 x x
Cai et al. (9) SVMsi SBASE-FunDo, PseAAm 5 x x
Chou and Cai (11) NNe Approach GOp, InterPro-FunDq, PseAAm 3, 4 x x
Chou and Cai (14) LDa PseAAm 14 x x
Pan et al. (19) Augmented CDd PseAAm with filler 12 x x
Park and Kanehisa (18) SVMsi AAk, PairAAm, GapAAk 12 x x
Zhou and Doctor (22) CDd AAk 4 x x
Gardy et al. (12) SVMsi, HMMh, BNb AAk, motif, homology analysis 5 x x
Huang and Li (17) fuzzy k-NNe PairAAl 4, 11 x x
Guo et al. (15) p-ANNj AAk 8 x x
Bhasin and Raghava (7) SVMsi AAk, PairAAl 4 x x
Chou and Cai (1) NNe Approach GOp, InterPro-FunDq, PseAAm 22 Considering x

aLD: Least Distance algorithm.
bBN: Bayesian Network.
cANN: Artificial Neural Network.
dCD: Covariant Discriminant algorithm.
eNN: Nearest Neighbor.
hHMM: Hidden Markov Model.
iSVMs: Support Vector Machines.
jp-ANN: probabilistic Artificial Neural Network.
kAA: amino acid composition.
lPairAA: amino acid pair composition.
mPseAA: pseudo amino acid composition.
nSOC: sequence-order correlation.
oSBASE-FunD: functional domain composition using SBASE.
pGO: gene ontology.
qInterPro-FunD: InterPro functional domain composition.
rFunDC: functional domain composition. (Here, ‘x’ means ‘Not Considering’.)
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hypersphere and the number of errors (number of target data
rejected) (36).

When negative data xl which should not be included in a
compact description of target data are available during train-
ing, C-SVDD utilizes it. In this case, the C-SVDD finds the
minimum-volume hypersphere that includes most of target
data and at the same time, excludes most of negative data as
shown in Figure 2. Suppose we have both n target data and
m negative data. (Note: the total number of training data are
N where N ¼ n + m.) By using another slack variable xl > 0
for the permission of including negative data in a compact
description, the objective function of this case is written as:

O ¼ R2 þ Cþ
Xn

i¼1

xi þ C�
Xm
l¼1

xl ð2Þ

subject to (xi � a) · (xi � a) < R2 + xi and (xl � a) · (xl � a) >
R2 � xl where C� is another parameter which controls the
trade-off between the volume of data description and the
errors of negative data (36).

By using Lagrange Multipliers ak for xk, the dual problem
of the C-SVDD is reduced to maximizing D(a):

DðaÞ ¼
XN
k¼1

ykakxk·xk �
XN
p¼1

XN
q¼1

ypyqapaqxp·xq ð3Þ

subject to
PN

k¼1 ykak ¼ 1, 0 < ai < C+, and 0 < al < C�

where yk is the label of data xk. (Note: yk ¼ 1 for a target data
point, otherwise yk ¼ �1.) After solving D(a) with regard to
ak, the a of the optimal hypersphere can be calculated by
a ¼

PN
k¼1 ykakxk, and the radius R can be obtained by the

distance between a and any target data point xi that is located
on the boundary of the hyperplane.

By comparing the distance between a test data point xt and
a with R, the C-SVDD determines the decision whether xt is
the same data type with the target data or not as:

f ðxtÞ ¼ Iðxt·xt � 2xt·a þ a·a < R2Þ ð4Þ

where I is an indicator function (35). Thus, if the distance
between xt and a is less than R, then we predict that xt is
included in the given target dataset; otherwise, we predict
that xt is not included.

Similar to SVMs, the C-SVDD can find a more flexible
data description in a high-dimensional feature space without
directly mapping the space using a kernel function K(·,·) (38).
As shown in Figure 3, the C-SVDD finds a solution by map-
ping the input training data into a possible high-dimensional
feature space using a mapping function F, and seeking a
hypersphere in the feature space. However, instead of explic-
itly mapping the training data into the feature space, C-SVDD
directly finds the solution in the input space using the corre-
sponding kernel K(xi, xj) between any two data xi and xj,
defined by:

Kðxi‚xjÞ ¼ FðxiÞ·FðxjÞ: ð5Þ

Thus, the kernelized form of Equation 3 is:

DðaÞ ¼
XN
k¼1

ykakKðxk‚xkÞ �
XN
p¼1

XN
q¼1

ypyqapaqKðxp‚xqÞ:

ð6Þ

Using the kernel trick, the C-SVDD directly finds a more
flexible boundary in an original input space as shown in the
left figure of Figure 3 in an original input space.

Density-induced support vector data description

As mentioned earlier, a C-SVDD finds a compact description
that includes most of target data in a high-dimensional feature
space, and the data that are not fully included in the

: target data : support vectors

A given data set with target data The typical solution of C-SVDD

a

R
iξ

Figure 1. A typical solution of C-SVDD when outliers are permitted. The
C-SVDD finds the minimum-volume hypersphere which includes most of
target data. The data which resides on the boundary and outside the boundary
are called support vectors which fully determine the compact boundary. Thus,
the data with solid circle are the support vectors on the boundary, and the data
with dotted circle are also support vectors which are the outliers.

: target data

A given data set with negative data The typical solution of C-SVDD

: negative data

lξ

a

R

Figure 2. A typical solution of C-SVDD when negative data are available.
The C-SVDD finds the minimum-volume hypersphere which includes most
of target data and at the same time, excludes most of negative data.

: target data

Solution in an original input space Solution in a high-dimensional feature space

: negative data

Φ

Figure 3. A typical solution of C-SVDD when a kernel function is used.
The C-SVDD finds a more flexible solution in a high-dimensional feature
space without mapping data into the feature space using some kernel
function; C-SVDD finds a flexible solution directly in the original input space
with a kernel function as shown in the left figure.
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hypersphere are called support vectors (36). In a C-SVDD,
these support vectors completely determine the compact
description (36) even though most target data can be non-
support vectors. This can be a problem in data domain
description especially when support vectors do not have the
characteristics of a target dataset regarding its density
distribution (33).

To address the problems outlined above and to identify
the optimal description more easily, Lee et al. (33) recently
proposed a D-SVDD which is a general extension of the
C-SVDD by introducing the notion of a relative density
degree for each data point. Using the relative density degree,
Lee et al. defined a density-induced distance measurement for
target data making data with higher density degrees give
more influence on finding a compact description. By several
experiments, the D-SVDD highly improved the performance
of the C-SVDD (33). However, the original work of Lee et al.
(33) only introduced the mechanism that can incorporate the
density degrees of the target data, not negative data. Thus, in
this study, we also introduce the mechanism of incorporating
the density degrees of negative data by defining a density-
induced distance measurement for negative data.

1) Relative density degree and density induced distance. to
reflect the density distribution into searching the boundary
of the C-SVDD, Lee et al. first introduced the notion of a
relative density degree for each target data point which
means the density of the region of the corresponding data
point compared to other regions in a given dataset (33).
Suppose we calculate a relative density degree for a target
data point xi. By using dðxi‚xK

i Þ, the distance between xi

and xK
i (the Kth nearest neighborhood of xi), and the mean

distance of Kth nearest neighborhoods of all target data,
`K, they defined the local density degree ri > 0 for xi as:

ri ¼ exp

�
w ·

`K

dðxi‚ xK
i Þ

�
‚ i ¼ 1‚ . . . ‚n ð7Þ

where `K ¼ 1
n

Pn
i¼1 dðxi‚xK

i Þ, n is the number of data in a
target class, and 0 < w < 1 is a weighting factor. Note
that the measure reports higher local density degree ri for
the data in a higher density region: the data with lower xK

i
have higher ri values. Moreover, a bigger w produces higher
local density degrees. In a similar manner, the relative density
degrees for negative data are also calculated.

After calculating the relative density degrees, to incorpo-
rate the degrees into searching the optimal description in a
C-SVDD, Lee et al. (33) proposed a new geometric distance
called density-induced distance. They defined a positive
density-induced distance dþi between target data point xi

and the center of a hyperspherical model (a, R) of a target
dataset as:

dþi � friðxi�aÞ·ðxi�aÞg1=2 ð8Þ

where a and R are the center and the radius of the hyper-
sphere, respectively. The basic idea is simple. To give higher
influence on the search of the minimum-sized hypersphere,
they made the distance between xi and the center a longer
using relative density degre ri. Note that to enclose the
data point with increased distance owing to a higher relative
density degree ri, the radius of a minimum-sized hypersphere

should be increased (a data point with higher ri gives stronger
influence on the boundary).

In a similar manner, we can incorporate the relative density
degrees for negative data. After calculating the relative
density degrees rl for negative data xl using Equation 7,
we define another density-induced distance d�l between nega-
tive data and a, the center of the hyperspherical description of
a target data set, as:

d�l �
�

1

rl

ðxl�aÞ·ðxl�aÞ
�1=2

ð9Þ

where a and R are the center and the radius of a hypersphere,
respectively.

Note that d�l decreases with increasing rl. Hence, to
exclude the negative data point with decreased d�l owing to
higher relative density degree rl, the radius of a minimum-
sized hypersphere should be decreased; the negative data
point with higher relative density degree gives higher degree
of penalty on the search of the minimum-sized hypersphere
for a target dataset.

2) Mathematical formulation of D-SVDD. Using the density-
induced distance measure dþi for target data, Lee et al.
reformulated the C-SVDD when only target data are available
(33). Similar to C-SVDD, they permitted the possibility of
training error using a slack variable zi > 0, which is the
distance between the boundary W and xi outside W. Here, zi

equals ðdþi Þ
2 � R2 for training error data, otherwise it is 0. It

implies that zi contains the information of a relative density
degree of xi.

Using the slack variable for each target data point, they
deduce Equation 10 from Equation 1:

O ¼ R2 þ Cþ
Xn

i¼1

zi ð10Þ

subject to ri(xi � a) · (xi � a) < R2 + zi.
By introducing Lagrange Multipliers, Lee et al. (33) could

construct the dual problem: maximize D(a),

DðaÞ ¼
Xn

i¼1

airixi·xi �
1

T

Xn

i¼1

Xn

j¼1

aiajrirjxi·xj ð11Þ

subject to
Pn

i¼1 ai ¼ 1‚ 0 < ai < Cþ, and T ¼
Pn

i¼1 airi.
After deriving ak that satisfy Equation 11, a of the optimal

description can be calculated by:

a ¼ 1

T

Xn

i¼1

airixi‚ T ¼
Xn

i¼1

airi: ð12Þ

Different from the C-SVDD (36), the center a of the optimal
hypersphere is weighted by the relative density degree ri

(Equation 12) where the center is shifted to a higher dense
region. Moreover, the R of optimal description is calculated
by the dþi distance between a and any Xi of which 0 < ak

< C+ (33).
When negative data are available, D-SVDD can also utilize

them to improve the description of the target dataset. In this
case, we use negative density-induced distance d�l for nega-
tive data in order to incorporating the density distribution of
negative data. Using the negative density-induced distance

Nucleic Acids Research, 2006, Vol. 34, No. 17 4659

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/34/17/4655/3111992 by guest on 04 Septem

ber 2019



and another slack variable zl for possibility of training error
for each negative data point, we find the optimal hypersphere
that includes most target data and excludes most negative
data. Here, zl for each negative data point is the distance
between the boundary W and xl inside W; that is,
zl ¼ R2 � ðd�l Þ

2
‚ ðzl > 0Þ. Thus the new objective function

is defined as:

O ¼ R2 þ Cþ
Xn

i¼1

zi þ C�
Xm
l¼1

zl ð13Þ

subject to riðxi � aÞ·ðxi � aÞ < R2 þ zi and
1
rl
ðxl � aÞ·ðxl � aÞ > R2 � zl where C� > 0 is a similar

control parameter with that of the C-SVDD (34).
Similar to the previous case, after constructing the

Lagrangian of Equation 13, the dual representation of this
case is obtained as:

DðaÞ ¼
XN
k¼1

ykakrk
0xk·xk �

1

T

XN
p¼1

XN
q¼1

ypyqapaqrp
0rq

0xp·xq

ð14Þ

subject to
PN

k¼1 ykak ¼ 1‚ 0 < ai < Cþ‚0 < al < C�‚ and
T ¼

PN
k¼1 ykakr

0

k where yk is the label of xk (yk ¼ 1 for a
target data point, otherwise yk ¼ �1), and N is the total num-
ber of data (N ¼ n + m). Here, rk

0 ¼ ri for target data xi and
r0

k ¼ 1/rl for negative data xl.
Note that using a0

k ¼ ykak and rk
0 (instead of rk) the dual

representation of negative version of D-SVDD becomes
identical to the previous case of D-SVDD (Equation 11)
except for the number of data considered (n becomes
N ¼ n + m). Therefore, when negative data are available,
we can just use a0

k and rk
0 in the optimization problem and

in the decision function of the precious case. That means
there are no extra computational complications except the
complication caused by the increased data size.

As seen in Equations 11 and 14, the dual forms of the
objective functions of D-SVDD are represented entirely in
terms of inner products of input vector pairs. Thus, we can
kernelize D-SVDD where the kernelized version of the dual
representation of the objective function when negative data
are available is:

DðaÞ ¼
XN
k¼1

akrk
0Kðxk‚xkÞ �

1

T

XN
p¼1

XN
q¼1

ap
0aq

0rp
0rq

0Kðxp‚xqÞ

ð15Þ

where T and constraints are the same as in Equation 14.

PLPD for prediction of protein subcellular localization

As mentioned earlier, the prediction of protein localization is
a kind of multi-class and multi-label classification problem.
However, D-SVDD including conventional SVDD is not
for the multi-class and multi-label classification problems;
it is for one-class and mono-label classification problems.
Thus, we propose a new method for the prediction of protein
localization by modifying the D-SVDD.

For a multi-class and multi-label classification problem, a
predictor should answer two points. First, for a multi-class
problem, a predictor should report the degree of being a

member of each class for a test data point xt using some
score function f ðxt‚ ·Þ where f: @ · Ł ! R. (Here, @ is the
domain of data, Ł is the domain of class labels, and R is
the domain of real numbers.) That is, a label l1 is considered
to be ranked higher than l2 if f ðxt‚ l1Þ > f ðxt‚ l2Þ. Second,
owing to multi-label cases, the score function should be
able to report multiple labels not a mono label, and the true
positive labels of a protein should rank higher than any
other labels. That is, if Łp is a set of the true positive labels
of xt, then a successful learning system will tend to rank the
labels in the Łp higher than any other labels not in Łp.

To address the requirements mentioned above, we adopt
the following procedure.

(i) if a training dataset is given, we divide it into a target
dataset and a negative dataset by class. For a label li, for
instance, a data point whose label set has li is included in
the target data; otherwise, it is included in the negative
dataset.

(ii) if a target dataset and a negative dataset are prepared for
each class, we find the optimal boundary for the target
data by using D-SVDD as formulated in Equation 15.

(iii) we calculate the degree of being a member of each class li
for a test data point xt using the following score function f :

f ðxt‚ liÞ ¼
Ri

dðxt‚aiÞ
ð16Þ

where (ai, Ri) is the optimal hypersphere of target data
which are included in the class label li. Note that this score
function reports a higher value for a test data point with
smaller distance between xt and ai regarding to the
distance of Ri. If the distance between xt and ai, for
example, is smaller than Ri, the score function reports
higher values than 1; otherwise, the score function reports
smaller values than 1. That means if the location of xt is
closer to the center of the hypershpere, then the score
function reports a higher degree of value.

(iv) Finally, according to the values of the score function for
all classes, we rank the labels, and report them.

With this procedure, we can easily and intuitively modify
the D-SVDD for a multi-class and multi-label classification
problem like the prediction of protein localization by reflect-
ing the overall characteristics of each class. We call the pro-
posed method a PLPD.

RESULTS AND DISCUSSION

Data preparation and evaluation measures

1) Data preparation. To test the effectiveness of the proposed
PLPD method, we experimented with the data of Huh et al.
(3), which is currently the biggest class coverage and is a
multi-label dataset. From the website http://yeastgfp.ucsf.
edu, we get 3914 unique proteins whose locations are clearly
identified. The breakdown of the original 3914 different pro-
teins (N ¼ 3914) is given in the second column of Table 1.
Owing to some proteins may coexist several localizations,
the so-called multi-label feature as mentioned earlier, the
total sum of proteins in all localizations, denoted by ~NN , is
5184; In N ¼ 3914 total different proteins, there are 2725
proteins in unique localization, 1117 proteins in two different
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localizations, 64 proteins in three different localizations,
7 proteins in four different localizations. And there is
only 1 protein in five different localizations. Similar to the
formulation by Chou and Cai (1),

~NN ¼ 1 · 2725 þ 2 · 1117 þ 3 · 64 þ 4 · 7 þ 5 · 1 ¼ 5184:

ð17Þ

Using the 3914 proteins, we represent a protein in three
different ways, and make three datasets: Dataset-I,
Dataset-II and Dataset-III to evaluate the performance of
the proposed PLPD in various manners (see Table 1). In
Dataset-I, we used AA-based features for a protein. After
finding all amino acid sequences of 3914 proteins from the
SWISS-PROT DataBank (30), we used PairAA features
(400D; features from a21 to a420), and GapAA up to the maxi-
mal allowed gap (9200D ¼ 400D · 23; the minimum length
among all 3914 proteins is 25; features from a421 to a9620) for
sequence information including the amino acid composition
(20 Dimensions; features from a1 to a20). That is, a protein
P is represented as a vector in a 9620-dimensional space
(9620D ¼ 20D + 400D + 9200D) as:

P ¼

a1

a2

  
a9620

2
664

3
775 ð18Þ

This dataset is described in the third column of Table 1. As
you can see in the column, the coverage of this representation
is 100%; that means, all of the 3914 proteins can be
represented by this manner.

In Dataset-II, we adopted a similar manner with the Chou
and Cai’s approach (5) using the InterPro Motifs (29).
Different from Chou and Cai, we first extracted 2372 unique
motifs which are occurred only in the 3914 proteins in order
to delete meaningless motifs. Using the unique motif set, we
represent a protein as:

P ¼

b1

b2

  
b2372

2
664

3
775‚ ð19Þ

where bi ¼ 1 if the protein has the ith motif in the unique
motif set; otherwise, bi ¼ 0. The coverage of each locali-
zation is depicted in the fourth column is Table 1. With
this second manner, the overall coverage is 77.08%
(3017 proteins among 3914 proteins).

For Dataset-III, we combined the previous two
features only for the proteins which have more than one
motif in the unique motif set. In this case, thus, a protein is
characterized as:

P ¼

c1

c2

  
c11992

2
664

3
775‚ ð20Þ

where the elements from c1 to c9620 are derived from
Equation 18, and the elements from c9621 to c11992 are derived

from Equation 19. The coverage is same with the Dataset-II
(see the fifth column is Table 1).

2) Evaluation measures. For multi-label learning paradigms,
only one measurement is not sufficient to evaluate the perfor-
mance of a predictor owing to the variety of correctness in
prediction (39,40). Thus, we introduce three measurements
(Measure-I, Measure-II and Measure-III) for the evaluation
of a protein localization predictor. First, to check the overall
success rate regarding to the total number of the unique pro-
teins N, we define Measure-I as:

1

N

XN
i¼1

y ½LðPiÞ‚ Yk
i �‚ ð21Þ

where L(Pi) is the true label set of a protein Pi, Yk
i is the pre-

dicted top-k labels by a predictor, and

y ½LðPiÞ‚ Yk
i � ¼

1‚ if any label in Yk
i is in LðPiÞ‚

0‚ otherwise:

�
ð22Þ

Note that owing to the multi-label protein localization prob-
lem, it is not sufficient to evaluate the performance of a pre-
dictor by checking only the topmost label predicted true.
Thus, we check the real label set with the predicted top-k
labels using the y[·, ·] function. The k value in Equation 22
is given by user, and we use 3 in this study since the numbers
of true localization sites of most proteins are less than or
equal to 3 (3).

Similar to the formulation by Chou and Cai (1), to check
the overall success rate regarding to the total number of clas-
sified proteins, ~NN , we also evaluate the performance of a pre-
dict by using Measure-II:

1

~NN

XN
i¼1

Y ½LðPiÞ‚ Yki

i �‚ ð23Þ

where Yki

i is the predicted top-ki labels by a predictor, and the
Y[·, ·] function returns the number of labels which is pre-
dicted correctly. Note that the ki value determined by the
number of true labels of a protein Pi, not by user.

As mentioned earlier, a dataset of protein localization is
imbalanced in nature. Including overall success rate, thus,
the information on the success rate of each class and the aver-
age rate of the success rates of each class is useful to evaluate
the performance of a predictor. To achieve this, we define
Measure-III as:

1

m

Xm
l¼1

1

~nnl

X~nnl

i¼1

D½Yki

i ‚ l�
 !

ð24Þ

where m ¼ 22 is total number of labels or classes, l is a label
index, ~nnl is the number of proteins in the lth label, and

D ½Yki
i ‚ l� ¼ 1‚ if any label in Yki

i is equal to l‚
0‚ otherwise:

�
ð25Þ

Performance comparison

To investigate the success of the proposed PLPD method and
analyze it, we conducted several tests with the three datasets
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(Dataset-I, Dataset-II and Dataset-III). For comparative
analysis we also experimented with the ISort method (1). To
the best of our knowledge, ISort method showed the best per-
formance for the prediction of yeast protein multiple localiza-
tion up to now (1). Even though the jackknife cross-validation
is one of most rigorous and objective validation measures
(41,42), we did a 2-fold cross-validation approach to prevent
the overfitting problem to a given training dataset. For a
more flexible boundary of the PLPD, we used a Gaussian
RBF function for kernelization in Equation 15 owing to the
Gaussian RBF function is one of most suitable functions for
kernelization (36,37). In addition, we selected the model
parameters, such as C+ and C�, and the width parameter of
the Gaussian RBF kernel function by using cross-validation
approach (38,43) to identify the solutions of the PLPD.

The results of the ISort Method and the PLPD method for
the three datasets are given in Table 3–5. As we can see in
Table 3, ISort method showed 65.14, 35.91 and 10.02%
according to Measure-I, Measure-II and Measure-III for the
Dataset-I. For the same dataset, the PLPD method showed
73.89, 53.09 and 11.43% performance for the three measure-
ments, respectively. This implies that the success rates of
PLPD were 8.75, 17.18 and 1.41% higher than the ISort
method regarding the Measure-I, the Measure-II and the
Measure-III, respectively. Even though PLPD method
showed better scores than the ISort method with regard to
Measure-III, the two methods showed low degrees of average
prediction accuracies for all localizations. For instance, ISort
showed zero prediction accuracies at 10 localizations and
PLPD at 9 localizations. As you can see in Table 1, those
localizations whose prediction accuracies were zero have
relatively small number of proteins in themselves. Thus, the
prediction of localization based on only AA-based features
has limitation to correctly predict all the localizations on
average.

When the Dataset-II was used, the prediction accuracies of
each method were higher than those of the two methods with
Dataset-I. As you can see in Table 4, the ISort method
showed 69.94, 44.27 and 15.33% accuracies for three mea-
surements. On the contrary, the PLPD method showed
82.40, 56.32 and 32.41% accuracies for the three measure-
ments. These improvements of the PLPD over the ISort
were more conspicuous. Moreover, there was no zero perfor-
mance for each localization in the PLPD method. In ISort

Table 3. Prediction performance (%) of ISort and PLPD to the Dataset-I

Measure ISort method (%) PLPD method (%)

Measure-I 65.14 73.89
Measure-II 35.91 53.09

1. Actin 0.00 0.00
2. Bud 0.00 0.00
3. Bud neck 0.00 0.00
4. Cell periphery 0.00 0.00
5. Cytoplasm 77.55 99.89
6. Early golgi 5.56 5.56
7. Endosome 6.52 6.52
8. ER 0.00 0.00
9. ER to golgi 16.67 16.67
10. Golgi 0.00 4.88
11. Late golgi 2.27 6.82

Measure-III 12. Lipid particle 8.70 21.74
13. Microtubule 10.00 10.00
14. Mitochondrion 0.77 1.15
15. Nuclear periphery 0.00 0.00
16. Nucleolus 6.10 1.83
17. Nucleus 83.82 65.08
18. Peroxisome 0.00 9.52
19. Punctate composite 0.73 0.00
20. Spindle pole 0.00 0.00
21. Vacuolar membrane 1.72 1.72
22. Vacuole 0.00 0.00
Average 10.02 11.43

Table 4. Prediction performance (%) of ISort and PLPD to the Dataset-II

Measure ISort method (%) PLPD method (%)

Measure-I 69.94 82.40
Measure-II 44.27 56.32

1. Actin 0.00 22.22
2. Bud 5.26 42.11
3. Bud neck 10.42 31.25
4. Cell periphery 41.84 26.53
5. Cytoplasm 71.13 84.58
6. Early golgi 7.69 25.64
7. Endosome 10.81 21.62
8. ER 16.43 12.56
9. ER to golgi 0.00 60.00
10. Golgi 6.67 33.33
11. Late golgi 5.26 21.05

Measure-III 12. Lipid particle 0.00 46.67
13. Microtubule 29.41 41.18
14. Mitochondrion 18.77 16.20
15. Nuclear periphery 0.00 13.16
16. Nucleolus 17.21 26.23
17. Nucleus 44.32 65.36
18. Peroxisome 0.00 50.00
19. Punctate composite 6.59 7.69
20. Spindle pole 14.81 33.33
21. Vacuolar membrane 0.00 10.64
22. Vacuole 30.65 21.77
Average 15.33 32.41

Table 5. Prediction performance (%) of ISort and PLPD to the Dataset-III

Measure ISort method (%) PLPD method (%)

Measure-I 75.90 83.49
Measure-II 49.16 57.24

1. Actin 3.70 18.52
2. Bud 5.26 57.89
3. Bud neck 4.17 33.33
4. Cell periphery 30.61 33.67
5. Cytoplasm 73.30 77.04
6. Early golgi 12.82 25.64
7. Endosome 24.32 35.14
8. ER 22.71 21.26
9. ER to golgi 0.00 60.00
10. Golgi 13.33 43.33
11. Late golgi 10.53 26.32

Measure-III 12. Lipid particle 0.00 53.33
13. Microtubule 29.41 52.94
14. Mitochondrion 27.51 33.16
15. Nuclear periphery 15.79 23.68
16. Nucleolus 28.69 31.97
17. Nucleus 51.07 66.96
18. Peroxisome 6.25 68.75
19. Punctate composite 10.99 12.09
20. Spindle pole 29.63 40.74
21. Vacuolar membrane 4.26 14.89
22. Vacuole 41.13 22.58
Average 20.25 38.78
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method, however, there were 6 localizations(Actin, ER to
Golgi, Lipid particle, Nuclear periphery, Peroxisome and
Vacuolar membrane) whose prediction accuracies were
zero. This means that the proposed method showed promising
results even though a dataset is imbalanced when Dataset-II
was used.

The best performance of each method was achieved when
Dataset-III was used. Similarly, the PLPD method outper-
formed all the three measurements considered as shown in
Table 5. The PLPD, for example, showed up to 83.49%
accuracy with Measure-I, while the ISort method showed
75.90% accuracy. In regard to Measure-III, the PLPD method
showed 38.78% average accuracy for all 22 localizations; it
was 18.53% higher than the ISort method on average of all
prediction accuracies for each localization.

In order to check the performance of PLPD with regard to
Measure-III without considering the other two measurements,
we did tests for the same data sets with similar manner to the
previous tests. This means that we did parameter fitting
process only regarding Measure-III for PLPD method. The
results for Dataset-I, Dataset-II, and Dataset-III are depicted
in Table 6. As you can see in Table 6, the average accuracies
were highly increased. When the Dataset-III was used, for
example, the average accuracy for all localization was up to
46.50%; it was 7.72% higher than the previous result of
PLPD and 26.25% higher than the result of ISort method
for the same dataset. It was remarkable.

From Tables 3–6, we could conclude that the proposed
PLPD method outperformed the ISort method regardless of
the kind of evaluation measurement and regardless of the
dataset used. Moreover, Motif information could increase
the prediction accuracies of the two methods considered
even though its coverage is lower than AA-based informa-
tion. Furthermore, the best performance was obtained when
both the features were used.

Similar to the work of Cai and Chou (44), to avoid homo-
logy bias, we removed all the sequences with >40% sequence
homology and after then, we performed similar experiments
to the previous cases. The new datasets are depicted in
Table 1 in the Supplementary Data and the results of this
experiments are described in Tables 2–4 in Supplementary
Data. As we can see in the tables, we observed similar
phenomena with previous results that were depicted in
Tables 3–5, which means that the PLPD method can play a
complimentary role to existing methods, regardless of the
existence of sequence homology.

Using the 5184 classified proteins as training data we pre-
dicted 138 proteins whose subcellular localizations could not
be clearly observed by the experiments of Huh et al. (3).
Since the prediction accuracies were highest when both
AA-based features and the unique InterPro Motif set were
used as features of a protein, we used the information
together. Actually we could not know the number of true

localizations of a protein whose localization is not known
yet, we enlist top three localizations which have the highest
likelihood to be the true localization. In some cases, proteins
have similar degrees in the likelihood. Thus, to treat this
issue, we quantize the degrees of likelihood and treat them
in the same rank. The predicted results of first 35 unknown
localization proteins are given in the Table 7, where the
roman numerals indicate the rank of likelihood of the corre-
sponding localization. (See Supplementary Data for all
results.)

Among the predicted protein localizations, YBL105C,
YBR072W and YDR313C are analyzed for validation as an
example. As shown in Table 7, YBL105C is predicted to
localize to ‘cytoplasm’ as the first rank, to ‘bud neck’ and
‘cell periphery’ as the second ranks. YBL105C (PKC1) is a
Ser/Thr kinase and controls signaling pathway for cell wall
integrity, for instance bud emergence and cell wall remod-
elling during growth (45,46). PKC1 contains C1, C2 and
HR1 domains. HR1 domain targets PKC1 to bud tip and
C1 domain targets it to cell periphery (47). Thus, PKC1
localizes to the ‘bud neck’ for its function. Those indicate
that the localizations of YBL105C found from literature
are consistent with our prediction results; ‘bud neck’ and
‘cell periphery’.

YBR072W (HSP26) is a heat shock protein which trans-
forms into high molecular weight aggregate on heat shock
and binds to non-native proteins (48,49). Depending on cellu-
lar physiological conditions, HSP26 localizes differently;
accumulation in the ‘nucleus’ or wide-spread throughout
the cell (48). The localizations of YBR072W found from
literature, ‘nucleus’ and ‘cytoplasm’, are predicted correctly
by our method.

Finally, YDR313C (PIB1) is a RING-type ubiquitin ligase
containing FYVE finger domain. PIB1 binds specifically to
phosphatidylinositol(3)-phosphate. Phosphatidylinositol(3)-
phosphate is a product of phosphoinositide 3-kinase which
is an important regulator of signaling cascade and intracellu-
lar membrane trafficking (50). The FYVE domain targets
PIB1 to ‘endosome’ and ‘vacuolar membrane’ (51). The
localizations of YDR313C found from literature, ‘endosome’
and ‘vacuolar membrane’, are consistent with our prediction
results.

CONCLUSION

Subcellular localization is one of the most basic functional
characteristics of a protein, and an automatic and efficient
prediction method for the localization is highly required
owing to the need for large-scale genome analysis. Even
though many previous works have been done for the task
of protein subcellular localization prediction, none of them
tackles effectively all the characteristics of the task: a multi-
ple class problem (there are too many localizations), a multi-
label classification problem (a protein may have several
different localizations), and an imbalanced dataset (a protein
dataset is too imbalanced in nature). To get more reliable
results, thus, a new computational method is eventually
needed.

In this paper, we developed a PLPD method for the predic-
tion of protein localization, which can find the likelihood of
the specific localization for a protein more easily and more

Table 6. The performance (%) of the proposed PLPD to the Dataset-I,

Dataset-II, and Dataset-III only with regard to the Measure-III

Measure Dataset-I Dataset-II Dataset-III

Measure-III Average 19.10% 44.61% 46.50%
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correctly. PLPD method is developed by using the Density-
induced Support Vector Data Description (D-SVDD) (33).
D-SVDD is one of one-class classification methods which
is suitable for imbalanced datasets since they finds a compact
description of a target data independently from other data
(33,36). Moreover, it is easily used for the dataset whose
number of classes is big owing to linear complexity with
regard to the number of classes. However, D-SVDD is origi-
nally not for a multi-class and multi-label problem. Thus, we
extended the D-SVDD for the prediction of protein subcellu-
lar localization. Moreover, we have introduced three mea-
surements (Measure-I, Measure-II and Measure-III) for the
evaluation of a protein localization predictor to more pre-
cisely evaluate the predictor. As the results of three datasets
which are made by the experimental results of Huh et al. (3),
the proposed PLPD method represents a different approach
that might play a complimentary role to the existing methods,
such as Nearest Neighbor method and discriminate covariant
method. Finally, after finding the good boundary of each loc-
alization using the 5184 classified proteins as training data,
we predicted 138 proteins whose subcellular localizations
could not be clearly observed by the experiments of Huh
et al. (3).

For the reliable prediction of subcellular localizations
of proteins, both good features for a protein and a good
computational algorithm are ultimately needed. Actually,

this study mainly focused on a good computational algorithm
for protein localization prediction. In this paper, we
represented proteins in three different ways: AA-based
features in Dataset-I, Motif-based features in Dataset-II and
AA-and-Motif-based features in Dataset-III. From this study
we observed that Motif-based features are more informative
than AA-based features in protein localization prediction
even though Motif-based features have lower coverage than
AA-based features. Moreover, best performance was
achieved when both AA-based features and Motif-based fea-
tures are used simultaneously. In the current study we
achieved relatively high performance in the protein localiza-
tion prediction problem. However, it is not sufficient yet and
for better results, further study should focus on a mechanism
that can extract better information from given proteins.

SUPPLEMENTARY DATA

Supplementary data are available at NAR online.
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