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Abstract

In this paper we address the constrained longest common subsequence problem. Given two sequencesX, Y and a constrained
sequenceP , a sequenceZ is a constrained longest common subsequence forX andY with respect toP if Z is the longest
subsequence ofX andY such thatP is a subsequence ofZ.

Recently, Tsai [Inform. Process. Lett. 88 (2003) 173–176] proposed an O(n2 · m2 · r) time algorithm to solve this problem
using dynamic programming technique, wheren, m andr are the lengths ofX, Y andP , respectively.

In this paper, we present a simple algorithm to solve the constrained longest common subsequence problem in O(n · m · r)
time and show that the constrained longest common subsequence problem is equivalent to a special case of the c
multiple sequence alignment problem which can also be solved with the same time complexity.
 2004 Published by Elsevier B.V.
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The longest common subsequence (LCS) prob
has several applications in many apparently unrela
fields, such as computer science, mathematics, molec
ular biology, speech recognition, gas chromatograph
In molecular biology, LCS is an appropriate meas
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sequences, we may compute the LCS of them.
LCS problem on multiple sequences is NP-hard
However, it may be solved in polynomial time for tw
sequences.

Many algorithms have been designed using
dynamic programming technique on this proble
[3,5,8]. Tsai addressed a variant of the LCS proble
the constrained longest common subsequence (CLCS)
problem [7]. Given two sequencesX, Y and a con-
strained sequenceP , compute the longest commo
subsequenceZ of X and Y such thatP is a subse-
quence ofZ. An O(n2 · m2 · r) time algorithm based
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on the dynamic programming technique was proposed
for this problem by Tsai [7], wheren, m andr are the
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The following theorem characterizes the structure
of an optimal solution based on optimal solutions to
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lengths ofX, Y andP , respectively.
In this paper, we present a simple algorithm

solve the CLCS problem in O(n · m · r) time. We
further show that this CLCS problem is equivalent
a special case of the constrained sequence align
(CSA) problem which can be solved with the sa
time complexity.

The rest of this paper is organized as follows.
Section 2, we define formally the CLCS problem a
characterize the structure in computing the CLCS
Section 3, we present a simple dynamic programm
algorithm that computes the CLCS of two sequen
with respect to a constrained sequence. In Sectio
we show that the CLCS problem is equivalent to
special case of the constrained sequence alignm
problem [1,6].

2. Characterization of the constrained LCS
problem

A sequence is a string of characters over a se
alphabetsΣ . A subsequenceZ of a sequenceX is
obtained by deleting some characters fromX (not
necessarily contiguous); we also say thatX contains
Z if Z is a subsequence ofX. Given two sequence
X and Y , Z is a common subsequence ofX and Y

if Z is a subsequence of bothX and Y . Z is the
longest common subsequence (LCS) of X and Y if
Z is the longest among all common subsequen
of X and Y . For example, “lm” and “rm” are both
the longest common subsequence of “problem” and
“algorithm”. Let P be a constrained sequence. W
say thatZ is the constrained LCS of X andY with
respect toP if Z is the longest subsequence ofX

and Y and Z containsP (i.e., P is a subsequenc
of Z). For example, “lm” is the longest common
subsequence of “problem” and “algorithm” with
respect to “l”.

Given a sequenceX = 〈x1, x2, . . . , xn〉, where char-
acter xi ∈ Σ for any i = 1, . . . , n, we denote the
ith prefix of X by Xi = 〈x1, x2, . . . , xi〉 for any
i = 1, . . . , n. In particular,X0 denotes the empty se
quence. For example, ifX = “algorithm” then
X3 = “alg”.
t

t

subproblems, for the constrained LCS problem.

Theorem 2.1. If Z = 〈z1, z2, . . . , z�〉 is the con-
strained LCS of X = 〈x1, x2, . . . , xn〉 and Y = 〈y1, y2,

. . . , ym〉 with respect to P = 〈p1,p2, . . . , pr 〉, the fol-
lowing conditions hold:

1. If xn = ym = pr then z� = xn = ym = pr and
Z�−1 is the constrained LCS of Xn−1 and Ym−1
with respect to Pr−1.

2. If xn = ym and xn �= pr then z� = xn = ym and
Z�−1 is the constrained LCS of Xn−1 and Ym−1
with respect to P .

3. If xn �= ym then z� �= xn implies that Z is a
constrained LCS of Xn−1 and Y with respect to P .

4. If xn �= ym then z� �= ym implies that Z is a
constrained LCS of X and Ym−1 with respect
to P .

Proof. As Z is the constrained LCS ofX andY with
respect toP , xn, ym andz� are the last characters
X, Y and Z, respectively, we havez� = xn = ym if
xn = ym. Assume by contradiction thatz� �= xn, we
may appendxn = ym to Z to obtain a constraine
common subsequence ofX and Y of length � + 1,
contradicting the hypothesis thatZ, of length �, is
a constrained LCS ofX and Y with respect toP .
Therefore, ifxn = ym thenzl = xn = ym. This will be
used in the proofs of 1 and 2. Now, we prove the fo
properties.

Proof of 1. Sincexn = ym = pr , we havexn =
ym = pr = z�. The prefixZ�−1 is a common subse
quence ofXn−1 and Ym−1 with respect toPr−1 of
length�− 1. Now, we show thatZ�−1 is a constrained
LCS ofXn−1 andYm−1 with respect toPr−1. Assume
by contradiction that there exists a constrained co
mon subsequenceS of Xn−1 andYm−1 with respect to
Pr−1 whose length is greater than� − 1. If we append
xn = ym = pr to S we obtain a constrained commo
subsequence ofX andY with respect toP of length
greater than�, contradicting the hypothesis thatZ is a
constrained LCS ofX andY with respect toP .

Proof of 2. Since xn = ym and xn �= pr , then
xn = ym = z� and z� �= pr . As z� �= pr , the prefix
Z�−1 is a common subsequence ofXn−1 and Ym−1
with respect toP of length � − 1. Now, we show



F.Y.L. Chin et al. / Information Processing Letters 90 (2004) 175–179 177

that Z�−1 is a constrained LCS ofXn−1 and Ym−1

with respect toP . Assume by contradiction that there
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Proof of 2. Assume by contradiction that there is
no constrained common subsequence ofX andY with
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exists a constrained common subsequenceS of Xn−1

andYm−1 with respect toP whose length is greate
than� − 1. If we appendxn = ym to S, we obtain a
constrained common subsequence ofX and Y with
respect toP of length greater than�, contradicting the
hypothesis thatZ is a constrained LCS ofX and Y

with respect toP .
Proof of 3. Sincez� �= xn, Z is a constrained com

mon subsequence ofXn−1 andY with respect toP .
Now, we show thatZ is a constrained LCS ofXn−1

andY with respect toP . Assume by contradiction tha
there exists a constrained common subsequenceS of
Xn−1 andY with respect toP whose length is greate
than �, thenS also is a constrained common sub
quence ofX andY with respect toP whose length is
greater than�. This contradicts the assumption thatZ

is a constrained LCS ofX andY with respect toP .
Proof of 4. The proof is similar to proof of 3. �
The next theorem shows a characterization

the constrained LCS problem when no constrai
common subsequence exists.

Theorem 2.2. If there is no constrained common sub-
sequence of X = 〈x1, x2, . . . , xn〉 and Y = 〈y1, y2, . . . ,

ym〉 with respect to P = 〈p1,p2, . . . , pr〉, the follow-
ing conditions hold:

1. If xn = ym = pr then there is no constrained
common subsequence of Xn−1 and Ym−1 with
respect to Pr−1.

2. There is no constrained common subsequence of
the two sequences X′ and Y ′ with respect to P ,
for each of the following three cases:
• X′ = Xn−1 and Y ′ = Ym−1;
• X′ = Xn−1 and Y ′ = Y ;
• X′ = X and Y ′ = Ym−1.

Proof of 1. Assume by contradiction that there is
constrained common subsequence ofX andY with re-
spect toP but there exists a constrained common s
sequenceZ of Xn−1 andYm−1 with respect toPr−1.
Sincexn = ym = pr then the concatenation ofxn to Z

is a constrained common subsequence ofX andY with
respect toP . Contradiction.
respect toP but there exists a constrained comm
subsequenceZ of X′ andY ′ with respect toP . This
is a contradiction becauseZ is also a constraine
common subsequence ofX andY with respect toP .

3. A simple algorithm

Given two sequencesX, Y and a constrained se
quenceP , whose lengths aren, m andr, respectively,
we defineL(i, j, k) as the constrained LCS leng
of Xi andYj with respect toPk , for any 0� i � n,
0 � j � m and 0� k � r. In particular,L(n,m, r)

gives the length of the constrained LCS ofX andY

with respect toP . We design an algorithm that com
putes the CLCS ofX and Y with respect toP in
O(n · m · r) time.

If either i < k or j < k, there is no constraine
common subsequence forXi and Yj with respect
to Pk . We represent this condition by denotingL(i, j,

k) = −∞, where∞ represents a large number, grea
than the maximum value ofn andm. If i = 0 or j = 0
andk = 0, the CLCS forXi andYj with respect toP0

has length 0. The characterization of the structure
solution for the CLCS problem based on solutions
subproblems shown in Section 2, yields the follow
recursive relation, for any 0� i � n, 0 � j � m and
0 � k � r,

L(i, j, k) =




1+ L(i − 1, j − 1, k − 1)

if i, j, k > 0 andxi = yj = pk,

1+ L(i − 1, j − 1, k)

if i, j > 0, xi = yj and
(k = 0 orxi �= pk),

max(L(i − 1, j, k),L(i, j − 1, k))

if i, j > 0 andxi �= yj

(1)

with boundary conditions,

L(i,0,0) = L(0, j,0) = 0

and

L(0, j, k) = L(i,0, k) = −∞,

for i = 0, . . . , n, j = 0, . . . ,m andk = 1, . . . , r.
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This is a generalization of the recurrence formula
that computes the length of an LCS between two
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P = 〈p1,p2, . . . , pk〉, whereP is a common subse-
quence ofX andY . A solution of the CSA problem is
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sequences [2], indeed, ifk = 0, it holds that

L(i, j,0) =




1+ L(i − 1, j − 1,0)

if i, j > 0, xi = yj ,

max(L(i − 1, j,0),L(i, j − 1,0))

if i, j > 0, xi �= yj ,

0 if i = 0 or j = 0.

(2)

Constructing the constrained LCS. The CLCS of
X and Y with respect toP can be constructe
by backtracking through the computation path fro
L(n,m, r) to L(0,0,0). Let Z, the initial CLCS,
be an empty sequence. If the value ofL(i, j, k) is
computed fromL(i − 1, j − 1, k) or L(i − 1, j − 1,

k − 1), prepend the characterxi (= yj ) to Z. Repeat
backtrackinguntil reachingL(0,0,0), and Z is the
CLCS ofX andY with respect toP . Recovering the
computation path of the CLCS takes at most O(n +
m + r) steps.

Thus, computing and constructing the CLCS ta
O(n · m · r) time and space.

4. CLCS and constrained sequence alignment

In this section, we show that the CLCS proble
is in fact a special case of theconstrained sequence
alignment (CSA) problem [1,6].

Let X = 〈x1, x2, . . . , xn〉 andY = 〈y1, y2, . . . , ym〉
be two sequences overΣ , with lengthsn andm, re-
spectively. We define thesequence alignment of X and
Y as two equal-length sequencesX′ = 〈x ′

1, x
′
2, . . . , x

′
n′ 〉

andY ′ = 〈y ′
1, y

′
2, . . . , y

′
n′ 〉 such that|X′| = |Y ′| = n′,

wheren′ � n,m, and removing all space characte
“-” from X′ andY ′ givesX andY , respectively, with
the assumption that nox ′

i = y ′
i = “-” for any 1� i �

n′. For a given distance functionδ(x ′, y ′) which mea-
sures themutation distance between two characte
wherex ′, y ′ ∈ Σ ∪ {-}, the alignment score of two
length-n′ sequencesX′ andY ′ is defined as
∑

1�i�n′
δ(x ′

i , y
′
i ).

In theconstrained sequence alignment (CSA) prob-
lem, we are given, in addition to the inputs of th
sequence alignment problem, a constrained sequ
[
X′
Y ′

]
, an alignment ofX andY , such that whenX′ is

placed on top ofY ′, each character inP appears in an
entire column of the alignment and in the same or
asP , i.e., there exists a list of integers〈c1, c2, . . . , cr 〉
where 1� c1 < c2 < · · · < cr � n′, and for all 1� k �
r, we havex ′

ck
= y ′

ck
= pk . The CSA problem is to find

X′ andY ′ with minimum alignment score when give
two sequencesX, Y , a constrained sequenceP and a
distance functionδ(x ′, y ′).

The CSA problem can also be solved in O(n ·m · r)
time and space [1]. Next, we show that the CL
problem is equivalent to the CSA problem ofX andY

with respect toP , using the distance functionδ(x ′, y ′),
wherex ′, y ′ ∈ Σ ∪ {-},

δ(x ′, y ′) =



−1 if x ′ = y ′ (match)
0 if x ′ �= y ′ (insertion, deletion

or replacement).
(3)

The distance functionδ(x ′, y ′) in Eq. (3) favors
matching characters, and does not penalize misma
ing characters or insertion of spaces. Therefore, w
the CSA alignment score is−s, there ares matchings
in X andY with respect toP .

Theorem 4.1. Given two sequences X, Y and a
constrained sequence P , the CLCS of problem is
equivalent to the CSA problem when the distance
function δ(x ′, y ′) given in Eq. (3) is used.

Proof. Let
[
X′
Y ′

]
be the CSA solution with the mini

mum alignment score,n′ = |X′| = |Y ′|. By the de-
finition of CSA with the distance functionδ(x ′, y ′),[
X′
Y ′

]
has the minimum alignment score only ifX′ and

Y ′ have the most number of matches (i.e.,x ′
i = y ′

i )

and every character inP appears as a column in
[
X′
Y ′

]
.

Let Z′ be the subsequence ofX′ andY ′, containing
only the matching characters inX′ andY ′. Obviously,
Z′ is a common subsequence ofX′ andY ′ contain-
ing P . Thus,Z′ is the CLCS ofX andY with respect
to P .

Let Z be a CLCS solution ofX andY with respect
to P and |Z| = �. By definition of CLCS,P is a
subsequence ofZ and Z is a common subsequen
of bothX andY . To obtain an optimal solution for th
CSA problem ofX andY with respect toP , we can
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constructX′ andY ′ by inserting spaces intoX andY

respectively, such that every character inZ appears in
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the same position inX′ and Y ′. Using the distance
function δ(x ′, y ′), the alignment score of

[
X′
Y ′

]
is −�,

i.e., the alignment
[
X′
Y ′

]
has� matching columns. Sinc

P is a subsequence ofZ, there is a column matching i[
X′
Y ′

]
for every character inP . AsZ is a CLCS ofX and

Y with respect toP , the optimal CSA solution forX
andY with respect toP has at most� matches, i.e.
with the minimum alignment score−�. Hence,

[
X′
Y ′

]
is

the optimal CSA solution forX and Y with respect
to P . �

5. Conclusions

In this paper, we have addressed the constra
longest common subsequence problem propose
Tsai [7]. An O(n2 · m2 · r) time algorithm based o
the dynamic programming technique was propose
compute a CLCS forX andY with respect toP , where
n, m andr are the lengths ofX, Y andP , respectively.
We have described a simple O(n ·m · r) time algorithm
to solve this problem and have also showed that
CLCS problem is indeed a special case of the C
problem.

It is not difficult to show that this problem ca
also be solved in O(min(n,m) · r) space based o
Hirschberg’s Algorithm [3]. We defineLr(i, j, k)

as the length of CLCS of the suffices ofX, Y

and P starting from theith, j th and kth positions,
respectively. WLOG, assumen � m, then Z, the
solution for the CLCS problem, can be defined as
+ Lr n/2+ 1, j + 1, k + 1

which can be found in O(n · m · r) time (sayKnmr

time, whereK is a constant) and O(m · r) space. As-
sume the maximum value occurs whenj = j ′ and
k = k′, then we can further solve the two subpro
lemsL(1

2n, j ′, k′) andLr(1
2n + 1, j ′ + 1, k′ + 1) in

1
2Kmnr time and O(m · r) space. Continuing this re
cursively, we can solve the CLCS problem in the sa
O(n · m · r) time and O(m · r) space complexities.
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