
Computational Geometry 15 (2000) 175–202

Area-efficient algorithms for straight-line tree drawings✩

Chan-Su Shina,∗, Sung Kwon Kimb,1, Kyung-Yong Chwaa
a Department of Computer Science, Korea Advanced Institute of Science and Technology, Taejon 305-701, South Korea

b Department of Computer Science and Engineering, Chung-Ang University, Seoul 156-756, South Korea

Communicated by R. Tamassia; submitted 1 October 1996; received in revised form 1 November 1999; accepted 9 November
1999

Abstract

We investigate severalstraight-linedrawing problems for bounded-degree trees in the integer grid without edge
crossings under various types of drawings: (1)upwarddrawings whose edges are drawn as vertically monotone
chains, a sequence of line segments, from a parent to its children, (2)order-preservingdrawings which preserve
the left-to-right order of the children of each vertex, and (3)orthogonal straight-linedrawings in which each edge
is represented as a single vertical or horizontal segment.

Main contribution of this paper is a unified framework to reduce the upper bound on area for the straight-line
drawing problems from O(n logn) (Crescenzi et al., 1992) to O(n log logn). This is the first solution of an open
problem stated by Garg et al. (1993). We also show that any binary tree admits a small area drawing satisfying any
given aspect ratio in the orthogonal straight-line drawing type.

Our results are briefly summarized as follows. LetT be a bounded-degree tree withn vertices. Firstly, we
show thatT admits an upward straight-line drawing with area O(n log logn). If T is binary, we can obtain an
O(n log logn)-area upward orthogonal drawing in which each edge is drawn as a chain of at most two orthogonal
segments and which has O(n/logn) bends in total. Secondly, we present O(n log logn)-area (respectively,
-volume) orthogonal straight-line drawing algorithms for binary trees with arbitrary aspect ratios in 2-dimension
(respectively, 3-dimension). Finally, we present some experimental results which shows the area requirements,
in practice, for (order-preserving) upward drawing are much smaller than theoretical bounds obtained through
analysis. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Graph drawing; Tree drawing; Layout; Drawing area; Aspect ratio

✩ An extended abstract [24] of this paper was presented inInternational Computingand Combinatorics Conference
(COCOON’96), held at Hong Kong, 17–19 June 1996. This work was supported in part by Korea Science and Engineering
Foundation, No. 94-0100-04-01-3.∗Corresponding author.

E-mail addresses:cssin@jupiter.kaist.ac.kr (C.-S. Shin), skkim@cau.ac.kr (S.K. Kim), kychwa@jupiter.kaist.ac.kr (K.-Y.
Chwa).

1 Supported by the Chung-Ang University Special Research Grants in 1998.

0925-7721/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(99)00053-X



176 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

1. Introduction

In many applications, constructing geometric representations of graphs in a readable and efficient way
is crucial for understanding inherent properties of their structures. The automatic generation of such
well-expressed representations is one of main motivations such thatgraph drawinghas been receiving
considerable attentions over many broad areas of computer science ranging from purely theoretical
aspects including graph theory and computational geometry to application-oriented areas including VLSI
circuit layout design and visual interface design.

1.1. Problems

A typical graph drawing problem is that given a graphG, generate a geometric representation ofG

according to severalgraphic standardsandoptimization criteria. Various works in the graph drawing
research field are well summarized in the annotated bibliography by Di Battista et al. [10].

A general graph drawing standard is that a vertex ofG is represented by a geometric object such as a
point, rectangle and cube (or box), and an edge(u, v) is represented by a simple Jordan curve connecting
the geometric objects associated with verticesu andv.

According to the kinds of curves to represent edges, graphic standards may have various versions.
A polyline drawing maps an edge to a polygonal chain, astraight-line drawing does to a straight-line
segment, and anorthogonal drawing does to a chain of orthogonal segments. (In fact, straight-line
drawings and orthogonal drawings are special cases of polygonal drawings.) Especially, straight-line
and orthogonal standards have been deeply considered by many researchers. The reasons are that it
is relatively easy to investigate combinatorial properties of drawings, and the standards are suitable to
some important applications such as VLSI circuit design and illustrations of text books in graph theory.
Note that edges in polyline and orthogonal drawings may havebends, which occur when joining two
contiguous line segments in an edge.

There are two other standards commonly used, namely,grid andplanar standards. A drawing is said
to be grid if all vertices and bends of edges have integer coordinates, and planar if no two edges intersect
in the drawing. All drawings in this paper will be grid and planar, so we will omit the term “grid and
planar” hereafter.

In particular, when a rooted tree is considered, it is common that for exhibiting the inherent hierarchy in
the rooted tree, every edge between a parent and its child would be represented by a vertically monotone
chain so that the parent hasy-coordinate greater than or equal to that of the child. A drawing satisfying
this condition is said to beupward. In addition, astrictly upwarddrawing means that the parent has
y-coordinate strictly greater than that of its child.

The quality of a drawing is measured by a combination of optimization criteria such as area, volume,
aspect ratio, and the number of bends. Theareaof a 2-dimensional drawing is defined as the area of the
smallest axis-parallel rectangle enclosing the drawing. Theheightandwidthof the drawing are the height
and width of the rectangle, respectively. Thevolumeof a 3-dimensional drawing is similarly defined. In
general, to avoid wasting valuable spaces on a page or computer screen, it is important to keep the area
or volume of the drawing small. In VLSI industrial field, this criteria is vital to accumulate modules and
wires into as little space as possible.

Theaspect ratioof a drawing is defined to be the ratio of the longest side length to the shortest side
length of the enclosing rectangle. A drawing with high aspect ratio is not desirable in the sense that the



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 177

Fig. 1. Drawing examples for a binary tree of 100 vertices with two different ratios of the height to the width; the
upper one with ratio of 10:1, the lower one with ratio of 1:16.

drawing may not be conveniently placed on some computer screen. Conversely, if one has only longish
windows on the screen, it would be better to have drawings with high aspect ratio. Hence, for providing
the flexibility of fitting drawings in arbitrarily shaped windows, it is desirable that one is able to draw
graphs with any given aspect ratio. For an illustration, see Fig. 1.



178 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

In a polyline drawing (including orthogonal drawing), edges with three or more bends may be difficult
to “follow” the course of the edges for the eye. In addition, many bends in a drawing may be the cause
of the performance degradation of VLSI circuits. For these reasons, both thetotal number of bendsand
thenumber of bends per edgeshould be kept small.

Depending on the application where the drawing will be used, the primary drawing criterion may
differ. From the standpoint of VLSI designers, the most important objective is to minimize the area
needed for embedding VLSI circuits. However, visual interface designers would prefer a drawing with
fewer bends per edge rather than a drawing with smaller area because the drawing with fewer bends are
more readable to the user. Thus, the general goal in drawing problems will optimize the appropriately
chosen one or more criteria at the same time.

This paper deals withtree drawing problemsin 2- and 3-dimensions. Primarily, we aim at developing
planar straight-line griddrawing algorithms for bounded-degree trees so that drawings take up as little
area or volume as possible, admit any given aspect ratio, or optimize other criteria such as the number of
bends per edge when the straight-line standard is not required.

A (rooted) tree is a fundamental data structure for representing hierarchies of many information
structures such as family trees, organization charts, and search trees. For that reason, a lot of tree drawing
algorithms [7–9,12,19,28] have been proposed by many researchers in VLSI layout, visual interface,
and graph theory fields. Surprisingly, however, there exists a large gap between lower bounds and upper
bounds on certain criteria, especially on area. For instance, in upward straight-line tree drawing problems,
even in binary tree drawing ones, the best known upper bound on the area is O(n logn) [6], but its lower
bound is�(n). In this paper, we will try to close the gap by lowering the upper bound to O(n log logn)
for some classes of trees.

1.2. Previous works

Several straight-line drawing algorithms for rooted trees were proposed in many literatures [4,7–9,12,
23,24]. They are summarized in Table 1.

The best known algorithm for the upward straight-line drawing problems was proposed by Crescenzi et
al. [7] and Shiloach [23], independently. They showed that any rooted tree admits an upward straight-line
drawing with area O(n logn).

There has been no drawing algorithm producing an upward straight-line drawing with area o(n logn).
Hence, as stated in [12,26], reducing the upper bound remained until now as an open problem.

Under strictly upward straight-line drawing standard, Crescenzi et al. [7] proved that there exists a
class of rooted trees requiring area�(n logn), and presented an algorithm to construct an O(n logn)-area
drawing for any rooted tree. They also presented algorithms [7,9] producing O(n)-area strictly upward
straight-line drawings for some classes of balanced trees. These classes include complete binary trees,
Fibonacci trees, and AVL trees. Recently, Crescenzi and Penna [8] showed that trees in a wider class of
balanced trees can be drawn in linear area. They called themlogarithmic trees, which satisfy that the
height of any (sufficiently high) subtree is logarithmic with respect to the number of vertices. The class
contains most of balanced search trees, includingk-balanced trees, red–black trees, BB[α]-trees, and
(a, b)-trees.

A drawing for an ordered tree is said to beorder-preservingif the drawing preserves the left-to-right
order of the children of each vertex. Garg et al. [12] showed that there is a family of trees requiring



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 179

Table 1
Drawing standards are represented as abbreviations: Up. (Upward), S-Up. (Strictly Upward), SL (Straight-
Line), Ortho. (Orthogonal), Order (Order-preserving), and Poly. (Polyline). The term “b.p.e.” means the number
of bends per edge and “A.R.” is an abbreviation of aspect ratio. “Balanced” trees means the classes of trees
includingk-balanced, red–black, BB[α]-, and(a, b)-trees

Tree drawing results

Previous results Our results

Drawing type Tree type Sources Prev. (area) bound Our (area) bound

Up. SL general [7] �(n), O(n logn) – –

deg-O(1) [7] �(n), O(n logn) O(n log logn) Theorem 1

Up. Order SL general [3,7] �(n logn), O(n1+ε) – –

balanced [7–9] 2(n) O(n log logn) Theorem 3

S-Up. SL general [7] 2(n logn) – –

balanced [7–9] 2(n) – –

S-Up. Order SL general [3,7] �(n logn), O(n1+ε) – –

balanced [7–9] 2(n) O(n(log logn)2) Theorem 4

Up. Ortho. binary [12,16] 2(n log logn) 2(n log logn) Theorem 2

O

(
n

logn

)
bends O

(
n

logn

)
bends

4 b.p.e. 1 b.p.e.

Ortho. SL binary (2D) [7] �(n), O(n logn) O(n log logn) Theorem 5

A.R. O

(
n

logn

)
arbitrary A.R.

binary (3D) [5] �(n), O(n logn) O(n log logn) Theorem 6

A.R. O

( √
n

logn

)
arbitrary A.R.

Ortho. deg-4 (2D) [19,28] 2(n) O(n) Section 8

O(logn) b.p.e. O(log logn) b.p.e.

A.R. O(1) arbitrary A.R.

deg-6 (3D) [18] 2(n) O(n) Section 8

O(1) b.p.e. O(1) b.p.e.

A.R. O(1) (almost) arbitrary A.R.

Up. Polyline deg-O(nδ) [12] 2(n) – –



180 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

�(n logn) area under the order-preserving upward standard. They also presented an O(n logn)-area
upward polyline drawing algorithm.

Garg et al. [12] presented an upward orthogonal drawing algorithm for any binary tree with
O(n log logn) area, which was shown to be asymptotically optimal. If the upward requirement is relaxed,
any tree with maximum degree four admits an orthogonal drawing with area O(n) [19,28]. However, it
has not been known whether or not non-upward straight-line drawings with area less than O(n logn) [7]
are possible.

1.3. Our results

In this paper, we present solutions to the unsolved upward straight-line drawing problems and other
related problems for bounded-degree trees. Abounded-degreetree throughout the paper indicates a tree
with constant maximum degree.

All drawing algorithms presented in this paper are based on a unified drawing framework, so-called
“partition-and-merge” strategy, which was used for producing small area drawings of a variety of families
of graphs including trees [2,19,28]. The strategy for a tree is to partition a tree into several pieces by
deleting some edges of the tree, draw each piece independently, and then merge the drawings of the
pieces by inserting (drawing) the deleted edges.

The effectiveness of the strategy heavily depends on how to partition a tree. A well-known partitioning
method is based onplanar separator theoremdue to Lipton and Tarjan [20], which partitions a tree into
two pieces of size almost half. However, the method requires too much additional area when the deleted
edges are inserted to merge the drawings of pieces. Thus, we propose a new partitioning method that one
can merge the drawing pieces with a little additional area, which is a variant of [13,16].
• Results presented in this paper are summarized in Table 1. We first present an O(n log logn)-area

upward straight-linedrawing algorithm for any bounded-degree tree. This is the first result to reduce
the upper bound from O(n logn) [7] to O(n log logn) (Section 4). If the constant value hidden
in O(n log logn) is quite large, then our algorithm may become worse than the O(n logn)-area
algorithm [7]. The experiment performed in Section 7, however, shows the hidden constant value
is sufficiently small.
• Through a minor modification of the upward straight-line drawing algorithm, we can obtain an

O(n log logn)-areaupward orthogonal drawingwith at most one bend per edge and O(n/ logn) bends
in total. The best known upward orthogonal drawing algorithms were proposed by Garg et al. [12] and
Kim [16]. Their algorithms produce drawings with O(n log logn) area, O(n/ logn) bends, and at most
four bends per edge. Our algorithm is superior to their algorithms in the sense that the number of bends
per is at most one and the other criteria remain the same.
• We present area-efficientorder-preserving(strictly) upward straight-linedrawing algorithms for some

classes of balanced search trees (Section 5). The classes cover most of balanced search trees widely
used in computer science includingk-balanced trees, red–black trees [20], BB[α]-trees [20] and
(a, b)-trees [21], wherek, a andb are fixed constants, and 26 a 6 b. It is worthwhile to draw search
trees in order-preserving fashion because the values stored at the vertices of a tree should be kept
sorted. With upward standard, balanced trees in the classes can be drawn in area O(n log logn). If we
consider a strictly upward standard, they can be drawn in area O(n(log logn)2). As stated previously,
the optimal linear-area algorithm [8,9] for drawing trees in those classes has already been known. We
wish to show that our drawing framework is also suitable to draw some balanced trees under order-



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 181

preserving standard even though the theoretical bound on area is not good as those in [8,9]. The authors
in [9] showed that AVL trees can be drawn in the area no greater than 36n, but they did not analyzed
how large the multiplicative constant in the area function is for the other classes of balanced trees,
and said that the constant value is generally in the order of thousands, which is clearly infeasible. In
this paper, we show that the constant value in our algorithm for all those classes of balanced trees is
sufficiently small; for example, 46.1 for AVL trees, 64 for red–black trees, and 48 for(2,3)-trees; this
is also complemented by the experimentation in Section 7. We believe that our algorithm will perform
well in many practical situations.
• Applying our drawing framework to non-upward tree drawing problems, we can obtain anon-upward

orthogonal straight-linedrawing for any binary tree such that (1) the area is O(n log logn), (2) the
aspect ratio can be an arbitrary value in the range of[O(1),O(n log logn/log2n)], and (3) every edge
is drawn either as a single horizontal or vertical segment, which will be called anorthogonal straight-
line drawing. This is the first result to guarantee a drawing with o(n logn) area and permit an arbitrary
aspect ratio. In addition, we can directly extend the 2-dimensional O(n log logn)-area drawing to a
3-dimensional O(n log logn)-volume one with arbitrary aspect ratio. This is also the first result to
guarantee a drawing with o(n logn) volume and any given aspect ratio. The previously best known
result was presented by Cohen et al. [5]. They showed that any binary tree can be drawn in volume
of O(n logn) and with any aspect ratio in the range of[O(√n/logn),O(n)]. However, edges in the
drawing may be drawn as non-orthogonal segments. Furthermore, their algorithm cannot produce a
drawing with aspect ratio o(

√
n/logn).

• We, finally, introduce other related problems and show that the unified framework can be applicable to
solve them efficiently in Section 8.

All drawing algorithms presented in this paper run in linear time. Since there are no intricate parts in
implementing our algorithms in linear time, we will omit the time analysis.

Remark. After the preliminary version [24] of this paper was published, Chan et al. [4] independently
proposed a tree drawing strategy. Although they called it “recursive winding” strategy, two strategies
(including the partitioning methods) stem from the same idea; in fact, they are essentially identical.

2. Preliminaries

We begin with basic notations and definitions that will be used throughout the paper.
Thedegreeof a vertexv in a treeT is the number of edges incident tov. Theheightof v in T is defined

as the maximum of the lengths2 of paths fromv to leaves inT . Thetree-heightof T is the height of its
root. A subtree rooted atv in T is denoted byTv. Thesizeof T , size(T ), is the number of vertices inT .

An ordered treeis a rooted tree in which the children of each vertex are ordered from left to right. Let
T be an ordered tree ofn vertices with maximum degreed =O(1). Theleftmost(respectively,rightmost)
pathof T is a maximal path consisting of the leftmost (respectively, rightmost) edges only starting at the
root. An ordered treeT is left-heavyif, for each vertex ofT , its subtrees are ordered from left to right
by non-increasing order of their sizes. Aright-heavytree is defined in a symmetric way. We denote by
NL(T ) (respectively, NR(T )) the maximum number of non-leftmost (respectively, non-rightmost) edges

2 The lengthof a path is defined to be the number of vertices on the path.



182 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

Fig. 2. An upward straight-line drawing∆T for a right-heavy treeT .

of a path from the root to a leave inT . It is easy to see that ifT is left-heavy, then NL(T )6 blognc and
if T is right-heavy, then NR(T )6 blognc.

Let∆T be a drawing for an ordered treeT produced by some drawing algorithm. If a 2-dimensional
drawing∆T can be enclosed by a rectangle of heightHT (with respect toY -axis) and widthWT (with
respect toX-axis), we call it a drawing with areaHT ×WT . Similarly, a 3-dimensional drawing∆T

with heightHT , width WT and depthDT (with respect toZ-axis) is called a drawing with volume
HT ×WT ×DT .

We say that a vertexv of ∆T is south-openif a ray emanating fromv in ∆T with south direction does
not intersect∆T except atv. Similarly, we can define a vertex in∆T to be east-open, southwest-open,
etc.

We now introduce a notion ofenlargementof a straight-line drawing. Let∆T be a straight-line drawing
with heightHT and widthWT in 2-dimension. An enlargement of∆T is defined to be a transformation
of ∆T to ∆′T that is a topologically equivalent3 drawing with heightHT + dh and widthWT + dw ,
wheredh anddw are non-negative integers. The drawing∆′T can be obtained from∆T as follows. First,
transform∆T to a topologically equivalent drawing withHT + dh andWT by moving all vertices and
edges belowy = y′ in ∆T by dh units downward, and then by enlarging all edges that formerly passed
through the space betweeny = y′ andy = y′ − 1. Second, transform the drawing to∆′T with HT + dh
andWT + dw in a symmetric way. Such enlargement of∆T does not violate any drawing standards of
∆T . An enlargement of a 3-dimensional drawing can be similarly defined. Accordingly, whenever it is
necessary, one can enlarge∆T to a topologically equivalent drawing of arbitrary size larger than∆T .

Finally, we review an O(n logn)-area upward straight-line drawing algorithm [7] for any ordered tree
that will be used as a subroutine in our drawing algorithms. LetT be an ordered tree ofn vertices with
maximum degreed.
1. TransformT into a right-heavy tree if it is not right-heavy.
2. Suppose that the rootv of T hask children,v1, v2, . . . , vk , in right-to-left order. Recursively drawTvi

for eachi. Horizontally arrange their drawings so that∆Tvi+1
is placed one unit away to the left of

∆Tvi
for 16 i 6 k − 1 and only∆Tv1

is again shifted up by one unit (see Fig. 2). Next, place the root
v at the intersection point of the horizontal line containing the top side of∆Tv1

and the vertical line
containing the left side of∆Tvk

.
3. Draw an edge(v, vi) as a straight line for eachi. Then the leftmost edge(v, vk) is drawn as a vertical

segment and the rightmost edge(v, v1) is drawn as a horizontal segment.

3 Two drawings aretopologically equivalentif adjacencies of vertices and edges in two drawings are perfectly identical.



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 183

We can easily observe that the height of∆T is proportional to the length of the leftmost path ofT . Using
the fact thatT is right-heavy, the height of∆T has at mostblognc. Clearly, the width of∆T is at most
n− 1. Hence we can get the following lemma.

Lemma 1 [7]. For any n-vertex treeT with a constant degree, we can have an upward straight-line
drawing∆T such thatHT 6 blognc, WT 6 n− 1. In addition, the root ofT is placed at the upper-left
corner of∆T .

Notice that we can draw a treeT of n vertices in heightHT 6 n− 1 and widthWT 6 blognc through
an analogous way to the above algorithm.

Lemma 2 [7]. For any n-vertex treeT with a constant degree, we can have an upward straight-line
drawing∆T such thatHT 6 n− 1 andWT 6 blognc. In addition, the root ofT is placed at the upper-
left corner of∆T .

We shall refer to both algorithms of Lemmas 1 and 2 as algorithmsAh andAv, respectively, which are
named according to the recursive step where subtree drawings are arranged horizontally or vertically.

Remark. If T is a binary tree, then each edge in∆T produced either by Lemma 1 or by Lemma 2 is
drawn either as a horizontal segment or a vertical segment. Thus∆T becomes an upward orthogonal
straight-line drawing ofT .

3. Partition-and-merge drawing strategy

There is a general-purpose drawing strategy that produces small area drawings for a wide variety
of families of graphs, including trees and planar graphs. That is thepartition-and-mergestrategy:
(i) partition a treeT into pieces by deleting some edges, (ii) draw these pieces, and (iii) merge the
drawings of the pieces by inserting and drawing the deleted edges among the drawings. An algorithm
of drawing each of the pieces will be called thebase drawing algorithm, and an algorithm of merging
the drawings of the pieces will be called themerging algorithm. Then a drawing algorithm based on
the partition-and-merge strategy is fully described by three elements: a partitioning methodP , a base
drawing algorithmB, and a merging algorithmM. Several tree drawing algorithms [2,12,16,19,27,28]
including our drawing algorithms adopt this strategy.

Formally, ann-vertex rooted treeT is partitioned byP into O(n/m) partial trees4 each of which
has size at most O(m), wherem is a partition parameter6 n. In particular, we shall call the resulting
partial treesfragments. This partitioning is done by deleting O(n/m) edges, calledseparators. Each of
the fragments is drawn byB, and then their drawings are placed appropriately and the deleted edges are
restored and drawn around the fragment drawings byM.

4 A partial treeof T simply means a connected subgraph ofT . Note that a subtree ofT rooted at a vertexv is a partial tree
of T rooted atv that includes all descendants ofv.



184 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

3.1. Partitioning method

A well-known partitioning method used in [2,12,19,28] is based on the planar separator theorem due
to Lipton and Tarjan [20]. The separators are determined by recursively finding an edge whose removal
dividesT into two fragments, each with at leastn/3 vertices and at most 2n/3 vertices [15].

In [16], the separators are determined by introducing a notion of thecritical vertex, which was
originally used for parallel tree contractions by Gazit et al. [13]. But, this method is applied to only
the bounded-degree trees. Our partitioning method is a variation of this method.

We now present a partitioning method which will be used in our drawing algorithms in this paper.
Unlike other methods, our method has a property, which is desirable to produce small area tree drawings.
The property will be explained at the end of the subsection.

Let T be an-vertex tree with maximum degree ofd. For a partition parameterm (6 n), a vertexv of
T is m-critical if v is not a leaf anddsize(Tv)/me> dsize(Tv′)/me for all childrenv′ of v. Let v be an
m-critical vertex with a childw. Sincedsize(Tv)/me> dsize(Tw)/me> 1, size(Tv) must be no less than
m+ 1. In other words, if size(Tv)> 2m+ 1, thenTv must contain at least onem-critical vertex. From
the definition of them-critical vertex, we can further observe that the least common ancestor of any two
m-critical vertices is alsom-critical.

Our partitioning method is summarized below.

Procedure PartitionTree(T ,m)
1. find allm-critical vertices ofT .
2. for everym-critical vertexv in T do

define the edges incident tov as separators ofT .
3. delete the separators fromT .
4. return the fragments and the separators ofT .

Lemma 3. For any tree T with maximum degreed and a given integerm (6 n), the procedure
PartitionTree produces at most2dn/m fragments, each of which has at mostm vertices.

Proof. The number of fragments is bounded by the number of separators ofT , which is the number
of m-critical vertices times the maximum degreed of T . Gazit et al. [13] proved that the number of
m-critical vertices is at most 2n/m− 1. Thus there are at most 2dn/m fragments. From the fact that any
subtree with vertices> 2m+ 1 contains at least onem-critical vertex, we can easily conclude that the
size of a fragment is at mostm. 2

The procedurePartitionTree naturally defines a rooted tree, called afragment tree FTof T , in which
each vertex corresponds to a fragment and there is an edge between two fragmentsF1 andF2 in FT if
there exists a separator(v,w) in T such thatv ∈ F1,w ∈ F2 andv is the parent ofw. ThenF1 is the parent
of F2 in FT andw becomes the root ofF2. We callv a connection vertexof F1 and say the separator
(v,w) to beincidentto F1 andF2. Clearly, a fragment treeFT of T consists of O(n/m) vertices whose
maximum degree may be at mostd.

A fragment istrivial if it has only one vertex. Since all edges incident to anm-critical vertex are
defined as separators, everym-critical vertex itself is a trivial fragment inFT. The fact also implies that
every non-trivial fragment inFT has nom-critical vertices.



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 185

Our partitioning method has a good property that each non-trivial fragment has at most one connection
vertex. This is, in general, not true for other partitioning methods [12,19,20,27,28], in which a non-trivial
fragment may have two or more connection vertices (possibly O(logn) ones). LetF be a non-trivial
fragment with a child fragmentF ′. There is a separators = (v,w) such thatv is a connection vertex inF
andw is the root ofF ′. To draws in the merging step, we should make enough room to connectv andw
without edge-crossings in∆F and∆F ′ . As a consequence, the additional area needed to draw separators
incident toF is proportional to the number of connection vertices ofF . Accordingly, to perform the
merging step with a little cost, it is desirable that each non-trivial fragment has as less connection vertices
as possible. The following lemma, hence, plays a crucial role in breaking the upper bound, O(n logn),
on area.

Lemma 4. Let FT be a fragment tree ofT produced by the procedurePartitionTree. Then each non-trivial
fragment in FT has at most one child fragment, that is, has at most one connection vertex. Moreover, if
exists, the unique child fragment is trivial.

Proof. For contradiction, suppose thatF has two or more childrenF1,F2, . . . , Fk in FT. Let (vi,wi)
be a separator betweenF andFi , wherevi is a connection vertex ofF andwi is the root ofFi . By the
definition of the separator,wi for eachi must bem-critical, thereby the least common ancestoru of wi
andwj is alsom-critical, sou itself constitutes a trivial fragment.

Since, however,F is connected,u must belong toF . Consequently,F consists of two or more
fragments, which is a contradiction. Now we will show that every non-trivial fragmentF has a trivial
fragment as its unique child (if exists) inFT. Let (v,w) be a separator connectingF and one of its
child fragments,F ′, wherev is a connection vertex ofF andw is the root ofF ′. By the definition
of the separator, at least one ofv andw must bem-critical. However, sincev belongs to a non-trivial
fragmentF , v is notm-critical. Hencew must bem-critical. This means thatw itself isF ′, i.e.,F ′ is a
trivial fragment. 2

Let F be a fragment ofFT. We shall denote bycF the connection vertex ofF (if it exists), and denote
by rF the root ofF . If F is trivial, thenrF = cF . If F is non-trivial, thencF is uniquely defined by the
above lemma.

3.2. Two merging methods

Once a fragment treeFT is generated byP and the fragmentsF are drawn by a base drawing
algorithmB, their drawings∆F ’s will be arranged by a merging algorithmM. We shall explain two
merging algorithmsMv andMh which will be used in the drawing algorithms later. The algorithmMh

vertically stacks∆F ’s from top to bottom, and the other algorithmMh horizontally arranges∆F ’s from
left to right. ThusMv produces a placement whose height relatively increases more than its width does,
whereasMh produces a placement whose width relatively increases more than its height does.

The algorithmMv places∆F ’s vertically according to the reverse preorder5 of FT. To do it, we need
two assumptions about∆F ’s: (i) rF lies on the left side of∆F and is north-open, and (ii)cF lies on the
right side of∆F and is south-open.

5 To traverseT in the reverse preorder, first visit the root ofT , and then recursively visit the subtrees ofv in the left-to-right
order.



186 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

Fig. 3. Recursive construction of∆FT byMv .

Fig. 4. (a) A fragment tree. Circles represent trivial fragments. (b) Placements of∆F ’s byMv .

Suppose thatFT has the root fragmentF whose child fragments areF1,F2, . . . , Fk from left to right.
Let FTi be the subtree rooted atFi in FT (see Fig. 3(a)). Recursively construct the drawing forFTi so
that the following invariant is satisfied:rFi is placed on the left side of∆FTi and is north-open.

WhenF is trivial, vertically stack the drawings∆FTi ’s so that∆FTi is directly below∆FTi+1 (see
Fig. 3(b)). PlaceF at the intersection of a horizontal linel1 passing throughrFk and a vertical linel2
containing the left side of∆FT1. Then draw each separator(cF ; rFi ) for i as a straight line; this is always
possible because of the invariant aboutrFi . The invariant clearly holds for∆FT.

WhenF is a non-trivial fragment with the unique child fragmentF1, horizontally flip6 ∆FT1 and
place∆FT1 directly below∆F so that the right sides of∆F and∆FT1 are aligned at a vertical line (see

6 A horizontally flipped drawing of a drawing∆T is a topologically equivalent drawing of∆T that is obtained by mirroring
∆T with respect toy-axis.



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 187

Fig. 5. Placements of∆F ’s byMh.

Fig. 3(c)). Then we can draw a separator(cF , rF1) as a straight line without intersecting∆F and∆FT1

except atcF andrF1, by the second assumption aboutcF in ∆F and the invariant aboutrF1 in ∆FT1. But
rF is not necessarily placed on the left side of∆FT. To satisfy the invariant for∆FT, we enlarge∆F so
that its width is equal to that of∆FT1. SincerF is still located on the left side of the enlarged drawing and
is north-open, the invariant for∆FT holds. Fig. 4 shows an example of a final drawing.

UnlikeMv, the algorithmMh arranges∆F ’s from left to right according to the preorder ofFT. We
need assumptions about∆F ’s which are slightly different from those inMv: (i) rF lies on the upper-left
corner of∆F , and (ii)cF lies on the upper-right corner of∆F . ThenMh arranges∆F ’s from left to right
in a similar way toMv except that no flipping operations are needed. The detail ofMh is straightforward;
for an example, refer to Fig. 5.

Lemma 5. Suppose that a binary treeT is partitioned by PartitionTree(T ,m). Let FT be the fragment
tree ofT . Suppose that each fragmentF of FT is drawn by some base drawing algorithmB and its
drawing∆F has height6 HF and width6 WF . Then the merging algorithmMv produces∆T with
height no more thanHF × size(FT) and width at mostWF +NL(FT), andMh produces∆T with height
at mostHF +NR(FT) and width at mostWF × size(FT).

Proof. Consider onlyMv ; the proof forMh can be similarly done. SinceMv stacks∆F ’s vertically,
each drawing∆F of F ∈ FT contributes to the height of∆T at most byHF . Thus the height is at most
HF × size(FT). Next, consider the widthWT of ∆T . We now show by induction on the tree-height of
FT thatWFT 6 WF + NL(FT). Note thatWT = WFT. When FT consists of only one fragmentF , it
obviously holds because NL(FT)= 0. Inductively, we considerFT with root fragmentF whose subtrees
areFT1, . . . , FTk . If F is trivial, by our drawing algorithm (see Fig. 3(b)),

WFT =max{WFT1;WFT2 + 1, . . . ,WFTk + 1}.
By induction hypothesis,

WFT =max
{
WF +NL(FT1),WF +NL(FT2)+ 1, . . . ,WF +NL(FTk)+ 1

}
6WF +max

{
NL(FT1),NL(FT2)+ 1, . . . ,NL(FTk)+ 1

}
=WF +NL(FT).

Note that

NL(FT)=max
{
NL(FT1),NL(FT2)+ 1, . . . ,NL(FTk)+ 1

}



188 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

by definition. IfF is non-trivial (see Fig. 3(c)),

WFT =max{WFT1,WF }6max
{
WF +NL(FT1),WF

}=WF +NL(FT).

Note that NL(FT)=NL(FT1). For both cases,WT =WFT 6WF +NL(FT). 2
Remark. Consider howMv andMh work whenT is a binary tree. Since every fragment inFT has at
most two children, each separator is drawn either as a horizontal or vertical segment. So, if all edges in
∆F are drawn as horizontal or vertical segments, then∆T merged byMv andMh becomes an orthogonal
straight-line drawing.

4. Upward straight-line drawing algorithm

Let T be a rooted tree ofn vertices with maximum degree ofd. Applying the partition-and-merge
strategy, we obtain an upward straight-line drawing∆T with height O(n log logn/logn), width O(logn)
and area O(n log logn). We will usePartitionTree asP , a variant of algorithmAh of Lemma 1 asB, and
Mv asM.

First, partitionT by PartitionTree(T ,m) with partition parameterm= logn. To avoid degenerate cases,
we modify the partition so thatrF 6= cF for every non-trivial fragmentF ∈ FT. If rF = cF for a non-trivial
fragmentF , then, by deleting the edges betweenrF and its children inF , we makerF itself a new trivial
fragment and make each subtree ofrF in F a new non-trivial fragment. Note that none of these new
non-trivial fragments has a connection vertex. This modification increases the number of fragments at
most(d − 2) times. Thus there are at most 2d(d − 2)n/m in the modifiedFT.

Next, draw each fragment by a variant of algorithmAh of Lemma 1. Its detail is as follows. See
Fig. 6(a). LetP = (rF = v1, v2, . . . , vh = cF ) be a path fromrF to cF in F ; if cF does not exist forF ,
then we pick any leaf inF ascF . Let vi1, vi2, . . . , viki be the children ofvi (exceptvi+1). Let Fij be the
subtree rooted atvij (16 j 6 ki) in F .
1. Draw Fij for all i and j by Ah. Then∆Fij has heightHFij 6 log(size(Fij )) and widthWFij 6

size(Fij )− 1. Note that the root ofFij is placed at the upper-left corner of∆ij .
2. Place∆Fij as follows. To assist the following description, we prepare two horizontal linesl1 and l2

and one vertical linel3 as shown in Fig. 6(b). Horizontal linel2 is one unit belowl1. Place all∆Fij ’s

Fig. 6. A drawing∆F of a non-trivial fragmentF .



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 189

Fig. 7. An orthogonal drawing admitting one bend per edge whenT is binary.

for 16 i 6 h− 1 left-to-right with their roots onl2. Putvi for 16 i 6 h− 1 on l1 directly above the
root of∆Fi1. Next, horizontally flip∆Fhj ’s for 16 j 6 kh and place them left-to-right with their roots
on l2. Here, the vertical linel3 is assumed to be placed one unit away to the right of∆Fhkh . Then, put
vh(= cF ) at the intersection ofl1 and l3. Finally, draw the edges onP and incident toP as straight
line segments. Notice here that if we deal with binary trees, then the edges(vi, vi1) for 16 i 6 h− 1
(except for(vh, vh1)) are drawn as vertical segments.
Let us now calculateHF andWF . SinceHFij 6 log(size(Fij )) andWFij 6 size(Fij ) − 1, HF 6

maxi,j {HFij }+16maxi,j {log(size(Fij ))}+16 log logn+c for some constantc, andWF 6
∑
i,j (WFij +

1)6∑i,j size(Fij )6 size(F )6 logn.
To applyMv as a merging algorithm, we have to check conditions aboutrF and cF in a non-

trivial fragment drawing∆F . In ∆F , rF is on the upper-left corner and is north-open, andcF is on
the upper-right corner and is south-open. Thus we can applyMv to merge∆F ’s. From Lemma 5,
a final drawing∆T hasHT 6 HF × size(FT) andWT 6 WF + NL(FT). If we transformFT into a
left-heavy tree before applyingMv, then NL(FT) 6 log(size(FT)) = O(log(n/m)) = O(logn). Thus
HT =O(log logn× (n/m))=O(n log logn/logn) andWT =O(logn). Since all edges in∆T are drawn
according to the upward standard, we have the following theorem.

Theorem 1. Any bounded-degreen-vertex treeT admits an upward straight-line drawing with height
O(n log logn/logn), widthO(logn) and areaO(n log logn).

Consider the case whenT is a binary tree. When we are drawing a non-trivial fragmentF , the edges
(vi, vi1) for 16 i 6 h− 1 are drawn as vertical segments, and only the edge(vh, vh1) is drawn as a non-
vertical segment. Note here thatvh = cF . In other words, at most one edge inF , which is incident tocF ,
is drawn as a non-orthogonal segment in∆F . As a result, O(n/logn) edges ofT which are incident to
connection vertices are only drawn as non-orthogonal segments (see Fig. 7(a)). We will now explain how
to convert each of these non-orthogonal segments to an orthogonal chain with at most one bend. First,
when drawing a non-trivial fragmentF , we placecF directly above∆Fhkh not at the intersection ofl1
andl3, and thus the non-orthogonal edge betweencF and its child ofF is drawn as a vertical segment (see
Fig. 7(b)). Next, we draw each separator as a chain of one horizontal segment and one vertical segment as



190 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

shown in Fig. 7(c). Clearly, the chains do not intersect the drawing. The height is still O(n log logn/logn)
and the width is O(logn). Of course, the drawing has at most one bend per edge and O(n/logn) bends
in total.

Theorem 2. A binary tree T has an O(n log logn)-area upward orthogonal drawing with height
O(n log logn/logn) and widthO(logn). In addition, the drawing has at most one bend per edge and
O(n/logn) bends in total.

Remark. The constant values in the area obtained by Theorems 1 and 2 are not greater than 4d(d − 2).
In particular, the value for binary trees is 12 becaused = 3. However, as seen in Section 7, our experiment
for binary trees with 105 vertices or less shows the value does not exceed 1.2.

5. Order-preserving upward drawing for balanced trees

In this section, we show that our drawing strategy works well for drawing some classes of bounded-
degree balanced search trees under order-preserving (strictly) upward drawing standard. The classes
include k-balanced trees, red–black trees [20], BB[α]-trees [20] and(a, b)-trees [21], wherek, α, a
andb are fixed constants, and 26 a 6 b.

Our algorithm produces an order-preserving upward drawing with O(n log logn) area; if the strictly
upward standard is required, then the drawing area increases to O(n(log logn)2). Actually, a linear-
area order-preserving strictly upward drawing algorithm for such trees has been already known in [8,9].
However, as stated in [8], the constant hidden in the area function is quite large (in order of thousands)
except AVL trees which can be drawn with a constant not greater than 36 [9]. In that sense, our algorithm
produces a better drawing with a relatively small constant (not greater than 64 in most practical cases)
for all those classes of balanced trees.

In general, according to how to maintain the balance condition, balanced search trees are classified
into three categories [22]:height-balanced, weight-balancedanddegree-balanced. k-balanced trees and
red–black trees are height-balanced since the tree-heights of the subtrees of each individual vertex may
differ at most by a constant. In BB[α]-trees, the sizes of the subtrees of each vertex may differ at most by
a constant, thus called weight-balanced. The(a, b)-tree is degree-balanced since its balance is maintained
by varying the degree of internal vertices.

Let T be a tree withn vertices in the classes. Our partition ofT into O(n/m) fragments (refer to
Section 3) has two important properties:
(P1) the tree-height of each non-trivial fragment is O(logm), and
(P2) for any path from the root to a leaf inFT the number of non-trivial fragments on the path is also

O(logm).
These two properties will be crucial for achieving area less than O(n logn). To show (P1) and (P2),

it suffices to prove that all vertices of height greater than O(logm) in T arem-critical, that is, any non-
critical vertex is of height at most O(logm) in T .

A binary treeT is k-balancedif, for each vertexv of T , the tree-height of its left subtree and the
tree-height of its right subtree differ by at mostk, wherek (> 1) is a fixed constant. Ak-balanced tree is
a natural generalization of AVL trees, i.e., 1-balanced trees. LetFkh be the minimum number of vertices
of a k-balanced tree with heighth. For k = 1, F 1

h = F 1
h−1+ F 1

h−2+ 1, whereF 1
0 = 0 andF 1

1 = 1. Note



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 191

thatF 1
h > φ

√
5, whereφ = (1+√5)/2 [14]. By generalizing the above recurrence tok-balanced trees,

Fkh = Fkh−1 + Fkh−k−1 + 1, whereFki = i for 06 i 6 h. Then we can easily show thatFkh > F 1bh/kc by
induction onh.

Lemma 6. In the partition of ak-balanced binary treeT by PartitionTree(T ,m), every non-critical
vertex has height at mostO(logm) in T .

Proof. Consider a vertexv in T with heightk logφ(5m)+ k+1. We know thatv must have two children
because of thek-balanced condition. Letu andw be two children ofv. Then both ofTu andTw must
have height at leastk logφ(5m), so they have size at least

Fkk logφ(5m)
> F 1

logφ(5m)
> φ

(logφ(5m))√
5
= 5√

5
m> 2m.

This implies that each of them contains at least onem-critical vertex. Sincev is the least common
ancestor ofu andw, v becomes anm-critical vertex. It is also easy to see that any vertex with height
> k logφ(5m)+ k+ 1 ism-critical. Therefore, every non-critical vertex has O(logm) height inT . 2

For red–black trees, BB[α]-trees and(a, b)-trees, we can prove that (P1) and (P2) also hold using a
similar argument to that in Lemma 6. Hence we have the following result.

Lemma 7. In the partition for trees in the classes ofk-balanced trees, red–black trees, BB[α]-trees and
(a, b)-trees,(P1)each fragment hasO(logm) tree-height, and(P2)there are at mostO(logm) non-trivial
fragments on any path from the root to a leaf in FT.

After calling PartitionTree(T ,m) with m = logn, draw each non-trivial fragmentF ∈ FT by the
following base drawing algorithm.
1. DrawF byAh of Lemma 1. To preserve the left-to-right order in∆F , we skip step 1 ofAh, in which
F is transformed into a right-heavy tree. SinceF has height O(log logn) by property (P1), it still
holds thatHF =O(log logn) andWF =O(logn).

2. LetF ′ be the unique child fragment ofF if exists. Lets = (cF , rF ′) be the separator betweenF andF ′.
We assume thatcF hask childrenb1, b2, . . . , bk , left-to-right inF . Note thatrF ′ is a child ofcF in T ,
but it is notbi for any i. We denote byei = (cF , bi) the ith child edge ofcF . For the completeness
of the description, we assume that there exist two virtual edgese0 andek+1 to the left ofe1 and to
the right ofek , respectively. Suppose that the separators is an edge betweenet andet+1 for somet
(06 t 6 k). We modify∆F to make enough room to draws betweenet andet+1 as shown in Fig. 8.
Let dh be the distance betweencF and the right side of∆F anddv be the distance betweencF and
the bottom side of∆F . To assist a description of the modification, we define two horizontal linesl1
and l2 and two vertical linesl3 and l4 as illustrated in Fig. 8. Let∆bi be a drawing of the subtree
rooted atbi . First, we horizontally translate drawings∆bt+1, . . . ,∆bk to the rightward direction so that
the drawings entirely lie betweenx = x′ andx = x′ + dh. The translation does not violate drawing
standards of∆F . Second, we translate drawings∆b1, . . . ,∆bt to the downward direction so that the
top sides of the drawings are aligned atl1. Then the translated drawings lie entirely betweeny = y′
andy = y′ − dv . We suppose hereafter that the modified drawing is defined in a rectangle with height
HF + dv and widthWF + dh+ 1. That is, the modified drawing has height6 2HF =O(log logn) and
width6 2WF + 1=O(logn).



192 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

Fig. 8. An illustration of step 2. Suppose that a separator(cF , rF ′) is an edge between(cF , b2) and(cF , b3). The
above is a drawing of a non-trivial fragmentF byAh. The below is a drawing modified so as to draw the separator
(cF , rF ′).

Let p be an intersection point ofl1 andl3, andq be an intersection point ofl2 andl4. Then a line passing
throughcF andp passesq, and the line does not intersect other vertices and edges in∆F . Using this fact,
we, in the merging step, place the rootrF ′ at the pointq, and then draw the separators = (cF , rF ′) as a
straight-line fromcF to q(= rF ′) without crossings.

To merge∆F ’s, we use a slightly modified version ofMv . We need two types of drawings forF ,
denoted by∆A

F and∆B
F . Drawing∆A

F is identical to∆F produced by the above base drawing algorithm.
In ∆A

F , rF lies at the upper-left corner. Symmetrically, we can obtain an order-preserving drawing∆B
F

such thatrF lies at the upper-right corner of the drawing. Note that∆B
F is obtained by horizontally

flipping ∆A
F so that the left-to-right order is preserved. With∆A

F ’s and∆B
F ’s in our hand, we applyMv

as maintaining the order-preserving property. The detail is straightforward.
We know that NL(FT)=O(logn) becauseT is balanced. Using this fact and Lemma 5, we can show

the following theorem.

Theorem 3. For a balanced treeT in the classes ofk-balanced trees, red–black trees, BB[α]-trees and
(a, b)-trees, the above algorithm produces anO(n log logn)-area order-preserving upward straight-line
drawing with heightO(n log logn/logn) and widthO(logn).

In the remainder of the section, we will show that the order-preserving upward drawing described
above can be easily modified into an order-preserving strictly upward drawing. First, we construct an
O(n(log logn)2)-area order-preserving upward drawing in which every edge from a parent to a child
in the drawing has always one of south, east and southeast directions. Second, using the property, we
transform the upward drawing into a strictly upward one without affecting area O(n(log logn)2).



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 193

Drawings of the fragments produced by the base drawing algorithm satisfy the property clearly. In
the merging step, however, some of the drawings are horizontally flipped, so edges may have west or
southwest directions. This can be solved by modifying the merging algorithm as follows. LetF be the
root fragment ofFT with child fragmentsF1,F2, . . . , Fk , left-to-right. LetFTi be the subtree rooted at
Fi in FT. Recursively construct the drawings forFTi . If F is trivial, we combine∆F and∆FTi ’s in the
same method as we did inMv (refer to Fig. 3(b)). IfF is a non-trivial fragment with one child fragment
F1, place∆FT1 so that the root of∆FT1 is at the pointq and∆FT1 lies entirely in the right side of∆F .
Note here that∆FT1 is not flipped. Then the separator betweenF andF1 can be drawn as a straight-line
with a southeast direction.

Let ∆T be a drawing obtained by the above merging algorithm. It is clear thatHT = O(n log logn/
logn). Consider the widthWT . Let P be a path from the root to a leafv of ∆T . Suppose thatP is
passing through fragmentsF1,F2, . . . , Fh, wherev ∈ Fh andFi is a child fragment ofFi−1 for 26 i 6 h.
If Fi is trivial, we know that a separator fromrFi to its child rFi+1 contributes toWT by at most one.
If Fi is non-trivial, a path fromrFi to rFi+1 contributes toWT by the width of∆Fi , i.e., O(logn).
Let n1 andn2 be the number of trivial fragments and non-trivial fragments onP , respectively. Then
WT = n1+ n2×O(logn). Sincen1=O(logn) becauseT is balanced andn2=O(log logn) by (P2) of
Lemma 7. Therefore,WT =O(logn)+O(log logn× logn)=O(logn log logn).

Now it remains to transform the upward drawing to a strictly upward one. The transformation is done
by modifying coordinates(x, y) of each vertex in∆T to (x, x + y). Using the property on the edge
directions of∆T , it is not difficult to show that the transformed drawing is planar and strictly upward
[7]. Then the transformed drawing has height6HT +WT and widthWT . SinceHT >WT , the height of
the drawing is bounded below by 2HT . Consequently, the strictly upward drawing has asymptotically the
same bounds for height and width as the upward ones.

Theorem 4. For a balanced treeT in the classes ofk-balanced trees, red–black trees, BB[α]-trees and
(a, b)-trees, the above algorithm produces anO(n(log logn)2)-area order-preserving strictly upward
straight-line drawing with heightO(n log logn/logn) and widthO(logn log logn).

Remark. The multiplicative constants hidden in our area functions are not large as compared to those
in the linear-area drawing algorithm [8,9], in which the constant for AVL trees turned out to be not
greater than 36 for strictly upward standard (not analyzed for the other classes of balanced trees), and it
decreased to 3.1 in experiments. Roughly analyzing the values in our order-preserving strictly upward
drawing, the values fork-balanced, red–black, BB[α]- and (a, b)-trees are no more than 32k/logφ,
64, −32/log(1− α) and 16b, respectively. In practice,k and b are sufficiently small; 46.1 for AVL
(1-balanced) trees, 64 for red–black trees, and 48 for(2,3)-trees. Thus the constants are no more than 64
in most cases. The experiment for red–black trees in Section 7 shows that the value is actually no more
than 1.2 in most cases. We might expect the constant values for the other balanced trees including AVL
trees should drastically decrease in experiments.

6. Orthogonal straight-line drawing for binary trees

The main contribution in this section is algorithms which draw binary trees with O(n log logn) area,
(or O(n log logn) volume in 3-dimension) and any given aspect ratio under the orthogonal straight-line



194 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

standard. The algorithms are the first results in 2- and 3-dimensions which reduce the upper bound from
O(n logn) to O(n log logn). Furthermore, the algorithms can draw binary trees with any given aspect
ratio. We will concentrate on a 2-dimensional drawing algorithm because a 3-dimensional drawing can
be directly obtained by extending the 2-dimensional algorithm.

We use a variation of the procedurePartitionTree as a partitioning methodP . Let T be a binary tree of
n (> 2) vertices. Suppose that a vertexµT ∈ T is not the root ofT and has at most one child inT . Given
a partition parameterm (6 n) and the vertexµT , we will partition T into O(n/m) fragments, each of
size O(m), so that
(i) µT itself constitutes a trivial fragment, and
(ii) rF 6= cF for every non-trivial fragmentF .

If F has no connection vertices, we pick an arbitrary leaf inF ascF . Moreover, Lemma 4 must hold
for this partitioning method.

Such a partitioning method can be achieved as follows. Letν be the child ofµT in F (if it exists) and
Fν be the subtree rooted atν in F . To makeµT anm-critical vertex, i.e., a trivial fragment, we attach
a dummy treeD as the subtree ofµT . Now µT has at most two subtreesFν andD. The size ofD is
determined as follows: if size(Fν)6 2m, then size(D)= 2m− size(Fν), otherwise size(D)=m. Then
µT will become anm-critical vertex by the definition of them-critical vertex. Note that size(D)6 2m,
so size(T )6 n+2m6 3n. We now partitionT by callingPartitionTree(T ,m). The number of fragments
is still O(n/m) by Lemma 3, andµT is defined as anm-critical vertex. Thus, condition (i) is satisfied.
Let F be a non-trivial fragment such thatrF = cF . Since size(F )> 2, rF has exactly one childw in F .
To satisfy condition (ii), we definerF as a trivial fragment and the new non-trivial fragmentFw as a
non-trivial fragment. Here,Fw represents a subtree rooted atw in F . Thus, condition (ii) is satisfied.
SinceF has only one connection vertexcF (= rF ), Fw does not have a connection vertex any more.
This implies that Lemma 4 still holds. Finally, we deleteD from T . Consequently,T is divided into
O(n/m) fragments satisfying two conditions and Lemma 4. We shall refer to this partitioning method as
Procedure PartitionTree∗(T ,m,µT ).

Before describing our drawing algorithm, let us explain a basic idea to control the aspect ratio of∆T

while achieving O(n log logn) area. To do it, we shall apply our partition-and-merge method twice. First,
partition T with a partition parameterm1 (6 n). Suppose that we have drawn each fragment by some
drawing method such asAh and vertically stack the fragment drawings byMv. If m1 is very smaller than
n, e.g.,m1= logn, then the final drawing becomes longish because the height is relatively larger than the
width. If m1 is larger than O(logn), then the shape of drawing will be square-like more and more, but the
drawing area may be greater than O(n log logn); in fact, the area becomes O(n logn) if we use eitherAh
or Av to draw the fragments. In order to control the aspect ratio as keeping the area O(n log logn), we
draw each fragment by another drawing method based on the partition-and-merge strategy, rather than by
Ah andAv. At this time, each fragment is again partitioned with another partition parameterm2 (6m1)

into several sub-fragments. The sub-fragments are drawn by some base drawing algorithm, denoted here
by B∗, and their drawings are horizontally arranged byMh. Then we can keep the area O(n log logn)
and can also control the aspect ratio according to the values ofm1 andm2.

The base drawing algorithmB∗ draws each non-trivial fragmentF of sizem in O(m logm) area such
thatrF is placed at the upper-left corner of∆F andcF is at the upper-right corner of∆F . We can obtain
B∗ through a minor modification ofAv of Lemma 2 as follows.
1. LetP = (rF = v1, v2, . . . , vh−1, vh = cF ) be a path fromrF to cF in F . Let Fi be the subtree ofvi

attached to the pathP not containingvi+1.



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 195

Fig. 9. (a), (b) When the length ofP is less than 4, horizontally arrange∆Fi ’s left-to-right. Putvi directly above
the root of∆Fi . (c) Otherwise, stack∆Fi ’s up-to-down and down-to-up such that the shape of the pathP is like a
character “U”.

Fig. 10. Modification of∆F so thatcF is south-open and lies on the left side.

2. DrawFi byAv for eachi so thatHFi =O(size(Fi)) andWFi =O(log(size(Fi))).
3. Arrange∆Fi ’s and vertices onP , as shown in Fig. 9, according to the length ofP ; horizontally flip

some∆Fi ’s, if necessary. Next, draw edges onP and adjacent toP .
Trivially, HF =O(m). Since at most three∆Fi ’s are horizontally laid,WF =O(logm).

Lemma 8. For a non-trivial fragmentF of m vertices, the procedureB∗ produces an orthogonal
straight-line drawing∆F with heightO(m), width O(logm) and areaO(m logm). Two verticesrF and
cF are placed at the upper-left and upper-right corners of∆F , respectively.

Now we are ready to give the whole drawing algorithm. The algorithm takes as input a binary treeT ,
two integersm1 andm2 (n>m1>m2).
1. PartitionT by PartitionTree(T ,m1). Let FT be the fragment tree ofT . Note here that the procedure

PartitionTree is used asP .
2. For each non-trivial fragmentF ∈ FT, do the following steps.

(i) PartitionF by PartitionTree∗(F,m2, cF ). Let FT′ be the fragment tree ofF . Note thatµF = cF ,
socF is trivial in FT′. ThenFT′ consists of O(m1/m2) fragments, each with O(m2) vertices.



196 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

(ii) For each non-trivial fragmentF ′ ∈ FT′, draw F ′ by the base algorithmB∗. By Lemma 8,
HF ′ =O(m2) andWF ′ =O(logm2).

(iii) Let R′ be the root fragment ofFT′ and letC ′ be the fragment ofFT′ containingcF . Actually,
C ′ consists ofcF only. TransformFT′ so that a path fromR′ toC ′ in FT′ becomes the rightmost
path ofFT′, and all subtrees inFT′ attached to the path into right-heavy trees.

(iv) Merge ∆F ′ ’s by the merging algorithmMh; this is always possible because the root and
connection vertex ofF ′ satisfy the assumptions needed to applyMh.

Since the path fromR′ to C ′ is the rightmost path ofFT′, cF is located on the top side of∆F (see
Fig. 10(a)). In the step (iii),FT′ is not a perfectly right-heavy tree because of the rightmost path from
R′ to C ′. However, it is easy to show that NR(FT′)6 blog size(FT′)c + 1. Combining this fact with
Lemma 5, we can know that∆F has height

HF =O
(
HF ′ +NR

(
FT′

))=O
(
m2+ log

m1

m2

)
and

WF =O
(
WF ′

m1

m2

)
=O

(
m1 logm2

m2

)
.

3. TransformFT into a left-heavy tree.
4. Merge∆F ’s by the merging algorithmMv as follows. To applyMv, rF should lie on the left side of
∆F andcF should lie on the right side of∆F . Of course,rF must be north-open andcF be south-open.
However, as shown in Fig. 10(a),∆F produced in step 2 may not satisfy the condition aboutcF . We
modify ∆F as shown in Fig. 10(b). It is always possible becausecF has at most one subtree inF .
ThenrF andcF respectively lie on the left and right sides of∆F , and are north- and south-open in
∆F . By Lemma 5,∆T has

HT =O
(
HF

n

m1

)
=O

(
nm2

m1
+ n

m1
log

m1

m2

)
and

WT =O
(
WF +NL(FT)

)=O
(
m1 logm2

m2
+ log

n

m1

)
.

Theorem 5. Given a binary treeT and µT 6= rT with at most one child ofT , the above algorithm
produces an orthogonal straight-line drawing∆T with areaO(n log logn) and any aspect ratio in the
range of[O(1),O(n log logn/log2n)].
Proof. Let a be a real number such that 0< a < 1. Settingm1 = O(na logn/

√
log logn) andm2 =

O(logn),

HT =O
(
nm2

m1
+ n

m1
log

m1

m2

)
=O

(
n
√

log logn

na
+ n
√

log logn

na logn
logn

)
=O

(
n1−a√log logn

)
,

WT =O
(

log
n

m1
+ m1

m2
logm2

)
=O

(
logn1−a + na√

log logn
log logn

)
=O

(
na
√

log logn
)
.

The area of∆T isHT ×WT =O(n log logn). Without loss of generality,HT is assumed to be no less than
WT , that is, 0< a 6 1/2. Then the aspect ratio isHT /WT =O(n1−2a). This implies that for any constant



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 197

Fig. 11. Arrangements for h–v drawing.

06 ε < 1 we can obtain a drawing with aspect ratio O(nε). Leiserson [19] showed that the minimum side
length of an orthogonal drawing must be�(logn). Using the fact, we can see that the possible maximum
value of the aspect ratio of O(n log logn)-area drawings is O(n log logn/log2n). When m1 = n/k
andm2 = logn for some constantk > 1, thenHT = O(logn) andWT = O(n log logn/logn). As a
consequence, we can achieve∆T with any aspect ratio in a range between the possible smallest and
largest values, i.e.,[O(1),O(n log logn/log2n)]. 2

To get a 3-dimensional orthogonal straight-line drawing with any given aspect ratio, we apply the
partition-and-merge method three times. Partition a binary treeT with parameterm06 n, and draw each
fragment with a proper aspect ratio onxy-plane. Here, we use Theorem 5 to draw each fragment, in
which the partition-and-merge process occurs twice again. Next, stack∆F ’s along thez-axis in a similar
way toMv, and draw separators.

Theorem 6. Any binary treeT with n vertices has a3-dimensional orthogonal straight-line drawing∆T

with volumeO(n log logn) and any aspect ratio in[O(1),O(n log logn/logn)].

7. Experimental results

We have implemented most algorithms presented in this paper on SGI machines in C language
and have experimented to see how large the multiplicative constants in the area functions are. In
particular, we have focused on the O(n log logn)-area upward drawing algorithm of Theorem 1 and the
O(n(log logn)2)-area order-preserving strictly upward drawing algorithm of Theorem 4 for red–black
trees.

For the upward drawing algorithm of Theorem 1, we have prepared three sets of binary trees; randomly
generated unordered rooted trees (in short, the collection BT) which is generated by an algorithm
presented in [1], randomly built binary search trees (in short, the collection BST) which is generated
by inserting keys, starting from an empty binary search tree, one by one fromn-size random permutation
[6], and randomly built red–black trees (in short, the collection RBT) [6]. For each set, we have generated
40 binary trees with the same number of vertices which ranges from 100 to 105. Clearly, the trees in BT
are likely to be more unbalanced than those in BST and in RBT, and the trees of RBT are most balanced.

We have first checked how large the constants, for each set of trees, in the area function are. Fig. 12
shows the ratios of the actual drawing areas obtained by Theorem 1 to the value ofn log logn. The



198 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

Fig. 12. Constant values in the area function of the upward drawing algorithm (Theorem 1) for three sets, BT, BST
and RBT, of trees.

Fig. 13. Ratios of the upward drawing area (Theorem 1) to the minimum area of h–v drawing for BT, BST and
RBT.

constant values for all three sets do not exceed 1.2, and are quite smaller than the theoretical bound 12
(refer to the remark in Section 4).

We have next compared the drawing area with the minimum area of h–v drawing. Anh–v drawingof T ,
consisting of rootr and two subtreesT ′ andT ′′, is obtained by placingr at the upper left-hand corner
and by connecting, in one of two ways shown in Fig. 11,r and the recursively drawn h–v drawings of
T ′ andT ′′ by horizontal or vertical line segments. Eades et al. [11] proposed an algorithm of computing
the minimum area of an h–v drawing for anyn-vertex binary tree in O(n3/2 logn) time by employing
dynamic programming techniques.

Actually, an upward drawing obtained by Theorem 1 is not an h–v drawing. Thus one may have a
doubt about the fairness of the comparison. But we believe that the h–v drawing algorithm is the best



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 199

Fig. 14. Constant values in the area function of the order-preserving strictly upward drawing algorithm (Theorem 4)
for a set, RBT, of red–black trees.

Fig. 15. Ratios of the order-preserving strictly upward drawing area (Theorem 4) to the minimum area of the
order-preserving h–v drawing for RBT.

upward drawing algorithm known so far. Fig. 13 illustrates the area ratio of two algorithms, and shows
that our algorithm produces an upward drawing with area less than three times the minimum h–v area in
most cases.

Next, we have considered order-preserving strictly upward drawings for randomly built red–black
trees, RBT. As shown in Figs. 14 and 15, the constant value for red–black trees in the drawings obtained
by Theorem 4 is not greater than 0.42, and the area is not larger than three times the minimum area of the
order-preserving h–v drawing. Notice that the theoretical constant value for red–black trees is 64 (refer
to the remark in Section 5).



200 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

8. Concluding remarks

We have investigated several straight-line drawing problems for some classes of bounded-degree trees
under various drawing standards: (1) upward straight-line, (2) order-preserving (strictly) upward straight-
line, and (3) non-upward orthogonal straight-line standards. Main contribution of this paper is a unified
drawing framework which allows us to obtain various tree drawings with area strictly less than the best
bound O(n logn) [7,12] known so far. We also show that arbitrary aspect ratio can be achieved in non-
upward orthogonal straight-line drawings of binary trees. Table 1 is a summary of the results.

Let us discuss what other drawing problems can be solved by a unified drawing framework presented
in this paper.
• We believe that the unified framework is useful to achieve an orthogonal drawing with the small area

and any given aspect ratio. As a representative example, we have already presented an orthogonal
straight-line drawing algorithm in Section 6. If we combine the Valiant’s result [28] and our framework,
we can also draw any tree with maximum degree of 4 with area O(n), any aspect ratio and O(log logn)
bends per edge. This drawing is superior to that of Valiant [28] whose area is O(n), aspect ratio is O(1)
and the number of bends per edge is O(logn). The details are given in [25]. If the algorithm extends
to 3-dimension, we can obtain a 3-dimensional orthogonal drawing for any tree with maximum degree
of 6 so that the volume is O(n), the number of bends per edge is at most seven, and almost any aspect
ratio is allowed.
• Until now, the upward standard has been considered in 2-dimensional drawings. But, we can also

define the upwardness in 3-dimensional drawings similarly. That is, if each vertex and its child in a
drawing can be connected by a monotone curve with respect to an axis, the drawing is said to be upward
with respect to the axis. Thus it will be interesting to characterize the area-tradeof between upwardness
and aspect ratio in 2- and 3-dimensions. For instance, we can show that using the framework used in
this paper, any binary tree with height O(logn) has a two-axis upward orthogonal straight-line drawing
with volume O(n log logn) and arbitrary aspect ratio in 3-dimension. But, we do not know whether or
not it is possible in 2-dimension.
• In [8], the authors presented a strictly upward straight-line drawing algorithm for balanced search trees

which guarantees area O(n) and arbitrary aspect ratio with the shorter side length of at least logα n for
any α > 1. But it is impossible to get a longish drawing with shorter side length of O(logn), so it
remains as an open problem. We can obtain such a longish drawing by our framework. The detail for
AVL trees is given in [17].

We will finish this section with a list of open problems. For upward straight-line drawings, we do not
know yet if any unbounded-degree tree can be drawn in area O(n log logn), or if there exists a class
of trees requiring�(n log logn), hence both remain open. For order-preserving upward straight-line
drawings, it was proved that a class of logarithmic trees, in which the height of any subtree is logarithmic
to the number of vertices, can be drawn in linear area [8], but it remains open if any tree of height O(logn)
can be drawn in linear area. Recently, Chan [3] developed an algorithm to draw any binary tree in O(n1+ε)
area with stronger order-preserving standard, calledstrongly order-preserving standard, in which each
edge from the parent to the left (respectively right) child should be monotone decreasing (respectively
increasing) in thex-direction. Thus it would be interesting to draw any (binary) tree in super-linear area
under (strongly) order-preserving (strictly) upward straight-line standards, together with raising the lower
bound,�(n logn) [12].



C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202 201

Acknowledgements

We thank to anonymous referees for many useful suggestions that have improved the presentation of
this paper.

References

[1] L. Alonso, R. Schott, Random Generation of Trees, Kluwer Academic Publishers, Dordrecht, 1995.
[2] S.N. Bhatt, F.T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. Syst. Sci. 28

(1984) 300–343.
[3] T. Chan, A near-linear area bound for drawing binary trees, in: Proc. 10th ACM–SIAM Symp. on Discrete

Algorithms, 1999.
[4] T. Chan, M.T. Goodrich, S.R. Kosaraju, R. Tamassia, Optimizing area and aspect ratio in straight-line

orthogonal tree drawings, in: S. North (Ed.), Graph Drawing (Proc. GD ’96), Lecture Notes in Computer
Science, Vol. 1353, Springer, Berlin, 1997.

[5] R.F. Cohen, P. Eades, T. Lin, F. Ruskey, Three-dimensional graph drawing, in: R. Tamassia, I.G. Tollis
(Eds.), Proc. Graph Drawing: DIMACS International Workshop, GD’94, Lecture Notes in Computer Science,
Vol. 894, Springer, Berlin, 1994, pp. 1–11.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA, 1990.
[7] P. Crescenzi, G. Di Battista, A. Piperno, A note on optimal area algorithms for upward drawings of binary

trees, Computational Geometry 2 (1992) 187–200.
[8] P. Crescenzi, P. Penna, Strictly-upward drawings of ordered search trees, Theoret. Comput. Sci. 203 (1998)

51–67.
[9] P. Crescenzi, P. Penna, A. Piperno, Linear area upward drawings of AVL trees, Computational Geometry

9 (1998) 25–42 (Special Issue on Geometric Representations of Graphs, edited by G. Di Battista and
R. Tamassia).

[10] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Algorithms for drawing graphs: an annotated bibliography,
Computational Geometry 4 (1994) 235–282.

[11] P. Eades, T. Lin, X. Lin, Minimum size h–v drawings, in: Proc. Advanced Visual Interfaces, World Scientific
Series in Computer Science, Vol. 36, 1992, pp. 386–394.

[12] A. Garg, M.T. Goodrich, R. Tamassia, Area-efficient upward tree drawings, in: Proc. 9th Ann. ACM Symp.
Comput. Geom., 1993, pp. 359–368.

[13] H. Gazit, G.L. Miller, S.-H. Teng, Optimal tree contraction in an EREW model, in: S.K. Tewksbury,
B.W. Dickinson, S.C. Schwartz (Eds.), Concurrent Computations: Algorithms, Architecture and Technology,
Plenum Press, New York, 1988, pp. 139–156.

[14] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1989.
[15] L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, R.E. Tarjan, A linear-time algorithms for visibility and

shortest path problems inside triangulated simple polygons, Algorithmica 2 (1987) 209–233.
[16] S.K. Kim, Simple algorithms for orthogonal upward drawings of binary and ternary trees, in: Proc. 7th

Canadian Conference on Computational Geometry, 1995, pp. 115–120.
[17] S.K. Kim, Logarithmic width, linear area upward drawing of AVL trees, in: Inform. Process. Lett. 63 (1997)

303–307.
[18] F.T. Leighton, A. Rosenberg, 3D circuit layouts, SIAM J. Comput. 15 (1986) 793–813.
[19] C.E. Leiserson, Area Efficient VLSI Computation, MIT Press, Cambridge, MA, 1983.
[20] R.J. Lipton, R.E. Tarjan, Applications of a planar separator theorem, SIAM J. Comput. 9 (1980) 615–627.
[21] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, Springer, Berlin, 1984.



202 C.-S. Shin et al. / Computational Geometry 15 (2000) 175–202

[22] M.H. Overmars, The Design of Dynamic Data Structures, Lecture Notes in Computer Science, Vol. 156,
Springer, Heidelberg, Germany, 1983.

[23] Y. Shiloach, Arrangements of planar graphs on the planar lattice, Ph.D. Thesis, Weizmann Institute of Science,
1976.

[24] C.-S. Shin, S.K. Kim, K.-Y. Chwa, Area-efficient algorithms for upward straight-line tree drawings, in: The
2nd International Computing and Combinatorics Conference (COCOON’96), Lecture Notes in Computer
Science, Vol. 1090, Springer, Berlin, 1996, pp. 106–116.

[25] C.-S. Shin, S.K. Kim, K.-Y. Chwa, Algorithms for drawing binary trees in the plane, Inform. Process. Lett. 66
(3) (1998) 133–139.

[26] R. Tamassia, Graph drawing, in: J.E. Goodman, J. O’Rourke (Eds.), Handbook of Discrete and Computational
Geometry, CRC Press, Boca Raton, FL, 1997, Chapter 44, pp. 815–832.

[27] J.D. Ullman, Computational Aspects of VLSI, Morgan Kaufmann, San Mateo, CA, 1992.
[28] L.G. Valiant, Universality considerations of VLSI circuits, IEEE Trans. Comput. 30 (12) (1981) 135–140.


