N

% Computational
Geometry

Theory and Applications

ELSEVIER Computational Geometry 15 (2000) 175-202

www. elsevier.nl/locate/comgeo

Area-efficient algorithms for straight-line tree drawifigs

Chan-Su Shif*, Sung Kwon KimP-1, Kyung-Yong Chwa

@ Department of Computer Science, Korea Advanced Institute of Science and Technology, Taejon 305-701, South Korea
b Department of Computer Science and Engineering, Chung-Ang University, Seoul 156-756, South Korea

Communicated by R. Tamassia; submitted 1 October 1996; received in revised form 1 November 1999; accepted 9 November
1999

Abstract

We investigate severatraight-linedrawing problems for bounded-degree trees in the integer grid without edge
crossings under various types of drawings: pyard drawings whose edges are drawn as vertically monotone
chains, a sequence of line segments, from a parent to its childreord@)preservingdrawings which preserve
the left-to-right order of the children of each vertex, andqhogonal straight-linedrawings in which each edge
is represented as a single vertical or horizontal segment.

Main contribution of this paper is a unified framework to reduce the upper bound on area for the straight-line
drawing problems from Q:logn) (Crescenzi et al., 1992) to@loglognr). This is the first solution of an open
problem stated by Garg et al. (1993). We also show that any binary tree admits a small area drawing satisfying any
given aspect ratio in the orthogonal straight-line drawing type.

Our results are briefly summarized as follows. [Zetbe a bounded-degree tree withvertices. Firstly, we
show thatT admits an upward straight-line drawing with are@®glogn). If T is binary, we can obtain an
O loglogn)-area upward orthogonal drawing in which each edge is drawn as a chain of at most two orthogonal
segments and which has(®@logn) bends in total. Secondly, we presentn@glogn)-area (respectively,
-volume) orthogonal straight-line drawing algorithms for binary trees with arbitrary aspect ratios in 2-dimension
(respectively, 3-dimension). Finally, we present some experimental results which shows the area requirements,
in practice, for (order-preserving) upward drawing are much smaller than theoretical bounds obtained through
analysis 2000 Elsevier Science B.V. All rights reserved.

Keywords:Graph drawing; Tree drawing; Layout; Drawing area; Aspect ratio

Y An extended abstract [24] of this paper was presentethternational Computingand Combinatorics Conference
(COCOON'96), held at Hong Kong, 17-19 June 1996. This work was supported in part by Korea Science and Engineering
Foundation, No. 94-0100-04-01-3.

* Corresponding author.

E-mail addressescssin@jupiter.kaist.ac.kr (C.-S. Shin), skkim@cau.ac.kr (S.K. Kim), kychwa@jupiter.kaist.ac.kr (K.-Y.
Chwa).
1 Supported by the Chung-Ang University Special Research Grants in 1998.

0925-7721/00/$ — see front matter 2000 Elsevier Science B.V. All rights reserved.
PIl: S0925-7721(99)00053-X



176 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

1. Introduction

In many applications, constructing geometric representations of graphs in a readable and efficient way
is crucial for understanding inherent properties of their structures. The automatic generation of such
well-expressed representations is one of main motivations suclgrdgatt drawinghas been receiving
considerable attentions over many broad areas of computer science ranging from purely theoretical
aspects including graph theory and computational geometry to application-oriented areas including VLSI
circuit layout design and visual interface design.

1.1. Problems

A typical graph drawing problem is that given a gra@h generate a geometric representatiorGof
according to severaraphic standardsand optimization criteria Various works in the graph drawing
research field are well summarized in the annotated bibliography by Di Battista et al. [10].

A general graph drawing standard is that a vertex o represented by a geometric object such as a
point, rectangle and cube (or box), and an e@dge) is represented by a simple Jordan curve connecting
the geometric objects associated with verticesndov.

According to the kinds of curves to represent edges, graphic standards may have various versions.
A polyline drawing maps an edge to a polygonal chaistraight-line drawing does to a straight-line
segment, and anrthogonal drawing does to a chain of orthogonal segments. (In fact, straight-line
drawings and orthogonal drawings are special cases of polygonal drawings.) Especially, straight-line
and orthogonal standards have been deeply considered by many researchers. The reasons are that
is relatively easy to investigate combinatorial properties of drawings, and the standards are suitable to
some important applications such as VLSI circuit design and illustrations of text books in graph theory.
Note that edges in polyline and orthogonal drawings may terels which occur when joining two
contiguous line segments in an edge.

There are two other standards commonly used, namgety,andplanar standards. A drawing is said
to be grid if all vertices and bends of edges have integer coordinates, and planar if no two edges intersec
in the drawing. All drawings in this paper will be grid and planar, so we will omit the term “grid and
planar” hereafter.

In particular, when a rooted tree is considered, it is common that for exhibiting the inherent hierarchy in
the rooted tree, every edge between a parent and its child would be represented by a vertically monotone
chain so that the parent hascoordinate greater than or equal to that of the child. A drawing satisfying
this condition is said to bepward In addition, astrictly upwarddrawing means that the parent has
y-coordinate strictly greater than that of its child.

The quality of a drawing is measured by a combination of optimization criteria such as area, volume,
aspect ratio, and the number of bends. &hea of a 2-dimensional drawing is defined as the area of the
smallest axis-parallel rectangle enclosing the drawing.hightandwidth of the drawing are the height
and width of the rectangle, respectively. N@umeof a 3-dimensional drawing is similarly defined. In
general, to avoid wasting valuable spaces on a page or computer screen, it is important to keep the are
or volume of the drawing small. In VLSI industrial field, this criteria is vital to accumulate modules and
wires into as little space as possible.

Theaspect ratioof a drawing is defined to be the ratio of the longest side length to the shortest side
length of the enclosing rectangle. A drawing with high aspect ratio is not desirable in the sense that the



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 177

AT e el g 1

ii'.i-ro-oll i-—-l 1 =0 & o g i-—-l-o-ol i f‘f’fhi’mk

Fig. 1. Drawing examples for a binary tree of 100 vertices with two different ratios of the height to the width; the
upper one with ratio of 10:1, the lower one with ratio of 1:16.

drawing may not be conveniently placed on some computer screen. Conversely, if one has only longish
windows on the screen, it would be better to have drawings with high aspect ratio. Hence, for providing
the flexibility of fitting drawings in arbitrarily shaped windows, it is desirable that one is able to draw
graphs with any given aspect ratio. For an illustration, see Fig. 1.



178 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

In a polyline drawing (including orthogonal drawing), edges with three or more bends may be difficult
to “follow” the course of the edges for the eye. In addition, many bends in a drawing may be the cause
of the performance degradation of VLSI circuits. For these reasons, botbtéh@umber of bendand
thenumber of bends per edghould be kept small.

Depending on the application where the drawing will be used, the primary drawing criterion may
differ. From the standpoint of VLSI designers, the most important objective is to minimize the area
needed for embedding VLSI circuits. However, visual interface designers would prefer a drawing with
fewer bends per edge rather than a drawing with smaller area because the drawing with fewer bends ar
more readable to the user. Thus, the general goal in drawing problems will optimize the appropriately
chosen one or more criteria at the same time.

This paper deals wittree drawing problems 2- and 3-dimensions. Primarily, we aim at developing
planar straight-line griddrawing algorithms for bounded-degree trees so that drawings take up as little
area or volume as possible, admit any given aspect ratio, or optimize other criteria such as the number of
bends per edge when the straight-line standard is not required.

A (rooted) tree is a fundamental data structure for representing hierarchies of many information
structures such as family trees, organization charts, and search trees. For that reason, a lot of tree drawin
algorithms [7-9,12,19,28] have been proposed by many researchers in VLSI layout, visual interface,
and graph theory fields. Surprisingly, however, there exists a large gap between lower bounds and uppe
bounds on certain criteria, especially on area. For instance, in upward straight-line tree drawing problems,
even in binary tree drawing ones, the best known upper bound on the argaligy@) [6], but its lower
bound is2(n). In this paper, we will try to close the gap by lowering the upper bound(told@g logn)
for some classes of trees.

1.2. Previous works

Several straight-line drawing algorithms for rooted trees were proposed in many literatures [4,7-9,12,
23,24]. They are summarized in Table 1.

The best known algorithm for the upward straight-line drawing problems was proposed by Crescenzi et
al. [7] and Shiloach [23], independently. They showed that any rooted tree admits an upward straight-line
drawing with area @: logn).

There has been no drawing algorithm producing an upward straight-line drawing with(ateg ).

Hence, as stated in [12,26], reducing the upper bound remained until now as an open problem.

Under strictly upward straight-line drawing standard, Crescenzi et al. [7] proved that there exists a
class of rooted trees requiring ar®an logn), and presented an algorithm to construct &n 0gn)-area
drawing for any rooted tree. They also presented algorithms [7,9] produdimgadea strictly upward
straight-line drawings for some classes of balanced trees. These classes include complete binary tree:
Fibonacci trees, and AVL trees. Recently, Crescenzi and Penna [8] showed that trees in a wider class of
balanced trees can be drawn in linear area. They called tbganithmic trees which satisfy that the
height of any (sufficiently high) subtree is logarithmic with respect to the number of vertices. The class
contains most of balanced search trees, includifizplanced trees, red—black trees, [BBtrees, and
(a, b)-trees.

A drawing for an ordered tree is said to breler-preservingf the drawing preserves the left-to-right
order of the children of each vertex. Garg et al. [12] showed that there is a family of trees requiring



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 179

Table 1

Drawing standards are represented as abbreviations: Up. (Upward), S-Up. (Strictly Upward), SL (Straight-
Line), Ortho. (Orthogonal), Order (Order-preserving), and Poly. (Polyline). The term “b.p.e.” means the number
of bends per edge and “A.R.” is an abbreviation of aspect ratio. “Balanced” trees means the classes of trees
includingk-balanced, red—black, BRr]-, and(a, b)-trees

Tree drawing results

Previous results Our results
Drawing type Tree type Sources Prev. (area) bound Our (area) bound
Up. SL general [7] Q(n), O(nlogn) - -
deg-Ql) [7] Q(n), O(nlogn) O(nloglogn) Theorem 1
Up. OrderSL  general [3,7] Q(nlogn), On'™®) - -
balanced [7-9] Om) O(nloglogn) Theorem 3
S-Up. SL general [7] O (nlogn) - -
balanced [7-9] O©m) - -
S-Up. Order SL  general [3,71 Q(nlogn), Onlte) - -
balanced [7-9] ©®) O(n(loglogn)?) Theorem 4
Up. Ortho. binary [12,16] ©(nloglogn) ®(nloglogn) Theorem 2
O(é) bends C<$> bends
4b.p.e. 1lh.p.e.
Ortho. SL binary (2D) [7] Q(n), O(nlogn) O(nloglogn) Theorem 5
A.R. O(Io,;n> arbitrary A.R.
binary (3D) [5] Q(n), O(nlogn) O(nloglogn) Theorem 6
A.R. O(I(jgi) arbitrary A.R.
Ortho. deg-4 (2D) [19,28] ©(n) O®n) Section 8
O(logn) b.p.e. Qloglogn) b.p.e.
A.R. O(1) arbitrary A.R.
deg-6 (3D) [18] On) On) Section 8
O b.p.e. al) b.p.e.
A.R. O(1) (almost) arbitrary A.R.

Up. Polyline deg-@®) [12] O(n) - -




180 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

Q(nlogn) area under the order-preserving upward standard. They also presente@ lagQ-area
upward polyline drawing algorithm.

Garg et al. [12] presented an upward orthogonal drawing algorithm for any binary tree with
O(n loglogn) area, which was shown to be asymptotically optimal. If the upward requirement is relaxed,
any tree with maximum degree four admits an orthogonal drawing with afep[C9,28]. However, it
has not been known whether or not non-upward straight-line drawings with area less(thag) [7]
are possible.

1.3. Our results

In this paper, we present solutions to the unsolved upward straight-line drawing problems and other
related problems for bounded-degree treebofinded-degretree throughout the paper indicates a tree
with constant maximum degree.

All drawing algorithms presented in this paper are based on a unified drawing framework, so-called
“partition-and-merge” strategy, which was used for producing small area drawings of a variety of families
of graphs including trees [2,19,28]. The strategy for a tree is to partition a tree into several pieces by
deleting some edges of the tree, draw each piece independently, and then merge the drawings of th
pieces by inserting (drawing) the deleted edges.

The effectiveness of the strategy heavily depends on how to partition a tree. A well-known patrtitioning
method is based ogplanar separator theorerdue to Lipton and Tarjan [20], which partitions a tree into
two pieces of size almost half. However, the method requires too much additional area when the deleted
edges are inserted to merge the drawings of pieces. Thus, we propose a new partitioning method that on
can merge the drawing pieces with a little additional area, which is a variant of [13,16].

e Results presented in this paper are summarized in Table 1. We first preserit kg lOgn)-area
upward straight-linedrawing algorithm for any bounded-degree tree. This is the first result to reduce
the upper bound from @logn) [7] to O(nloglogn) (Section 4). If the constant value hidden
in O(nloglogn) is quite large, then our algorithm may become worse than theld@n)-area
algorithm [7]. The experiment performed in Section 7, however, shows the hidden constant value
is sufficiently small.

e Through a minor modification of the upward straight-line drawing algorithm, we can obtain an
O(n loglogn)-areaupward orthogonal drawingvith at most one bend per edge anth@logn) bends
in total. The best known upward orthogonal drawing algorithms were proposed by Garg et al. [12] and
Kim [16]. Their algorithms produce drawings with(@log logn) area, Qn/logn) bends, and at most
four bends per edge. Our algorithm is superior to their algorithms in the sense that the number of bends
per is at most one and the other criteria remain the same.

o We present area-efficientder-preservingstrictly) upward straight-linedrawing algorithms for some
classes of balanced search trees (Section 5). The classes cover most of balanced search trees wide
used in computer science includirigbalanced trees, red-black trees [20], [BBtrees [20] and
(a, b)-trees [21], wheré, a andb are fixed constants, and<2a < b. It is worthwhile to draw search
trees in order-preserving fashion because the values stored at the vertices of a tree should be kef
sorted. With upward standard, balanced trees in the classes can be drawn irrdaEgddn). If we
consider a strictly upward standard, they can be drawn in atedd@ logn)?). As stated previously,
the optimal linear-area algorithm [8,9] for drawing trees in those classes has already been known. We
wish to show that our drawing framework is also suitable to draw some balanced trees under order-



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 181

preserving standard even though the theoretical bound on area is not good as those in [8,9]. The author
in [9] showed that AVL trees can be drawn in the area no greater thano86 they did not analyzed
how large the multiplicative constant in the area function is for the other classes of balanced trees,
and said that the constant value is generally in the order of thousands, which is clearly infeasible. In
this paper, we show that the constant value in our algorithm for all those classes of balanced trees is
sufficiently small; for example, 46.1 for AVL trees, 64 for red—black trees, and 4@f&)-trees; this
is also complemented by the experimentation in Section 7. We believe that our algorithm will perform
well in many practical situations.

e Applying our drawing framework to non-upward tree drawing problems, we can obtein-apward
orthogonal straight-linedrawing for any binary tree such that (1) the area (& I0glogn), (2) the
aspect ratio can be an arbitrary value in the ranggot), O(n loglogn/log?n)], and (3) every edge
is drawn either as a single horizontal or vertical segment, which will be calledthogonal straight-
line drawing. This is the first result to guarantee a drawing wiihlog») area and permit an arbitrary
aspect ratio. In addition, we can directly extend the 2-dimensionialdg logn)-area drawing to a
3-dimensional @:loglogn)-volume one with arbitrary aspect ratio. This is also the first result to
guarantee a drawing with(elogn) volume and any given aspect ratio. The previously best known
result was presented by Cohen et al. [5]. They showed that any binary tree can be drawn in volume
of O(nlogn) and with any aspect ratio in the range[@f(,/n/logn), O(n)]. However, edges in the
drawing may be drawn as non-orthogonal segments. Furthermore, their algorithm cannot produce a
drawing with aspect ratio(@/n/logn).

e We, finally, introduce other related problems and show that the unified framework can be applicable to
solve them efficiently in Section 8.

All drawing algorithms presented in this paper run in linear time. Since there are no intricate parts in

implementing our algorithms in linear time, we will omit the time analysis.

Remark. After the preliminary version [24] of this paper was published, Chan et al. [4] independently
proposed a tree drawing strategy. Although they called it “recursive winding” strategy, two strategies
(including the partitioning methods) stem from the same idea; in fact, they are essentially identical.

2. Preliminaries

We begin with basic notations and definitions that will be used throughout the paper.

Thedegreeof a vertexv in a treeT is the number of edges incidentitoTheheightof v in T is defined
as the maximum of the lengthsof paths fromw to leaves inT. Thetree-heightof T is the height of its
root. A subtree rooted atin T is denoted byr,. Thesizeof T, sizgT), is the number of vertices ifi.

An ordered treds a rooted tree in which the children of each vertex are ordered from left to right. Let
T be an ordered tree afvertices with maximum degreeé= O(1). Theleftmost(respectivelyrightmos}
pathof T is a maximal path consisting of the leftmost (respectively, rightmost) edges only starting at the
root. An ordered tred is left-heavyif, for each vertex ofT', its subtrees are ordered from left to right
by non-increasing order of their sizes.rifght-heavytree is defined in a symmetric way. We denote by
NL(T) (respectively, NRT)) the maximum number of non-leftmost (respectively, non-rightmost) edges

2 Thelengthof a path is defined to be the number of vertices on the path.



182 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

Ar,,

Fig. 2. An upward straight-line drawing for a right-heavy treq".

of a path from the root to a leave ih. It is easy to see that if is left-heavy, then NLT) < |logn | and
if T is right-heavy, then NRI") < [logn].

Let Ay be a drawing for an ordered tr@eproduced by some drawing algorithm. If a 2-dimensional
drawing A7 can be enclosed by a rectangle of height (with respect toY -axis) and widthW; (with
respect toX-axis), we call it a drawing with are&l; x Wr. Similarly, a 3-dimensional drawing\y
with height Hy, width Wy and depthD; (with respect toZ-axis) is called a drawing with volume
HT X WT X DT-

We say that a vertex of A7 is south-openf a ray emanating fronv in A7 with south direction does
not intersectA; except atv. Similarly, we can define a vertex iny to be east-open, southwest-open,
etc.

We now introduce a notion @nlargemenof a straight-line drawing. Let\; be a straight-line drawing
with height H;y and widthW; in 2-dimension. An enlargement af; is defined to be a transformation
of Ar to A’ that is a topologically equivalehtdrawing with heightH; + d), and width W + d,,,
whered,, andd,, are non-negative integers. The drawing can be obtained from; as follows. First,
transform A to a topologically equivalent drawing witH; + d;, and Wy by moving all vertices and
edges below =y’ in Ay by d;, units downward, and then by enlarging all edges that formerly passed
through the space between= y’ andy =y’ — 1. Second, transform the drawing 49, with Hy + d,
and Wr + d,, in a symmetric way. Such enlargement 4§ does not violate any drawing standards of
Ar. An enlargement of a 3-dimensional drawing can be similarly defined. Accordingly, whenever it is
necessary, one can enlarge to a topologically equivalent drawing of arbitrary size larger thgn

Finally, we review an @: logn)-area upward straight-line drawing algorithm [7] for any ordered tree
that will be used as a subroutine in our drawing algorithms.7L&e an ordered tree af vertices with
maximum degred.

1. TransformT into a right-heavy tree if it is not right-heavy.
2. Suppose that the rootof 7' hask children,vy, vo, ..., v, in right-to-left order. Recursively dra,

for eachi. Horizontally arrange their drawings so thmrvi+1 is placed one unit away to the left of

Ar, for1<i <k —1andonlyAr, is again shifted up by one unit (see Fig. 2). Next, place the root

v at the intersection point of the horizontal line containing the top sidagf and the vertical line

containing the left side ofi7, .

3. Draw an edgév, v;) as a straight line for each Then the leftmost edg@, v;) is drawn as a vertical
segment and the rightmost ed@e v,) is drawn as a horizontal segment.

3Two drawings argopologically equivalenif adjacencies of vertices and edges in two drawings are perfectly identical.



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 183

We can easily observe that the heightof is proportional to the length of the leftmost pathTafUsing
the fact thatT is right-heavy, the height ofi; has at mostlogn |. Clearly, the width ofA; is at most
n — 1. Hence we can get the following lemma.

Lemma 1 [7]. For any n-vertex treeT with a constant degree, we can have an upward straight-line
drawing A7 such thatHr < [logn|, Wy < n — 1. In addition, the root off" is placed at the upper-left
corner of Ay.

Notice that we can draw a trefe of n vertices in heightd;y < n — 1 and widthW; < [logn | through
an analogous way to the above algorithm.

Lemma 2 [7]. For any n-vertex treeT with a constant degree, we can have an upward straight-line
drawing A7 such thatHy < n — 1 and Wy < |logn]. In addition, the root off is placed at the upper-
left corner ofA 7.

We shall refer to both algorithms of Lemmas 1 and 2 as algoritdmand. A, , respectively, which are
named according to the recursive step where subtree drawings are arranged horizontally or vertically.

Remark. If T is a binary tree, then each edgeAn produced either by Lemma 1 or by Lemma 2 is
drawn either as a horizontal segment or a vertical segment. Zikusecomes an upward orthogonal
straight-line drawing off".

3. Partition-and-merge drawing strategy

There is a general-purpose drawing strategy that produces small area drawings for a wide variety
of families of graphs, including trees and planar graphs. That ispHrétion-and-mergestrategy:
(i) partition a treeT into pieces by deleting some edges, (ii) draw these pieces, and (iii) merge the
drawings of the pieces by inserting and drawing the deleted edges among the drawings. An algorithm
of drawing each of the pieces will be called thase drawing algorithmand an algorithm of merging
the drawings of the pieces will be called theerging algorithm Then a drawing algorithm based on
the partition-and-merge strategy is fully described by three elements: a partitioning nfetlaodase
drawing algorithmi3, and a merging algorithnM. Several tree drawing algorithms [2,12,16,19,27,28]
including our drawing algorithms adopt this strategy.

Formally, ann-vertex rooted tred’ is partitioned byP into O(n/m) partial tree$ each of which
has size at most @), wherem is apartition parameter< n. In particular, we shall call the resulting
partial treedragments This partitioning is done by deleting(@/m) edges, calledeparators Each of
the fragments is drawn b, and then their drawings are placed appropriately and the deleted edges are
restored and drawn around the fragment drawinga by

4 A partial treeof T simply means a connected subgrapiToNote that a subtree df rooted at a vertex is a partial tree
of T rooted atv that includes all descendantsof



184 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

3.1. Partitioning method

A well-known partitioning method used in [2,12,19,28] is based on the planar separator theorem due
to Lipton and Tarjan [20]. The separators are determined by recursively finding an edge whose removal
dividesT into two fragments, each with at least3 vertices and at most23 vertices [15].

In [16], the separators are determined by introducing a notion ofcthigal vertex which was
originally used for parallel tree contractions by Gazit et al. [13]. But, this method is applied to only
the bounded-degree trees. Our partitioning method is a variation of this method.

We now present a partitioning method which will be used in our drawing algorithms in this paper.
Unlike other methods, our method has a property, which is desirable to produce small area tree drawings.
The property will be explained at the end of the subsection.

Let T be an-vertex tree with maximum degree @f For a partition parameter (< n), a vertexv of
T is m-critical if v is not a leaf and'siz&(T,)/m] > [siz&T,)/m] for all childrenv’ of v. Letv be an
m-critical vertex with a childw. Since[siz&T,)/m] > [siz&T,)/m] > 1, siz&T,) must be no less than
m + 1. In other words, if siz€l,) > 2m + 1, thenT, must contain at least one-critical vertex. From
the definition of then-critical vertex, we can further observe that the least common ancestor of any two
m-critical vertices is alsa-critical.

Our partitioning method is summarized below.

Procedure PartitionTree(T, m)
1. find allm-critical vertices ofT.
2. for everym-critical vertexv in T do
define the edges incident toas separators df.
3. delete the separators fram
4. return the fragments and the separatorgof

Lemma 3. For any tree T with maximum degre@ and a given integerm (< n), the procedure
PartitionTree produces at mos2dn /m fragments, each of which has at mesvertices.

Proof. The number of fragments is bounded by the number of separatdfs which is the number
of m-critical vertices times the maximum degréeof 7. Gazit et al. [13] proved that the number of
m-critical vertices is at mostrZ m — 1. Thus there are at mos#2/m fragments. From the fact that any
subtree with vertices 2m + 1 contains at least one-critical vertex, we can easily conclude that the
size of a fragment is at most. O

The proceduréPartitionTree naturally defines a rooted tree, callef@gment tree FTof T, in which
each vertex corresponds to a fragment and there is an edge between two fragmaemds, in FT if
there exists a separatar, w) in T such thav € F;, w € F, andv is the parent ofv. ThenF; is the parent
of F, in FT andw becomes the root of,. We call v a connection vertexf F; and say the separator
(v, w) to beincidentto F; and F». Clearly, a fragment treET of T consists of @u/m) vertices whose
maximum degree may be at makt

A fragment istrivial if it has only one vertex. Since all edges incident tosascritical vertex are
defined as separators, everycritical vertex itself is a trivial fragment iR T. The fact also implies that
every non-trivial fragment iff T has nam-critical vertices.



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 185

Our partitioning method has a good property that each non-trivial fragment has at most one connection
vertex. This is, in general, not true for other partitioning methods [12,19,20,27,28], in which a non-trivial
fragment may have two or more connection vertices (possilflpd2) ones). LetF be a non-trivial
fragment with a child fragment’. There is a separater= (v, w) such thaw is a connection vertex iff
andw is the root of F’. To draws in the merging step, we should make enough room to connantiw
without edge-crossings iy andA.. As a consequence, the additional area needed to draw separators
incident to F is proportional to the number of connection verticesFofAccordingly, to perform the
merging step with a little cost, it is desirable that each non-trivial fragment has as less connection vertices
as possible. The following lemma, hence, plays a crucial role in breaking the upper bduridg @),
on area.

Lemma 4. Let FT be a fragment tree @f produced by the procedureartitionTree. Then each non-trivial
fragment in FT has at most one child fragment, that is, has at most one connection vertex. Moreover, if
exists, the unique child fragment is trivial.

Proof. For contradiction, suppose that has two or more childrerty, F, ..., F; in FT. Let (v;, w;)
be a separator betwednand F;, wherev; is a connection vertex of andw; is the root ofF;. By the
definition of the separatoty; for eachi must bem-critical, thereby the least common ancestaf w;
andw; is alsom-critical, sou itself constitutes a trivial fragment.

Since, howeverF is connectedu must belong toF. Consequently,F consists of two or more
fragments, which is a contradiction. Now we will show that every non-trivial fragniehgs a trivial
fragment as its unique child (if exists) IT. Let (v, w) be a separator connectirfg and one of its
child fragments,F’, wherewv is a connection vertex of" and w is the root of F’. By the definition
of the separator, at least one wlind w must bem-critical. However, since belongs to a non-trivial
fragmentF, v is notm-critical. Hencew must bem-critical. This means thab itself is F’, i.e., F' is a
trivial fragment. O

Let F be a fragment oF T. We shall denote by the connection vertex df (if it exists), and denote
by rr the root of F. If F is trivial, thenry = cr. If F is non-trivial, thency is uniquely defined by the
above lemma.

3.2. Two merging methods

Once a fragment tre€T is generated byP and the fragmentg’ are drawn by a base drawing
algorithm B, their drawingsAr’s will be arranged by a merging algorithoivt. We shall explain two
merging algorithms\,, and M, which will be used in the drawing algorithms later. The algoritih,
vertically stacksAr’s from top to bottom, and the other algorith,, horizontally arrangegi r's from
left to right. ThusM, produces a placement whose height relatively increases more than its width does,
whereasM,, produces a placement whose width relatively increases more than its height does.

The algorithmM, placesA’s vertically according to the reverse preorélesf FT. To do it, we need
two assumptions aboutr’'s: (i) rr lies on the left side ofA and is north-open, and (i) lies on the
right side ofAr and is south-open.

5To traverser in the reverse preorder, first visit the root®f and then recursively visit the subtreesudh the left-to-right
order.



186 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

o
Lre
-

h

\\\

Fig. 3. Recursive construction afrt by M,,.

(v

(a) (b)

Fig. 4. (a) A fragment tree. Circles represent trivial fragments. (b) Placementg’'sty M,,.

Suppose thaET has the root fragment whose child fragments arg,, F, ..., F, from left to right.
Let FT; be the subtree rooted &t in FT (see Fig. 3(a)). Recursively construct the drawingFdf so
that the following invariant is satisfiedy, is placed on the left side ot s+, and is north-open.

When F is trivial, vertically stack the drawingslrr,’s so thatAgy, is directly belowAgr,,, (see
Fig. 3(b)). PlaceF at the intersection of a horizontal lirig passing through;, and a vertical lind;
containing the left side oftr7,. Then draw each separat@fs; rr,) for i as a straight line; this is always
possible because of the invariant abeut The invariant clearly holds fangr.

When F is a non-trivial fragment with the unique child fragmeft, horizontally flip® Agr, and
place Agt, directly below Ay so that the right sides of » and Agr, are aligned at a vertical line (see

6A horizontally flipped drawing of a drawing 7 is a topologically equivalent drawing af7 that is obtained by mirroring
A7 with respect toy-axis.



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 187

Fig. 5. Placements ofi z's by M;,.

Fig. 3(c)). Then we can draw a separafof, rr,) as a straight line without intersecting, and Agr,
except atr andrg,, by the second assumption abeutin A and the invariant abouty, in Agr,. But

rr is not necessarily placed on the left sideAydr. To satisfy the invariant for\rr, we enlargeAr so
that its width is equal to that algr,. Sincer is still located on the left side of the enlarged drawing and
is north-open, the invariant fate7 holds. Fig. 4 shows an example of a final drawing.

Unlike M,, the algorithmM,, arrangesA s from left to right according to the preorder Bf. We
need assumptions abadt-'s which are slightly different from those in,: (i) rr lies on the upper-left
corner of A, and (ii) cr lies on the upper-right corner af-. ThenM,, arrangesA 's from left to right
in a similar way toM,, except that no flipping operations are needed. The detai pfs straightforward,;
for an example, refer to Fig. 5.

Lemma 5. Suppose that a binary treg is partitioned by PartitionTree(T, m). Let FT be the fragment
tree of T. Suppose that each fragmeAtof FT is drawn by some base drawing algoriththand its
drawing A has height< Hr and width< Wy. Then the merging algorithnM,, producesA; with
height no more thart{ x size(FT) and width at mosW  + NL(FT), and M, producesAr with height
at mostHr + NR(FT) and width at mosWy x sizgFT).

Proof. Consider onlyM,; the proof for M, can be similarly done. Sinc#1, stacksAf’s vertically,
each drawingA F of F € FT contributes to the height ol at most byH . Thus the height is at most
Hr x sizgFT). Next, consider the widthv; of Ar. We now show by induction on the tree-height of
FT that Wer < Wr + NL(FT). Note thatW; = Wer. WhenFT consists of only one fragmertt, it
obviously holds because NET) = 0. Inductively, we considef T with root fragmentF’ whose subtrees
areFT,, ..., FT,. If F is trivial, by our drawing algorithm (see Fig. 3(b)),

Wer =max{Wery; Wer, +1, ..., Wer, + 1.
By induction hypothesis,

Wer =max{ Wy + NL(FTy), W + NL(FT2) +1,..., Wy + NL(FT;) + 1}
<We+ max{NL(FTl), NL(FT2) +1,...,NL(FTy) + 1}
= Wg + NL(FT).
Note that
NL(FT) =max{NL(FT1),NL(FT2) +1,...,NL(FT,) + 1}



188 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

by definition. If F is non-trivial (see Fig. 3(c)),
Wer = maX{ Wer,, Wry < max{ Wg + NL(FT1), Wr} = Wp + NL(FT).
Note that NL(FT) = NL(FT,). For both casesy; = Wer < Wy +NL(FT). O

Remark. Consider howM, and M, work whenT is a binary tree. Since every fragmentril has at

most two children, each separator is drawn either as a horizontal or vertical segment. So, if all edges in
Ap are drawn as horizontal or vertical segments, themrmerged byM, and M, becomes an orthogonal
straight-line drawing.

4. Upward straight-line drawing algorithm

Let T be a rooted tree of vertices with maximum degree af. Applying the partition-and-merge
strategy, we obtain an upward straight-line drawitng with height Qiz loglogn /logn), width O(logn)
and area @:loglogn). We will usePartitionTree asP, a variant of algorithm4,, of Lemma 1 ad3, and
M, asM.

First, partitionT by PartitionTree(T, m) with partition parameten = logn. To avoid degenerate cases,
we modify the partition so that- # ¢ for every non-trivial fragmenf’ € FT. If rr = ¢ for a non-trivial
fragmentF, then, by deleting the edges betweegrand its children inF, we maker itself a new trivial
fragment and make each subtreerpfin F a new non-trivial fragment. Note that none of these new
non-trivial fragments has a connection vertex. This modification increases the number of fragments at
most(d — 2) times. Thus there are at most(@ — 2)n/m in the modifiedFT.

Next, draw each fragment by a variant of algoritbiy of Lemma 1. Its detail is as follows. See
Fig. 6(a). LetP = (rr = vy, v2, ..., v, = cr) be a path fromr to ¢y in F; if ¢ does not exist forr,
then we pick any leaf ifF ascp. Letv;q, vjo, ..., vy, be the children ob; (exceptv;1). Let F;; be the
subtree rooted at; (1< j <k;)inF.

1. Draw F;; for all i and j by A,. Then Ag, has heightH, < log(size(F;;)) and width W, <
size(F;;) — 1. Note that the root of;; is placed at the upper-left corner 4f;.
2. PlaceAy, as follows. To assist the following description, we prepare two horizontal linesd/,

and one vertical linés as shown in Fig. 6(b). Horizontal ling is one unit below;. Place aIIAF,.j 'S

V1T =TF

Fig. 6. A drawingA r of a non-trivial fragment.



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 189

—_—

|-
:T:]
1

L]
T
[
L] L]

(a) (b) ()

Fig. 7. An orthogonal drawing admitting one bend per edge wihénbinary.

for 1 <i < h — 1 left-to-right with their roots otl,. Putv; for 1 <i < h — 1 on/, directly above the

root of Ar,,. Next, horizontally flipAg,’s for 1 < j <k, and place them left-to-right with their roots

onl,. Here, the vertical liné; is assumed to be placed one unit away to the rigmh g, . Then, put

v, (= cF) at the intersection of, and/s. Finally, draw the edges oR and incident toP as straight

line segments. Notice here that if we deal with binary trees, then the édgeg) for 1<i<h -1

(except for(vy, vy1)) are drawn as vertical segments.

Let us now calculatet/r and Wr. Since Hp,; < log(siz&(F;;)) and W, < size(F;;) — 1, Hp <
max ;{Hp,}+1< max ;{log(siz& F;;))} +1 < loglogn + ¢ for some constant, andWr < 3, ;(Wr, +
1) <37, jsize(F;) < size(F) < logn.

To apply M, as a merging algorithm, we have to check conditions abguaind cr in a non-
trivial fragment drawingAr. In Ag, rr is on the upper-left corner and is north-open, anpdis on
the upper-right corner and is south-open. Thus we can applyto mergeAr’s. From Lemma 5,
a final drawingAr has Hr < Hr x sizgFT) and Wr < Wr + NL(FT). If we transformFT into a
left-heavy tree before applying1,, then NL(FT) < log(sizeFT)) = O(log(n/m)) = O(logn). Thus
Hyr = O(loglogn x (n/m)) = O(nloglogn/logn) andWy = O(logn). Since all edges izt are drawn
according to the upward standard, we have the following theorem.

Theorem 1. Any bounded-degree-vertex treeT admits an upward straight-line drawing with height
O(nloglogn/logn), width O(logn) and areaO(n loglogn).

Consider the case whehis a binary tree. When we are drawing a non-trivial fragménthe edges
(v;, v;p) for 1 <i < h — 1 are drawn as vertical segments, and only the édgev;,;) is drawn as a non-
vertical segment. Note here that= cr. In other words, at most one edge#n which is incident ta:r,
is drawn as a non-orthogonal segmentip. As a result, @z /logn) edges ofl’ which are incident to
connection vertices are only drawn as non-orthogonal segments (see Fig. 7(a)). We will now explain how
to convert each of these non-orthogonal segments to an orthogonal chain with at most one bend. First
when drawing a non-trivial fragmerft, we placec, directly aboveAy,,, not at the intersection af
andls, and thus the non-orthogonal edge betweeand its child ofF is drawn as a vertical segment (see
Fig. 7(b)). Next, we draw each separator as a chain of one horizontal segment and one vertical segment a



190 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

shown in Fig. 7(c). Clearly, the chains do not intersect the drawing. The height is@tib@ogn /logn)
and the width is @ogn). Of course, the drawing has at most one bend per edge andaQn) bends
in total.

Theorem 2. A binary tree T has an O(nloglogn)-area upward orthogonal drawing with height
O(nloglogn/logn) and widthO(logr). In addition, the drawing has at most one bend per edge and
O(n/logn) bends in total.

Remark. The constant values in the area obtained by Theorems 1 and 2 are not greatef(thar2f
In particular, the value for binary trees is 12 becadise 3. However, as seen in Section 7, our experiment
for binary trees with 19vertices or less shows the value does not exce2d 1

5. Order-preserving upward drawing for balanced trees

In this section, we show that our drawing strategy works well for drawing some classes of bounded-
degree balanced search trees under order-preserving (strictly) upward drawing standard. The classe
include k-balanced trees, red—black trees [20], [BBtrees [20] and(a, b)-trees [21], where&, o, a
andb are fixed constants, anda < b.

Our algorithm produces an order-preserving upward drawing withldg logn) area; if the strictly
upward standard is required, then the drawing area increasegni@o@ogn)?). Actually, a linear-
area order-preserving strictly upward drawing algorithm for such trees has been already known in [8,9].
However, as stated in [8], the constant hidden in the area function is quite large (in order of thousands)
except AVL trees which can be drawn with a constant not greater than 36 [9]. In that sense, our algorithm
produces a better drawing with a relatively small constant (not greater than 64 in most practical cases)
for all those classes of balanced trees.

In general, according to how to maintain the balance condition, balanced search trees are classifiec
into three categories [22fieight-balancegweight-balancecdinddegree-balanced-balanced trees and
red—black trees are height-balanced since the tree-heights of the subtrees of each individual vertex ma
differ at most by a constant. In BB]-trees, the sizes of the subtrees of each vertex may differ at most by
a constant, thus called weight-balanced. The)-tree is degree-balanced since its balance is maintained
by varying the degree of internal vertices.

Let T be a tree withn vertices in the classes. Our partition Bfinto O(n/m) fragments (refer to
Section 3) has two important properties:

(P1) the tree-height of each non-trivial fragment idd@m), and
(P2) for any path from the root to a leaf FiT the number of non-trivial fragments on the path is also
O(logm).

These two properties will be crucial for achieving area less thanldgr). To show (P1) and (P2),
it suffices to prove that all vertices of height greater thato@n) in T arem-critical, that is, any non-
critical vertex is of height at most@gm) in T.

A binary treeT is k-balancedif, for each vertexv of T, the tree-height of its left subtree and the
tree-height of its right subtree differ by at mastwherek (> 1) is a fixed constant. A-balanced tree is
a natural generalization of AVL trees, i.e., 1-balanced treesF}’;dIe the minimum number of vertices
of ak-balanced tree with heighit. Fork = 1, F}! = F;- ; + F;- , + 1, whereFg =0 andFj = 1. Note



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 191

that F! > ¢+/5, wherep = (1 + +/5)/2 [14]. By generalizing the above recurrencektbalanced trees,
Ff =Fy 1+ Fy, ,+1, whereFf =i for 0<i <h. Then we can easily show tha&} > F}, ,, by
induction onh.

Lemma 6. In the partition of ak-balanced binary treel’ by PartitionTree(T, m), every non-critical
vertex has height at mo&(logm) in T.

Proof. Consider a vertex in T with heightk log, (5m) + k + 1. We know that must have two children
because of thé-balanced condition. Let andw be two children ofv. Then both off,, and 7, must
have height at leagtlog, (5m), so they have size at least

(0% 5m) 5

k 1
Fklog¢(5m) > F]og¢(5m) Z T = Em > 2m.

This implies that each of them contains at least eneritical vertex. Sincev is the least common
ancestor of« andw, v becomes am-critical vertex. It is also easy to see that any vertex with height
> klog, (5m) + k + 1 ism-critical. Therefore, every non-critical vertex hagl@m) heightin7. 0O

For red—black trees, BB ]-trees anda, b)-trees, we can prove that (P1) and (P2) also hold using a
similar argument to that in Lemma 6. Hence we have the following result.

Lemma 7. In the partition for trees in the classes bbfbalanced trees, red—black trees, BB-trees and
(a, b)-trees,(P1)each fragment ha®(logm) tree-height, andP2)there are at mosD(logm) non-trivial
fragments on any path from the root to a leaf in FT.

After calling PartitionTree(T, m) with m = logn, draw each non-trivial fragment € FT by the
following base drawing algorithm.

1. DrawF by A, of Lemma 1. To preserve the left-to-right orderAn-, we skip step 1 o4, in which
F is transformed into a right-heavy tree. SinEehas height @oglogn) by property (P1), it still
holds thatHr = O(log logn) andWr = O(logn).

2. LetF’ be the unique child fragment &f if exists. Lets = (¢, r7) be the separator betweéhand F’.
We assume thatz hask childrenb,, by, ..., b, left-to-right in F. Note that- is a child ofcy in T,
but it is notb; for anyi. We denote by, = (cr, b;) theith child edge ofcr. For the completeness
of the description, we assume that there exist two virtual edgesde; ;1 to the left ofe; and to
the right ofe;, respectively. Suppose that the separat@® an edge betwee#) ande,,; for somet
(0 <t < k). We modify A to make enough room to drambetweere, ande,,; as shown in Fig. 8.
Let d;, be the distance between and the right side ofAr andd, be the distance between and
the bottom side ofA . To assist a description of the modification, we define two horizontal lines
and/, and two vertical lineg; andl, as illustrated in Fig. 8. LetA,, be a drawing of the subtree
rooted at;. First, we horizontally translate drawings, ,,, ..., 4, to the rightward direction so that
the drawings entirely lie between= x’ andx = x’ + dj,. The translation does not violate drawing
standards ofA . Second, we translate drawings,, ..., A,, to the downward direction so that the
top sides of the drawings are alignedatThen the translated drawings lie entirely betwegesa y’

andy =y’ — d,. We suppose hereafter that the modified drawing is defined in a rectangle with height

Hy +d, and widthWy + d;, + 1. That is, the modified drawing has heighH = O(loglogn) and
width < 2Wy + 1= O(logn).



192 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

, e " "
e |
1] Id
o Ay Ap, v
l —————— E—A—b} —————————————————————
TR y=1vy
d,
r=a z=a +(dy+1)
CF ,

+ LA,
| ST vy SN TS : ---?: ------------------------ L--

Fig. 8. An illustration of step 2. Suppose that a separatprry-) is an edge betweer, b2) and(cr, b3). The
above is a drawing of a non-trivial fragmefitby A;,. The below is a drawing modified so as to draw the separator

(cFr,TFr).

Let p be an intersection point éf and/z, andg be an intersection point @f andl,. Then a line passing
throughcr and p passeg, and the line does not intersect other vertices and edgas itUsing this fact,
we, in the merging step, place the rogt at the pointg, and then draw the separatoe (cr, rr) as a
straight-line fromer to g (= rp/) without crossings.

To mergeAr’s, we use a slightly modified version g¥1,. We need two types of drawings fdf,
denoted byA4 and AZ. Drawing A4 is identical toA » produced by the above base drawing algorithm.
In A4, rr lies at the upper-left corner. Symmetrically, we can obtain an order-preserving drafing
such thatrr lies at the upper-right corner of the drawing. Note tkgt is obtained by horizontally
flipping A% so that the left-to-right order is preserved. Witf’s and A2’s in our hand, we apply\1,
as maintaining the order-preserving property. The detail is straightforward.

We know that NI(FT) = O(logn) becausd’ is balanced. Using this fact and Lemma 5, we can show
the following theorem.

Theorem 3. For a balanced tredl’ in the classes of-balanced trees, red—black trees, BB-trees and
(a, b)-trees, the above algorithm produces @ log logn)-area order-preserving upward straight-line
drawing with heightO( loglogn /logn) and widthO(logn).

In the remainder of the section, we will show that the order-preserving upward drawing described
above can be easily modified into an order-preserving strictly upward drawing. First, we construct an
O(n(loglogn)?)-area order-preserving upward drawing in which every edge from a parent to a child
in the drawing has always one of south, east and southeast directions. Second, using the property, wi
transform the upward drawing into a strictly upward one without affecting are@l@ logn)?).



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 193

Drawings of the fragments produced by the base drawing algorithm satisfy the property clearly. In
the merging step, however, some of the drawings are horizontally flipped, so edges may have west or
southwest directions. This can be solved by modifying the merging algorithm as follows. hetthe
root fragment ofFT with child fragmentsFy, F, ..., Fy, left-to-right. LetFT; be the subtree rooted at
F; in FT. Recursively construct the drawings fer ;. If F is trivial, we combineA and Agr,’s in the
same method as we did i, (refer to Fig. 3(b)). IfF is a non-trivial fragment with one child fragment
Fy, place Agr, so that the root ofAgr, is at the pointy and Agr, lies entirely in the right side ofA .

Note here thatgr, is not flipped. Then the separator betweeand F; can be drawn as a straight-line
with a southeast direction.

Let Ay be a drawing obtained by the above merging algorithm. It is clearAat O(n loglogn/
logn). Consider the widthWy. Let P be a path from the root to a leaf of Ar. Suppose thaP is
passing through fragments, F», ..., F,, wherev € F,, andF; is a child fragment of;_, for 2 <i < .

If F; is trivial, we know that a separator from; to its child r,, contributes toW; by at most one.
If F; is non-trivial, a path fromvy to rp,, contributes toW, by the width of Ag, i.e., Qlogn).
Let n, andn, be the number of trivial fragments and non-trivial fragmentsRyrrespectively. Then
Wr =n1+ ny x O(logn). Sincen, = O(logn) becausd is balanced and, = O(log logn) by (P2) of
Lemma 7. Thereforelr = O(logn) + O(loglogn x logn) = O(logn log logn).

Now it remains to transform the upward drawing to a strictly upward one. The transformation is done
by modifying coordinategx, y) of each vertex inA7 to (x,x + y). Using the property on the edge
directions ofAy, it is not difficult to show that the transformed drawing is planar and strictly upward
[7]- Then the transformed drawing has heigh#H; + Wy and widthWr. SinceHy > Wy, the height of
the drawing is bounded below byZz. Consequently, the strictly upward drawing has asymptotically the
same bounds for height and width as the upward ones.

Theorem 4. For a balanced tredl” in the classes af-balanced trees, red—black trees, BB-trees and
(a, b)-trees, the above algorithm produces @n(loglogn)?)-area order-preserving strictly upward
straight-line drawing with heigh©(n log logn /logn) and widthO(logn log logn).

Remark. The multiplicative constants hidden in our area functions are not large as compared to those
in the linear-area drawing algorithm [8,9], in which the constant for AVL trees turned out to be not
greater than 36 for strictly upward standard (not analyzed for the other classes of balanced trees), and i
decreased to 3.1 in experiments. Roughly analyzing the values in our order-preserving strictly upward
drawing, the values fok-balanced, red—black, BB]- and (a, b)-trees are no more than B4og¢,

64, —32/log(1 — «) and 16, respectively. In practicek and b are sufficiently small; 46.1 for AVL
(1-balanced) trees, 64 for red—black trees, and 48%d3)-trees. Thus the constants are no more than 64

in most cases. The experiment for red—black trees in Section 7 shows that the value is actually no more
than 12 in most cases. We might expect the constant values for the other balanced trees including AVL
trees should drastically decrease in experiments.

6. Orthogonal straight-line drawing for binary trees

The main contribution in this section is algorithms which draw binary trees withdg logn) area,
(or O(nloglogn) volume in 3-dimension) and any given aspect ratio under the orthogonal straight-line



194 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

standard. The algorithms are the first results in 2- and 3-dimensions which reduce the upper bound from
O(nlogn) to O(nloglogn). Furthermore, the algorithms can draw binary trees with any given aspect
ratio. We will concentrate on a 2-dimensional drawing algorithm because a 3-dimensional drawing can
be directly obtained by extending the 2-dimensional algorithm.

We use a variation of the procedupertitionTree as a partitioning metho®. Let T be a binary tree of
n (= 2) vertices. Suppose that a vertex € T is not the root ofl and has at most one child . Given
a partition parameten (< n) and the vertexu, we will partition T into O(n/m) fragments, each of
size Qm), so that

() wur itself constitutes a trivial fragment, and
(i) rg # cr for every non-trivial fragment .

If F has no connection vertices, we pick an arbitrary leafiascr. Moreover, Lemma 4 must hold
for this partitioning method.

Such a partitioning method can be achieved as followsyltmt the child ofu; in F (if it exists) and
F, be the subtree rooted atin F. To makeur anm-critical vertex, i.e., a trivial fragment, we attach
a dummy treeD as the subtree gf;. Now ur has at most two subtreds and D. The size ofD is
determined as follows: if siZé’,) < 2m, then siz€D) = 2m — sizg F,), otherwise siz€D) = m. Then
wr Will become anm-critical vertex by the definition of the:-critical vertex. Note that siZd®) < 2m,

S0 siz&€T) < n + 2m < 3n. We now partitionT” by calling PartitionTree (T, m). The number of fragments

is still O(n/m) by Lemma 3, ande; is defined as am-critical vertex. Thus, condition (i) is satisfied.

Let F be a non-trivial fragment such that = cr. Since siz€F) > 2, rr has exactly one chila in F.

To satisfy condition (ii), we definer as a trivial fragment and the new non-trivial fragmefyt as a
non-trivial fragment. HereF,, represents a subtree rootecwatn F. Thus, condition (ii) is satisfied.
Since F has only one connection vertex (= rr), F, does not have a connection vertex any more.
This implies that Lemma 4 still holds. Finally, we delgiefrom 7. Consequently7 is divided into
O(n/m) fragments satisfying two conditions and Lemma 4. We shall refer to this partitioning method as
Procedure PartitionTree* (T, m, ur).

Before describing our drawing algorithm, let us explain a basic idea to control the aspect ratio of
while achieving Qn log logn) area. To do it, we shall apply our partition-and-merge method twice. First,
partition 7 with a partition parameter:; (< n). Suppose that we have drawn each fragment by some
drawing method such a4, and vertically stack the fragment drawings.py, . If m, is very smaller than
n, e.g.,my = logn, then the final drawing becomes longish because the height is relatively larger than the
width. If m, is larger than @ogn), then the shape of drawing will be square-like more and more, but the
drawing area may be greater tham@g logn); in fact, the area becomeg®ogn) if we use eithet4,,
or A, to draw the fragments. In order to control the aspect ratio as keeping the aréagl@gn), we
draw each fragment by another drawing method based on the partition-and-merge strategy, rather than b
A, and A,. At this time, each fragment is again partitioned with another partition parameteg m;)
into several sub-fragments. The sub-fragments are drawn by some base drawing algorithm, denoted her
by B*, and their drawings are horizontally arranged.of;,. Then we can keep the aregs#doglogn)
and can also control the aspect ratio according to the values ahdm..

The base drawing algorithii* draws each non-trivial fragmeiit of sizem in O(m logm) area such
thatrr is placed at the upper-left corner afr andcr is at the upper-right corner of F. We can obtain
B* through a minor modification ofl, of Lemma 2 as follows.

1. LetP = (rp =v1,vp,...,v,_1,V, = cr) be a path fronrp to ¢ in F. Let F; be the subtree of;

attached to the path not containingy; 1.



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 195

Fig. 9. (a), (b) When the length @ is less than 4, horizontally arranggr,’s left-to-right. Puty; directly above
the root ofAr,. (c) Otherwise, stackl r,’s up-to-down and down-to-up such that the shape of the pathlike a
character “U”.

Fig. 10. Modification ofA r so thatcr is south-open and lies on the left side.

2. Draw F; by A, for eachi so thatHy, = O(size F;)) and Wg, = O(log(size&(F;))).

3. ArrangeAp,’s and vertices orP, as shown in Fig. 9, according to the lengthRif horizontally flip
someAp,’s, if necessary. Next, draw edges #rand adjacent t@.

Trivially, Hr = O(m). Since at most thred ,’s are horizontally laid Wy = O(logm).

Lemma 8. For a non-trivial fragmentF of m vertices, the procedurds* produces an orthogonal
straight-line drawingA  with heightO(m), width O(logm) and areaO(m logm). Two vertices» and
cr are placed at the upper-left and upper-right corners/Ayf, respectively.

Now we are ready to give the whole drawing algorithm. The algorithm takes as input a binafy, tree
two integersny andm; (n > my > my).
1. PartitionT by PartitionTree(T', m1). Let FT be the fragment tree df. Note here that the procedure
PartitionTree is used a$°.
2. For each non-trivial fragmeri € FT, do the following steps.
(i) Partition F' by PartitionTree* (F, m», cr). Let FT' be the fragment tree df. Note thatuy = cr,
Socy is trivial in FT'. ThenFT’ consists of @m,/m») fragments, each with @:,) vertices.



196 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

(iiy For each non-trivial fragment#”’ € FT’, draw F’ by the base algorithn8*. By Lemma 8,
Hp = O(my) and Wg = O(logmy).

(i) Let R’ be the root fragment dfF T’ and letC’ be the fragment oF T’ containingc. Actually,
C’ consists ot only. TransformFT’ so that a path fronk’ to C’ in FT’ becomes the rightmost
path of FT’, and all subtrees iRT’ attached to the path into right-heavy trees.

(iv) Merge Ar’s by the merging algorithmM,,; this is always possible because the root and
connection vertex of”’ satisfy the assumptions needed to appty;.

Since the path fronR’ to C’ is the rightmost path oF T, cr is located on the top side of 7 (see

Fig. 10(a)). In the step (iii))FT’ is not a perfectly right-heavy tree because of the rightmost path from

R’ to C’. However, it is easy to show that NRT') < |logsiz€FT’)| 4+ 1. Combining this fact with

Lemma 5, we can know that  has height

Hp = O(Hp +NR(FT')) = o(m2 +log %)
2

and
Wy = O<an1> _ o(M)‘

nma nma

3. TransformFT into a left-heavy tree.

4. MergeAr's by the merging algorithriV, as follows. To applyM,, rr should lie on the left side of
Ar andcg should lie on the right side af . Of courseyr must be north-open ang- be south-open.
However, as shown in Fig. 10(a}\» produced in step 2 may not satisfy the condition alqutWe
modify Ar as shown in Fig. 10(b). It is always possible becatisdas at most one subtree
Thenrr andcr respectively lie on the left and right sides 4f-, and are north- and south-open in
Ar. By Lemma5,Ar has

Hy :o<HFi> :o<@ n Logm)
mi mi mi mo
and

|
Wy = O(Wy + NL(FT)) = o(w +log i).
mo mi

Theorem 5. Given a binary treel’ and ur # ry with at most one child of’, the above algorithm
produces an orthogonal straight-line drawingy; with areaO(n loglogn) and any aspect ratio in the
range of[O(1), O(n loglogn /log? n)].

Proof. Let a be a real number such that<Ou < 1. Settingm; = O(n”logn/./loglogn) andm, =
O(logn),

Hy :O<@ + iIog @) :O(n /2097007 I 0gogn Iogn> = O(n**\/loglogn ),
my  mq mo n4 n?logn

JiogTogn log Iogn) = O(n“+/loglogn).

The area ofA7 is Hr x Wy = O(n loglogn). Without loss of generalityH is assumed to be no less than
Wr, that is, O< a < 1/2. Then the aspect ratio i,/ W = O(n'~2%). This implies that for any constant

Wr = O(Iog i + M Iogmz) = O(Iognl“’ +
mi ma



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 197

r

TII r

TII

T 1

(a) (b)

Fig. 11. Arrangements for h—v drawing.

0 < & < 1 we can obtain a drawing with aspect rati:©). Leiserson [19] showed that the minimum side
length of an orthogonal drawing must £logn). Using the fact, we can see that the possible maximum
value of the aspect ratio of @loglogn)-area drawings is @ loglogn/log?n). When mq, = n/k

and m, = logn for some constant > 1, then Hy = O(logn) and Wy = O(nloglogn/logn). As a
consequence, we can achiextg with any aspect ratio in a range between the possible smallest and
largest values, i.e[O(1), O(nloglogn /log?n)]. O

To get a 3-dimensional orthogonal straight-line drawing with any given aspect ratio, we apply the
partition-and-merge method three times. Partition a binaryZred&h parametemy < n, and draw each
fragment with a proper aspect ratio ep-plane. Here, we use Theorem 5 to draw each fragment, in
which the partition-and-merge process occurs twice again. Next, gtaskalong thez-axis in a similar
way to M, and draw separators.

Theorem 6. Any binary treeT” with n vertices has &-dimensional orthogonal straight-line drawingy;
with volumeO(n loglogn) and any aspect ratio ifO(1), O(n loglogn/logn)].

7. Experimental results

We have implemented most algorithms presented in this paper on SGI machines in C language
and have experimented to see how large the multiplicative constants in the area functions are. In
particular, we have focused on th€/oglogn)-area upward drawing algorithm of Theorem 1 and the
O(n(loglogn)?)-area order-preserving strictly upward drawing algorithm of Theorem 4 for red—black
trees.

For the upward drawing algorithm of Theorem 1, we have prepared three sets of binary trees; randomly
generated unordered rooted trees (in short, the collection BT) which is generated by an algorithm
presented in [1], randomly built binary search trees (in short, the collection BST) which is generated
by inserting keys, starting from an empty binary search tree, one by one:fiime random permutation
[6], and randomly built red—black trees (in short, the collection RBT) [6]. For each set, we have generated
40 binary trees with the same number of vertices which ranges from 100 t€tE@rly, the trees in BT
are likely to be more unbalanced than those in BST and in RBT, and the trees of RBT are most balanced.

We have first checked how large the constants, for each set of trees, in the area function are. Fig. 12
shows the ratios of the actual drawing areas obtained by Theorem 1 to the valdegdbgr. The



198 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

1.5
1.4
1.3
1.2
1.1

1
0.9 ¢
0.8 4

100 1000 10000 100000

n

AREA
nloglogn

Fig. 12. Constant values in the area function of the upward drawing algorithm (Theorem 1) for three sets, BT, BST
and RBT, of trees.

AREA
MIN H-V

T
100 1000 10000 100000
n

Fig. 13. Ratios of the upward drawing area (Theorem 1) to the minimum area of h—v drawing for BT, BST and
RBT.

constant values for all three sets do not exceed 1.2, and are quite smaller than the theoretical bound 1.
(refer to the remark in Section 4).

We have next compared the drawing area with the minimum area of h—v drawitgvAdrawingof T,
consisting of root and two subtree§’ andT”, is obtained by placing at the upper left-hand corner
and by connecting, in one of two ways shown in Fig. And the recursively drawn h—v drawings of
T’ andT” by horizontal or vertical line segments. Eades et al. [11] proposed an algorithm of computing
the minimum area of an h—v drawing for anyvertex binary tree in @*?logn) time by employing
dynamic programming techniques.

Actually, an upward drawing obtained by Theorem 1 is not an h—v drawing. Thus one may have a
doubt about the fairness of the comparison. But we believe that the h—v drawing algorithm is the best



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 199

0.42
L

0.41

0.4

AREA 0.39

log L 2
n(loglog n) 0.38

0.37
0.36

0.35

100

1000

10000 100000
n

Fig. 14. Constant values in the area function of the order-preserving strictly upward drawing algorithm (Theorem 4)

for a set, RBT, of red—black trees.

AREA
MIN H-V

1.4

100

1000

10000 100000
n

Fig. 15. Ratios of the order-preserving strictly upward drawing area (Theorem 4) to the minimum area of the

order-preserving h—v drawing for RBT.

upward drawing algorithm known so far. Fig. 13 illustrates the area ratio of two algorithms, and shows
that our algorithm produces an upward drawing with area less than three times the minimum h—v area in

most cases.

Next, we have considered order-preserving strictly upward drawings for randomly built red—black
trees, RBT. As shown in Figs. 14 and 15, the constant value for red—black trees in the drawings obtained
by Theorem 4 is not greater thar¥@, and the area is not larger than three times the minimum area of the
order-preserving h—v drawing. Notice that the theoretical constant value for red—black trees is 64 (refer

to the remark in Section 5).



200 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202
8. Concluding remarks

We have investigated several straight-line drawing problems for some classes of bounded-degree tree
under various drawing standards: (1) upward straight-line, (2) order-preserving (strictly) upward straight-
line, and (3) non-upward orthogonal straight-line standards. Main contribution of this paper is a unified
drawing framework which allows us to obtain various tree drawings with area strictly less than the best
bound Qrlogn) [7,12] known so far. We also show that arbitrary aspect ratio can be achieved in non-
upward orthogonal straight-line drawings of binary trees. Table 1 is a summary of the results.

Let us discuss what other drawing problems can be solved by a unified drawing framework presented
in this paper.

e We believe that the unified framework is useful to achieve an orthogonal drawing with the small area
and any given aspect ratio. As a representative example, we have already presented an orthogone
straight-line drawing algorithm in Section 6. If we combine the Valiant’s result [28] and our framework,
we can also draw any tree with maximum degree of 4 with argg,@ny aspect ratio and@g logn)
bends per edge. This drawing is superior to that of Valiant [28] whose argajsd3pect ratio is (1)
and the number of bends per edge @oQn). The details are given in [25]. If the algorithm extends
to 3-dimension, we can obtain a 3-dimensional orthogonal drawing for any tree with maximum degree
of 6 so that the volume is @), the number of bends per edge is at most seven, and almost any aspect
ratio is allowed.

e Until now, the upward standard has been considered in 2-dimensional drawings. But, we can also
define the upwardness in 3-dimensional drawings similarly. That is, if each vertex and its child in a
drawing can be connected by a monotone curve with respect to an axis, the drawing is said to be upwarc
with respect to the axis. Thus it will be interesting to characterize the area-tradeof between upwardness
and aspect ratio in 2- and 3-dimensions. For instance, we can show that using the framework used in
this paper, any binary tree with heightl®gn) has a two-axis upward orthogonal straight-line drawing
with volume Qnloglogr) and arbitrary aspect ratio in 3-dimension. But, we do not know whether or
not it is possible in 2-dimension.

¢ In[8], the authors presented a strictly upward straight-line drawing algorithm for balanced search trees
which guarantees area@ and arbitrary aspect ratio with the shorter side length of at lea$ulégy
any o > 1. But it is impossible to get a longish drawing with shorter side length @bga), so it
remains as an open problem. We can obtain such a longish drawing by our framework. The detail for
AVL trees is given in [17].

We will finish this section with a list of open problems. For upward straight-line drawings, we do not

know yet if any unbounded-degree tree can be drawn in af@do@logn), or if there exists a class

of trees requiring2 (n loglogn), hence both remain open. For order-preserving upward straight-line

drawings, it was proved that a class of logarithmic trees, in which the height of any subtree is logarithmic

to the number of vertices, can be drawn in linear area [8], but it remains open if any tree of hgaght)O

can be drawn in linear area. Recently, Chan [3] developed an algorithm to draw any binary t¢e&ti) O

area with stronger order-preserving standard, catemhgly order-preserving standaréh which each

edge from the parent to the left (respectively right) child should be monotone decreasing (respectively

increasing) in ther-direction. Thus it would be interesting to draw any (binary) tree in super-linear area

under (strongly) order-preserving (strictly) upward straight-line standards, together with raising the lower

bound,2 (nlogn) [12].



C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202 201

Acknowledgements

We thank to anonymous referees for many useful suggestions that have improved the presentation o
this paper.

References

[1] L. Alonso, R. Schott, Random Generation of Trees, Kluwer Academic Publishers, Dordrecht, 1995.

[2] S.N. Bhatt, F.T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. Syst. Sci. 28
(1984) 300-343.

[3] T. Chan, A near-linear area bound for drawing binary trees, in: Proc. 10th ACM—SIAM Symp. on Discrete
Algorithms, 1999.

[4] T. Chan, M.T. Goodrich, S.R. Kosaraju, R. Tamassia, Optimizing area and aspect ratio in straight-line
orthogonal tree drawings, in: S. North (Ed.), Graph Drawing (Proc. GD '96), Lecture Notes in Computer
Science, Vol. 1353, Springer, Berlin, 1997.

[5] R.F. Cohen, P. Eades, T. Lin, F. Ruskey, Three-dimensional graph drawing, in: R. Tamassia, I.G. Tollis
(Eds.), Proc. Graph Drawing: DIMACS International Workshop, GD’94, Lecture Notes in Computer Science,
Vol. 894, Springer, Berlin, 1994, pp. 1-11.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA, 1990.

[7] P. Crescenzi, G. Di Battista, A. Piperno, A note on optimal area algorithms for upward drawings of binary
trees, Computational Geometry 2 (1992) 187-200.

[8] P. Crescenzi, P. Penna, Strictly-upward drawings of ordered search trees, Theoret. Comput. Sci. 203 (1998)
51-67.

[9] P. Crescenzi, P. Penna, A. Piperno, Linear area upward drawings of AVL trees, Computational Geometry
9 (1998) 25-42 (Special Issue on Geometric Representations of Graphs, edited by G. Di Battista and
R. Tamassia).

[10] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Algorithms for drawing graphs: an annotated bibliography,
Computational Geometry 4 (1994) 235-282.

[11] P. Eades, T. Lin, X. Lin, Minimum size h—v drawings, in: Proc. Advanced Visual Interfaces, World Scientific
Series in Computer Science, Vol. 36, 1992, pp. 386-394.

[12] A. Garg, M.T. Goodrich, R. Tamassia, Area-efficient upward tree drawings, in: Proc. 9th Ann. ACM Symp.
Comput. Geom., 1993, pp. 359-368.

[13] H. Gazit, G.L. Miller, S.-H. Teng, Optimal tree contraction in an EREW model, in: S.K. Tewksbury,
B.W. Dickinson, S.C. Schwartz (Eds.), Concurrent Computations: Algorithms, Architecture and Technology,
Plenum Press, New York, 1988, pp. 139-156.

[14] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1989.

[15] L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, R.E. Tarjan, A linear-time algorithms for visibility and
shortest path problems inside triangulated simple polygons, Algorithmica 2 (1987) 209-233.

[16] S.K. Kim, Simple algorithms for orthogonal upward drawings of binary and ternary trees, in: Proc. 7th
Canadian Conference on Computational Geometry, 1995, pp. 115-120.

[17] S.K. Kim, Logarithmic width, linear area upward drawing of AVL trees, in: Inform. Process. Lett. 63 (1997)
303-307.

[18] F.T. Leighton, A. Rosenberg, 3D circuit layouts, SIAM J. Comput. 15 (1986) 793—-813.

[19] C.E. Leiserson, Area Efficient VLSI Computation, MIT Press, Cambridge, MA, 1983.

[20] R.J. Lipton, R.E. Tarjan, Applications of a planar separator theorem, SIAM J. Comput. 9 (1980) 615-627.

[21] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, Springer, Berlin, 1984.



202 C.-S. Shin et al. / Computational Geometry 15 (2000) 175-202

[22] M.H. Overmars, The Design of Dynamic Data Structures, Lecture Notes in Computer Science, Vol. 156,
Springer, Heidelberg, Germany, 1983.

[23] Y. Shiloach, Arrangements of planar graphs on the planar lattice, Ph.D. Thesis, Weizmann Institute of Science,
1976.

[24] C.-S. Shin, S.K. Kim, K.-Y. Chwa, Area-efficient algorithms for upward straight-line tree drawings, in: The
2nd International Computing and Combinatorics Conference (COCOON’'96), Lecture Notes in Computer
Science, Vol. 1090, Springer, Berlin, 1996, pp. 106-116.

[25] C.-S. Shin, S.K. Kim, K.-Y. Chwa, Algorithms for drawing binary trees in the plane, Inform. Process. Lett. 66
(3) (1998) 133-139.

[26] R. Tamassia, Graph drawing, in: J.E. Goodman, J. O'Rourke (Eds.), Handbook of Discrete and Computational
Geometry, CRC Press, Boca Raton, FL, 1997, Chapter 44, pp. 815-832.

[27] J.D. Ullman, Computational Aspects of VLSI, Morgan Kaufmann, San Mateo, CA, 1992.

[28] L.G. Valiant, Universality considerations of VLSI circuits, IEEE Trans. Comput. 30 (12) (1981) 135-140.



