2014 International Meeting of the Microbiological Society of Korea

- Next Generation Microbiology for the Future -

Hosted by
The Microbiological Society of Korea

Sponsored by
CJ CheilJedang Corp.
CELL BIOTECH
Daegu Convention & Visitors Bureau
Kisanbio Co. Ltd
Macrogen
Daegu Metropolitan City
Korea Yakult
Korea Research Institute of Bioscience and Biotechnology
Microbial Institute for Fermentation Industry
R&D Center Mael Dairies Co., Ltd.
Korean Federation of Science and Technology Societies

Co-organized by
Systems & Synthetic Agrobiotech Center

www.msk.or.kr
Contents

- Timetable ... 4
- Floor Plan ... 5
- Scientific Programs .. 6
- Plenary Lectures .. 23
 PL1 .. 24
 PL2 .. 25
 PL3 .. 26
 PL4 .. 27
- Symposia .. 29
 S1 ... 29
 S2 ... 35
 S3 ... 41
 S4 ... 49
 S5 ... 55
 S6 ... 61
 S7 ... 67
 S8 ... 73
 S9 ... 79
 S10 .. 85
 S11 .. 91
 S12 .. 97
 S13 ... 105
 S14 ... 111
 S15 ... 117
- Young Scientists’ Sessions ... 123
 YS1 .. 123
 YS2 .. 133
- Graduate Students’ Presentation Session ... 143
- Technology Workshops .. 157
 TW1 ... 158
 TW2 ... 164
- Workshop .. 171
- Poster Sessions ... 173
- The 3rd Microbiology Research Festival for High School Students .. 259z
- Author Index .. 293

The Microbiological Society of Korea
Rm. 810 (New Bldg.), The Korea Science & Technology Center 22, Teheran-ro 7-gil,
Gangnam-gu, Seoul 135–703, Korea
Tel: +82–2–3453–3321/86 Fax: +82–2–3453–3322
Email: msk@msk.or.kr Homepage: www.msk.or.kr

This work was supported by the Korean Federation of Science and Technology Societies
Grant funded by the Korean Government,
Timetable

April 30 (Wed.)
<table>
<thead>
<tr>
<th>Room 324</th>
<th>Room 323</th>
<th>Room 322</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30-</td>
<td>Registration</td>
<td></td>
</tr>
<tr>
<td>13:30-13:45</td>
<td>Opening Ceremony (Room 324)</td>
<td></td>
</tr>
<tr>
<td>13:45-14:30</td>
<td>Plenary Lecture 1 (Room 324, James W. Kronstad)</td>
<td></td>
</tr>
<tr>
<td>14:30-16:30</td>
<td>TW1 Technology Workshop 1</td>
<td>S1 Life in Cold Habitats</td>
</tr>
<tr>
<td>17:00-18:30</td>
<td>관람 및 체험</td>
<td></td>
</tr>
</tbody>
</table>

May 1 (Thu.)
<table>
<thead>
<tr>
<th>Room 324</th>
<th>Room 323</th>
<th>Room 322</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00-09:45</td>
<td>Plenary Lecture 2 (Room 324, Timothy J. Donohue)</td>
<td></td>
</tr>
<tr>
<td>09:45-11:45</td>
<td>S2 Biochemistry and Molecular Biology of Prokaryotes</td>
<td>S3 Novel Insights for Microbial Ecology</td>
</tr>
<tr>
<td>11:45-12:15</td>
<td>Poster Presentation 1</td>
<td></td>
</tr>
<tr>
<td>12:15-12:30</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>12:30-13:00</td>
<td>Workshop 1 (ChunLab)</td>
<td></td>
</tr>
<tr>
<td>13:00-15:30</td>
<td>S5 Microbial Systems Biology and Genome Engineering</td>
<td>S6 Korea Traditional Fermented Food</td>
</tr>
<tr>
<td>15:30-16:15</td>
<td>Plenary Lecture 3 (Room 324, Pei-Yuan Qian)</td>
<td></td>
</tr>
<tr>
<td>16:15-18:15</td>
<td>S8 New Approaches in Understanding of Microbial Pathogenesis</td>
<td>S9 Novel Concepts in Gene Expression System</td>
</tr>
<tr>
<td>18:30-21:00</td>
<td>Welcome Reception (Hotel Inter-Burgo EXCO, Grand Ballroom A)</td>
<td></td>
</tr>
</tbody>
</table>

May 2 (Fri.)
<table>
<thead>
<tr>
<th>Room 324</th>
<th>Room 323</th>
<th>Room 322</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00-11:00</td>
<td>S10 Structural Microbiology and Pathogenesis</td>
<td>G5 Graduate Students’ Presentation Session</td>
</tr>
<tr>
<td>11:00-13:00</td>
<td>S12 Microbial and Toxicological Burdens in Biomaterials: How to Measure and Remove?</td>
<td>S13 Animal Gut Microbiome</td>
</tr>
<tr>
<td>13:00-14:00</td>
<td>General Meeting of MSK</td>
<td>Lunch</td>
</tr>
<tr>
<td>14:00-14:45</td>
<td>Plenary Lecture 4 (Room 324, Nils Gunnar Hansson von Heijne)</td>
<td></td>
</tr>
<tr>
<td>14:45-15:30</td>
<td>Poster Presentation 2</td>
<td></td>
</tr>
<tr>
<td>15:30-16:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00-17:00</td>
<td>S15 Lactic Acid Bacteria and Human Health</td>
<td>TW2 Technology Workshop 2</td>
</tr>
<tr>
<td>17:00-17:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30-18:00</td>
<td>Closing Ceremony (Room 324)</td>
<td></td>
</tr>
</tbody>
</table>
Scientific Program

Plenary Lectures

PL1 Plenary Lecture 1
April 30 (Wed.), Room 324
Chair: Hyun Ah Kang, Chung-Ang University

13:45-14:30
Targeting the Acquisition of Iron and Other Nutrients in Fungal Pathogens of Humans
James W. Kronstad, University of British Columbia, Canada

PL2 Plenary Lecture 2
May 1 (Thu.), Room 324
Chair: Jung-Hye Roe, Seoul National University

09:00-09:45
Gaining Biological Insights from Mining Bacterial Genomes & Pathways
Timothy J. Donohue, University of Wisconsin-Madison, USA

PL3 Plenary Lecture 3
May 1 (Thu.), Room 324
Chair: Sang-Jin Kim, Korea Institute of Ocean Science and Technology

15:30-16:15
Genome Mining for Drug Lead Discovery from Marine Bacteria
Pei-Yuan Qian, The Hong Kong University of Science and Technology, Hong Kong

PL4 Plenary Lecture 4
May 2 (Fri.), Room 324
Chair: Hyun Kim, Seoul National University

14:00-14:45
Co-translational Insertion and Folding of Membrane Proteins In Vivo
Nils Gunnar Hansson von Heijne, Stockholm University, Sweden
Symposia

Life in Cold Habitats

April 30 (Wed.), Room 323

Chair: Hong Kum Lee, Korea Polar Research Institute

S1-1 14:30-15:00
Exploring Microbial Diversity in Antarctic Terrestrial Ecosystems
Ok-Sun Kim, Korea Polar Research Institute

S1-2 15:00-15:30
Bacterial Community Structure of Tundra Soils
Yoo Kyung Lee, Korea Polar Research Institute

S1-3 15:30-16:00
DNA-based Fecal Analyses for Trophic Relations of Svalbard Reindeer (*Rangifer tarandus platyrhynchus*)
Sungbae Joo, Ajou University

S1-4 16:00-16:30
Divergence of Endosymbiotic Bacteria of Deep-sea Hydrothermal Vent Bivalve Mussels
Yong-Jin Won, Ewha Womans University

Biochemistry and Molecular Biology of Prokaryotes

May 1 (Thu.), Room 324

Chair: Soon-Jung Park, Yonsei University

S2-1 09:45-10:15
A *Salmonella* Virulence Protein Promotes Pathogenicity by Altering Intracellular ATP Levels
Eun-Jin Lee, Kyung Hee University

S2-2 10:15-10:45
Strategy of Survival of *E. coli* and Translational System
Nobuo Shimamoto, Kyoto Sangyo University, Japan

S2-3 10:45-11:15
O$_2$ Dependent Transcriptional Networks of *Escherichia coli*
Patricia J. Kiley, University of Wisconsin-Madison, USA

S2-4 11:15-11:45
Indole Inhibits Predation by *Bdellovibrio bacteriovorus* and Bdelloplast Lysis: A Transcriptomic Analysis
Robert J. Mitchell, Ulsan National Institute of Science and Technology

S2-5 11:45-12:15
Bacterial Cancer Therapy: Antitumor Effect of *Salmonellae* Expressing L-Asparaginase
Hyon E Choy, Chonnam National University Medical School
2014 INTERNATIONAL MEETING of the MICROBIOLOGICAL SOCIETY of KOREA

S3 Novel Insights for Microbial Ecology

May 1 (Thu.), Room 323

Chair: Kyoung-Ho Kim, Pukyong National University

S3-1 09:45-10:15
Bioinformatics Effort to Better Understand Microbial Community
Kyung Mo Kim, Korea Research Institute of Bioscience and Biotechnology

S3-2 10:15-10:45
Cyanobacterial Bloom: from Micro to Macro Aspect
Chi-Yong Ahn, Korea Research Institute of Bioscience and Biotechnology

S3-3 10:45-11:15
Identification and Single-Cell Isolation of Active N₂O Reducers in Environments
Satoshi Ishii, Hokkaido University, Japan

S3-4 11:15-11:45
Nocardiosis from Its Biodiversity, Biogeography to Genetic Mechanisms of Environmental Adaptability
Wen-Jun Li, Yunnan University, China

S4 Signal Transduction and Gene Expression in Fungi

May 1 (Thu.), Room 322

Chair: Hee-Moon Park, Chungnam National University

S4-1 09:45-10:15
Characterization of the RGS Protein GprK and RgsC in Aspergillus fumigatus
Kwang-So So Shin, Daejeon University

S4-2 10:15-10:45
Septation and Conidiation in Aspergillus nidulans
Ling Lu, Nanjing Normal University, China

Chair: Hyang Burm Lee, Chonnam National University

S4-3 10:45-11:15
Regulation of Pathogenesis by Light in Cercospora zeae-maydis
Hun Kim, Seoul National University

S4-4 11:15-11:45
Gene Expression in Yeast During Drug Synergy with Iron Chelating Agents
Dee Carter, University of Sydney, Australia
Next Generation Microbiology for the Future

S5 Microbial Systems Biology and Genome Engineering
May 1 (Thu.), Room 324
Chair: Byung-Kwan Cho, Korea Advanced Institute of Science and Technology

S5-1 13:30-14:00
Microbial Relationships Uncovered–Community Systems Biology Approaches in Microbial Ecology
Karsten Zengler, University of California San Diego, USA

S5-2 14:00-14:30
Eubacterium limosum KIST612 as a Model Strain for C1 Biorefinery
In Seop Chang, Gwangju Institute of Science and Technology

S5-3 14:30-15:00
Development of Oxygen-independent E. coli Strain for Overproduction of Commodity Chemicals
Vasiliy Portnoy, BP Biofuels, USA

S5-4 15:00-15:30
Multiomics-guided Bacterial Genome Analysis
Byung-Kwan Cho, Korea Advanced Institute of Science and Technology

S6 Korea Traditional Fermented Food
May 1 (Thu.), Room 323
Sponsored by Microbial Institute for Fermentation Industry
Chair: Young Soo Kim, Chonbuk National University

S6-1 13:30-14:00
Caenorhabditis elegans Conditioning with The Probiotic Bacterium Lactobacillus acidophilus Strain A4 Enhances Longevity and Resistance to Foodborne Pathogen Infections
Younghoon Kim, Chonbuk National University

S6-2 14:00-14:30
Indigenous Yeasts Isolated from Traditional Fermented Soy-Sauce Can Prevent Pathogenic Bacteria Occurred at Low-Salt Fermentation Process
Sang Ho Baik, Chonbuk National University

S6-3 14:30-15:00
Changes in Transcriptional Level of Subtilisin-like Proteases of Bacillus licheniformis during Fermentation of Fast-fermented Soybean Paste
Tai-Boong Uhm, Chonbuk National University

S6-4 15:00-15:30
Antimicrobial Activity of Bacillus licheniformis Isolated From Korean Traditional Food Sources against Porcine Enteropathogenic Bacteria
Ho-Seong Cho, Chonbuk National University
Host-Fungal Pathogen Interactions

S7-1 13:30-14:00
Development of System-wide Functional Analysis Platform for Pathogenicity Genes in The Rice Blast Fungus
Sook-Young Park, Seoul National University

S7-2 14:00-14:30
Population Structure of the Plant Pathogenic Fungus *Fusarium graminearum* in Korea
Jungkwan Lee, Dong-A University

S7-3 14:30-15:00
Copper Homeostasis as a Virulence Factor in Systemic Infection by The Human Fungal Pathogen *Cryptococcus neoformans*
Chen Ding, Northeastern University, China

S7-4 15:00-15:30
Candida Infection and Antifungal Drug Resistance
Mi-Kyung Lee, Chung-Ang University

New Approaches in Understanding of Microbial Pathogenesis

S8-1 16:15-16:45
Investigating *Salmonella* Pathogenesis for The Development of Targeted Intervention Strategies
Bradley L. Bearson, National Laboratory for Agriculture and the Environment, USA

S8-2 16:45-17:15
Structural and Biophysical Insights into Flagellin-mediated Activation of TLR5 Signaling
Sung-il Yoon, Kangwon National University

S8-3 17:15-17:45
FoxP3+ Tregs, PD-1 and CTLA4: Negative Immune Regulatory Pathways in Patients with Chronic HIV and/or HCV Infection
Hyosun Cho, Duk sung Women's University

S8-4 17:45-18:15
Tumor Cell Modulation by Mucosa-associated *Escherichia coli* as an Internal Exposome via Macrophage Inhibitory Cytokine 1
Yuseok Moon, Pusan National University
Next Generation Microbiology for the Future

S9

Novel Concepts in Gene Expression System

May 1 (Thu.), Room 323

Chair: Eung-Soo Kim, Inha University

S9-1 16:15-16:45
Proof of Concept Trials for Functional Overexpression and High Throughput Assay of Proteins
Geun-Joong Kim, Chonnam National University

S9-2 16:45-17:15
Incorporation of Unnatural Amino Acids into Proteins in *Escherichia coli* and Their Applications
Hyungdon Yun, Konkuk University

S9-3 17:15-17:45
New Strategy for Enhancing Heterologous Protein Expression through the Alternating N-terminal Codons
Jong Hyun Choi, Korea Research Institute of Bioscience and Biotechnology

S9-4 17:45-18:15
Strategy to Overexpress a Large Biosynthetic Gene Cluster in *Streptomyces* Species
Eung-Soo Kim, Inha University

S10

Structural Microbiology and Pathogenesis

May 2 (Fri.), Room 324

Co-organized by Systems & Synthetic Agrobiotech Center
Chair: Myung Hee Kim, Korea Research Institute of Bioscience and Biotechnology

S10-1 09:00-09:30
Crystal Structures of Bifunctional Penicillin-Binding Protein 4 from *Listeria monocytogenes*
Yeon-Gil Kim, Pohang University of Science and Technology

S10-2 09:30-10:00
Structural Basis for The Recognition of Peptidoglycan Tripeptide by *Helicobacter pylori* Csd4, a D,L-carboxypeptidase Controlling The Helical Cell Shape
Byung Il Lee, Research Institute National Cancer Center

Chair: Sun-Shin Cha, Korea Institute of Ocean Science and Technology

S10-3 10:00-10:30
Structure and Function of Fungal Zn Finger Transcription Factor in Sterol Homeostasis and Antifungal Resistance
Young Jun Im, Chonnam National University

S10-4 10:30-11:00
Dxo1, a Novel Eukaryotic Enzyme with Both Decapping and 5’-3’ Exoribonuclease Activity
Jeong Ho Chang, Kyungpook National University
S11 Molecular Epidemiology and Control of Enteric Virus

May 2 (Fri.), Room 322

Chair: Jin Hyun Ahn, Sungkyunkwan University School of Medicine

S11-1 09:00-09:30
Management Strategy of Norovirus in South Korea
In-Sun Joo, National Institute of Food and Drug Safety Evaluation

S11-2 09:30-10:00
Public Health Impact of Human Noroviruses
Jan Vinjé, Centers for Disease Control and Prevention, USA

S11-3 10:00-10:30
Norovirus: The Main Target for Food Safety and Control
GwangPyo Ko, Seoul National University

S11-4 10:30-11:00
Antiviral Activity and Its Mechanism of Ginsenosides against Norovirus Surrogates
Changsun Choi, Chung-Ang University

S12 Microbial and Toxicological Burdens in Biomaterials: How to Measure and Remove?

May 2 (Fri.), Room 324

Chair: In Seop Kim, Hannam University

S12-1 11:00-11:30
Nonclinical Safety Research and Related Matters for Drug Development
Tarumoto Yasuo, Genia

S12-2 11:30-12:00
Virological Safety Aspects of Biopharmaceuticals Produced in Mammalian Cell Cultures
In Seop Kim, Hannam University

S12-3 12:00-12:30
What Testings Should be Done to Confirm The Safety of Biologics such as Gene Medicines?
Jae-Gyun Jeong, ViroMed Co., Ltd.

S12-4 12:30-13:00
Toxicology Tests of Microbial and Agrochemical Pesticides
Heon Ju Lee, Korea Human Resource Development Institute For Health & Welfare
Next Generation Microbiology for the Future

S13
Animal Gut Microbiome
May 2 (Fri.), Room 323
Chair: Woojun Park, Korea University

S13-1
11:00-11:30
Gut Microbiota of *Tenebrio molitor* and Their Responses to Environmental Changes
Woojun Park, Korea University

S13-2
11:30-12:00
Change of Gut Bacterial Communities Based on Evolution of Animal Host Species
Jin-Woo Bae, Kyung Hee University

S13-3
12:00-12:30
Genetic Basis for Intestinal Colonization by Gut Microbes Revealed by a Metagenomic Screen
Sang Sun Yoon, Yonsei University

S13-4
12:30-13:00
The Biological Functions of Novel Symbiotic Factors in *Riptortus–Burkholderia* Symbiotic System
Bok Luel Lee, Pusan National University

S14
Molecular and Cellular Biology of Yeast
May 2 (Fri.), Room 322
Chair: Won-Ki Huh, Seoul National University

S14-1
11:00-11:30
Nst1 Functions as an Adapting Protein to Mediates a Crosstalk of Cell Wall Integrity and HOG MAPK Pathways in Response to Heat Stress in Budding Yeast *Saccharomyces cerevisiae*
Kiwon Song, Yonsei University

S14-2
11:30-12:00
Control of Gene Induction Kinetics by Set3 HDAC and Overlapping Non-coding RNA Transcription
TaeSo Kim, Ewha Womans University

S14-3
12:00-12:30
The Sec62/Sec63 Translocon Mediates Topogenesis of Membrane Proteins
Hyun Kim, Seoul National University

S14-4
12:30-13:00
Multistep Functions of Dna2 Nuclease in DNA Double-strand Break Repair by Homologous Recombination
Woo-Hyun Chung, Duksung Women's University
Lactic Acid Bacteria and Human Health

May 2 (Fri.), Room 324

S15-1 15:30-16:00
Lactic Acid Bacteria: An Overview of Beneficial Effects
Dong-Hyun Kim, Kyung Hee University

S15-2 16:00-16:30
Analysis of Human Milk Oligosaccharides and Their Utilization by *Bifidobacterium*
Jaehan Kim, Chungnam National University

S15-3 16:30-17:00
Comparative and Functional Genomic Analysis of Bifidobacteria Reveals Its Genomic Adaptation into Human Intestinal Habitat
Ju-Hoon Lee, Kyung Hee University

S15-4 17:00-17:30
Probiotics as an Immune Modulator for Hyper-immune Disorders
Sin-Hyeog Im, Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS)/ Pohang University of Science and Technology
■■■ Young Scientists’ Sessions

Young Scientists’ Session 1

YS1-1 14:30-14:42
The Role of a Specific Hemagglutinin Residue as an Indicator of The Evolution Dynamics of Human Influenza A H1N1 Viruses
Jin Il Kim, Korea University

YS1-2 14:42-14:54
Inverse Regulation of Fe- and Ni-containing SOD Genes by a Fur Family Regulator Nur Through Small RNA Processed From 3’UTR of The sodF mRNA
Hae Mi Kim, Seoul National University

YS1-3 14:54-15:06
Characterization of Catalytic Functions of Bacterial CYP191A1
Sun-Ha Park, Korea Atomic Energy Research Institute

YS1-4 15:06-15:18
Identification of Colistin Resistance Mechanism Using Transcriptome Analysis in Acinetobacter baumannii
Young Kyoung Park, Sungkyunkwan University

YS1-5 15:18-15:30
HPr Antagonizes the Anti-σ70 Activity of Rsd in Escherichia coli
Young-Ha Park, Seoul National University

YS1-6 15:30-15:42
Fitness of Plasmid Bearing blaCTX-M-15 Gene in Klebsiella pneumonia
Juyoun Shin, Sungkyunkwan University

YS1-7 15:42-15:54
Altered Gut Microbiota Composition Affects Mouse Susceptibility to Vibrio cholerae Infection
Mi Young Yoon, Yonsei University

YS1-8 15:54-16:06
Genomic Variations Between Colistin-susceptible and -resistant Pseudomonas aeruginosa Clinical Isolates and Their Effects on Colistin Resistance
Ji-Young Lee, Sungkyunkwan University

YS1-9 16:06-16:18
Tn7 Transposition: Importance of Protein-Protein Interactions Between TnsABCD
Ki Young Choi, Johns Hopkins University
YS2 Young Scientists’ Session 2

May 1 (Thu.), Room 322

Chair: Won Hee Jung, Chung-Ang University

YS2-1 16:15-16:27
Characterization and In Vitro Inhibition Studies of Bacillus anthracis FtsZ: A Potential Antibacterial Target
Hae-Chul Park, Animal and Plant Quarantine Agency

YS2-2 16:27-16:39
Induction of Apoptosis by a Vibrio vulnificus Metalloprotease
Mi-Ae Lee, Sogang University

YS2-3 16:39-16:51
Translation of Leaderless Transcripts are Regulated by Non-coding RNAs in Thermococcus onnurineus NA1
Bo-Rahm Lee, Korea Advanced Institute of Science and Technology

YS2-4 16:51-17:03
Inhibition of HCV Replication with HCV NS5B Specific RNA Aptamer
Chang Ho Lee, Dankook University

YS2-5 17:03-17:15
Novel Na+-Dependent Respiration in Hyperthermophilic Archaeon, Thermococcus onnurineus NA1
Jae Kyu Lim, Korea Institute of Ocean Science and Technology

YS2-6 17:15-17:27
Application of a New Cultivation Technology, I-tip, for Studying Microbial Diversity in Freshwater Sponges of Lake Baikal, Russia
Dawoon Jung, Kangwon National University

YS2-7 17:27-17:39
Comparative Genomic and Transcriptomic Analyses of Acinetobacter and Alishewanella Species Adapted to Different Habitats
Jaejoon Jung, Korea University

YS2-8 17:39-17:51
Genome-scale Probing of In Vivo Organization of Bacterial Transcription Initiation Complexes
Suhyung Cho, Korea Advanced Institute of Science and Technology

YS2-9 17:51-18:03
RNA-mediated Regulation of Photosynthesis in Synechocystis sp. PCC6803
Yoo-Bok Cho, Korea Advanced Institute of Science and Technology
Graduate Students’ Presentation Session

Chair: Woojun Park, Korea University, Sang Sun Yoon, Yonsei University

GS-1 09:00-09:10
Multiple Resistance Mechanisms of High-level Fluoroquinolone Resistant *Aeromonas* sp. Strain C3 Isolated from Waste Water Treatment Plant
Cung Nawl Thawng, Chung-Ang University

GS-2 09:10-09:20
Metabolic Pathway Analysis for Efficient Succinic Acid Production
Won Jun Kim, Korea Advanced Institute of Science and Technology

GS-3 09:20-09:30
Quorum Sensing for Biofilm Formation and Oil Degradation in *Acinetobacter oleivorans* DR1
Jisun Kim, Korea University

GS-4 09:30-09:40
Community Structure Analysis and Characterization of Soil Humic Substances-Degradating Bacteria from Cold Environments
Ha Ju Park, Korea Polar Research Institute

GS-5 09:40-09:50
Development of Rapid One-Step Inactivation Tool and Engineering of *E. coli* to Produce Fumaric Acid
Chan Woo Song, Korea Advanced Institute of Science and Technology

GS-6 10:00-10:10
Genetic Bases of Enhanced *Pseudomonas aeruginosa* Biofilm Development by Sub-Minimum Inhibitory Concentration Treatment of Antibiotics
Keehoon Lee, Yonsei University

GS-7 10:10-10:20
Comparison of CO-dependent H$_2$ Production with Strong Promoters in *Thermococcus onnurineus* NA1
Seong Hyuk Lee, Korea Institute of Ocean Science and Technology

GS-8 10:20-10:30
Characterization of Plasmid pEM81 Harboring a β-Lactamase Gene and a Toxin-antitoxin System
Hyo Jung Lee, Chung-Ang University
GS-9 10:30-10:40
Identification and Role of the DNA-Damage Response Two Component System, DrtR/S, in *Deinococcus radiodurans*
Seonghun Im, Korea Atomic Energy Research Institute

GS-10 10:40-10:50
Potassium Ion-Mediated Regulation of Biofilm Formation via Controlling Cellular Level of Sigma S
Yu-Sook Chung, Sogang University

GS-11 10:40-10:50
Metagenomic and Metatranscriptomic Analysis of Kimchi, a Traditional Korean Fermented Food
Ji Young Jung, Chung-Ang University

GS-12 10:50-11:00
Staphylococcus aureus Vesicles Modulate the Surface Hydrophobicity Which Inhibits Other ESKAPE Pathogens from Forming Biofilms
Hansol Im, Ulsan National Institute of Science and Technology
Next Generation Microbiology for the Future

Technology Workshops

Technology Workshop 1

April 30 (Wed.), Room 324

Sponsored by Korea National Research Resource Center
Chair: Byung-Kwan Cho, Korea Advanced Institute of Science and Technology

TW1-1 14:30-14:50
Next-generation Sequencing 기술의 원리와 응용
Yong-Joon Cho, ChunLab Inc.

TW1-2 14:50-15:10
Next-generation Sequencing 기술을 이용한 세균의 분류동정
Mincheol Kim, Korea Polar Research Institute

TW1-3 15:10-15:30
Genome Resequencing을 이용한 세균 적응진화연구
Byung-Kwan Cho, Korea Advanced Institute of Science and Technology

TW1-4 15:30-15:50
Transcriptome Analysis and Its Applications by Using Stranded/Differential RNA-sequencing Technologies
Bo-Rahm Lee, Korea Advanced Institute of Science and Technology

TW1-5 15:50-16:10
Principle and Application of ChIP-seq to Understand Transcriptional Regulation
Yoo-Bok Cho, Korea Advanced Institute of Science and Technology

TW1-6 16:10-16:30
Translatomic Analysis by Using Ribo-seq Technique
Yujin Jeong, Korea Advanced Institute of Science and Technology
Technology Workshop 2

May 2 (Fri.), Room 323

Sponsored by Korea National Research Resource Center

Chair: Byung-Kwan Cho, Korea Advanced Institute of Science and Technology

TW2-1 15:30-15:50
Introduction to Metabolomics: Methods, Protocols and Applications
Young-Sang Jung, Korea Basic Science Institute

TW2-2 15:50-16:10
Glycosylation 분석을 위한 질량분석기 원리와 응용
Kyoung-Soon Jang, Korea Basic Science Institute

TW2-3 16:10-16:30
Principle and Application of Bimolecular Fluorescence Complementation Assay for Protein-protein Interaction Study
Yong Bhum Song, Seoul National University

TW2-4 16:30-16:50
Synthetic Regulatory Small RNA for Fine-tuning Gene Expression and Its Application
Seung Min Yoo, Korea Advanced Institute of Science and Technology

TW2-5 16:50-17:10
The Principle and Application of RNA-guided Nuclease Based Genome Editing
Sooin Lee, Korea Advanced Institute of Science and Technology

TW2-6 17:10-17:30
Bio-Imaging: How to Make a Good Digital Image
Nuri Kim, Korea Advanced Institute of Science and Technology

Workshop

ChunLab, Inc.

May 1 (Thu.), Room 324

Chair: Byung-Yong Kim, ChunLab, Inc.

12:30-13:30
RNA-Seq Analysis: Current Methods and Its Applications
Namil Kim, ChunLab, Inc.
제3회 미생물 탐구 페스티벌

The 3rd Microbiology Research Festival for High School Students

High School Students’ Presentation Session
May 2 (Fri.), Room 322

Sponsored by R&D Center Macil Dairies Co., Ltd.

좌장: 한양대학교 김동욱 교수

HS-1 14:00-14:05 개회
14:05-14:15
철세균을 이용한 토양박테리아의 생성을 저해하는 박테리오포자의 역제효과에 대하여
양준용, 중산고등학교

HS-2 14:15-14:25
기후 변화에 따른 토양의 온도변화가 항생제 내성 박테리아의 토양번식에 미치는 영향
장서현, 세종과학고등학교

HS-3 14:25-14:35
효모를 이용한 둑의 및 10종 천연물의 수명 및 노화에 미치는 영향 및 관련 기전 분석
김재현, 개포고등학교

HS-4 14:35-14:45
유분 환경에 따른 Houttuynia cordata의 Propionibacterium acnes 생장 억제 효과 탐구
김원휘, 송민호, 서울과학고등학교

HS-5 14:45-14:55
후추의 피페리딘 성분의 박테리아의 면역 저하 반응유도에 의한 유해 박테리아(항생제 내성
대장균)의 역제 방안
이동근, 신도림고등학교

HS-6 14:55-15:05
폐식용유가 토양에 존재하는 토양박테리아와 유해세균의 증식에 미치는 영향에 대하여
박지연, 동덕여자고등학교

HS-7 15:05-15:15
세포벽을 손상시킨 토양박테리아를 이용한 토양의 방사성 스트론튬의 제거방안
조지원, 은광여자고등학교
2014 INTERNATIONAL MEETING of the MICROBIOLOGICAL SOCIETY of KOREA

HS-8 15:15-15:25
저염 환경에 적합한 유산균 선발 및 이를 이용한 저염 김치 생산
심지호, 배재고등학교

HS-9 15:25-15:35
정제당류 및 인공당류에 노출된 세균의 항생제 민감성 변화
이가은, 아시아퍼시픽 국제 외국인학교 (APIS)

HS-10 15:35-15:45
다양한 식품군의 섭취에 따른 햄스터 장내 세균의 분포 변화
이현정, 은광여자고등학교

HS-11 15:45-15:55
비타민 C의 세포증식 억제 효과를 이용한 박테리아의 항생제 내성발생의 감소방안 및 원리의 규명
방민정, 박나현, 민족사관고등학교

HS-12~HS-31
포스터발표(14:00-16:00, 장소: 포스터 세션장 321호)

SS Special Lecture for High School Students
May 2 (Fri.), Room 322
좌장: 서울대학교 천종식 교수

SS 16:00-17:00
진로탐색 특강: 과학자의 삶 '공부해서 무엇하나?
노정혜, 서울대학교
Plenary Lectures

2014 International Meeting of the Microbiological Society of Korea
Targeting the Acquisition of Iron and Other Nutrients in Fungal Pathogens of Humans

Jim Kronstad1*, Guanggan Hu1, Sanjay Saikia1, Melissa Caza1, Rodgoun Attarian1, Daniel Croll1, Brigitte Cadieux1, Matthias Kretschmer1, Won Hee Jung2, Eunsoo Do2, and Jennifer Geddes1

1Michael Smith Laboratories, University of British Columbia, Canada,
2Department of Systems Biotechnology, Chung-Ang University

Fungal pathogens are major health threats for people with compromised immune systems. An important example is the pathogenic yeast, \textit{Cryptococcus neoformans}, which annually causes approximately one million cases of life-threatening meningitis in people with immunodeficiency due to HIV/AIDS. Globally this disease results in an estimated 625,000 deaths every year. In addition, a related species \textit{Cryptococcus gattii} has emerged as a pathogen of people with normal immune systems, as demonstrated by an outbreak in British Columbia, Canada and the Pacific Northwest region of the United States over the past 15 years. Although antifungal drugs are available, there is a clear need for new drugs and strategies to treat cryptococcal and other fungal diseases.

Over the past 15 years, we have been investigating the mechanisms by which \textit{C. neoformans} acquires iron and other nutrients during the infection of mammalian hosts. We hypothesize that an understanding of nutrient acquisition will allow us to identify potential therapeutic targets treating fungal diseases. Iron appears to be a particularly critical nutrient for \textit{C. neoformans} because it is essential for proliferation and the metal also regulate the elaboration of key virulence factors such as the polysaccharide capsule. The capsule protects the fungus from the host immune system and mutants that lack the capsule cannot cause disease. We have used genomic and transcriptomic approaches to identify components of iron acquisition and the regulatory factors that control their expression. We then used this information to construct targeted deletion mutations and we tested the resulting mutants for defects in virulence. This approach has provided a detailed view of the mechanisms of iron acquisition from the host sources transferrin and heme. The ability to use transferrin is particularly important for fungal colonization of the central nervous system. However, it is clear that \textit{C. neoformans} has several mechanisms for iron acquisition including cell surface proteins for iron reduction and high affinity uptake, and proteins for heme binding and endocytosis. Each of these systems makes a partial contribution to disease. Therefore, a complete understanding of the relevance of iron acquisition to cryptococcosis will require systematic deletion of multiple systems and detailed virulence tests. Along with iron uptake, we have also analyzed the roles of other nutrients and nutrient-sensing systems in cryptococcal disease. For example, we recently discovered that phosphate sensing and uptake is important for the virulence of \textit{C. neoformans}.
Gaining Biological Insights from Mining Bacterial Genomes & Pathways

Saheed Imam1,2, Kimberly C. Lemmer-Christenson2,3, Daniel R. Noguera2,4, and Timothy J. Donohue2,3*

1 Cell & Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison WI, USA,
2 Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI, USA,
3 Bacteriology Department, University of Wisconsin-Madison, Madison WI, USA,
4 Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison WI, USA

Until recently, our knowledge of bacterial activities has been acquired by detailed biochemical, genetic and physiological analyses of its macromolecules, cofactors, metabolites and inorganic constituents. With the ever-growing access to genomic information, new experimental and computational approaches are available to gain insight into pathways and networks across the bacterial phylogeny. Photosynthetic microbes, with their ability to harness light energy and fix atmospheric carbon dioxide, are the major contributor to global carbon cycling and can be instrumental in development of industrial processes. We are interested in merging experimental and computational approaches to obtain a systems-level understanding of photosynthetic microbes. Rhodobacter sphaeroides, an α-proteobacterium that is arguably the best studied member of this group, has provided key insights on photon capture, light-driven energy metabolism and other aspects of the photosynthetic lifestyle. This metabolically versatile microbe is also capable of aerobic and anaerobic respiration, CO₂ and N₂ fixation, or production of H₂, polyhydroxybutyrate or other compounds of industrial importance. We have integrated experimental and computational approaches to construct models that provide new insight into the integration of metabolic and transcriptional aspects of R. sphaeroides lifestyles. Experimental validation of these models reveals the existence of a suite of interconnected metabolic, energetic and transcriptional networks that coordinate the lifestyles of this facultative bacterium. Based on the occurrence of individual nodes of these networks across the bacterial phylogeny these models also predict the existence of related metabolic, energetic and transcriptional systems in related α-proteobacteria.
Genome Mining for Drug Lead Discovery from Marine Bacteria

Pei-Yuan Qian

Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Hong Kong

The ocean possesses vast natural products. Many of these products are ultimately derived from marine bacteria. It is estimated that many thousands of different species of such bacteria remain to be identified and characterized and that marine microbes are a gold mine of marine bioactive molecules for various commercial applications. In this presentation, I will discuss some of our recent findings in drug lead screening. The first part of my presentation will discuss our discovery of a didemnins-producing marine α-proteobacteria *Tistrella mobilis* from the Red Sea and the biosynthesis pathways of didemnins. Then, I will present our discovery of a group of calpain inhibitors from the same bacterial strain and other microbes, based on genome mining and of the relevant their biosynthesis pathways. I will conclude this talk by giving a brief discussion on possible implication of genome mine and biosynthesis pathways manipulation in providing a long-term solution to the supply problem that presently hinders commercialization of marine natural products and in paving a new way to generate more analogous for screening and studying mode of action of compounds.
Co-translational Insertion and Folding of Membrane Proteins *In Vivo*

Nils Gunnar Hansson von Heijne

Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden

Nearly all integral membrane proteins are inserted into their target membrane with the aid of a translocon, i.e., a protein-conducting channel that can mediate both translocation of polypeptides across membranes as well as insertion of proteins into membranes. Studies in our lab have defined the basic energetics of membrane insertion of transmembrane helices (1, 2), and our current work aims to map the early steps of tertiary structure formation in membrane proteins (3, 4). The lecture will review the basic steps of membrane protein integration and folding *in vivo*.

Exploring Microbial Diversity in Antarctic Terrestrial Ecosystems

Ok-Sun Kim
Division of Polar Life Sciences, Korea Polar Research Institute, Incheon

Antarctica, the fifth-largest continent is the coldest and driest continent. For several decades, terrestrial environments in this continent had been believed as sterilized habitats without any life forms because of the harsh condition. With the dedicated terrestrial biological research, we are now beginning to understand the uniqueness and complexity of these fragile ecosystems. Molecular methods in microbiology have revolutionized the field and our understanding. Through the use of these techniques, it is revealed that microorganisms are much more diverse than we expected before and play important roles in these harsh environments. Our main research projects focus on understanding microbial life in terrestrial ecosystems in Antarctica. Ongoing project, the first, is to study microbial diversity on King George Island, around Terra Nova Bay, in Victoria Land along the latitudinal gradient and in Lakes of the Dry Valleys. Here in this talk, some preliminary results will be presented and discussed.
Bacterial Community Structure of Tundra Soils

Ji Young Jung¹, Hye Min Kim¹², Sung Jin Nam¹, Hye Young Kwon¹, and Yoo Kyung Lee¹*

¹Arctic Research Center, Korea Polar Research Institute, KIOST,
²School of Biological Science, Seoul National University

The arctic region is highly responsive and vulnerable to climate change. Global warming has accelerated glacial retreat in the high Arctic and permafrost thawing. Understanding the structure of arctic soil microbial communities is essential for predicting the response of the permafrost environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska (64°N), and the foreland of the Midtre Lovénbreen glacier in Svalbard (79°N). The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH₄⁺ and NO₃⁻). Bacterial community similarity based on jackknifed unweighted UniFrac distance showed greater similarity across horizontal layers than through the vertical depth in Council, Alaska. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper- and lower-layer soils. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. The further away from the glacier, the more clay and soil organic carbon contents were observed. In addition, Cyanobacteria, Firmicutes, and Actinobacteria were dominant in soil samples taken close to the glacier, whereas Acidobacteria were abundant further away from the glacier. Diversity indices indicated that the bacterial community changed from a homogeneous ecosystem to a heterogeneous one along the glacier chronosequence/distance from the glacier. Although the bacterial community structure differed on basis of the presence or absence of plants, the soil properties varied depending on soil age. These findings suggest that bacterial succession occurs over time in glacier forelands but on a timescale that is different from that of soil development. The physical and chemical properties of the soil varied significantly along the distance from the Midtre Lovénbreen glacier. The further away from the glacier, the more clay and soil organic carbon contents were observed. In addition, Cyanobacteria, Firmicutes, and Actinobacteria were dominant in soil samples taken close to the glacier, whereas Acidobacteria were abundant further away from the glacier. Diversity indices indicated that the bacterial community changed from a homogeneous ecosystem to a heterogeneous one along the glacier chronosequence/distance from the glacier. Although the bacterial community structure differed on basis of the presence or absence of plants, the soil properties varied depending on soil age. These findings suggest that bacterial succession occurs over time in glacier forelands but on a timescale that is different from that of soil development.

[This study was supported by the National Research Foundation of Korea, which is funded by the Korean Government (MSIP) (NRF-2011-0021067) (PN13082, KOPRI).]
DNA-based Fecal Analyses for Trophic Relations of Svalbard Reindeer (Rangifer tarandus platyrhynchus)

Sungbae Joo

Basic Science Research Institute, Ajou University, Department of Biological Science, Ajou University

The knowledge of transfer of energy to higher trophic level on food webs is essential to understanding ecosystem functioning, health and evolutions. The first step to understanding the energy transfer in ecosystems is the answer of question, “Who eats whom and how much?” Various approaches have been attempt to investigate diets of predators, however, there were many limitations to obtain accurate information related with diet components or feeding preferences. Recently, development of molecular techniques and improvement of DNA barcoding database lead to recover degraded and fragmented DNA from environmental samples and to identify species both predator and prey with higher resolution.

Svalbard reindeer (Rangifer tarandus platyrhynchus) lives on the high-arctic archipelago of Svalbard (74.80°N lat.) where snow and ice cover most of the local vegetation for 8 months of the year. Because of the long winter period resulting in relatively lower forage availability and poor food quality, the reindeer have to replenish fat reserves for winter survival and fetus development during the summer period. In addition, extreme seasonal variations in the high-arctic region impose strong pressures on arctic herbivores to feed on vegetation in a highly efficient manner to satisfy their energy requirements. Previous studies have reported that reindeer are highly selective feeders and prefer lichens, mosses, graminoids, and various other plant species as food sources in the summer period. These preferences might be associated with their special nutritional needs (food quality) or plant biomass represented as food quantity.

In this study, to efficiently investigate the forage preference of Svalbard reindeer (Rangifer tarandus platyrhynchus), we applied length heterogeneity polymerase chain reaction (LH-PCR) based on length differences of internal transcribed spacer (ITS) regions of ribosomal RNA (rRNA) to fecal samples from R. tarandus platyrhynchus. A length-heterogeneity (LH) database was constructed using both collected potential food sources of Svalbard reindeer and fecal samples, followed by PCR, cloning and sequencing. In total, eighteen fecal samples were collected between 2011 and 2012 from 2 geographic regions and 15 samples were successfully amplified by PCR. The LH-PCR analysis detected abundant peaks, 18.6 peaks on an average per sample, ranging from 100 to 500 bp in size and showing distinct patterns associated with both regions and years of sample collection. Principal component analysis (PCA) resulted in clustering of 15 fecal samples into 3 groups by the year of collection and region with a statistically significant difference at 99.9% level. The first 2 principal components (PCs) explained 71.1% of the total variation among the samples. Through comparison with LH database and identification by cloning and sequencing, lichens (Stereocaulon sp. and Ochrolechia sp.) and plant species (Salix polaris and Saxifraga oppositifolia) were detected as the food sources that contributed most to the Svalbard reindeer diet. Our results suggest that the use of LH-PCR analysis would be a non-invasive and efficient monitoring tool for characterizing the foraging strategy of Svalbard reindeer. Additionally, combining sequence information would increase its resolving power in identification of foraged diet components.
Divergence of Endosymbiotic Bacteria of Deep-sea Hydrothermal Vent Bivalve Mussels

Yong-Jin Won1,2*, Eunji Park1, Phuong Thao Ho2, Kang-Chon Kim2, Ye-Seul Kwan1, Sook-Jin Jang2, Soon Gyu Hong3, and Robert C. Vrijenhoek4

1Division of EcoScience, Ewha Womans University, 2Division of EcoCreative, Ewha Womans University, 3Division of Polar Life Sciences, Korea Polar Research Institute, 4Monterey Bay Aquarium Research Institute, USA

Deep-sea hydrothermal vents along the global mid-ocean ridge systems have provided unique chemosynthetic habitats to a variety of invertebrate animals that depend on chemosynthetic bacteria for their nourishment. This symbiotic association between host animals and their bacterial symbionts keeps intriguing us on their nature and evolution. While there has been a remarkable progress in our understanding of geographic distributional structure of host invertebrates and its implication, the same quest toward their endosymbionts is very limited, mostly due to a lack of relevant markers and/or inconvenient PCR-cloning method for bacterial population study.

Here we present a population genetic approach to understand the geography of genetic variation of sulfur-oxidizing endosymbionts of Bathymodiolus mussels in the East Pacific Rise (EPR) and the Pacific-Antarctic (PAR) Ridge. This investigation includes experimental development of multiple polymorphic markers of bacterial protein-coding genes, their application to all populations simultaneously by parallel 454 pyrosequencing method based on barcodes and creation of scripts of automatic processing of the huge amount of multiple loci sequence reads for subsequent population genetic analyses.

Our examination of endosymbionts identified a salient genetic disconnection at the Easter Microplate across where host mussels species and other vent invertebrates previously have shown marked divergence, and monotonous connection at either side of the genetic break. Such a corresponding genetic pattern at both vent invertebrates and the present endosymbionts around the boundary of the EPR and PAR suggest that the two recognized biogeographic provinces have a profound influence on not only vent animals but also vent microbes.
A Salmonella Virulence Protein Promotes Pathogenicity by Altering Intracellular ATP Levels

Eun-Jin Lee
Department of Genetic Engineering and Graduate School of Biotechnology, School of Life Sciences, Kyung Hee University

Several intracellular pathogens including *Salmonella enterica* and *Mycobacterium tuberculosis* require the virulence protein MgtC to survive within macrophages and to cause a lethal infection in mice. We now report that, unlike secreted virulence factors that target the host vacuolar ATPase to withstand phagosomal acidity, the MgtC protein acts on *Salmonella*’s own F$_{1}$F$_{0}$ ATP synthase. This complex couples proton translocation to ATP synthesis/hydrolysis and is itself required for virulence. We establish that MgtC interacts with the a subunit of the F$_{1}$F$_{0}$ ATP synthase, hindering proton translocation and ATP hydrolysis in inverted vesicles. An *mgtC* null mutant displayed heightened ATP levels and an acidic cytoplasm whereas *mgtC* overexpression decreased ATP levels. A single amino acid substitution in MgtC that prevented binding to the F$_{1}$F$_{0}$ ATP synthase abolished control of ATP levels and attenuated pathogenicity. MgtC provides a singular example of a virulence protein that promotes pathogenicity by interfering with another virulence protein.
Strategy of Survival of *E. coli* and Translational System

Nobuo Shimamoto* and Hideki Nakayama

Faculty of Life Sciences, Kyoto Sangyo University, JAPAN

Bacteria can survive in non-growing conditions. In evolutionary selection, this survival is as critical as their growth, but the underlying mechanism is poorly understood because of the complexity. However, the knowledge on *E. coli* may have been accumulated enough to overcome the complexity. We at first focused on the relationship between tmRNA and the protein turnover, in which used proteins are degraded to salvage amino acids for the survival. The tmRNA (*ssrA*) and SmpB induce the degradation of nascent polypeptide by *ssrA*-tagging in response to a reduced level of amino acids in stationary phase. We prepared the disruptants of genes relating to the tmRNA system as well as major chaperons and proteases. Unexpectedly and probably fortunately, most examined protease/chaperon genes are synthetic lethal with Δ*ssrA* or Δ*smpB*, demonstrating that there are two parallel pathways in the surviving mechanism. The tmRNA system is essential to one pathway, and at least nine genes, *clpA, clpP, clpX, dnaJ, hslU, hslV, htpG, prc*, and *sspB*, are essential to the other. Among the examined genes, non-synthetic-lethal genes were only *clpB* and *lon*, which could be thus involved the tmRNA pathway. Another unexpected conclusion is that the tmRNA-dependent degradation is not a major protein turnover, because the main proteases in the system, ClpXP, ClpAP, and Prc are synthetic lethal to Δ*ssrA*. These 9 synthetic lethality were all complemented in LBaa or M9aa medium, which are LB or M9 medium containing nutrient levels (g/L) of 20 amino acids, respectively, suggesting the essential contribution of protein turnover for the survival.

Since the observed lethality, in principle, could be due to any growth stages other than survival period. We thus examined the time course of the CFU decay for single disruptants in LB and LBaa. The obtained results showed that some genes contribute to the survival through their effects on the production/degradation of specific proteins. For example, ClpXP must degrade some specific proteins overproduced by the exogenous amino acids in LBaa before 18 hr. Since the period before 18 hr is the period of the inhibited translation by the dimerization of 70S ribosome, 100S, we examined the 100S-related factors, Rmf, Hpf, and YfIA. Their gene disruptants die as early as Δ*clpX*, suggesting that the checkpoint activated by ClpXP is ribosome digestion through 100S formation. We then invented a new GFP, B-maggio, a brightest GFP with an extremely slow photobleaching. It changes color when it is fused to S10 protein and when ribosome forms 100S or aggregated. In dead cells, S10-B maggio forms inclusion body, while in living cells, it exist in cytosol, demonstrating a correlation between viability and the intact ribosome.
O₂ Dependent Transcriptional Networks of *Escherichia coli*

Kevin Myers, Nicole Beauchene, Dan Park, and Patricia Kiley

Department of Biomolecular Chemistry, University of Wisconsin-Madison, USA

In *E. coli*, 15% of the genes change expression upon O₂ limitation. The most well studied response of *E. coli* and other facultative bacteria to O₂ limitation is the reprogramming of metabolism to utilize alternative energy pathways when O₂ is not available. The two transcription factors in *E. coli* that play a major role in this reprogramming are ArcA and FNR. It is well known that DNA binding of the response regulator ArcA is increased upon phosphorylation by a membrane bound kinase that responds to O₂-dependent changes in electron transport chain flux. FNR contains an O₂ labile [4Fe-4S] cluster that is required for dimerization and DNA binding. Our genome-wide studies indicated that ArcA and FNR accounted for only ~40% of the genes regulated by O₂, suggesting that there must be other major O₂-responsive control systems. Our genome wide data suggest that two other transcription factors, Fur and IscR, known to be involved in Fe and Fe-S cluster homeostasis, respectively, are also involved in the global response to O₂ deprivation.

Comparisons of genome-wide RNA levels from *E. coli* wild type or ΔFur mutant strains with ChIP-Seq data identified differentially expressed operons directly bound by Fur under aerobic and anaerobic conditions. These studies showed unexpectedly that Fur binding is increased under anaerobic conditions, indicating that Fur-DNA interactions and expression of some Fur target genes are also regulated by O₂ availability. Because Fur activity is proposed to be regulated by the availability of the “labile” Fe²⁺ pool, our results suggest that the labile Fe²⁺ pool is increased under anaerobic conditions, increasing the concentration of Fe²⁺-bound Fur.

The transcription factor IscR also contributes to global reprogramming of gene expression in response to O₂ limitation, although the mechanism is more complex. DNA binding specificity of IscR is broadened by ligation of a [2Fe-2S] cluster; apo-IscR binds only a type 2 DNA motif, whereas [2Fe-2S]-IscR binds both type 1 and 2 motifs. The absence of O₂ increases the *in vivo* Fe-S occupancy of IscR, so genes in the IscR regulon show major changes in expression under aerobic and anaerobic conditions, depending on whether they have type 1 or type 2 sites controlling their expression.

In summary, our data reveal multiple conserved transcription factors govern how O₂ availability controls gene expression in bacteria. By using primarily Fe or Fe-S dependent regulators to control gene expression, these cofactors also provide cells a mechanism to both sense O₂ availability and integrate this signal with iron homeostasis. Since iron and O₂ availability have a major influence on bacteria in their natural environments, our results are critical to understanding a key bacterial adaptation strategy.
Indole Inhibits Predation by *Bdellovibrio bacteriovorus* and Bdelloplast Lysis: A Transcriptomic Analysis

Mohammed Dwidar, Dougu Nam, and Robert J. Mitchell

School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)
Bacterial Cancer Therapy: Antitumor Effect of *Salmonellae* Expressing L-Asparaginase

Kwangsoo Kim and Hyon E Choy

Department of Microbiology, Chonnam National University Medical School, Kwang-Ju 501-746

Over the last several decades, a number of microorganisms have been shown to display selective replication or preferential accumulation in tumor lesion. Facultative anaerobes such as *Escherichia coli* and *Salmonella* spp. also localize to transplanted tumors in animals and can grow in viable as well as necrotic areas of the tumor, a potential important advantage. This feature has been exploited to treat cancer directly or in combination with conventional chemotherapy. Thus, although the mechanism underlying the initial accumulation or tumor destruction remains to be understood, attempts have been made to treat tumors using various microorganisms. Although bacteria targeted to tumor tissue reduces tumor growth, the bacteria equipped with tumorlytic protein are often more effective in tumor suppression. This is because the concentration of the tumorlytic protein expressed from the bacteria would be much greater within the tumor than in systemic blood. Therefore, it is essential to control expression of the tumorlytic protein expressed selectively only when bacteria are predominantly found in the tumor tissue over other organs, i.e., reticuloendothelial organs. To this end, inducible systems that utilize different external gene “triggers” have been developed: i.e., the L-arabinose system. Using this system, we have shown that the engineered bacteria significantly suppressed both primary and metastatic tumors and prolonged survival in mice.
Symposium [S3]

Novel Insights for Microbial Ecology

2014 International Meeting of the Microbiological Society of Korea
Bioinformatics Effort to Better Understand Microbial Community

Kyung Mo Kim1*, Jeongsu Oh1, Kyuin Hwang2, Byung Kwon Kim3, Hanna Choe1, and Soon Gyu Hong2*

1Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon,
2Division of Polar Life Sciences, Korea Polar Research Institute, Incheon,
3BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon

Microorganisms play critical roles in regulating the biogeochemistry of our planet. Microbial communities largely influence the relationships of biotic and abiotic environments. Assessing microbial diversity is the first step in understanding the role of microbes in biogeochemical evolution. Since a universal taxonomic structure of life based on ribosomal RNA (rRNA) was established in mid-1980s, ribosomal genes have been used as ‘gold standard’ to identify species and build higher-level taxonomies. Based on this taxonomical structure, the sequencing of rRNA genes (e.g., 16S in prokaryotes; 28S in eukaryotic microbes) derived from environmental samples led to the discovery of unprecedented diversity of both cultured and uncultured microbes. In addition, next generation sequencing (NGS) technologies such as pyrosequencing and Illumina are producing high-volume information at DNA level, facilitating the unprecedented detection of new phylotypes. However, the analysis of rRNA data generated from high-throughput sequencing experiments represents a bioinformatics challenge that requires accurate and efficient handling of large-scale data. We here describe our recent bioinformatics effort that includes developments of algorithm, software and database for NGS-based microbial community study.

The availability of 16S rRNA gene sequences from a multitude of natural environments now offers a unique opportunity to study microbial diversity. The large volume of sequencing data however makes it time consuming to assign individual sequences to phylotypes. Since ribosomal sequences have diverged across phylotypes, they can be grouped into clusters. However, available clustering programs suffer from overlap of sequence spaces in adjacent clusters. In natural environments, gene sequences are homogenous within species but divergent between species. This evolutionary constraint results in an uneven distribution of genetic distances of genes in sequence space. To cluster 16S rRNA sequences more accurately, it is therefore essential to select core sequences that are located at the centers of the distributions represented by the genetic distance of sequences in taxonomic units. Based on this idea, we here describe a novel sequence clustering algorithm named CLUSTOM that minimizes the overlaps between adjacent clusters. The performance of this algorithm was evaluated in a comparative exercise with existing programs, using the reference sequences of the SILVA database as well as published pyrosequencing datasets. The test revealed that our algorithm achieves higher accuracy than ESPRIT-Tree and mothur, few of the best clustering algorithms. Results indicate that the concept of an uneven distribution of sequence distances can effectively and successfully cluster 16S rRNA gene sequences. The algorithm of CLUSTOM has been implemented both as a web and as a standalone command line application, which are available at http://clustom.kribb.re.kr.

The 454 pyrosequencing platform produces the longest reads among the most widely used next generation sequencing platforms. Since the relatively longer reads of the 454 platform provide more information for identification of microbial sequences, this platform is dedicated to microbial community and population studies.
In order to accurately perform the downstream analysis of the 454 multiplex datasets, it is necessary to remove artificially designed sequences located at either ends of individual reads and to correct low quality sequences. We have developed a program called PyroTrimmer that removes the barcodes, linkers, and primers, trims sequence regions with low quality scores, and filters out low-quality sequence reads. Although these functions have previously been implemented in other programs as well, PyroTrimmer has novelty in terms of the following features: i) more sensitive primer detection using Levenstein distance and global pairwise alignment, ii) the first stand-alone software with a graphic user interface, and iii) various options for trimming and filtering out the low-quality sequence reads. PyroTrimmer, written in JAVA, is compatible with multiple operating systems and can be downloaded free at http://pyrotrimmer.kribb.re.kr.

The large-volume DNA information that is driven from recent advances in sequencing technology helps us better understand microbial community structures in diverse environments when coupled with a well-curated reference sequence database. Databases such as RDP, Silva, Greengenes, and EzTaxon-e provide reliable 16S rRNA sequences for prokaryotes. However, a similar reference database is absent for the study of fungal diversity and ecology. Although the UNITE system provides ITS sequences across almost all fungal groups, the ITS region is highly variable and therefore yields poor sequence alignments between distant fungal species. Considering the remarkable fungal diversity in nature, we chose the more conserved LSU rRNA gene as a standard genetic marker to study metagenome-based fungal diversity and ecology. In order to build a fungal reference sequence database called MycoDE, tens of thousands of LSU sequences were collected, filtered, aligned and phylogenetically analyzed. The manual phylogenetic inspection showed that the majority of fungal taxonomic groups are polyphyletic. The taxonomic names of monophyletic fungal groups were determined by referring to the current nomenclature system. On the other hand, non-monophyletic fungal groups whose appropriate scientific names were not available were temporarily named using our own rules of nomenclature, which was developed from an ecological point of view. Now, a new fungal taxonomic hierarchy with reliably aligned LSU sequences is available at the MycoDE website (http://mycode.kopri.re.kr). In addition, this website provides an identification tool to assign taxonomic names to the large-scale fungal LSU query sequences.
Cyanobacterial Bloom: from Micro to Macro Aspect

Chi-Yong Ahn1*, Hee-Mock Oh1, Seung-Hyun Joung2, and Young-Seuk Park3

1Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology; 2Water Environmental Engineering Research Division, National Institute of Environmental Research; 3Department of Biology, Kyung Hee University

Cyanobacteria are ancient bacteria, their first appearance dating to 3.6 billion years ago. Cyanobacteria provided oxygen gas to primitive atmosphere and formed fundamental conditions for so much life diversity to arise. However, they are regarded as harmful organisms these days, due to bloom formation. Microcystins, representative cyanobacteria toxin, can be threat to animals, including human. Although a lot of studies have been done to control cyanobacterial blooms, no universal solutions have been obtained. One reason for such difficulties seems to be originated from cyanobacterial genetic diversity. Development of genomic tools revealed that the genome of Microcystis (major bloom former) is very plastic in genetic rearrangement. Even in one lake, genetic diversity and their composition continuously changed with seasons. Different strains responded differently to the same environmental factor, making it more difficult to prepare defense strategy for cyanobacterial bloom. Toxic and nontoxic strains are mixed in a water body, but toxic proportion increased with bloom formation and decreased with bloom extinction. Global warming could aggravate bloom toxicity. Cyanobacterial bloom can be predicted, using model techniques. Artificial neural networks were applied to Daechung Reservoir. Prediction models showed that blooms could be predicted and water temperature was the most critical factor for bloom formation, rather than phosphorus, which was considered traditionally as the major cause. Data accumulated for years in each reservoir need to be used for modeling and data mining to get some new insights. Cyanobacterial blooms cannot be completely suppressed but can be managed in a moderate level.
Identification and Single-Cell Isolation of Active N₂O Reducers in Environments

Satoshi Ishii
Division of Environmental Engineering, Hokkaido University, Japan

Nitrous oxide (N₂O) is considered a major greenhouse gas and is a significant contributor to ozone layer destruction. N₂O can be produced as the end product of denitrification or as the byproduct of nitrification, but N₂O can also serve as an electron acceptor for microbial respiration (i.e., N₂O reduction). However, identity of the N₂O reducers active in environments is largely unknown. In this study, we employed both culture-dependent and culture-independent approaches to identify N₂O reducers in rice paddy soil where N₂O reduction actively occurs. In a soil microcosm, N₂O and succinate were added as the electron acceptor and donor, respectively, for N₂O reduction. For the stable isotope probing (SIP) experiment, 13C-labeled succinate was used to identify succinate-assimilating microbes under N₂O-reducing conditions. DNA was extracted 24 h after incubation, and heavy and light DNA fractions were separated by density gradient ultracentrifugation. Microbial community structures in each fraction were analyzed based on the 16S rRNA gene and the N₂O reductase gene sequences. For culture-dependent analysis, the microbes that elongated under N₂O-reducing conditions in the presence of cell-division inhibitors were individually captured by a micromanipulator and transferred to a low-nutrient medium. The N₂O-reducing ability of these strains was examined by gas chromatography/mass spectrometry. Results of the SIP analysis suggested that Burkholderiales and Rhodospirillales bacteria dominated the population under N₂O-reducing conditions, in contrast to the control sample (soil incubated with only 13C-succinate). Results of the single-cell isolation technique also indicated that the majority of the N₂O-reducing strains belonged to the genera Herbaspirillum (Burkholderiales) and Azospirillum (Rhodospirillales). In addition, Herbaspirillum strains reduced N₂O faster than Azospirillum strains. These results suggest that Herbaspirillum spp. may have an important role in N₂O reduction in rice paddy soils. As shown in our study, combination of culture-independent and culture-dependent approach is useful to identify and characterize ecologically important microbes in environments.
The genus *Nocardiopsis*, which is a widespread group of the phylum *Actinobacteria*, has received great attention owing to its ecological versatility, pathogenicity and ability to produce a rich array of bioactive metabolites. Before the year of 2000, there are only seven validly published species in this genus. However, now it has expanded to 38 species and two subspecies. And recently, more and more strains of the genus *Nocardiopsis* have been isolated from saline soils or saline-alkali soils by our group and other colleagues in the world, and some of them being strictly halophilic.

According to the fundamental assumption that ‘everything is everywhere: but the environment selects’, it would be inferred that this group actinobacteria is more easily dispersed and better suited for colonizing in new environments, leading to more cosmopolitan distribution. In this study, we tested this hypothesis using five *Nocardiopsis* OTUs isolated from sediments collected from Yunnan salt mines and Xinjiang saline soils, western of China. The phylogenetic analyses based on 16S rRNA, *gyrB*, *rpoB* and *sodA* gene sequences were employed to determine the geographic profiles and evolution of these *Nocardiopsis* subpopulations. The phylogenetic analysis of five *Nocardiopsis* OTUs based on 16S rRNA gene showed that five *Nocardiopsis* OTUs were divided into many phylotypes and majority of these phylotypes presented geographic patterns between Yunnan and Xinjiang in China, without any phylotypes in an OTU being shared by Yunnan and Xinjiang. However, most phylotypes were little exclusive to a site or sites close to each other within Yunnan or Xinjiang. Perhaps the generation of geographic phylotypes in 16S rRNA gene phylogeny mainly resulted from the impact of geographic isolation on *Nocardiopsis* strains’ dispersal and led to their geographic distributions between Yunnan and Xinjiang. Furthermore, five *Nocardiopsis* OTUs were divided into many endemic genotypes and most of them were exclusive to a site or sites close to each other which demonstrated proofs for *Nocardiopsis* population endemism and some evolutionary divergences among these three genes. According to Z-test of Darwinian Selection for *gyrB*, *rpoB* and *sodA*, it suggested these divergences on *sodA*, *rpoB* and *gyrB* may result from neutral evolution of *gyrB* and *rpoB*, but environmental selection of *sodA* evolution. Therefore evolutions of *gyrB* and *rpoB* were not influenced by any environmental disturbances, but evolution of *sodA* was impacted by contemporary environmental forces because of its involvement in *Nocardiopsis* strains adaption and resistances to environmental oxygen toxicity.

In addition, to shed light on speciation, gene content evolution, and environmental adaptation in these unique actinobacteria, we sequenced draft genomes for 16 representative species of the genus and compared them with
that of the type species *N. dassonvillei* subsp. *dassonvillei* DSM 43111\(^T\). The core genome of 1,993 orthologous and paralogous gene clusters was identified, and the pan-genomic reservoir was found not only to accommodate more than 22,000 genes, but also to be open. The top ten paralogous genes in terms of copy number could be referred to three functional categories: transcription regulators, transporters, and synthases related to bioactive metabolites. Based on phylogenomic reconstruction, we inferred past evolutionary events, such as gene gains and losses, and identified a list of clade-specific genes implicated in environmental adaptation. These results provided insights into the genetic causes of environmental adaptability in this cosmopolitan actinobacterial group and the contributions made by its inherent features, including genome dynamics and the constituents of core and accessory proteins.
Symposium [S4]

Signal Transduction and Gene Expression in Fungi

2014 International Meeting of the Microbiological Society of Korea
Characterization of the RGS Protein GprK and RgsC in

Aspergillus fumigatus

Kwang-Soo Shin and **Mun-Gu Jung**

Department of Microbiology and Biotechnology, Daejeon University

G proteins function as switches that are activated by G protein-coupled receptors (GPCRs) and negatively regulated by regulator of G protein signaling (RGS) proteins. In this study, we characterize the two RGS proteins in the opportunistic human pathogen *Aspergillus fumigatus*. While the deletion of *AfugprK* causes the increased vegetative growth, the growth of *AfurgsC* deletion mutant is inversely. The conidiation of both mutants are repressed and the mRNA accumulation of asexual development related genes (*AfubrlA*, *AfuabaA*, *AfuwetA*, and *AfuvosA*) are delayed and/or decreased. The absence of *AfugprK* and *AfurgsC* results increased *AfubrlA* and *AfuvosA* in liquid submerged culture. The conidial germination is accelerated by the deletion of *AfugprK* and *AfurgsC*, suggesting that they act as repressors of germination. The deletion of *AfurgsC* causes a reduction of vegetative growth in the presence of osmotic stress, cell wall stress, and oxidative stress. Protein kinase A (PKA) activity is assayed using kemptide and the PKA activity pattern of *AfugprK* deletion mutant is different from those of the wild type and Δ*AfurgsC* mutant, as PKA activity is detectable even without the addition of cAMP. Gliotoxin is not detected in the chloroform extract of culture filtrates of both deletion mutants. Conidia invasiveness of two deletion mutants in the type II human alveolar cell line (A549) is reduced compared to that of wild type.

References

Septation and Conidiation in *Aspergillus nidulans*

Guo-Wei Zhong, Ping Jiang, Wei-Ran Qiao, Wen-Fan Wei,
Hua Wei, Shi-Zhu Zhang, and Ling Lu*

Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, Nanjing Normal University, Nanjing, 210023, P. R. China

Timely cytokinesis/septation is essential for hyphal growth and conidiation in *Aspergillus nidulans*. Genetic analysis have identified that *A. nidulans* has components of the septum initiation network (SIN) pathway; one of these, SEPH, is a key player for early events during cytokinesis. However, little is known about how the SEPH kinase cascade is regulated by other components. Here, through UV mutagenesis, independent mutants were obtained that could restore cytokinesis in the absence of *sepH*. Among them, the phosphoribosyl pyrophosphate synthetase family acts antagonistically against the SIN so that the downregulation of AnPRS family can bypass the requirements of the SIN for septum formation and conidiation. The transcription defect of the *prsA* gene family accompanied with the reduction of AnPRS activity causes the formation of hyper-septation as well as the restoration of septation and conidiation in the absence of SEPH. Moreover, we demonstrated that AnPRS members are able to form the heterodimers for functional interacting entities but they appear to contribute so unequal that deletion of *prs1* displays relatively normal septation, but deletion of either *prs2* or *prs3* is lethal. *Anprs2* is essential probably through the whole development period during germination and the hyphal growth, whereas *Anprs3* is essential only in the germination process.

In addition, two regulatory subunits of protein serine/threonine type 2A phosphatases (PP2A)-ParA and PabA, whose orthologs are suppressors of SIN in yeasts had been found to be required for conidiation and septation. Deletion of *parA* caused the hyper-septation in hyphal cells, especially in conidiophore cells while deletion of *pabA* abolished or delayed the septation. Different from PP2A-Pab1 and PP2A-Par1 in yeast that are negative regulators to inactivate the SIN, loss of ParA or PabA function failed to suppress defects of the temperature-sensitive mutants of SEPH kinase.

Therefore, SIN, as a major signaling pathway in regulating cytokinesis, might have to work together with multiple other protein complexes.

*Correspondence author: linglu@njnu.edu.cn. Tel: +86-25-85891791(o), 13915997578(M)
Regulation of Pathogenesis by Light in *Cercospora zeae-maydis*

Hun Kim
Center for Fungal Pathogenesis, Seoul National University

Cercospora zeae-maydis causes gray leaf spot of maize, which has become one of the most widespread and destructive diseases of maize in the world. *C. zeae-maydis* infects leaves through stomata, which is predicated on the ability of the pathogen to perceive stomata and reorient growth accordingly. Thus, we became interested in understanding how fungi perceive and penetrate stomata while studying the maize foliar pathogen *C. zeae-maydis*. In this study, we observed that germ tubes of *C. zeae-maydis* require light in order to find stomata and produce appressoria, which led to the identification of *CRP1*, a gene encoding a putative blue-light photoreceptor homologous to White Collar-1 (WC-1) of *Neurospora crassa*. Disruption of *CRP1* revealed roles in multiple aspects of pathogenesis, including tropism of hyphae to stomata, the formation of appressoria, conidiation, and the biosynthesis of cercosporin. *CRP1* was also required for photoreactivation after a lethal dose of UV exposure. *CRP1* is the first gene known to regulate non-thigmotropic stomatal infection in fungi and thus provides specific insight into how light regulates pathogenesis in *C. zeae-maydis*. Furthermore, we have recently investigated light-responsive phenotypes of *Fusarium graminearum* that causes Fusarium head blight (FHB) on cereal crops and ear rot on maize. This presentation also includes the current knowledge of the roles of WC genes in secondary metabolite synthesis and development of *F. graminearum*.
Gene Expression in Yeast During Drug Synergy with Iron Chelating Agents

Ignatius Pang1,2, Yu-Wen Lai1, Leona Campbell1, Sharon Chen3, Marc Wilkins2, and Dee Carter1*

1School of Molecular Bioscience, University of Sydney, Australia, 2School of Biotechnology and Biomolecular Sciences, University of New South Wales, Australia, 3Institute for Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia

The pathogenic yeast species Cryptococcus neoformans and C. gattii cause cryptococcosis, a normally self-limiting pulmonary infection that can develop into severe, life-threatening meningitis and meningoencephalitis, particularly in HIV/AIDS, cancer and transplant patients. Cryptococcal meningitis is uniformly fatal if not treated, and even with best practice mortality is 20-30%. Current recommendations for therapy are induction with amphotericin B (AMB) and 5-flucytosine (5FC), followed by maintenance on fluconazole (FLC) or other azole-based drugs. However, AMB is highly toxic and requires vigilant monitoring, 5FC and new generation triazoles are expensive and out of the reach of most low income countries, and FLC is less efficacious and induces resistance. Finding and developing new antifungals is very difficult, therefore a promising avenue of antifungal research is to enhance existing therapies using synergistic agents. Iron chelators administered with certain antifungals have been found to improve the clearance of some fungal infections. However, mechanistic data on exactly how these work, and why they sometimes do not, are lacking. In addition, iron depletion can be damaging to the host. The aims of the current study are therefore 1) to find antifungals + iron chelator combinations that result in synergy when used to treat Cryptococcus; and 2) to use RNA-Seq and co-expression networks to analyse the synergistic response at the level of transcription and identify important mediators of synergy. The hypothesis is that by using transcriptome analysis during drug-chelator synergy we can identify important, differentially regulated pathways or processes that we can target with new therapies that produce synergy without the need to administer chelators.

Checkerboard assays were used to assess synergy between the antifungals AMB, FLC, itraconazole (ITZ), voriconazole (VRZ), and caspofungin (CAS) with iron chelators lactoferrin, deferasirox, deferiprone, deferoxamine, cyclopirox olamine and EDTA. Fungal species included Cryptococcus neoformans genome strain H99, C. gattii genome strain R265 and C. gattii strain 97/170, which is intrinsically resistant to FLC. Saccharomyces cerevisiae genome strain S288C was also included for interactome construction. Significant synergy was uncommon and was only seen across all species when AMB was combined with lactoferrin, a milk protein with iron chelating properties. Interestingly, while VRZ + EDTA produced a synergistic response against C. gattii, this combination was antagonistic when used against C. neoformans, as was ITZ when combined with deferasirox, deferiprone and EDTA, highlighting a need for caution when using iron chelators.

Transcriptional analysis by RNA-Seq was performed on S. cerevisiae treated with i) AMB only; ii) AMB + lactoferrin, iii & iv) corresponding controls matched for growth but without antifungals or chelators. Visualisation using the network program Cytoscape, and co-expression analysis with self organizing maps (SOMs) suggested transcription factors AFT1 and YAP5 were important during AMB + lactoferrin synergy. AMB treatment alone caused down-regulation of nine genes involved in ergosterol biosynthesis and up-regulation of AFT1, a transcription factor involved in iron transport. AMB + lactoferrin halted the
up-regulation of AFT1 and down-regulated genes involved in iron transport. The latter were co-expressed with YAP5, a second transcription factor that co-ordinates the expression of genes controlling the nuclear localization of AFT1. The influence of these will be further studied using qPCR and gene deletion/complementation. We are currently exploring the role of homologous factors in *Cryptococcus* using additional RNA-Seq assays.
Symposium [S5]

Microbial Systems Biology and Genome Engineering

2014 International Meeting of the Microbiological Society of Korea
Microbial Relationships Uncovered-Community Systems Biology Approaches in Microbial Ecology

Karsten Zengler
University of California San Diego, La Jolla, CA 92093-0412, USA

Many biogeochemical processes involved in the global geochemical cycles are not performed by individual organisms, but rather by microbial communities - collaborative partnerships between two or more microbes. These partnerships often involve consumption of carbon compounds that cannot be used by any individual organism, but yield sufficient energy for growth when paired organisms couple their metabolic capabilities. These associations are critical to carbon decomposition processes and are particularly important in oxygen-limited environments such as wetlands, sediments, and subsurface aquifers. We developed a novel genome-scale, multi-omics based modeling approach to investigate the systems biology of syntrophic microbial partnerships to shed new light on a poorly understood aspect of carbon cycle processes. The work represents a significant advance in our ability to extend genome-scale systems biology modeling approaches to multispecies microbial consortia.
Eubacterium limosum KIST612 as A Model Strain for C1 Biorefinery

Jiyeong Jeong¹, In-Geol Choi², and In Seop Chang¹

¹School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712,
²Computational and Synthetic Biology Laboratory, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701

Eubacterium limosum KIST612 is a strict anaerobic, Gram-positive, acetogenic bacterium that uses synthesis gas components (H₂, CO) as carbon and energy source via the Wood-Ljungdahl (WL) pathway. This strain was first isolated from anaerobic digestor fluid in sewage treatment process more than two decades ago. When it was isolated this strain showed relatively high organic acid production rates, either acetate and butyrate, from CO oxidation as well as fast growth rate compared to other (homo)acetogens. KIST612 strain has 0.17-0.25 h⁻¹ of specific growth rate on phosphate-buffered basal medium with 1 atm of CO partial pressure in vial culture. When the CO partial pressure was less than 0.6 atm (as 0.5 mM dissolved CO) in serum vial (with typical agitation) CO consumption was limiting during the cultivation indicating that the growth rate of KIST612 is dependent on CO partial pressure. This result significantly proves that CO consumption by KIST612 is due to catabolic reaction which generates ATP for microbial growth. Although, CO can be utilized as carbon and energy sources, higher CO concentration derived from CO pressurizing also showed substrate inhibitory effect indicating that CO concentration should be controlled in bioprocess operation to maximize CO conversion rate. KIST612 produces acetate as major product on either CO or H₂ cultivation. Likewise, butyrate and ethanol are also produced as minor products, and butyrate production was stimulated under certain culture conditions such as low pH and especially during stationary phase. The complete genome sequence of this strain consisted of 4,276,902 bp in a single circular chromosome with an average G+C content of 47.5%. Approximately 91% of the nucleotides were predicted as 4,516 protein-coding regions. Metabolic pathway analysis revealed that E. limosum KIST612 uses the WL pathway to fix CO (or CO₂) and converts it into acetyl-CoA, like other syngas-utilizing acetogens. It was also found to contain genes annotated as subunits of hydrogenases that may provide reducing equivalents for CO₂ reduction to organic carbons. Further the genome of E. limosum KIST612 contains genes that encode key enzymes that convert acetyl-CoA into potential bioenergy-compatible acids/alcohols (acetate, butyrate, and ethanol). In addition to these genes, key genes for growing on syngas can be a platform of synthetic biology to construct carbon fixation pathways for the production of biofuels or chemicals from syngas. However, the design of “new biocircuit” of the strain for the production (or increase) of desired chemicals should be approached with utmost caution because most precursors of these chemicals are essential compounds on catabolic metabolism. Recently, we have tried to obtain deletion mutant which was knocking out the butyryl-CoA dehydrogenase (Bcd) encoding gene (bcd) on chromosomal DNA of the strain using designed PCR product through homologous recombination. The deletion of the Bcd encoding gene in the mutant was confirmed by PCR and DNA sequencing. However, the mutant only grew on glucose substrate but not on CO. This result indicates that Bcd is an essential component for energy metabolism of E. limosum KIST612 during chemolithotrophic growth on C1 compound, as well, it shows possibility to knock in a foreign gene on chromosomal DNA of this strain. There are a few numbers of acetogens producing acetate as well as other products such as butyrate and ethanol, and most strains only possess acetate producing activity. Ethanol and butanol are more preferred chemicals other than fatty acids of same carbon number. From this point of view, E. limosum KIST612 has a diversity of products, therefore, it is a powerful candidate for C1 biorefinery.
Development of Oxygen-independent E. coli Strain for Overproduction of Commodity Chemicals

Vasily Portnoy

BP Biofuels, San Diego, California, USA

The microbial production of commodity chemicals is a promising avenue for the development of sustainable processes for the utilization of renewable resources and reducing our dependency on foreign oil. In order to become cost and energy effective, the process must utilize an organism that is optimized for production of a number of reduced by-products from variety of feedstocks. Escherichia coli is one of the most commonly used host organisms for metabolic engineering and overproduction of metabolites due to its metabolic versatility, amenability to genetic manipulation, and the ability to produce a wide variety of reduced by-products such as bio-ethanol and organic acids. E. coli has also been extensively characterized with respect to its metabolic physiology. It is capable of surviving in a variety of environmental conditions, such as oxic and anoxic; however the different growth rates and different secretion profiles under oxic and anoxic conditions poses a significant challenge for metabolic engineering processes in which environmental perturbations will influence the outcome of the bio-catalytic process. Therefore, the utilization of the oxygen-independent strain for bio-catalysis eliminates the need for the stringent control over the fermentation environment with respect to oxygenation, thus significantly reducing the cost of the entire bio-catalytic process. Therefore, it is of interest to develop an E. coli strain incapable of oxygen utilization, to be used as a platform strain for metabolic engineering. This talk will outline the development of the E. coli strain, not able to utilize oxygen and engineered to overproduce organic acids though a redox-coupling of the production pathway and central metabolism.
Multiomics-guided Bacterial Genome Analysis

Byung-Kwan Cho

Department of Biological Sciences and KAIST Institute of the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701

Over the past decade or so, dramatic developments in our ability to experimentally determine the contents and functions of genomes have taken place. In particular, high-throughput technologies are now inspiring a new understanding of the bacterial genome on a global scale. In particular, predicting and understanding metabolic network of unfamiliar species have been difficult part of biology. Using the conventional methods, constructing a whole metabolic network has been recognized as a long term and labor intense project. However, with the birth of next-generation sequencing (NGS), not only genomic and transcriptomic approach to biology has reformed but also metabolic network construction has changed as well. Here, we present assembling and constructing a genome-scale metabolic pathway of non-model organism, *Clostridium aceticum*. It is an anaerobic homoacetogen, able to reduce CO₂ to multi-carbon products using the reductive acetyl-CoA pathway. Metabolic pathway mapping using the functional annotation obtained from the assembled contigs identified the majority of central metabolic pathways, such as the glycolysis and TCA cycle. Further, these analyses elucidated the enzymes consisting of Wood-Ljungdahl pathway, in which CO₂ is fixed into acetyl-CoA. Thus, the metabolic reconstruction based on the draft genome assembly provides a foundation for the functional genomics required to engineer *C. aceticum*. Also, we measured the frequency of actual members of a heterogeneous transposon mutant pool to determine the contribution of every essential and non-essential element in the *E. coli* genome under a given growth condition. This high-throughput insertion tracking method (Tn-seq) uses deep sequencing to accurately track the quantitative genetic interactions on genome-wide scale. Using this approach, we scanned *E. coli* transposon mutant libraries at 7 bp resolution, which is comprised of about 10⁷ mutants generated using a derivative of the Tn5 transposon. We found hundreds of essential or strongly advantageous genes for growth in rich medium, which encode fundamental biological processes in DNA replication, transcription, and translation. Interestingly, we found two important groups of genomic elements. First, many of transposon insertions were found in non-coding genomic elements, including promoters, regulatory sequences, and function unknown intergenic sequences. Second, the transposon insertions were preferentially positioned according to the protein domains, which enable us to determine the essentiality or advantage of protein domains under a given physiological condition. This comprehensive genetic information will provide the foundation for designing and rewriting an artificial genome.
Symposium [S6]

Korea Traditional Fermented Food

Sponsored by Microbial Institute for Fermentation Industry
Caenorhabditis elegans Conditioning with The Probiotic Bacterium Lactobacillus acidophilus Strain A4 Enhances Longevity and Resistance to Foodborne Pathogen Infections

Miri Park, Sangnam Oh, and Younghoon Kim*

BK21 Plus Graduate Program, Department of Animal Science and Institute of Rare Earth for Biological Application, Chonbuk National University, Jeonju 561-756

Despite the immune response of Caenorhabditis elegans, surrogate in vivo host model, to pathogen infections is well-established, very limited information is discovered about the impacts of health promoting-probiotic bacteria on host responses [1]. Here we investigate on the potential probiotic activity of Lactobacillus acidophilus strain A4 that isolated from human [2] on in vivo host using C. elegans nematode model.

Initially, we determined on the survivals of C. elegans using solid-killing assay and examined the bacterial colonization in C. elegans gut by plate method and transmission electron microscopy (TEM). Our results showed that the probiotic L. acidophilus strain A4 is not harmful to C. elegans and that L. acidophilus strain A4 is remarkably capable to colonize the C. elegans intestine in both plate counting assay and TEM assay compared with normal feeding bacterium Escherichia coli OP50. Moreover, persistent L. acidophilus strain A4 in the nematode intestine strongly enhanced the resistance of nematodes exposed to Staphylococcus aureus as well as significantly prolonged the lifespan of nematodes.

In addition, we employed DNA microarray, quantitative real time-polymerase chain reaction (qRT-PCR) and transgenic worms for exploring health-promoting pathways via probiotic bacteria in C. elegans. Based on DNA microarray results, conditioning of L. acidophilus strain A4 stimulated the specific gene regulation of multiple receptors including nuclear hormone receptors (NHR) family. Importantly, L. acidophilus strain A4 activates key signaling pathways involved in C. elegans immunity, including the p38 mitogen-activated protein kinase pathway and the β-catenin signaling pathway [3].

In conclusion, we describe that probiotic conditioning with L. acidophilus strain A4 may positively stimulate the longevity and resistance to foodborne Pathogen infections in C. elegans in vivo host.

References
Indigenous Yeasts Isolated from Traditional Fermented Soy-Sauce Can Prevent Pathogenic Bacteria Occurred at Low-Salt Fermentation Process

Sang Ho Baik
Dept. of Food Science and Human Nutrition, and Research Institute of Makgeolli, Chonbuk National University, Jeonju 561-756

Lately, concern on overindulgence of salt intake has been increasing steadily all over the world as it can increase the risk of hypertension and be directly related to the development of cardiovascular disease. Although great demands to reduce salt content of soy-sauce has been increased recently, simple reducing the amount of added-salt can bring about their conservation problems by restraining the proliferation of putrefactive salt-resistant fermenting microbes, and influence of their texture and flavor profile of final products and then it may consequentially cause a falling-off in quality.

Until now, most outstanding attempts undertaken to reduce the salt content in soy sauce were by using osmotically equivalent substitutes to replace salt such as ethanol, sugars, and polyols. However, although proliferation of putrefactive microbes was prevented, it can restrain the growth of some beneficial microbes such as yeast and bring about changing its taste and flavor by osmotically equivalent substitutes addition directly. Thereby is unsuitable for commercially acceptable soy sauce. Thus, an alternative method for reducing the salt content of fermented soy sauce is desirable. It was known that most pathogenic and spoilage microorganisms are not ethanol tolerant, even at low concentrations, and particularly it demonstrated that using ethanol in combination with NaCl can effectively inhibit spoilage microorganisms. However, those will be also change original character of soy products even if addressing preservative problem by restraining the growth of some beneficial microbes such as yeast and some bacteria. Moreover it also can produce bad impression by chemical material and thus, an alternative method for reducing the salt content of fermented soy sauce is desirable.

Microbial control of the pathogenic bacteria at fermented foods usually has been done usually by addition of preservatives such as salt, sugar and other spices or physiological control of waters. Recently, however, in the fermentation process, adding competitive starter cultures is considered to be most appropriate tools for inhibiting and/or controlling the growth of food-borne pathogens and spoilage microbial, preventing the formation of undesirable end-products or achieving the desired fermentation parameters. In particular, recently many researchers are more interested in selecting autochthonous microorganisms as a starter formulation can effectively survive well and preserve the indigenous characters of fermented products. It has been previously reported that use of autochthonous mixed starters in carrots and French beans fermentation were more competitive than those with allochthonous starters from other source, attributing remarkably sensory feature especially, appreciated for fragrance as well as fermentability. In a traditional dry-fermented sausage, preserving the typical sensory characteristics of traditional sausages with improving safety was achieved by adding autochthonous starter. Therefore, adaptation of indigenous starter could be an effective strategy by having many advantages for control of fermentation process containing reduced salt content. However, no studies have employed autochthonous microbial approaches to handle reduction of the salt content in soy sauce fermentation.
In soy sauce fermentation, salt is very important ingredient to preserve the food by restraining the proliferation of putrefactive microbes, control the growth of salt-resistant fermenting microbes, and then improves its organoleptic quality, nutritional value, food safety and shelf-life (Chiou et al., 1999; Liem et al., 2011). Thus, pinpointing a negative effect caused by reducing salt content in soy-sauce is crucial to resolve the problem as well as to select and exploit indigenous starter cultures for development of low salt soy sauce without altering the typicality of this fermented product.

Herein, change of physiological and microbiological properties in soy-sauce fermentation by different salt concentration was examined. With decreased salt concentration of the prepared soy-sauce, pH, acidity and ethanol content was slightly decreased, but residual sugar increased. Moreover, alcohols and various volatile compounds were noticeably lower and not detected compared to high salt concentrations. The bacterial analysis based on DGGE analysis showed *Bacillus* species was the most predominant bacterial group all through soy sauce fermentation without affecting salt concentration. However compared to *Bacillus* species, *Staphylococcus* and *Enterococcus* sp. were detected only during soy-sauce fermentation with low salt concentration of 8%. Two indigenous yeast strains, producing high alcohol and flavor, *Torulaspora delbrueckii* JBCC 623 and *Pichia guilliermondii* JBCC 848 were selected respectively and applied to control pathogenic bacteria and physicochemical change occurred in low salt process. When these strains were used as starter, the putrefactive microbe *Staphylococcus* was undetected and *Enterococcus* sp. considerably decreased despite low-salt concentration without affecting flavor profile patterns obtained from the soy-sauce fermented with high-salt concentration. Hence, this treatment offers a technological option to manufacture salt-reducing soy sauce, not giving rise to microbial and physiochemical changes via treating functional yeast culture.
Changes in Transcriptional Level of Subtilisin-like Proteases of *Bacillus licheniformis* during Fermentation of Fast-fermented Soybean Paste

Tai-Boong Uhm, Hyeon Hwa Oh, and Do Yeon Jeong

1Department of Biological Sciences, Chonbuk National University, Jeonju 561-756,
2Sunchang Research Center for Fermentation Microbes, Sunchang 805-17

Sunchang County has been well known as the main area for the production of traditionally fermented red pepper paste. To uphold its reputation on premier quality and taste of red pepper paste nationwide, we have tried to improve fermentation by screening *Bacillus* strains that can exhibit the antimicrobial activities against pathogens, degradation activities of harmful biogenic amines, and growth inhibition of film-forming yeasts grown in low-salted soybean products.

Recently we isolated a *Bacillus licheniformis* strain, which was named as SCD B34 and was selected for manufacturing premier red pepper pastes due to the excellent fermentation capability described above. For characteristic comparison of genes that can play crucial roles in fermentation of red pepper paste between the selected strains, we sequenced the genome of the strain SCD B34 and then annotated it. The draft genome sequence of the strain SCD B34 consists of 4.42 megabases, organized in chromosome with an average GC content of 45.65 %, which was similar to the reference strain *B. licheniformis* DSM13 (=ATCC 14580) or *B. licheniformis* SCK B11 isolated by our lab. A total of 4,789 genes have been identified including 69 tRNAs and 5 rRNA operons. As *Bacillus licheniformis* is an important producer of exoenzymes, we were interested in the types of peptidase and glycosidase, of which activities could play a central role in degrading most of soybean proteins and glutinous rice starch during fermentation. Genome of the strain SCD B34 contained 32 types of peptidase and 23 types of glycosidase, while total genes coding for peptidase and glycosidase in the same genome were 89 and 48, respectively. Among genes coding for peptidase, genes for subtilisin-like serine protease (AprE) were major one, which consisted of 11% of total peptidase genes. By analyzing sequence homology between these serine proteases, we classified AprEs into 11 types. Subtilisins (EC 3.4.21.62) including nattokinase belong to the second large family of serine proteases. We conducted RT-PCR for quantification of transcribed mRNAs of 5 different AprEs containing signal sequences for extracellular excretion. The quantification of resulting cDNA was normalized using two house-keeping genes. The transcriptional level of mRNA of each AprE at time interval during fermentation of fast-fermented soybean paste was different, suggesting that each AprE has different function during growth.

In this work, we took the first step into genomic and transcriptional analysis to evaluate the usefulness of a *Bacillus* strain for fermentation and to elucidate the transcriptional changes of proteases involved in fermentation of soybean products. We expect to find easy ways for selection of the commercially valuable strains *in silico* by using cumulative information obtained from molecular works during fermentation.
Antimicrobial Activity of *Bacillus licheniformis* Isolated From Korean Traditional Food Sources against Porcine Enteropathogenic Bacteria

Ho-Seong Cho1*, Sung-Hyun Moon1, Seung-Hwa Jo2, Seung-Won Lee1, Gee-Wook Shin1, Nag-Jin Choi3, Younghoon Kim3, Ju Hee Heo2, and Do-Youn Jeong2

1Bio-Safety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, 2Sunchang Research Center for Fermentation Microbes (SRCM), Sunchang, Jeonbuk 595-804, 3BK21 Plus Graduate Program, Department of Animal Science, Institute of Rare Earth for Biological Application, Chonbuk National University, Jeonju, 561-756

Probiotics are living microorganisms that benefit their host by providing intestinal flora balance through higher levels of favorable activities. In particular, fermented soybean products with *Bacillus* spp. indigenous to Asian and African countries have long been considered traditional and nutritious foods. *Bacillus licheniformis* has for many years been used in the industrial production of enzymes, antibiotics and detergents. Even though various probiotics are used in the field of animal feed, some research was carried out characterization and antibacterial activity test against porcine enteropathogenic bacteria. Therefore, the aim of this study was to analyze and evaluate the antimicrobial activity of 63 *Bacillus licheniformis* isolated from Korean traditional food sources against porcine enteric pathogenic bacteria (*Escherichia coli K88*, *Salmonella cholerasuis* and *Clostridium perfringens* type C). A multi-locus sequence typing (MLST) analysis, based on the sequence of six house-keeping genes (*adk, ccpA, recF, rpoB, spo0A* and *sucC*) of 63 *B. licheniformis* strains was performed. The result of the MLST analysis supported previous findings of two different subgroups (lineages) within this species, named “A” and “B” Statistical analysis of the MLST data indicated a higher rate of recombination within group “A”. Among the tested strains, 50 strains were defined as STs [ST26 (19 strains), ST3 (12 strains), ST2 (6 strains), ST14 (5 strains), ST9 (4 strains), ST24 (2 strains), ST 12 (1 strain) and ST 13 (1 strain)] and 13 strains were defined as new STs. The results of antibacterial activity, one strain of named SRCRM100160 demonstrated a high antimicrobial potency. Especially, *B. licheniformis* (ST14) were showed high antibacterial activity against porcine enteropathogenic bacteria. Our findings suggest that pre-conditioning with probiotic *B. licheniformis* isolated from Korean traditional food sources may protect against porcine enteric bacteria.

Keywords: *Bacillus licheniformis*, Korean traditional foods, pig, antimicrobial activity

* Corresponding author: Ho-Seong Cho (H. S. Cho), DVM, Ph.D., College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea, Phone: +82 63 270 4872; Fax: +82 63 270 3780, E-mail address: hskcho@jbnu.ac.kr (H. S. Cho)
Host-Fungal Pathogen Interactions
Development of System-wide Functional Analysis Platform for Pathogenicity Genes in The Rice Blast Fungus

Sook-Young Park1, Jaehyuk Choi1, Jaeyoung Choi1, Seongbeom Kim1, Jongbum Jeon1, Seomun Kwon1, Dayoung Lee1, Aram Huh1, Miho Shin1, Kyungyoung Jung1, Junhyun Jeon1, Chang Hyun Kang2, Seogchan Kang3, and Yong-Hwan Lee1

1Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, 2Department of Plant Biology, University of Georgia, Athens, GA30602, USA, 3Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA

Null mutants generated by targeted gene replacement are frequently used to reveal function of the genes in fungi. However, targeted gene deletions may be difficult to obtain or it may not be applicable, such as in the case of redundant or lethal genes. Constitutive expression system could be an alternative to avoid these difficulties and to provide new platform in fungal functional genomics research. Here we developed a novel platform for functional analysis genes in Magnaporthe oryzae by constitutive expression under a strong promoter. Employing a binary vector (pGOF1), carrying EF1β promoter, we generated a total of 4,432 transformants by Agrobacterium tumefaciens-mediated transformation. We have analyzed a subset of 54 transformants that have the vector inserted in the promoter region of individual genes, at distances ranging from 44 to 1,479 bp. These transformants showed increased transcript levels of the genes that are found immediately adjacent to the vector, compared to those of wild type. Ten transformants showed higher levels of expression relative to the wild type not only in mycelial stage but also during infection-related development. Two transformants that T-DNA was inserted in the promotor regions of putative lethal genes, MoRPT4 and MoDBP5, showed decreased conidiation and pathogenicity, respectively. We also characterized two transformants that T-DNA was inserted in functionally redundant genes encoding alpha-glucosidase and alpha-mannosidase. These transformants also showed decreased mycelial growth and pathogenicity, implying successful application of this platform in functional analysis of the genes. Our data also demonstrated that comparative phenotypic analysis under over-expression and suppression of gene expression could prove a highly efficient system for functional analysis of the genes. Our over-expressed transformants library would be a valuable resource for functional characterization of the redundant or lethal genes in M. oryzae and this system may be applicable in other fungi.
Population Structure of the Plant Pathogenic Fungus

Fusarium graminearum in Korea

Jungkwan Lee

Department of Applied Biology, Dong-A University

Fusarium graminearum (Teleomorph *Gibberella zeae*) is an important fungal pathogen of cereal crops and produces mycotoxins, such as the trichotheceenes nivalenol and deoxynivalenol. This species may be subdivided into a series of genetic lineages or phylogenetic species. We identified strains of *F. graminearum* from rice and maize fields in Korea to lineage, tested their ability to produce nivalenol and deoxynivalenol, and determined the genetic composition and structure of the populations from which they were recovered. Based on amplified fragment length polymorphism (AFLP), PCR genotyping, and chemical analyses of trichotheceenes, all 249 isolates from rice fields in southern provinces belonged to lineage 6, with 241 having the nivalenol genotype and eight having the deoxynivalenol genotype. In rice fields of the eastern Korea province, we recovered 84 lineage 6 isolates with the nivalenol genotype and 23 lineage 7 isolates with the deoxynivalenol genotype. Amongst 333 lineage 6 isolates, 36% of the AFLP bands were polymorphic, and there were 270 multilocus haplotypes. Genetic identity among populations was high (> 0.972) and genotype diversity was low (30 to 58%). Out of 568 isolates of *F. graminearum* collected from maize at eight locations in Korea, lineage 7 was the most common (75%), followed by lineage 6 (12%), lineage 3 (12%) and lineage 2 (1%). The genetic identity among populations was high (> 0.98) and the effective migration rate between locations was higher than that between lineages. Female fertility varied by lineage: all lineage 7 isolates were fertile while 70%, 26%, and 14% of the isolates in lineages 6, 3 and 2, respectively, were fertile. All lineage 3 and lineage 7 isolates produced deoxynivalenol, whereas most lineage 2 and 6 isolates produced nivalenol. Genotypic diversity in lineage 3 and lineage 6 populations is similar to that found in rice populations, but genotypic diversity in lineage 7 is much lower even though similar levels of gene flow occur between lineage 7 populations, suggesting that lineage 7 is a relatively recently introduction to Korea, perhaps accompanying imported maize seeds. To test the adaptation of lineage 6 to rice, conidial mixtures of strains from lineages 3, 6 and 7 were inoculated on rice plants and then recovered from the rice grains produced. Strains representing lineages 6 and 7 were recovered from inoculated spikelets at similar frequencies that were much higher than those for the strain representing lineage 3. Abundant perithecia were produced on rice straw, and 247 single-ascospore isolates were recovered from 247 perithecia. Perithecia representing lineage 6 (87%) were the most common followed by those representing lineage 7 (13%), with perithecia representing lineage 3 not detected. These results suggest that *F. graminearum* lineage 6 may have a host preference for rice and that it may be more fit in a rice agroecosystem than are the other lineages present in Korea.
Copper Homeostasis as a Virulence Factor in Systemic Infection by The Human Fungal Pathogen *Cryptococcus neoformans*

Chen Ding

School of Life and Health Sciences, Northeastern University, ShenYang, China

Cryptococcus neoformans is a human fungal pathogen that is the causative agent of lethal meningitis in immunocompromised hosts as a consequence of HIV/AIDS, cancer chemotherapy, diabetes, and maintenance on immunosuppressants due to organ transplants or other pathologies. Copper (Cu) is an important metal to *C. neoformans*, as it is involved in processes that include, among others, respiration, iron acquisition, melanin formation, mating and superoxide dismutase activity. Previous reports suggest that the *C. neoformans* Cu-responsive transcription factor, Cuf1, contributes to virulence but the precise mechanisms for this are unclear. Cuf1 homologues in other fungi are known to activate expression of genes involved in Cu acquisition. We identified all of the genes induced either by Cu deficiency or excess in *C. neoformans*, including the previously known Ctr4 Cu importer, a new Cu importer, Ctr1, two metallothionein genes (MT1, MT2) and others. Surprisingly, both Cu inducible and Cu repressible genes are dependent on Cuf1 for their metalloregulation. To decipher which Cuf1 target genes contribute to virulence we generated Cuf1 target gene deletions and assayed survival to intra-nasal administration in mouse models of infection. Our studies will elucidate the contributions of the *C. neoformans* Cu homeostasis machinery to virulence and will provide a set of tools to investigate how *C. neoformans* and mammalian hosts do battle over Cu.
Candida Infection and Antifungal Drug Resistance

Mi-Kyung Lee
Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul

For the past two decades, hospitals have been experiencing increasing problems with nosocomial fungal infections. Candida species, the most common human fungal pathogens, ranks as the fourth-greatest cause of nosocomial bloodstream infections, with up to 40% mortality in epidemiological studies. Candida species colonize asymptotically in around 30 to 50% of individuals in a population at any given time, but under conditions when the host defense of the individuals is weakened, they can cause both mucosal and systemic infections.

Although more than 100 species of Candida have been identified, fewer than 20 species have been implicated in nosocomial infections. C. albicans is the species most commonly isolated from clinical specimen and accounts for 40-70% of cases of invasive candidiasis. The second and third most frequently isolated species of Candida causing nosocomial candidiasis are dependent upon the age of patient and the geographic location of the hospital.

Both the frequency of invasive fungal infections and resistance to antifungal therapy continue to increase despite the introduction of new antifungal agents. In vitro antifungal susceptibility testing is now standardized internationally and is becoming essential in patient management and resistance surveillance. Although in vitro susceptibility testing is often used to select antimicrobial agents likely to be clinically active for a given infection, perhaps its most important function is the detection of resistance.

Antifungal resistance can be defined as microbiologic or clinical resistance. Microbiological resistance refers to nonsusceptibility of a fungus to an antifungal agent by in vitro susceptibility testing, in which the minimal inhibitory concentration (MIC) of the drug exceeds the susceptibility breakpoint for that organism. Microbiological resistance can be primary (intrinsic) or secondary (acquired). Primary resistance is found naturally among certain fungi without prior exposure to the drug and emphasizes the importance of identification of fungal species from clinical specimens. Secondary resistance develops among previously susceptible strains after exposure to the antifungal agent and is usually dependent on altered gene expression. Clinical resistance is defined as the failure to eradicate a fungal infection despite the administration of an antifungal agent with in vitro activity against the organism. Such failures can be attributed to a combination of factors related to the host, the antifungal agent, or the pathogen.

Antifungal drug resistance is a prominent feature in the management of invasive candidiasis. Fortunately, unlike bacteria, there are no described drug resistance plasmids or transposons to amplify antifungal resistance.
New Approaches in Understanding of Microbial Pathogenesis
Antibiotics are important for both human and animal health but occasionally the use of antibiotics can have unintended consequences. For example, our research group demonstrated that *in vitro* exposure of multidrug-resistant *Salmonella enterica* serovar Typhimurium DT193 to the antibiotic tetracycline induces premature cellular invasion during logarithmic growth phase. Furthermore, the agricultural antibiotic carbadox was recently shown by our research group to induce phage-mediated gene transfer in multidrug-resistant *Salmonella* Typhimurium DT104 and DT120, including generalized transduction of multiple antibiotic resistance genes. The potential collateral effects of antibiotic usage illustrate that alternatives to antibiotics for animal production management should be developed and employed when possible.

Microbial interventions to reduce *Salmonella* colonization and disease in food-producing animals are needed to enhance animal health and improve food safety while alleviating the demand for antibiotic usage during animal production. *Salmonella* colonization and pathogenesis in the animal host is a complex interaction between multiple factors including host genetics and immunity, the competitive microbial flora, and virulence and survival mechanisms of the pathogen. Therefore, an effective reduction of *Salmonella* colonization and pathogenesis in food-producing animals will likely require the simultaneous use of several intervention strategies. Our *Salmonella* research program has taken a multi-faceted approach with investigations of the swine gastrointestinal microbiota, a porcine immune modulator, and a live, attenuated *Salmonella* vaccine.

Analysis of the porcine microbiota in swine prior to and following experimental inoculation of *Salmonella* Typhimurium indicates that the microbial community of the swine gastrointestinal tract influences pathogen colonization and fecal shedding. Prior to *S.* Typhimurium inoculation a significant difference was seen comparing the microbiota of swine that “will” shed low levels of *S.* Typhimurium [Low-shedder (LS)] compared to swine that “will” shed high levels of the pathogen [High-shedder (HS)] following inoculation. Two-days following inoculation, the presence of *S.* Typhimurium induced significant changes in the microbiota of HS pigs but not LS pigs. These results suggest that the composition of the gastrointestinal microbiota may impact the colonization potential of *Salmonella*, either antagonistically or synergistically.

Administration of the immunomodulatory cytokine Granulocyte-colony stimulating factor (G-CSF) enhances the porcine immune response and reduces *S.* Typhimurium colonization and shedding in swine. The G-CSF cytokine is involved in the production, differentiation and function of granulocytes that fight infectious disease agents such as viruses and bacteria. Swine injected with a replication-defective adenovirus (Ad5) encoding porcine G-CSF, four days prior to *S.* Typhimurium inoculation, had significantly reduced fecal shedding of *S.* Typhimurium at 2 and 3 days post-challenge compared to pigs that received the adenovirus vector alone. This study reveals that modulation of the immune response with biotherapeutic proteins, such as G-CSF, may hold potential to enhance animal health and improve food safety, especially during typical periods of stress and pathogen exposure (weaning, transportation).
Development and evaluation of a live, attenuated S. Typhimurium vaccine strain induces cross-protection against Salmonella serovars and can be used to differentiate infected from vaccinated animals (DIVA). Vaccination of swine with the rationally designed S. Typhimurium strain significantly reduced disease severity, fecal shedding, and tissue colonization following virulent S. Typhimurium challenge. Furthermore, vaccine administration was cross-protective against virulent S. Choleraesuis as disease severity, recovery of bacteria from systemic sites, and tissue colonization was significantly reduced. These experiments demonstrate that the S. Typhimurium vaccine can be given to food-producing animals to decrease Salmonella colonization, transmission, and clinical disease.

Our research program investigates the complex relationship between the host, the pathogen, and the microbial flora for the development of pathogen interventions. Our ultimate goal is to develop a suite of complementary intervention strategies as alternatives to antibiotics that will decrease the incidence of Salmonella in food-producing animals and prevent Salmonella outbreaks in humans.
Structural and Biophysical Insights into Flagellin-mediated Activation of TLR5 Signaling

Sung-il Yoon1*, Wan Seok Song1, and Minsun Hong2

1Department of Systems Immunology, Kangwon National University.
2Division of Biological Science and Technology, Yonsei University

When pathogenic flagellated bacteria infect the host, the bacterial flagellin protein is recognized as a pathogen-associated molecular pattern by an innate immune receptor, Toll-like receptor 5 (TLR5), which activates potent immune responses against pathogens. Flagellin contains at least two conserved domains (D0 and D1) that are required for formation of the flagellar filament in bacteria and for TLR5 activation in a host. To enhance our understanding of the flagellin-mediated TLR5 activation, we have analyzed the TLR5-flagellin interaction and signaling using diverse flagellins through biophysical binding assays, X-ray crystallography, and cell-based assays. Our structural studies on TLR5 and \textit{Salmonella} and \textit{Bacillus} flagellins revealed that TLR5 makes contacts with three long α-helices of the flagellin D1 domain through 'primary binding' and 'secondary homodimerization' interfaces. In addition, the D1 domain, irrespective of bacterial species, exhibited high binding affinity for TLR5 and exerted similar TLR5 signaling activities. Interestingly, although the flagellin D0 domain did not contribute to the TLR5 binding energy, the D0 domain substantially enhanced TLR5 signaling activity. Our extensive studies on the TLR5-flagellin interaction would provide deeper insights into the design of flagellin vaccines and anti-radiation therapeutics.
FoxP3+ Tregs, PD-1 and CTLA4: Negative Immune Regulatory Pathways in Patients with Chronic HIV and/or HCV Infection

Hyosun Cho1,2,3, Masahiro Kikuchi1,2, Yun Li1,2, Nobuhiro Nakamoto1,2, Valeriana Amorosa1,2, Mary E. Valiga1,2, and Kyong-Mi Chang1,2*

1Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA, 2Philadelphia VAMC, Philadelphia, PA, USA, 3Department of Pharmacy, Duksum Women’s University, Seoul

FoxP3+ CD4+ regulatory T cells (FoxP3+ Tregs) play a key role in mediating immune tolerance to self and non-self antigens, including viral pathogens. Programmed death-1 (PD-1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) are receptors in CD28 family of costimulatory molecules, induced by T cell activation but also providing inhibitory signals to T cells. There are further cross-talks between Tregs and T cell costimulatory pathways.

HCV persists with increased circulating CD4+FoxP3+ Tregs and increased PD-1 and/or CTLA-4 expression on intrahepatic virus-specific T cells. HIV persists with dysfunctional antiviral effector T cells with increased PD-1 and/or CTLA-4 expression. Importantly, HCV/HIV coinfected patients display increased liver disease progression and mortality, suggesting that HIV-associated immune dysregulation with the loss of CD4 T-cells may disturb the balance between immune regulatory and effector mechanisms. FoxP3+ Tregs from HCV/HIV coinfected patients has recently reported to have increased level of expression compared to FoxP3+ Tregs from HCV monoinfected patients. However, the nature of FoxP3+ Tregs from HCV/HIV coinfected patients has not been characterized in terms of phenotype, function and relationship with other inhibitory receptors (PD-1, CTLA-4). In this study, we hypothesized that HIV-associated loss of CD4 T cells may differentially affect FoxP3+ Tregs and T cell expression of various costimulatory receptors that may further influence HIV and/or HCV pathogenesis.

Peripheral blood mononuclear cells (PBMC) from HCV monoinfected (HCVmono), HIV monoinfected (HIVmono) and HCV/HIV co-infected (HCV/HIVco) patients were examined for FoxP3+ Treg frequency and expression of co-inhibitory receptor Programmed Death-1(PD1) and cytotoxic T-lymphocyte antigen 4 (CTLA4) on T-cell subsets by flow cytometry. MHC/peptide tetramers were used to detect virus-specific effector CD8 T-cells.

Here, we report that CD4 T cells from HCV/HIV coinfected patients are significantly enriched for FoxP3 expression compared to CD4 T cells from HIV or HCV monoinfected patients. FoxP3 expression on CD4 T cells also correlate with their PD-1 and CTLA-4 expression and CD4 T cells from HCV/HIV-coinfected patients displayed significantly increased PD-1 and CTLA-4 expression than other groups. Induction of FoxP3, PD-1 and CTLA-4 expression on CD4 T cells showed a significant inverse association with the overall circulating CD4 T cell frequency. Collectively, our study suggests that FoxP3+ T regs in HCV/HIV coinfected patients contributes to effector T cell inhibition. Contrary to our hypothesis, our findings show that Tregs are in fact preserved in HCV/HIV-coinfection in direct association with PD-1 and CTLA-4 pathways but not with clinical parameters of liver disease or the level of viremia. We also find that these immune regulatory pathways are tightly linked to the overall CD4 T cell frequency, suggesting a global homeostatic mechanism towards immune regulation with absolute CD4 T cell loss.
Tumor Cell Modulation by Mucosa-associated *Escherichia coli* as an Internal Exposome via Macrophage Inhibitory Cytokine 1

Hye Jin Choi and Yuseok Moon*

Laboratory of Mucosal Exposome and Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine

Commensal bacterial community shifts in the pathogenic colonic environment and chronic colonization of mucosa-associated *Escherichia coli* (MAEC) has been linked to colonic tumourigenesis. Enteropathogenic *Escherichia coli* (EPEC) is one of commonly identified MAEC in colorectal cancer patients. The aim of this study is to address the contribution of MAEC colonization to human carcinogenesis. EPEC infection of cancer cell caused alterations in affect locomotion-related behaviors of cancer cell including detachment, migration, cytoskeleton rearrangement, dissemination and survival via induction of macrophage inhibitory cytokine 1 (MIC-1). Mechanistically, MIC-1 promoted NF-kappaB, or RhoA GTPase which mediated survival and activated inflammatory stimulation in the cancer cells. In terms of signaling pathway, MIC-1 triggered TGF-beta-activated kinase 1, which enhanced expression of RhoA GTPase. Conclusively, mucosal EPEC enhanced MIC-1 gene expression in the human intestinal cancer cells, which was associated with enhanced tumor cell resistance to anoikis and subsequent survival via enhanced TAK-1 and RhoA GTPase. [This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by Ministry of Education, Science, and Technology Grant 2012R1A1A2005837].
Symposium [S9]

Novel Concepts in Gene Expression System
Proof of Concept Trials for Functional Overexpression and High Throughput Assay of Proteins

Geun-Joong Kim
Department of Biological Sciences, College of Natural Sciences, Chonnam National University

Cells innately control gene expression using a variety of cis- and trans-acting elements such as DNA, RNA, protein and DNA-modifying regulators. It was also recognized well that interactions between these elements were logically programed. Thus, a lot of attempts have tried to understand the principle and logic of the genetically installed program on genome for gene expression. Any of these findings could have a revolutionary impact on biotechnology, such as designing module to express the proteins of interest in a controllable manner, programing cells to sense and respond to signals from internal or external environment for gene expression, or engineering factory cells that can overproduce the proteins of interest as functional state in soluble fractions. However, building synthetic module, based on the innate principle and logic of cells for gene expression, remains one of the greatest challenges in the field, where even simple module is labor intensive to build and lacks the performance of its natural counterparts.

As described above, the research field in gene expression has experienced many challenges in discovering and developing new tools for functional overexpression of proteins (especially medical and diagnostic proteins), including efficient activity analysis methods with target-oriented approaches in a high-throughput manner. In response, a lot of novel concepts and trials are reported to be working to pave a novel route for the development of practical application process. In line with this, we present here two novel approaches that describe and provide evidences for functional overexpression of proteins in soluble fraction by synthesized ramp-tag, and one approach that has been described a rapid and sensitive assay method for the detection of a cofactor NADPH using a dose-dependent fluorescent protein mBFP. The principle of strategy for the later approach can be applied to screen NADP(H)-dependent enzymes with promise but weak activity in-vitro and also to detect the level of NADPH or metabolic conversion of cells or in-vivo. The validation processes are currently being undertaken to evaluate the performance of our approaches for practical application.
Incorporation of Unnatural Amino Acids into Proteins in *Escherichia coli* and Their Applications

Hyungdon Yun
Department of Bioscience and Biotechnology, Konkuk University, Seoul

The expansion and engineering of genetic code is an emerging field in chemical biology. The ability to genetically encode unnatural amino acids beyond the common 20 into proteins has allowed unprecedented control over the chemical structures of recombinantly expressed proteins and new dimensions to protein engineering. Now days, unnatural amino acid incorporation into proteins has become an indispensible tool for biologists, for generating proteins with novel functionalities. Moreover, this method is greatly beneficial to understand the structure–function relationship of proteins. In this seminar, I will present our recent efforts to enhance the biophysical properties of functional proteins through *in vivo* incorporation of unnatural amino acids.
New Strategy for Enhancing Heterologous Protein Expression through the Alternating N-terminal Codons

Dae-Eun Cheong, Jae Jun Song, and Jong Hyun Choi*

Biorefinery Research Center, Korea Research Institute of Bioscience and Biotechnology (KIRIBB)

Many recombinant proteins/enzymes have been successfully produced using *Escherichia coli*. However, in many cases, target proteins/enzymes are not functionally overexpressed, and form inactive inclusion bodies in *E. coli*. Thus, complex and expensive processes of denaturation and refolding or altering promoter are required to obtain biologically active overexpressed soluble form. In this study, we developed a novel strategy for enhancing functional expression of heterologous proteins through replacing the first ten variable codons with synonymous codons. The alternation of synonymous codons was induced by PCR with forward primers with wobble letters at third position in codon and a reverse primer. Resulting codon adjustment mutants were directly inserted upstream mcherry without linkers. Following transformation and cultivation, colonies with the red fluorescence of mcherry were selected and assayed. With exocellulase screened from metagenome as a model protein, we increased the functional expression level by 155 fold or 407 fold with or without fusion of mcherry at C-terminal region, respectively. Surprisingly, the stability of mRNA secondary structure of 5' untranslated region and the first 33 nucleotides in codon variants was not correlated with functional expression level. This strategy, requiring small library in size without using complex bioinformatics tools, is effective in enhancing functional expression without changing primary structure of a target protein.
Strategy to Overexpress a Large Biosynthetic Gene Cluster in *Streptomyces* Species

Ji-Hye Nah, Min-Woo Woo, Si-Sun Choi, and Eung-Soo Kim*

Department of Biological Engineering, Inha University, Incheon 402-751

Functional expression of an entire secondary metabolite biosynthetic pathway gene cluster is an attractive alternative to facilitate production improvement and biosynthetic modification of a potentially-valuable natural product derived from various genetically-recalcitrant *Streptomyces* species. Previously, a versatile *Escherichia coli*-*Streptomyces* shuttle Bacterial Artificial Chromosomal (BAC) conjugation vector, pSBAC was successfully used for heterologous expression of a meridamycin biosynthesis gene cluster in *S. lividans*.

Using pSBAC-driven genome engineering techniques as well as PCR-targeted gene manipulation, here we show the both homologous and heterologous expressions of an entire biosynthetic pathway gene cluster of tautomycetin (TMC), a protein phosphatase PP1/PP2A inhibitor and T-cell-specific immunosuppressant.

The recombinant pSBAC construct containing the entire TMC cluster in *E. coli* was conjugated into the model *Streptomyces* strains such as *S. lividans* or *S. coelicolor*, resulting in the fast and enhanced TMC production. Moreover, re-introduction of the TMC cluster-containing pSBAC into the wild-type *Streptomyces* sp. CK4412 resulted in a tandem repeat of an entire TMC cluster in the chromosome with 50-fold increased TMC productivities. The strategy described here may set the stage for the custom-optimized over-expression scheme for the metabolite pathway cluster present in the actinomycetes.
Symposium [S10]

Structural Microbiology and Pathogenesis

Co-organized by Systems & Synthetic Agrobiotech Center
Crystal Structures of Bifunctional Penicillin-Binding Protein 4 from

Listeria monocytogenes

Jae-Hee Jeong1,2, Yi-Seul Kim1, Catleya Rojviriya 1, Sung-Chul Ha1, Beom Sik Kang2, and
Yeon-Gil Kim1*

1Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784,
2School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701

Penicillin-binding proteins (PBP), which catalyze the biosynthesis of the peptidoglycan chain of the bacterial cell wall, are the major molecular target of bacterial antibiotics. Here, we present the crystal structures of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase (TP) PBP4 from Listeria monocytogenes in the apo-form and covalently linked to two β-lactam antibiotics, ampicillin and carbenicillin. The orientation of the TP domain with respect to the GT domain is distinct from that observed in the previously reported structures of bifunctional PBPs, suggesting interdomain flexibility. In this structure, the active site of the GT domain is occluded by the close apposition of the linker domain, which supports the hypothesis that interdomain flexibility is related to the regulation of GT activity. The acylated structures reveal the mode of action of β-lactam antibiotics toward the class A PBP4 from the human pathogen L. monocytogenes. Ampicillin and carbenicillin can access the active site and be acylated without requiring a structural rearrangement. In addition, the active site of the TP domain in the apo-form is occupied by the tartrate molecule via extensive hydrogen bond interactions with the catalytically important residues; thus, derivatives of the tartrate molecule may be useful in the search for new antibiotics to inhibit PBPs.
Structural Basis for The Recognition of Peptidoglycan Tripeptide by Helicobacter pylori Csd4, a D,L-carboxypeptidase Controlling The Helical Cell Shape

Byung Il Lee¹*, Hyun Sook Kim², and Se Won Suh²*

¹Biomolecular Function Research Branch, Research Institute National Cancer Center,
²Department of Chemistry, Seoul National University

Helicobacter pylori infection causes a variety of gastrointestinal diseases including peptic ulcers and gastric cancer. The colonization of this bacterium in the gastric mucosa is required for the survival in the stomach. Its colonization of the gastric mucosa of human stomach depends on its motility, which is facilitated by the helical cell shape. In H. pylori, peptidoglycan crosslinking relaxation promotes the helical shape. Among several cell shape-determining peptidoglycan hydrolases identified in H. pylori, Csd4 is a Zn²⁺-dependent D,L-carboxypeptidase that cleaves the bond between the γ-D-Glu and mDAP of the uncrosslinked tripeptide of peptidoglycan (L-Ala-γ-D-Glu-mDAP) to produce L-Ala-γ-D-Glu dipeptide and mDAP, affecting the helical cell shape. Inhibition of D,L-carboxypeptidase activity of Csd4 may represent a novel therapeutic approach. We report here the crystal structures of H. pylori Csd4 (HP1075) in three different states: the ligand-free form, the substrate-bound form, and the product-bound form. H. pylori Csd4 consists of three domains: an N-terminal D,L-carboxypeptidase domain, a novel β-barrel domain, and a C-terminal immunoglobulin-like domain. The D,L-carboxypeptidase domain exhibited typical carboxypeptidase folds and provided structural basis of peptidoglycan recognition by D,L-carboxypeptidase. H. pylori Csd4 recognizes primarily the terminal mDAP of the tripeptide substrate and undergoes a significant structural change upon binding either mDAP or mDAP-containing tripeptide.
Structure and Function of Fungal Zn Finger Transcription Factor in Sterol Homeostasis and Antifungal Resistance

Young Jun Im¹*, Huiseon Yang¹, Jusen Tong¹, Subin Ha¹, and Soo Hyun Eom²

¹College of Pharmacy, Chonnam National University, Gwangju,
²Dept. of Life Science, Gwangju Institute of Science & Technology, Gwangju

Transcriptional regulation of ergosterol biosynthesis in fungi is crucial for sterol homeostasis and for resistance toazole drugs. Due to the essential role of ergosterol in fungal membranes, azole drugs that inhibit ergosterol biosynthesis are widely used for the treatment of fungal infections. In Saccharomyces cerevisiae, the Upc2 transcription factor activates the expression of related genes in response to sterol depletion by poorly understood mechanisms. Upc2 contains a N-terminal DNA-binding domain characterized by a conserved zinc finger motif and a C-terminal conserved domain of unknown function. In this study, we have determined the structure of the C-terminal domain (CTD) of Upc2, which displays a novel α-helical fold with a deep hydrophobic pocket. We discovered that the conserved CTD is a ligand-binding domain and senses the ergosterol level in the cell. Ergosterol binding represses its transcription activity while dissociation of ligand leads to relocalization of Upc2 from cytosol to nucleus for transcriptional activation. The C-terminal activation loop is essential for ligand binding and for transcriptional regulation. Upc2 displays a distinct structural fold of ligand binding domain but shares a common regulatory mechanism with metazoan nuclear receptors.

Our findings highlight Upc2 as a novel target for the developments of anti-fungal therapeutics. The deletion of Upc2 leads to anaerobic inviability and high susceptibility to azole antifungals in S. cerevisiae and in Candida albicans. Therefore, inhibition of Upc2, which subsequently suppresses the adaptive responses of fungal cells to azoles, could be a novel strategy to improve the combined therapy with antifungal agents. Upc2 LBD displays a novel fold of ligand binding domain and a deep hydrophobic pocket that could serve as an excellent pharmacopore for the design of small molecule inhibitors. In addition, Upc2 is specific to fungal sterols and has no affinities to other types of sterols providing key information for ligand based drug design. Thus, the discovery of the Upc2 transcription factor as a fungal nuclear receptor opens the way for the development of new anti-microbial agents.
Dxo1, a Novel Eukaryotic Enzyme with Both Decapping and 5’-3’ Exoribonuclease Activity

Jeong Ho Chang1,2* and Liang Tong2

1Department of Biology, Teachers college, Kyungpook National University, Daegu, \\
2Department of Biological Sciences, Columbia University, New York, USA

The 5’-ends of messenger RNA precursors are rapidly capped during transcription in eukaryotes, and it was generally believed that 5’-end capping always proceeds to completion. However, recent studies showed that yeast protein Rai1 functions in a quality control mechanism to clear cells of incompletely 5’ end-capped messenger RNAs (mRNAs). Rai1 possesses a novel decapping activity that can remove the entire cap structure dinucleotide from an mRNA. This activity is targeted preferentially towards mRNAs with unmethylated caps in contrast to the canonical decapping enzyme, Dcp2, which targets mRNAs with a methylated cap. In addition, Rai1 also has RNA pyrophosphohydrolase (PPH) activity that turns a 5’-end triphosphate to monophosphate RNA. Therefore, Rai1 is involved in a novel RNA 5’-end capping quality checkpoint, and is required for the degradation of RNAs with defective caps, especially under nutritional stress.

\textit{S. cerevisiae} and several other fungal species contain a weak sequence homolog of Rai1, with the systematic name \textit{Kluyveromyces lactis} Ydr370c at 2.4 Å resolution. The overall structure of Ydr370c is similar to Rai1, but Ydr370C also contains unique features in the active site. It is shown that Ydr370C has a structural similarity to D-(D/E)XK nucleases such as EBV alkaline nuclease, RecE exonucleases and \textit{\lambda} exonuclease. Based on the three dimensional structure, we perform biochemical and functional studies on this protein. Unlike Rai1, Ydr370C has robust decapping activity on RNAs with both methylated and unmethylated caps, but it has no detectable PPH activity. Unexpectedly, our assays also demonstrate 5’-3’ exonuclease activity for Ydr370C, distinct from Rai1. We propose the name Dxo1 for this novel eukaryotic enzyme with both decapping and exonuclease activities. Studies of yeast in which both Dxo1 and Rai1 are disrupted reveal that mRNAs with incomplete caps are produced even under normal growth conditions, in sharp contrast to current understanding of the capping process.
Molecular Epidemiology and Control of Enteric Virus
Management Strategy of Norovirus in South Korea

In-Sun Joo

Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation

Since the mass outbreak of food poisoning among school children caused by norovirus in 2006, Ministry of Food and Drug Safety (MFDS) has established and operated various management measures through the cooperation of different governmental agencies to prevent food poisoning outbreak beforehand.

Through this presentation, I will introduce some of the prevention strategies that can be used to reduce norovirus food poisoning in South Korea. I will also talk about the occurrence cases of the latest food poisoning outbreak due to norovirus, and future research directions.

In order to monitor and to investigate the cause of norovirus food poisoning, MFDS has been conducting research & development projects such as research on detection method of norovirus in shellfish, vegetables, fruits and drinking water (underground water). The established methods get included in the guideline for the investigation of food poisoning and utilized to determine the causative agent.

Furthermore, since 2009, MFDS has been trying to prevent food poisoning caused by norovirus-contaminated ground water. To achieve this, we have extended the scope of food service institutions to include schools, youth training facilities, social welfare facilities, military bases where underground water is used for drinking and cooking and conducted inspection of norovirus contamination in these facilities. The facilities where the norovirus is detected from the underground water were subjected to eduction for food poisoning prevention, disinfection and sanitation of the facilities. The first year of conducting this norovirus safety management project in 2009, the detection rate of norovirus was 3.1% while it was decreased to 0.8% after 5 years continuously conducting the survey and it can be considered that this is resulted from the effectiveness of the prevention management. Since there has been major norovirus food poisoning outbreaks due to products made using underground water being distributed to food service institutions in the past 2 years. Unheated products produced by using underground water has become a main focus of the management in 2013.

Once the food poisoning outbreak occurs, it is important to prevent the outbreak from spreading through rapid investigation of causative agent. The final causative agent can be determined by investigating the consumed food products based on the causative pathogen identified in patients and once the product in concern is singled out, underground water, food producing facility and surrounding environment are investigated. The food poisoning outbreaks occurred in the past 2 years were caused by contaminated underground water or seawater and it has been confirmed that the identical norovirus genotype was found in underground water and seawater used for food production, food product and in patients.

MFDS organized a project group for food poisoning prevention research to investigate the causative agent. The main research areas are to prevent by causative agent such as seawater surrounding shellfish farm, inflow from inland fish farm, underground water and agricultural water. We can also develop on-site detection kits which are easily available to improve the sanitary control ability of the companies and conduct research on complex technology for reduction by assessing and developing disinfectants. Furthermore, MFDS will conduct infectious disease-animal model research as a challenging base study to achieve not only domestic food poisoning safety management, but to strengthen its global positioning through international cooperative researches.
Public Health Impact of Human Noroviruses

Jan Vinjé

Head National Calicivirus Laboratory, Director CaliciNet,
Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, USA

Noroviruses are the leading cause of outbreaks and sporadic cases of acute gastroenteritis in humans worldwide. In a recent study in the United States, approximately 16% of all norovirus outbreaks are reported to be caused by contaminated foods. These highly infectious viruses usually cause self-limited disease in persons of all ages but the young, elderly and sick may suffer more severe consequences of illness such as dehydration requiring medical attention. In closed settings such as nursing homes, cruise ships, schools, and the military, norovirus often is transmitted person-to-person resulting in high attack rates and large outbreaks. Food may become contaminated with norovirus at the source (i.e., irrigation, shellfish) or at point of service (e.g. infected foodhandler). Over the past two decades, this appreciation of the major and expanded burden of norovirus and sapovirus disease has been brought about by laboratory advances in the molecular detection of these viruses and their genetic characterization. Harmonization of typing methods for norovirus allows for more standardized surveillance through electronic networks such as CaliciNet and NoroNet). Worldwide, the majority of norovirus outbreaks are caused by genogroup (G) II, genotype 4 (GII.4) viruses, which were first recognized as a pandemic strain in the mid-1990’s, followed by several new emerging GII.4 variants over the past 15 years. However, recent data indicate that non-GII.4 viruses are more likely to be associated with foodborne exposure whereas GI viruses are frequently detected in waterborne outbreaks, supporting the need for rapid typing as person to person transmission and foodborne exposures require different intervention measures. Recent data from human volunteer studies as well as from natural outbreaks show that host genetics, such as secretor status, plays an important role in susceptibility of individuals to norovirus infection. Histoblood group antigens act as attachment factors required for infection by noroviruses but their polymorphism contributes to restriction of the transmission of any given strain. Control efforts focus on hand hygiene, isolation of ill people, and environmental disinfection. An effective norovirus vaccine in under development and could play a pivotal role to control norovirus disease burden in certain target groups such as the elderly, healthcare workers and the military although several significant challenges remain to be solved. Therefore, surveillance systems such as CaliciNet will be critical to monitor how the virus will change over time. This presentation will cover the most current knowledge on virus taxonomy, detection, surveillance, and prevention of human noroviruses.
Norovirus: The Main Target for Food Safety and Control

GwangPyo Ko

1Department of Environmental Health, School of Public Health, Seoul National University,
2Institute of Microbiology, Division of Life Sciences, Seoul National University

Recently, the research on the norovirus (NoV) has been receiving great attention due to the importance of public health worldwide. NoV is highly infectious, resistant to various environmental stresses and has low infectious dose. However, NoV has been greatly understudied worldwide due to inability to cultivate in conventional cell culture techniques. Recently, Korean Food and Drug Administration (KFDA) developed more than 5 million US dollars initiative program, so called NoroTECL (TEam for Control of Noroviral Foodborne Outbreaks), for preventing the outbreaks caused by norovirus in South Korea. This initiative program includes the surveillance of seafood and agricultural foods, the identification of source of viral contamination in major food producing area, development of novel diagnostic and control techniques, and development of tools for noroviral research. In this presentation, some examples of prompt diagnosis and control of NoV would be presented.
Antiviral Activity and Its Mechanism of Ginsenoisdes against Norovirus Surrogates

Changsun Choi
School of Food Science and Technology, Department of Food and Nutrition, Chung-Ang University

Korean red ginseng has been studied various biological activities such as immune, anti-oxidative, anti-microbial, and anti-cancer activities but antiviral activity and its mechanism were not elucidated. This study aimed to investigate the antiviral effects and its mechanism of Korea red ginseng extract and ginsenosides on norovirus surrogate, including murine norovirus (MNV) and feline calicivirus (FCV). The pre-, co-, and post-treatment effects of Korean red ginseng (KRG), ginsenosides Rb1 and Rg1 was measured. To measure the antiviral effect and cytotoxicity of Korean red ginseng extract, and ginsenosides Rb1 and Rg1, we treated Crandell-Reese Feline Kidney (CRFK) for FCV or RAW264.7 cells for MNV with concentrations of 0, 5, 6.7, 10, 20 μg/ml total saponin. There was cytotoxic effect in the highest concentration 20 μg/ml of KRG extract so this concentration was excluded in this study. The FCV titer was significantly reduced to 0.23-0.83 log 50% tissue culture infectious dose (TCID50)/mL in groups pre-treated with red ginseng extract or ginsenosides. The titer of MNV was significantly reduced to 0.37-1.48 log TCID50/mL in groups pre-treated with red ginseng extract or ginsenosides. However, there was no observed antiviral effect in groups co-treated or post-treated with KRG and its constituents. CRFK cells that were pretreated for 48 h with 10 μg/mL of KRG extract or purified ginsenoside Rb1 or Rg1, were inoculated with FCV. RNA extracted from each treated group was examined for the expression of antiviral cytokines, including interferon-α (IFN-α), interferon-β (IFN-β), interferon-ω (IFN-ω), Mx, and zinc finger antiviral protein shorter isoform (ZAPS), by relative real-time reverse transcription-polymerase chain reaction. mRNA expression of IFN-α, IFN-β, IFN-ω, Mx, and ZAPS was significantly induced in the FCV-challenged group pretreated with the KRG extract or ginsenosides, and it was higher than the group treated with FCV alone. Mx protein expression was confirmed by western blotting of CRFK cells pretreated with the ginsenoside Rb1 or with Rg1. Induction of antiviral cytokines contributes to the reduction of the viral titer in CRFK cells pretreated with the KRG extract and purified ginsenosides. Our data suggest that Korean red ginseng extract has an antiviral effect against norovirus surrogates and that protein and mRNA level of antiviral cytokines was significantly induced on cells pretreated with ginsenosides In further study, antiviral activity of natural compounds extracted from oriental herbs or phytochemicals should be invested in the animal models for human norovirus.
Symposium [S12]

Microbial and Toxicological Burdens in Biomaterials: How to Measure and Remove?
Nonclinical Safety Research and Related Matters for Drug Development

Tarumoto Yasuo¹, Wan-je Park¹, Gwang Hyeon Im², and Heon Ju Lee³*

¹Department of Non-clinical CRO, Genia, ²Department of Toxicology Evaluation, Graduate School, Konyang University, ³Department of Health Industry Education, Korea Human Resource Development Institute For Health & Welfare

There are various kinds of relations between drugs and microorganisms. Here, in my presentation, we see microorganism as drug seeds. This is the report about non-clinical safety research and its related matters that should be considered in the process of drug development.

New drug development is roughly divided into 3 steps; drug discovery research step, drug development research step and market expansion study step. In the first drug discovery research step, we look for seeds and select drug candidate compounds. Microorganism is included in one of these seeds. The products of microorganism work as leading compounds, and the target of the developing candidate compounds is selected after the products go through screening studies. In the second step of drug development research, non-clinical research using animal, and clinical research using human are conducted. Pharmacological efficacy research, pharmacokinetics research, and safety research are carried out in non-clinical research. After the safety and efficacy of the compound are finally confirmed in non-clinical research, it is allowed to go forward to human clinical research. The clinical research is divided into three phases. Every phases are proceeded cautiously and through this process, the safety and efficacy are confirmed. Safety research of non-clinical research should be conducted according to GLP guidelines and clinical research should be complied with the GCP guidelines. With non-clinical and clinical research, a medical chemistry research establishes the way to extract and synthesize the compound. The drug formulation research maximizes the outcome of therapeutic efficacy of the compounds. The research is designed to maintain the stability and to form the compound for homogeneous and convenient dosing. The function and the role of safety research are to assess the usefulness of substance and extrapolation to human from toxicity data. Safety research of drugs are roughly divided into three fields; general toxicity studies, special toxicity studies and safety pharmacology studies. These study methods are approved by ICH(International Conference on Harmonization of Technical Requirement for Registration of Pharmaceutical for Human Use)and the studies should be complied with its guidelines. In general toxicity studies, there are single dose and repeated-dose toxicity studies using rodents and non-rodents. After single dosing, dosing frequency is gradually increased, and the influence of repeated dosing is observed. The purpose of single dose toxicity studies is to estimate the influence of over-dosing, the one of repeated-dose toxicity studies is to understand the interaction between dosing and dosing duration for toxic changes. Administration periods depend on periods of clinical use. Special toxicity studies that examine targeted toxicity include reproduction studies, genotoxicity studies, carcinogenicity studies, local irritability studies, immunotoxicity studies and drug dependency studies. Safety pharmacology studies examine the effects of test compound on the vital function such as cardiac, respiratory, CNS and so on. After the second step of drug development research, the compounds approved to be manufactured move on to the third step. In this step, the product is improved and manufactured to be suitable to the market; which is so called “market expansion research”. It is said that it takes 15-17 years and costs 25-30
billion yen to formulate a new drug.

An experimental animal has an important role in non-clinical safety research for drug development. In animal experiment, a genetic, microbiological, environmental and experimental factor influence the way animal react to the test article and this has impact on the study results. Therefore, an adequate control of these factors can enhance the reproducible animal experiment result.

GLP is abbreviation of Good Laboratory Practice. It is the regulation providing practice standards for the conduct of non-clinical research of pharmaceutical. It is established to ensure the reliability of non-clinical safety data attached to NDA documents. GLP is originated by FDA in the US. Before establishing the regulation, the defects FDA pointed out include the loss of animals, tissue specimens and original data, and transcription error, defective study protocol, insufficiency in personnel education and training, inadequate animal care procedures, confusion of animal identification, and arbitrary data selection. GLP studies are required to comply with study protocols and SOPs. The study protocol is prepared by a study director, and SOP is established under the responsibility of a facility director. Study operation and raw data collection are performed by study staffs. Final report is prepared by a study director. GLP places importance on the studies under adequate environment, emphasis on storage of records (raw data), clarified responsibilities and standardized operating procedures.
Biopharmaceuticals produced in mammalian cell cultures (MCC) become increasingly important for public health and the pharmaceutical industry. Microbial contamination is a major safety concern for biopharmaceuticals produced in MCC. In contrast to contamination of bacteria, fungi, and mycoplasma, which can be relatively easily detected, viral contamination presents a serious threat because of the difficulty in detecting some viruses and the lack of effective methods of treating infected cell cultures. Viral contamination can originate from contaminated cell lines, contaminated raw materials, or from a GMP breakdown in the production and purification process. To ensure safety, government regulations require manufacturers to demonstrate that biopharmaceuticals produced in MCC are free of adventitious agents. The overall safety assurance is accomplished by the combination of raw material control/testing including cell line validation, in-process control/testing, and virus clearance studies. In this talk, I’d like to introduce virological safety aspects of biopharmaceuticals produced in MCC.

Cell bank characterization: Cell bank (CB) testing is an essential part of the overall safety strategy for biopharmaceuticals produced in MCC. Characterization of the CB allows the manufacturer to assess this source with regard to presence of cells from other lines, adventitious agents, endogenous agents, and molecular contaminants (e.g., toxins or antibiotics from the host organism). The objective of this testing is to confirm the identity, purity, and suitability of the cell substrate for manufacturing use. For the testing of adventitious viruses, the most common assay is *in vitro* assay for the presence of viral contamination in which the test material is inoculated into susceptible cell lines such as the African green monkey kidney cell line Vero and the human diploid fibroblast cell line MRC-5, and the readout is a visible cytopathic effect. The inoculated cultures should be tested for haemadsorbing viruses using guinea pig, chicken, and human type O red blood cells at the end of the observation period.

In vivo assay for viral contamination also should be conducted to detect adventitious viral agents in the test article by inoculation of embryonated eggs, suckling mice, adult mice, and guinea pigs. Embryonated eggs are inoculated by 3 routes; the allantoic, the yolk sac, and the amniotic cavity. *Orthomyxoviruses* and *Paramyxoviruses* can be detected by inoculation of embryonated eggs. Suckling mice are susceptible to a wide range of viruses including *Tagaviruses*, *Bunyaviruses*, *Flaviviruses*, *Picornaviruses*, and *Herpesviruses*. Adult mice are susceptible host for a number of viral agents, including the *Coxsackieviruses* and members of the *Flavivirus* group. Guinea pigs are susceptible host for a number of viral agents, including *Paramyxoviruses* and *Reoviruses*. The presence of retrovirus should be tested using transmission electron microscopy analysis, infectivity test by co-cultivation with the permissive cells for retroviruses, and reverse transcriptase assay using the PERT assay. The contamination of bovine viruses such as *Bluetongue virus*, *Bovine adenoviruses*, *Bovine parvovirus*, *Bovine respiratory syncytial virus*, *Reovirus*, *Rabies virus*, *Bovine herpes virus*, and *Bovine virus diarrhoea* virus should be checked using molecular detection methods. Also the presence of
porcine viruses such as *Porcine adenovirus*, *Porcine parvovirus*, *Transmissible gastroenteritis virus*, *Porcine circovirus*, and *Porcine hemagglutinating encephalitis virus* should be tested using molecular detection methods. Human viruses such as HAV, HBV, HCV, EBV, CMV, HIV 1&2, HTLV I&II, and PB19 also should be tested.

In-process control/testing: In-process controls (IPC) are checks that are carried out before the manufacturing process is completed. The function of in-process controls is monitoring and – if necessary – adaptation of the manufacturing process in order to comply with the specifications. This may include control of equipment and environment, too. Adventitious viral contamination should be checked by in-process controls using appropriate testing methods.

Viral clearance validation: The manufacturing processes of biopharmaceuticals must include virus inactivation and/or removal processes to ensure viral safety. Specific viral inactivation processes such as solvent/detergent (S/D) treatment, pasteurization, dry-heat treatment, and low pH incubation are the cornerstone in ensuring a sufficient margin of safety of biopharmaceuticals. Protein purification by chromatography contributes to the removal of viruses by partitioning. Nanofiltration is a specific approach to eliminate viruses. Validation of the process for viral inactivation and/or removal plays an essential and important role in establishing the safety of biopharmaceutical. Viral clearance studies are designed to assess the effectiveness of individual steps in a manufacturing process to reduce (removing or inactivating) potential contaminant viruses. The data is used from a study to provide a quantitative estimate of the overall level of virus clearance obtained during the manufacturing process. For viral clearance studies, infectivity assays are the preferred method to determine the effectiveness of a process step in removing and/or inactivating infectious agents. Valuable additional data on the partitioning of viruses can be obtained by the use of a quantitative polymerase chain reaction (Q-PCR) assay.

Effective risk management for virus safety should be a transparent process that enables appropriate decisions regarding risk control for the product to be made and effectively communicated to all concerned. The application of risk based management to the virus safety of biopharmaceutical products has been in operation for many years, but successful implementation requires an in-depth knowledge of the sources of potential risk, available measures for reducing and controlling the baseline risk, as well as an understanding of the regulatory history upon which the testing requirements have been built.
What Testings Should be Done to Confirm The Safety of Biologics such as Gene Medicines?

Jae-Gyun Jeong
Research & Development Department, ViroMed Co., Ltd

Biological medicines (biologics) are produced inherently through biological processes in contrast that the small molecules are chemically synthesized. In order to secure both efficacy and safety of biologics, a variety of biological methods should be done before the administration of them into patients; the classical microbiological culturing methods are used to investigate the presence of aerobic or anaerobic microbes in the products. The state-of-the art molecular biological analyses can be applied to examine the contamination of infectious agents. It is very challenging to determine what methods should be selected to prove the intended purpose, because biological medicines can be derived from very different biological materials such as recombinant proteins, monoclonal antibodies, living cells and viruses. Thus analytical methods should be selected and developed in the consideration of the product-specific characteristics. The specific cases can be helpful to understand it and for researchers to design the analytical methods for their products. The cases obtained from the development of gene medicines will be shared, presented, and discussed through the presentation.
Toxicology Tests of Microbial and Agrochemical Pesticides

Heon Ju Lee1*, Yeon Gyu Moon2, and Gwang Hyeon Im3

1Department of Health Industry Education, Korea Human Resource Development Institute For Health & Welfare,
2Toxicity Screening Center, Gyeongnam Environmental and Toxicology Department, KIT,
3Department of Toxicology Evaluation, Graduate School, Konyang University

Agrochemical agents such as chemically synthesized agrochemical pesticides and soil conditioners involve many problems including the risk of residual toxicity, the destruction of the ecosystem, the mutagenicity on pests, and the water and soil pollutions. In order to reduce the above problems of the chemically synthesized agrochemical agents, various biopesticides using microorganisms have been developed. According to Agricultural Chemicals Regulation Law, various test results such as a physicochemical analysis report, an efficacy and toxicity test report, a mammalian toxicity test report, an environmental and biological toxicity assessment report, and a persistence test report (it can be omitted when a test material is approved as having no risk in the mammalian toxicity test and environmental and biological toxicity assessment) should be submitted for the registration of an agrochemical pesticide and an active ingredient thereof. The mammalian toxicity test of a natural plant protection agent, which is produced using microorganisms as active ingredients, is conducted in three steps: tests for registration are conducted for active ingredients and products, respectively, and the agent can be registered when it shows toxicity under grade 3 (normal toxicity) in acute oral and acute dermal toxicity tests.

In this study, we examined acute oral toxicity/pathogenicity, acute dermal toxicity, eye mucous membrane irritation and skin irritation of three microbial formulations comprising Bacillus sp. (GM027), Bacillus licheniformis KJ-9 and Trichoderma harzianum, respectively, in accordance with ‘[Separate Table 12] Standard and Method for the Mammalian Toxicity Test’ in the Section “Standard for the registration of an agrochemical pesticide and an active ingredient thereof” of the Rural Development Administration Notice No. 2012-37 (November 12, 2012). In an acute oral toxicity/pathogenicity test conducted with SD rats, GM027 was administered to the rats in a single dose of 1.0×10⁸ CFU/ml and the rats were examined for the excretion of microorganisms in feces at 1, 3, 7 and 14 days after the administration. Also, test animals were sacrificed at 3, 7, 14 and 21 days and observed for the microorganism infection of their organs. In addition, general symptom, body weight gains and mortality were observed during the 21-day period. In an acute dermal toxicity test using SD rats, the rats were exposed to GM027 at a concentration of 1.0×10⁸ CFU/ml for 24 hours, and then, general symptom, body weight gains and mortality were observed for 14 days. In an eye mucosa membrane irritation test, GM027 was administered to the conjunctiva sac of the New Zealand white (NZW) rabbits and then, general symptom, mortality and irritation to cornea, iris and conjunctiva were observed for 7 days. In a skin irritation test using NZW rabbits, the excoriated and non-excoriated sites of the skin of rabbits were exposed to GM027 at a concentration of 1.0×10⁹ CFU/0.5 ml for 4 hours, and then, general symptom, mortality and irritation symptoms such as erythema, incrustation and edema formation were observed.

Bacillus sp. (GM027) showed no toxicity findings with regard to mortality, body weight changes and autopsy findings during the test period in the acute oral toxicity/pathogenicity test. Further, in a study of microbial population change in rat’s excretion, the microorganisms in feces were observed at 1, 3, 7 and 14 days after the
oral administration, but no microorganisms were detected in feces thereafter. The infection of microorganisms was observed in the stomach at 3, 7 and 14 days after the oral administration, but no microorganisms were observed in all organs at 21 days after the administration. In the acute dermal toxicity test, no toxicity was observed with regard to mortality, body weight changes and autopsy findings. In addition, no abnormal findings were observed in the applied site after the termination of application of GM027. In the eye mucosa membrane irritation test, no abnormal findings and mortality caused by the application of GM027 were observed, and no abnormal findings were observed in the applied site. In the skin irritation test, no abnormal findings and mortality caused by the application of GM027 were observed, and no abnormal findings were observed in the applied site. Accordingly, it is concluded that GM027 does not have significant toxicity and irritant property.

B. licheniformis KJ-9 was subjected to an acute dermal toxicity test and a local irritation toxicity test. In the acute dermal toxicity test, *B. licheniformis* KJ-9 showed no abnormal findings and mortality at a concentration of 1.0×10^8 CFU/ml. In the eye mucosa membrane irritation test, *B. licheniformis* KJ-9 produced no abnormal findings and mortality. *Trichoderma harzianum* was subjected to acute oral toxicity/pathogenicity tests and acute dermal toxicity tests. Consequently, no abnormal findings and mortality were observed at a concentration of 1.0×10^8 CFU/ml.

From the above test results, it is concluded that the three microbial pesticides do not have a significant toxicity. It is considered that more continuous and long-term experiments are further required for the test of efficacy, toxicity and organ pathogenicity/persistence of microorganisms, along with the improvement of a new microorganism species for the development of various formulations using microorganisms and registration of the organic agrochemical materials.
Gut Microbiota of *Tenebrio molitor* and Their Responses to Environmental Changes

Jaejoon Jung, Aram Heo, Yong Woo Park, Ye Ji Kim, Hyelim Koh, and Woojun Park*

Laboratory of Molecular Environmental Microbiology, Korea University, Seoul

Insect guts provide distinctive characteristics for microbial habitats. Bacteria in the insect gut potentially play many beneficial roles to their hosts. Insects exhibited a wide range of dependence on gut bacteria for basic biological functions such as aiding digestion of low nutrient food, protecting them from disease or predators, mating and reproductive system. *Tenebrio molitor* is a species of darkling beetles and its larva is called mealworm. As generally decomposer, they feed on decaying plant materials dead insects. They are used for biological research due to easy handling, however, interaction with microorganisms are not well understood. To enhance the understanding of insects gut microbiota, we investigated the bacterial community of *T. molitor*, which has never been explored. Culture-independent community analysis using pyrosequencing showed that gut of *T. molitor* contained a relatively simple bacterial community consisting of *Tenericutes*, *Proteobacteria*, and *Firmicutes* at phylum level and *Spiroplasma*, *Lactobacillus*, unclassified *Enterobacteriaceae*, and unclassified *Lachnospiraceae* at genus level. Large portion of sequences was unclassified to genus level, indicating the possible presence of novel species. Ampicillin was direct injected or supplemented to the diet and the response of bacterial community was evaluated. Negative correlation between antibiotics concentration and bacterial diversity was identified. Culture-dependent community analysis showed no growth on ampicillin-added media, indicating gut microbiota of *T. molitor* is very sensitive to antibiotics. Interestingly, *Spiroplasma* was the only genus survived from ampicillin treatment regardless its concentration. We reasoned that *Spiroplasma* could avoid the cell-wall biosynthesis-inhibiting activity of ampicillin because it is a non-cell-wall bacterium. The responses of gut bacterial community to the input of highly diverse exogenous community will be discussed by incubating *T. molitor* in soil microcosm. This study is the first report of gut bacterial community of *T. molitor*, promoting the understanding of the microbes-insects interaction.
Change of Gut Bacterial Communities Based on Evolution of Animal Host Species

Ji-Hyun Yun¹, Seong Woon Roh¹², Pil Soo Kim¹, and Jin-Woo Bae¹

¹Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, ²Jeju Center, Korea Basic Science Institute

It is now well known that the animal gut is densely populated by microbial symbionts. Symbiotic gut microbiota help host to absorb nutrients through the fermentation of dietary fiber and provide protection from invading pathogens. They also help to develop and regulate the immune system of the hosts. However, current studies on ecological significance of gut bacteria have been dedicated into mostly the mammals. Therefore, gut microbiota in various invertebrate and vertebrate animals are now not well understood. Here, we report gut bacterial communities in insects and fishes caught in Korea, although these are only parts of overall schemes in change of gut microbiota based on evolution of animal host species.

The gut bacterial communities of insects and fishes have been analyzed host taxon-specifically via culture-dependent methods. However, culture-dependent methods often produce biased results depending upon the conditions and techniques used. Culture-independent molecular ecological approaches based on the analysis of the 16S rRNA gene have resulted in a dramatic improvement in our understanding of those microbes living within the guts of insects and fishes. Recent advances in molecular biology and the application of high-throughput next-generation sequencing technologies to microbial ecology show that the diversity of microbial populations is significantly higher than previously estimated by traditional culture-based and conventional molecular methods, and that ‘rare biospheres’ may be masked by dominant microorganisms. Comprehensive analysis of bacterial diversity within host species is a prerequisite in both insect and fish physiology and microbial ecology to allow better understanding of the ecological roles of gut symbionts and interactions with their insect hosts. However, most studies on gut bacterial diversity have been taxon-specific in insects such as termites, ants, fire bugs, fruit flies, beetles and bees, leaving a need for broader and systematic characterization and comparison across all insects and fishes.

The present study used high-throughput 454 pyrosequencing of 16S rRNA genes to examine comprehensively the gut microbiota of 305 individual insects, representing 218 species and belonging to 21 taxonomic orders of Insecta. The specific insect taxa from different geographical locations or at different developmental stages were also analyzed. The results provide detailed information about the bacterial profiles, including the diverse bacterial composition and distribution within the insect gut at different phylogenetic levels, the distribution of suspected heritable symbionts, and the relationships between microbial gut composition and the environmental niche, diet, developmental stage and phylogenetic position of insect hosts.

In insects gut analysis, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level, with an average of 84.3 (±97.7) OTUs per sample. A total of 18 bacterial phyla and unclassified bacteria were detected across 21 orders. The majority of sequences were those of the Proteobacteria (62.1% of the classified sequences) and Firmicutes (20.7%), followed by Bacteroidetes (6.4%), Actinobacteria (4.8%), Tenericutes (1.9%) and unclassified bacteria (3.0%). At the bacterial class level, 34.1%,
7.5%, and 19.6% of the total sequences represented the Alpha-, Beta-, and Gammaproteobacteria, respectively. Bacilli and Clostridia (belonging to the phylum Firmicutes) represented 18.0% and 2.3% of the sequences, respectively, followed by 4.8% Actinobacteria, 3.1% Bacteroidia, 2.1% Flavobacteria (Bacteroidetes), and 1.9% Mollicutes (Tenericutes). At the family level, the Anaplasmataceae (14.1%) and Enterobacteriaceae (12.0%) were the most dominant. At the genus level, the Wolbachia group (14.1%) was most prevalent (Fig. 2b). To determine the novelty of the bacterial communities in the insect guts, the 16S rRNA gene sequences reported here were compared with those in the CAMERA database. The mean value for the percentage sequence identity ranged from 93.1% to 99.2% (average: 97.1% ± 0.10%) (Fig. 3). Relatively low sequence similarity values were obtained from the orders Megaloptera (mean value 92.1%), Mecoptera (93.5%), Blattaria (94.7%), Archaeognatha (96.1%) and Plecoptera (96.1%). This indicates that a large number of novel candidate bacterial groups are present in insect guts.

Significant differences were found in the relative abundance of anaerobes in insects classified according to the criteria of host environmental niche, diet, developmental stage and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect order-spanning investigation of gut microbiota provides insights into the relationships between their biology and gut bacterial communities.

We have also directly caught more than 100 species of fishes from East, West and South Sea of Korea and compared their gut bacterial communities of freshwater ones via 454 pyrosequencing of 16S rRNA genes. These comprehensively characterized fish-associated gut bacteria will be discussed in the presentation.
Genetic Basis for Intestinal Colonization by Gut Microbes Revealed by a Metagenomic Screen

Sang Sun Yoon

Department of Microbiology, Yonsei University College of Medicine, Seoul

Evidence suggests that gut microbes colonize the mammalian intestine through propagation as an adhesive microbial community. A bacterial artificial chromosome (BAC) library of murine bowel microbiota DNA in the surrogate host *Escherichia coli* DH10B was screened for enhanced adherence capability. Two out of 5,472 DH10B clones, 10G6 and 25G1, exhibited enhanced capabilities to adhere to inanimate surfaces in functional screens. DNA segments inserted into the 10G6 and 25G1 clones were 52 and 41 kb and included 47 and 41 protein-coding open reading frames (ORFs), respectively. DNA sequence alignments, tetranucleotide frequency, and codon usage analysis strongly suggest that these two DNA fragments are derived from species belonging to the genus *Bacteroides*. Consistent with this finding, a large portion of the predicted gene products were highly homologous to those of *Bacteroides* spp. Transposon mutagenesis and subsequent experiments that involved heterologous expression identified two operons associated with enhanced adherence. *E. coli* strains transformed with the 10a or 25b operon adhered to the surface of intestinal epithelium and colonized the mouse intestine more vigorously than did the control strain. This study has revealed the genetic determinants of unknown commensals (probably resembling *Bacteroides* species) that enhance the ability of the bacteria to colonize the murine bowel.
The Biological Functions of Novel Symbiotic Factors in
Riptortus–Burkholderia Symbiotic System

Jiyeun Kate Kim and Bok Luel Lee*

Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan

The *Riptortus–Burkholderia* symbiotic system represents a promising experimental model to study the molecular mechanisms involved in insect–bacterium symbiosis due to the availability of genetically manipulated Burkholderia symbiont. This symbiont belongs to a member of the betaproteobacterial genus *Burkholderia*, and is acquired orally by host nymphs from the environment every generation. Further, *Burkholderia* can be easily cultivable and genetically manipulatable. This insect harbors a beneficial and specific symbiont *Burkholderia* in a specialized region of the posterior midgut. The symbiont is orally acquired by host nymphs from the environment every generation. Using this model system, we recently identified several novel symbiotic factors.

Firstly, we found a symbiosis-deficient mutant that was able to colonize the host insect but failed to induce normal development of host’s symbiotic organ. The disrupted gene was identified as purL involved in purine biosynthesis. In vitro growth impairment of the purL mutant and its growth dependency on adenine and adenosine confirmed the functional disruption of the purine synthesis gene. The purl mutant also showed defects in biofilm formation, and this defect was not rescued by supplementation of purine derivatives. When inoculated to host insects, the purL mutant was initially able to colonize the symbiotic organ but failed to attain a normal infection density. The low level of infection density of the purL mutant attenuated the development of the host’s symbiotic organ at early instar stages and reduced the host’s fitness throughout the nymphal stages. Another symbiont mutandeficient in a purine biosynthesis gene, purM, showed phenotypes similar to those of the purL mutant both in *vitro* and in *vivo*, confirming that the purL phenotypes are due to disrupted purine biosynthesis. These results demonstrate that the purine biosynthesis genes of the *Burkholderia* symbiont are critical for the successful accommodation of symbiont within the host, thereby facilitating the development of the host’s symbiotic organ and enhancing the host’s fitness values.

Secondly, when we compared biochemical and cytological comparisons between symbiotic and cultured Burkholderia, we observed that symbiotic *Burkholderia* showed more PHA granules consisting of poly-3-hydroxybutyrate and associated phasin (PhaP) protein. Among major PHA synthesis genes, phaB and phaC were disrupted by homologous recombination together with the phaP gene, whereby ΔphaB, ΔphaC, and ΔphaP mutants were generated. Both in culture and in symbiosis, accumulation of PHA granules was strongly suppressed in ΔphaB and ΔphaC, but only moderately in ΔphaP. In symbiosis, the host insects infected with ΔphaB and ΔphaC exhibited significantly lower symbiont densities and smaller body sizes. These deficient phenotypes associated with ΔphaB and ΔphaC were restored by complementation of the mutants with plasmids encoding a functional phaB/phaC gene. Retention analysis of the plasmids revealed positive selection acting on the functional phaB/phaC in symbiosis. These results indicate that the PHA synthesis genes of the *Burkholderia* symbiont are required for normal symbiotic association with the Riptortus host. *In vitro* culturing analyses confirmed vulnerability of the PHA gene mutants to environmental stresses, suggesting that PHA may play a role in resisting stress under symbiotic conditions.

Based on these data, I will present the molecular cross-talks between symbiotic *Burkholderia* and host bean-bee Riptortus insect in this symposium.
Symposium [S14]

Molecular and Cellular Biology of Yeast

2014 International Meeting of the Microbiological Society of Korea
Nst1 Functions as an Adapting Protein to Mediates a Crosstalk of Cell Wall Integrity and HOG MAPK Pathways in Response to Heat Stress in Budding Yeast *Saccharomyces cerevisiae*

Gang Leng and Kiwon Song*

Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul

In budding yeast, various environment stresses cause diverse cellular responses through activating limited numbers of mitogen-activated protein kinase (MAPK) pathways. The coordination and crosstalks among different MAPK pathways enhance the capacity and specificity of response to numerous signals. Cell wall integrity (CWI) MAPK pathway, comprised of Pkc1, Bck1, Mkk1/Mkk2 and Slt2, is activated by heat stress. However, the MAP kinase Slt2 is still activated without upstream Pkc1 or Bck1 in response to heat stress, suggesting an alternative pathway to activate Slt2. In this study, we showed that Nst1 knock-out mutant increases heat sensitivity and delays heat-induced Slt2 activation. Δnst1Δbck1 double mutant displayed more severe growth defect than Δbck1 in response to heat stress and totally blocked heat-induced Slt2 activation. We also observed that Δsho1 and Δste11 mutants in the upstream of HOG MAPK pathway show increased heat sensitivity and Δnst1Δsho1 has more severe heat sensitivity than Δsho1. These results suggest Nst1 functions in the downstream of both Bck1 and Sho1 for Slt2 activation. Nst1 physically interacts with Ste11, Mkk1, and Slt2 by co-immunoprecipitations. Strikingly, we also detected the co-precipitation of Ste11 and Mkk1, which is not observed in Δnst1. Nst1 is necessary for the interaction of Ste11-Mkk1 and Mkk1-Slt2. Taken together, these evidences demonstrate that Nst1 mediates the interaction of Ste11-Mkk1-Slt2 that connects Sho1 branch of HOG pathway to CWI pathway and provides a more comprehensive heat stress mechanism in budding yeast.
Control of Gene Induction Kinetics by Set3 HDAC and Overlapping Non-coding RNA Transcription

TaeSoo Kim

Department of Life Science, Ewha Womans University, Seoul 120-750

The Set3 histone deacetylase complex (Set3C) binds histone H3 dimethylated at lysine 4 (H3K4me2) to mediate deacetylation of histones in 5’ transcribed regions. To discern how Set3C affects gene expression, genome-wide transcription was analyzed in yeast undergoing a series of carbon source shifts. Deleting SET3 primarily caused changes during transition periods, as genes were induced or repressed. Surprisingly, a majority of Set3-affected genes are overlapped by noncoding RNA (ncRNA) transcription. Many Set3-repressed genes have H3K4me2 instead of me3 over promoter regions, due to either reduced H3K4me3 or ncRNA transcription from distal or antisense promoters. Set3C also represses internal cryptic promoters, but in different regions of genes than the Set2/Rpd3S pathway. Finally, Set3C stimulates some genes by repressing an overlapping antagonistic antisense transcript. These results show that overlapping noncoding transcription can fine-tune gene expression, not via the ncRNA but by depositing H3K4me2 to recruit the Set3C deacetylase.
The Sec62/Sec63 Translocon Mediates Topogenesis of Membrane Proteins

Sung-jun Jung¹, Ji Eun Hani Kim¹, Johannes H. Reithinger², and Hyun Kim¹*

¹School of Biological Sciences, Seoul National University, Seoul 151-747
²Center for Biomembrane Research, Department of Biochemistry and Biophysics,
Stockholm University, SE-106 91 Stockholm, Sweden

Proteins destined to the secretory pathway in the eukaryotic cell are first targeted to the endoplasmic reticulum (ER) membrane either by an signal recognition particle (SRP) dependent co-translational or an SRP independent post-translational translocation. Majority of membrane proteins are co-translationally translocated in the ER, thus the Sec62/Sec63 complex which mediates post-translational translocation of a subset of primarily secretory proteins into the ER, has been thought uninvolved in targeting and translocation of membrane proteins. By systematic analysis of single and multi-spanning membrane proteins with broad sequence context; varying hydrophobicity, flanking charged residues and orientation of transmembrane (TM) segments, in a set of Sec62 mutant yeast strains, we show that mutations in the N-terminal cytosolic domain of Sec62 impair interaction with Sec63 and lead to defects in membrane insertion and the C-terminal translocation of membrane proteins. These results suggest an unappreciated function of the Sec62/Sec63 translocon as a general membrane chaperone that regulates topogenesis of membrane proteins in the eukaryotic cell.
Multistep Functions of Dna2 Nuclease in DNA Double-strand Break Repair by Homologous Recombination

Woo-Hyun Chung1* and Grzegorz Ira2*

1College of Pharmacy, Daksung Women’s University, Seoul
2Institute Department of Molecular and Human Genetics, Baylor College of Medicine, USA

Dna2 is a well-conserved essential nuclease/helicase required for primary DNA metabolisms such as DNA replication, recombination, and stabilization of telomeric ends, all of which are mechanisms inevitable ultimately for the maintenance of genome integrity. While the helicase activity of Dna2 is dispensable for viability in budding yeast, its RPA-dependent endonuclease activity specific for long single-stranded DNA flaps is crucial for Okazaki fragment processing during the lagging strand DNA synthesis. Dna2 nuclease/helicase is recruited to double-strand break (DSB) ends in RPA-dependent manner and promotes 5’ strand resection functionally paired with Sgs1 helicase, and this mechanism is very well conserved from bacteria (RecQ/RecJ) to higher eukaryotes such as Xenopus (WRN/Dna2) and human (BLM/Dna2). Here we investigate the DSB repair in strains lacking Dna2 and show that Dna2 is required for break-induced replication (BIR), camptothecin resistance, and recombination-dependent telomere maintenance. In addition to pif1 mutant that previously showed partial defect in BIR as manifested by increased half-crossover and chromosome loss, Dna2 deficient cells show complete BIR defect and fail to initiate new DNA synthesis during DSB repair suggesting an early role of Dna2 in BIR. Surprisingly, additional deletion of POL32, a gene encoding nonessential component of Polδ, in pif1 dna2 mutant partially restores BIR and telomere recombination, however not 5’ strand resection during DSB repair, suggesting that interaction of Pif1, Dna2, and Pol32 at the invaded DSB end is crucial for the initial primer extension step of BIR.
Symposium [S15]

Lactic Acid Bacteria and Human Health

Sponsored by Korea Yakult

2014 International Meeting of the Microbiological Society of Korea
Lactic Acid Bacteria: An Overview of Beneficial Effects

Dong-Hyun Kim

Department of Life and Pharmaceutical Sciences and Department of Pharmacy, Kyunghee University

Lactic acid bacteria (LAB) and their fermented food products have long been used for their proposed health promoting properties. LAB has been frequently used for lactose intolerance, vitamins supplement, constipation, diarrhea and immune potentiation. The most commonly used strains are lactobacilli, enterococci and bifidobacteria. The choice what microbe to use as probiotic is determined by many different factors, (1) resistance to digestive enzymes, stomachic acid and bile, (2) adhesion to the intestinal mucosa, (3) safety, (4) stability, (5) oxygen tolerance and (6) beneficial effects. Of them, I will focus beneficial biological effects of LAB.

The gastrointestinal tract of human body is a complex microenvironment where myeloid and lymphoid cells (organs) interface with a myriad of endogenous and exogenous stimuli. The gut mucosa constantly protects antigens of foods and intestinal microbiota via antigen degradation, defense immune elimination (helper/cytotoxic T cells, neutrophils, and macrophages) and IgA antibody production. Orally administered LAB inhibits proliferation of pathogens (bacteria or viruses) infected into the intestine by competing adhesion site and nutrients or/and antimicrobial substances.

Gut microbiota regulates systemic and local immune responsiveness, including hyporesponsiveness to antigen derived from microorganisms and foods. However, several gut-related inflammations, such as colitis, disturbed healthy host-microbe interaction. However, probiotics therapy improved gut-related inflammatory diseases via regulating T cells, proinflammatory and anti-inflammatory cytokines.

LAB also regulates allergic disease via suppressing lymphocyte proliferation and IL-4 generation in vitro and in vivo. Furthermore, clinical effects have been seen as a significant improvement in the course of atopic eczema in infants given LAB-supplemented elimination diets.

In addition, the composition of gut microbiota, which is related to host diseases including obesity, autism, and colitis, is influenced by diets, environment, host genetics, etc. Therefore, strategies to manipulate the gut microbiota may be able to be applied to cure some diseases, such colitis, obesity and allergies. While it is widely accepted that obesity is associated with low-grade systemic inflammation, the molecular origin of the inflammation remains unknown. Recently, we found that high fat diet (HFD) increased both plasma and fecal endotoxin levels and resulted in dysregulation of the gut microbiota by increasing the Firmicutes to Bacteroidetes ratio. HFD induced the growth of Enterobacteriaceae and the production of endotoxin in vitro. Furthermore, HFD induced colonic inflammation, including the increased expression of proinflammatory cytokines, the induction of Toll-like receptor 4 (TLR4), iNOS, COX-2, and the activation of NF-κB in the colon. HFD reduced the expression of tight junction-associated proteins claudin-1 and occludin in the colon. While the body weight of HFD-fed mice was significantly increased in both TLR4-deficient and wild type mice, the epididymal fat weight of HFD-fed TLR4-deficient mice were 69% of HFD-fed wild type mice. Furthermore, HFD did not significantly increase proinflammatory cytokine levels in TLR4-deficient mice. However, LAB treatment reduced body weight, ameliorated scopolamine-induced and D-galactose-induced memory impairment, and improved bacterial and candida vaginitis in mice. Finally, the potential use of LAB inside and outside gastrointestinal tract merits to be explored further. The evidence-based clinical studies will expand the acceptance of LAB for the treatment and prevention of selected diseases including intractable diseases.
Human milk oligosaccharides (HMOs) exhibited numerous biological functions including a prebiotics to stimulate the growth of beneficial intestinal bacteria, a receptor analogue to inhibit binding of pathogens, and a substance that promote postnatal brain development. Due to the strong correlation of the structure of oligosaccharides with their absorption, catabolism, and biological functions the elucidation and characterization of structures are key to understand the molecular underpinnings in-between the gastrointestinal components. HMOs are composed of hexoses (Hex) and N-Acetylhexosamines (HexNAc) connected through b1-3 or b1-4-glycosidic linkage with additional decoration of fucose (Fuc) and N-Acetylneuraminic acid (NeuAc), which structurally similar to the O-glycan in human body. Because oligosaccharides are produced by competing enzymes that endow the large structural diversity and heterogeneity, rapid identification of oligosaccharide structure has been hindered. Recent advance of mass spectrometric analysis coupled with the nanoflow chromatography enabled to provide the vast information of oligosaccharides with high reproducibility and accuracy. A library of HMOs has been built with respect to the isomers. To increase the quantitative and qualitative information of oligosaccharides, MALDI-TOF/TOF has been used as well to deduce the compositional distribution of HMO. Reduction of oligosaccharides from aldose to alditol form could eliminate the confusion between alpha and beta-rotation of reducing ends of HMOs. Based on the specific and rapid identification, the consumption of HMOs by Bifidobacterium sp. has been evaluated liking the structural commonalities of HMOs to the bacterial consumption preferences. From the deduced information, minimal structural requirements of HMOs that makes the HMO as a bifidogenic agents.
Comparative and Functional Genomic Analysis of Bifidobacteria Reveals Its Genomic Adaptation into Human Intestinal Habitat

Ju-Hoon Lee

Department of Food Science and Biotechnology, Institute of Life Science and Resources. Kyung Hee University, Yongin 446-701

Recent molecular studies into the microbial diversity of the human intestine revealed a much higher diversity than previously recognized. One of the most dominant intestinal microbes, bifidobacteria, has been suggested to be associated with good intestinal health given their most dominance in the feces of breast-fed infants. While many dairy products containing bifidobacteria have been consumed world-wide for health promotion purpose, recent clinical feeding studies suggested that they cannot remain in the human gut. To answer the question, complete genome sequencing and comparative genome analysis of intestinal and commercial bifidobacteria were conducted, revealing that commercial bifidobacteria may lose competitive fitness when grown outside the human gut. Subsequent genome analysis and additional experiments showed that commercial bifidobacteria have lost important functional genes for intestinal survival, such as multiple oligosaccharide utilization gene clusters, arsenic resistance operon, and lantibiotic operon, probably due to their rapid genome adaptation capabilities. This rapid genome adaptation of bifidobacteria may be derived from hyperactivity of IS30 in their genomes. Therefore, to preserve those important functional genes in bifidobacterial genomes, development of new concepts for incubation culture and storage methods of bifidobacteria is required, probably mimicking human intestinal environments.

To elucidate the roles of bifidobacteria and initial intestinal microbiota in new-born infants, composition and development of initial infantile intestinal microbiota should be understood. Therefore, three kinds of meconium samples from breast-fed and bottle-fed infants were collected and composition of their intestinal microbiota were analyzed using random cloning/sequencing and subsequent metagenomic analysis of 16S rRNA PCR products using newly developed 16S universal PCR primers. Interestingly, more than 70% of infantile intestinal microbiota in 1-week-old infantile fecal samples is B. longum and Streptococcus salivarius, unlike previous reports reporting that more than 90% is B. infantis. Probably, these two major bacteria detected in initial intestinal fecal samples may be derived from mothers’ vagina during delivery.
Probiotics as an Immune Modulator for Hyper-immune Disorders

Chang-Suk Chae¹, Ho-Keun Kwon², and Sin-Hyeog Im*¹

¹Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), and Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology, Pohang.
²Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA

Probiotics can provide beneficial effects on host’s health in many diseases, although the mechanism by which they modulate the immune system is poorly understood. In addition, therapeutic or prophylactic effects of probiotics on various diseases depend on the strains, administered routes, doses and the disease states. We have previously shown that a mixture of probiotics (named as IRT5; Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2159-64) upregulates CD4⁺Foxp3⁺ regulatory T cells (Tregs) through generation of regulatory dendritic cells (rDCs). In this study, we have tested the immunomodulatory effect of IRT5 probiotics on neural autoimmune disorders such as experimental autoimmune myasthenia gravis (EAMG) and experimental autoimmune encephalomyelitis (EAE). Pretreatment of IRT5 probiotics before disease onset significantly suppressed progression of EAMG and EAE. In EAMG study, treatment with IRT5 probiotics to the ongoing EAE delayed the disease onset while little effect was observed in EAMG. Administration of IRT5 probiotics decreased lymphocyte proliferation, anti-AChR reactive IgG levels and inflammatory cytokine levels such as IFN-γ, TNF-α, IL-6 and IL-17 through generation of regulatory dendritic cells (rDCs) that express increased levels of IL-10, TGF-β, arginase 1 and aldh1a2. Furthermore, DCs isolated from IRT5 probiotics-fed group effectively converted CD4⁺ T cells into CD4⁺Foxp3⁺ regulatory T cells compared with control DCs. In EAE, administration of IRT5 probiotics inhibited the pro-inflammatory Th1/Th17 polarization, while inducing IL-10⁺ or/and Foxp3⁺ regulatory T cells, both in the peripheral immune system and at the site of inflammation. Our data suggest that IRT5 probiotics could be applicable to modulate neuronal autoimmune diseases.
Young Scientists’ Sessions
The Role of a Specific Hemagglutinin Residue as an Indicator of The Evolution Dynamics of Human Influenza A H1N1 Viruses

Jin Il Kim¹, Ilseob Lee¹, Sehee Park¹, Min-Woong Hwang¹, Joon-Yong Bae¹, Sangmoo Lee¹, Jun Heo¹, Donghwan Kim¹, Seok-Il Jang¹, Mee Sook Park¹, Adolfo Garcia-Sastre²,³,⁴, and Man-Seong Park¹*

¹Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 136-705, ²Department of Microbiology, ³Department of Medicine, Division of Infectious Diseases, and ⁴Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574, USA

Influenza A virus has evolved and thrived in human populations. Since the 1918 influenza A pandemic, human H1N1 viruses had acquired additional N-linked glycosylation (NLG) sites within the globular head region of hemagglutinin (HA) until the NLG-free HA head pattern of the 1918 H1N1 virus was renewed with the swine-derived 2009 pandemic H1N1 virus. Moreover, the HA of the 2009 H1N1 virus appeared to be antigenically related to that of the 1918 H1N1 virus. Hence it is possible that descendants of the 2009 H1N1 virus might recapitulate the acquisition of HA head glycosylation sites through their evolutionary drift as a means to evade pre-existing immunity. Here we evaluate the evolution signature of glycosylations found in the globular head region of H1 HA in order to determine their impact in virulence and transmission of H1N1 viruses. We identified a polymorphism at HA residue 147 associated with the acquisition of glycosylation at residues 144 and 172. By in vitro and in vivo analyses using mutant viruses, we also found that the polymorphism at HA residue 147 compensated for the loss of replication, virulence and transmissibility associated with the presence of the N-linked glycans. Our findings suggest that the polymorphism in H1 HA at position 147 modulate viral fitness by buffering the constraints caused by N-linked glycans, and provide insights into the evolution dynamics of influenza viruses with implications in vaccine immunogenicity.
Inverse Regulation of Fe- and Ni-containing SOD Genes by a Fur Family Regulator Nur Through Small RNA Processed from 3’UTR of The sodF mRNA

Hae Mi Kim, Jung-Ho Shin, Yoo-Bok Cho, and Jung-Hye Roe*

Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742

Superoxide dismutases (SODs) are widely distributed enzymes that convert superoxides to hydrogen peroxide and molecular oxygen, using various metals as cofactors. Many actinobacteria contain genes for both Ni-containing (sodN) and Fe-containing (sodF) SODs. In Streptomyces coelicolor, expression of the sodF and sodN genes is inversely regulated by nickel-specific Nur, a Fur-family regulator. With sufficient nickel, Nur directly represses sodF transcription, while inducing sodN indirectly. Bioinformatic search revealed that a conserved 19 nt stretch upstream of sodN matches perfectly with the sodF downstream sequence. We found that the sodF gene produced a stable small-sized RNA species (s-SodF) of ~90 nt that harbors the anti-sodN sequence complementary to sodN mRNA from the 5’ end up to the ribosome binding site. Absence of nearby promoters and sensitivity to 5’-phosphate-specific exonuclease indicated that the s-SodF RNA is a likely processed product of sodF mRNA. The s-SodF RNA caused a significant decrease in the half-life of the sodN mRNA. Therefore, Nur activates sodN expression through inhibiting the synthesis of sodF mRNA, from which inhibitory s-SodF RNA is generated. This reveals a novel mechanism by which antagonistic regulation of one gene is achieved by small RNA processed from the 3’UTR of another gene’s mRNA.
Characterization of Catalytic Functions of Bacterial CYP191A1

Sun-Ha Park¹²*, Sang Yong Lim¹, and Chul-Ho Yun²

¹Research Division for Biotechnology, Korea Atomic Energy Research Institute,
²School of Biological Sciences and technology, Chonnam National University

Bacterial P450s are easier to handle and more stable than other eukaryotic P450s. In addition, their high catalytic activity and extensive genetic diversity are increasing the interest in using bacterial P450s as biocatalysts for the drug discovery and development process.

It is well known that Mycobacterium tuberculosis P450s including CYP51 are therapeutic targets for azole antifungal drugs. Non-pathogenic mycobacteria, Mycobacterium smegmatis is an attractive model organism to study the physiological function of mycobacterial pathogen like M. tuberculosis. Previous study showed extremely tight binding of several azoles to CYP191A1 from M. smegmatis, which highlights their therapeutic potential. However, biochemical properties and crystal structure of CYP191A1 are not known yet. In this study, diverse catalytic functions of CYP191A1 from, M. smegmatis were investigated.

Here, CYP191A1 from M. smegmatis was expressed in Escherichia coli and purified with high yield. CYP191A1 catalytic activities and binding affinities toward saturated fatty acids (C10~C16) were examined using spinach ferredoxin (Fdx) and ferredoxin reductase (FdR) as an electron transfer system. As carbon chain lengths of fatty acids were increased, K_d values decreased. The results obtained from GC-MS analysis have shown that CYP191A1 catalyzes the subterminal hydroxylation (ω-1 to ω-3) of saturated fatty acids with a chain length of 10~13 carbons. Surprisingly, the preference of hydroxylation reaction toward long fatty acids changed from ω-1 to the ω-3 position. The results suggest that CYP191A1 has a thin and long substrate binding pocket allowing the longer fatty acid to slip deeper. CYP191A1 also showed apparent oxidation activities toward typical human P450 substrates including chlorzoxazone and 7-ethoxycoumarin. Possible applications of CYP191A1 for developing a new target for azole drug therapy have been discussed.
Identification of Colistin Resistance Mechanism Using Transcriptome Analysis in *Acinetobacter baumannii*

Young Kyoung Park, Ji-Young Lee, and Kwan Soo Ko*
Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746

Acinetobacter baumannii is a particularly problematic Gram-negative pathogen, due to the worldwide emergence of multidrug resistant (MDR) strains. The emergence of colistin-resistant strains is especially concerning, since colistin is often regarded as the last option for treating MDR *A. baumannii* infections. Using mRNA sequencing, we compared whole genome transcriptomes of colistin-susceptible and colistin-resistant *A. baumannii* strains, with the aim of identifying genes involved in colistin resistance. A wild-type colistin-susceptible strain (06AC-179) and a colistin-resistant strain (07AC-052) were analyzed in this study. In addition, a colistin-resistant mutant (06AC-179-R1) was derived from the susceptible parent strain (06AC-179), and was also included in this study. High throughput mRNA sequencing was performed with an Illumina HiSeq TM 2000 sequencer. Among 17 genes showing >5-fold increased expression in the wild-type and *in vitro*-derived resistant strains compared with the susceptible strain, 11 genes were validated by qRT-PCR. Of these, nine candidates were deleted in the wild-type colistin-resistant strain (07AC-111) by allelic replacement, yielding eight knockout mutants. All deletion mutants but two (∆01518::Km and ∆02907::Km) became significantly more sensitive to colistin, compared with the wild-type resistant strain. In addition, the reduced survival rates of the mutant strains in the presence of colistin were recovered by complementation with the appropriate gene, with the exception of only one complemented strain (111∆02895::Km +pJN105/02895). In total, six genes were identified as associated with colistin resistance in *A. baumannii*. These six genes encode PmrAB two-component regulatory enzymes, PmrC (a lipid A phosphoethanolamine transferase), a 4-amino-4-deoxy-L-arabinose (Ara4N) transferase, a glycosyltransferase, and a poly-β-1,6-N-acetylglucosamine deacetylase. Since these genes are all associated with either lipopolysaccharide biosynthesis or electrostatic changes in the bacterial cell membrane, this study indicates that lipopolysaccharide modifications are the principal mode of acquisition of colistin resistance in *A. baumannii*.
HPr Antagonizes the Anti- σ^{70} Activity of Rsd in *Escherichia coli*

Young-Ha Park

Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742

The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) transports and phosphorylates the PTS sugars. In addition to sugar uptake, PTS proteins have been shown to regulate many proteins through protein-protein interactions. Especially, EIIA$^{\text{Glc}}$, the glucose-specific enzyme II, interacts with and regulates several proteins, such as FrsA, adenylate cyclase, and lactose permease. However, in the case of the histidine phosphocarrier protein (HPr), one of the general PTS components, only one HPr-binding protein, glycogen phosphorylase, has been reported. Since HPr is known to be more abundant than EIIA$^{\text{Glc}}$ in enteric bacteria, we assumed that there might be more regulatory mechanisms connected with HPr. The ligand-fishing experiment in this study identified Rsd, an anti-sigma factor known to make a complex with σ^{70} in stationary-phase cells, as a new HPr-binding protein in *E. coli*. Only the dephosphorylated form of HPr made a tight complex with Rsd and thus inhibited complex formation between Rsd and σ^{70}. Dephosphorylated HPr, but not its phosphorylated form, antagonized the inhibitory effect of Rsd on σ^{70}-dependent transcriptions both *in vivo* and *in vitro* and also influenced the competition between σ^{70} and σ^5 for core RNA polymerase in the presence of Rsd. Based on these data, we propose that HPr plays a role as an anti-anti-σ factor for σ^{70} and thus it is involved in transcriptional switching in *E. coli*.

In the previous study, it was shown that Rsd could affect the expression of subset of σ^5-dependent genes needed for the survival of *E. coli* in low-pH condition. However, an *rse*-deficient mutant shows no apparent differences in its growth and viability in various media, compared to wild type. In this study, we found new phenotypes of the *rse* mutant. Deletion of *rse* affected the cell surface hydrophobicity and also mutant cells sank much faster than wild type. Rapid settling of mutant cells results from cell-cell autoaggregation. It is assumed that Rsd influences the expression of cell surface proteins through the regulation of σ^{70} activity.
Fitness of Plasmid Bearing $bla_{CTX-M-15}$ Gene in *Klebsiella pneumoniae*

Juyoun Shin and Kwan Soo Ko*
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon

Objectives: To compare the molecular and virulence characteristics between CTX-M-producing and non-ESBL-producing *Klebsiella pneumoniae* isolates from Korea.

Methods: Thirty-three CTX-M-type extended-spectrum β-lactamase (ESBL)-producing and 65 non-ESBL-producing *K. pneumoniae* bloodstream infection isolates, which were collected in 2008 from Korean hospitals, were included in this study. *In vitro* antimicrobial susceptibility testing, multilocus sequence typing, and virulence assays, such as the detection of virulence genes, hypermucoviscosity, α-hemolysin production, and human serum sensitivity tests were performed. In addition, a plasmid harboring the $bla_{CTX-M-15}$ gene was transconjugated into five non-ESBL-producing sequence type (ST) 11 isolates, and the change in human serum sensitivity was monitored. Furthermore, the plasmid was sequenced using the 454 Genome Sequencer FLX system.

Results: Nineteen and 36 STs were identified among CTX-M-producing and non-ESBL-producing *K. pneumoniae* isolates, respectively. As virulence factors, the *cfa29a* and *allS* genes were more frequently found in non-ESBL-producing isolates. Non-ESBL-producing isolates showed a significantly higher survival rate against human serum than CTX-M-producing isolates, and hyperviscosity was also frequently identified in non-ESBL-producing isolates (29.2% vs. 9.1%; p, 0.038). Four out of five transconjugants receiving a plasmid with the $bla_{CTX-M-15}$ gene showed increased serum resistance levels compared with their non-ESBL-producing ST11 hosts. Analysis of the plasmid harbouring $bla_{CTX-M-15}$ gene revealed that the plasmid was composed of subregions separated by insertion sequences including *IS26* and *ISEcp1*.

Conclusion: Diverse genotypes in both CTX-M-producing and non-ESBL-producing *K. pneumoniae* isolates from Korea, with no overlap of genotype between the two groups, suggest that most CTX-M-producing *K. pneumoniae* isolates in Korea did not occur by transfer of the bla_{CTX-M} gene into susceptible isolates. The findings that the plasmid with the $bla_{CTX-M-15}$ gene confers virulence as well as antimicrobial resistance suggest that a CTX-M-15-producing *K. pneumoniae* clone such as ST11 may have a selective advantage even in an environment without antibiotic pressure, which would be of great concern to public health.
Altered Gut Microbiota Composition Affects Mouse Susceptibility to

Vibrio cholerae Infection

Mi Young Yoon1,2, Yujin Yoon1,3, and Sang Sun Yoon1,2,3*

1Department of Microbiology, 2Institute for Immunology and Immunological Diseases, 3Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine

Gut microbiota prevent pathogen infection through colonization resistance and by promoting the development of mucosal immune system. In many animal models of enteritis, antibiotics are employed to eliminate the indigenous microbiota to establish consistent enteric infections by various pathogens including *Salmonella typhimurium*, *Vibrio cholerae*, and Enterohaemorrhagic *Escherichia coli*. Disruption of the indigenous microbiota by treating with broad-spectrum antibiotics can lead to a substantial increase in the susceptibility to *Clostridium difficile* infections. Although evidence suggests that the gut microbiota plays important roles in defense to enteric infections, some enteric pathogens could utilize the gut commensals to promote their colonization and survival. To obtain evidence for pivotal commensal microbe on improvement of host resistance to enteric infection, we hypothesized that the disruption of specific indigenous microbe can facilitate colonization of *V. cholerae* within mouse gut. We treated BALB/c mice with each of five different antibiotics to disrupt normal microbiota composition and evaluated their effect on colonization by several predominant bacterial groups. We used a quantitative RT-PCR with primers targeting the bacterial small-subunit (16S) rRNA region combined with viable cell counting to determine the community structure of the gut microbiota. Next, mice were inoculated with *V. cholerae* to investigate the role of antibiotic-induced microbiota disruption in host susceptibility to the infection. We found that antibiotics varied in their abilities to alter bacterial compositions in the gut, and none of the antibiotics completely eliminated the intestinal microbiota. Most of the antibiotic treatments altered gut microbial compositions. The level of bifidobacterium decreased in ampicillin-treated mice, whereas those of Enterobacteriaceae and Enterococci increased in mice treated with vancomycin and clindamycin, reflecting the modified resistance activity of the altered gut microbiota. Notably, vancomycin treatment showed dramatic changes, including an enhanced population of Enterobacteriaceae and Enterococci. The different microbiota compositions, as a result of perturbations in the microbial community, affected the mouse susceptibility to *Vibrio cholerae* infections. Especially, the overgrowth of *Enterococcus* was sufficient to make mice more susceptible to *Vibrio cholerae*. These results suggest that complete colonization resistance depends on the compositional balance of bacterial diversity, rather than total numbers of bacteria. Our results demonstrate that antibiotic-mediated alteration of the gut microbiota convert the host's resistance ability on enteric infection of *V. cholerae* by disrupting intestinal homeostasis. The overgrowth of the intact microbiota could stimulate *V. cholerae* invasion by effectively helping with *V. cholerae* for nutrition. The imbalance of microbial community through may not only lead to physical and biological changes but also result in changed metabolic activity in the gut circumstance.
Genomic Variations Between Colistin-susceptible and -resistant
Pseudomonas aeruginosa Clinical Isolates and Their Effects on Colistin Resistance

Ji-Young Lee, Eun Seon Jeong, In Young Na, Young Kyoung Park, and Kwan Soo Ko*

Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon

As a consequence of increased reliance on colistin for treating multidrug-resistant (MDR) *Pseudomonas aeruginosa* infections, the emergence of colistin-resistant *P. aeruginosa* is becoming a serious concern worldwide. We investigated genetic variations involved in acquisition and loss of colistin resistance in three clinical isogenic *P. aeruginosa* isolates (GKK-1, GKK-2, and GKK-3) recovered from a single patient and assessed their impacts on colistin resistance. Whole genome sequencing technology was applied to identify single nucleotide polymorphisms (SNPs) and insertion or deletion (indels) in two colistin-resistant isolates compared with a susceptible isolate.

Thirty-seven nonsynonymous mutations in 33 coding sequences were detected in the colistin-resistant isolates, GKK-1 and GKK-3. Only one gene (PA1375) was significantly downregulated in both colistin-resistant isolates; this gene encodes erythronate-4-phosphate dehydrogenase. Among the 8 genes that were upregulated in the colistin-resistant isolates, 5 except 3 hypothetical genes (PA1938, PA2928 and PA4541) predicted to be involved in core biological functions, which are a cell wall-associated hydrolase (PA1199), a response regulator EraR (PA1980), a sensor/response regulator hybrid (PA2583), a glycosyltransferase (PA5447), and an arabinose efflux permease (PA5548). All mutants with allelic replacement of these candidate genes but one (PA1375) exhibited increases in colistin susceptibility, ranging from 2- to 16-fold. Colistin susceptibility decreased in complemented strains compared with the mutants; however, in 3 cases, resistance did not reach wild-type level.

This study demonstrates genetic differences between *P. aeruginosa* isogenic isolates, and identifies novel determinants which may be associated with acquisition of colistin resistance. These findings will lay the foundation for a complete understanding of the molecular mechanisms of colistin resistance in *P. aeruginosa*.
Tn7 Transposition: Importance of Protein-Protein Interactions Between TnsABCD

Ki Young Choi, Ying Li, Robert Sarnovsky, Janelle M. Spencer, and Nancy L. Craig*
Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, USA

The excision of transposon Tn7 from a donor site and its insertion into its preferred target site attTn7 is mediated by four Tn7-encoded proteins, TnsA, TnsB, TnsC and TnsD. Transposition requires the assembly of a nucleoprotein complex containing all four Tns proteins and the DNA substrates, the donor site containing Tn7 and the preferred target site attTn7.

TnsA and TnsB together form the heteromeric Tn7 transposase and TnsD is a target-selecting protein that binds specifically to attTn7. TnsC is the key regulator of transposition, interacting with both the TnsAB transposase and TnsD-attTn7. TnsC may also be recruited to attTn7 as part of a TnsA-TnsC complex as TnsA and TnsC can co-purify as a TnsA2C2 heterotetramer.

In this work, we show that TnsA and TnsB interact directly and identify several TnsA and TnsB amino acids involved in this interaction. We also show that TnsA can stimulate two key activities of TnsB, specific binding to the ends and pairing of the Tn7 ends.

We demonstrate here that TnsC interacts directly with TnsB and identify the specific region of TnsC involved in TnsB-TnsC interaction during transposition. Tn7 displays cis-acting target immunity, which blocks Tn7 insertion into a target DNA that already contains Tn7. We provide evidence that the direct TnsB-TnsC interaction also mediates cis-acting Tn7 target immunity. We also show that TnsC interacts directly with the target selector protein TnsD. All these protein-protein interactions is a fundamental key for Tn7 transposition.
Characterization and *In Vitro* Inhibition Studies of *Bacillus anthracis* FtsZ: A Potential Antibacterial Target

Hae-Chul Park¹, JeongWoo Kang¹, Yangho Jang¹, Byung-Jae So¹, Moon-Young Yoon², and Kwang-Jick Lee¹*

¹Veterinary drugs and Biologics Division, Animal and Plant Quarantine Agency (QIA),
²Department of Chemistry, Hanyang University

FtsZ is an essential bacterial cell division protein that is an attractive target for the development of antibacterial agents. FtsZ is a homologue of eukaryotic tubulin, has GTPase activity and forms a ring-type structure to initiate cell division. In this study, the FtsZ of *Bacillus anthracis* was cloned into a bacterial expression vector and overexpressed into *E. coli* BL21 (DE3) cells. The over-expressed *B. anthracis* FtsZ was soluble and purified to homogeneity using Ni-His-tag affinity chromatography. Like other known FtsZs, the recombinant *B. anthracis* FtsZ also showed GTP-dependent polymerization, which was analyzed using both spectrophotometric and Transmission Electronic Microscope (TEM) analysis.

Using the purified FtsZ, we screened a naturally extracted chemical library to identify potent and novel inhibitors. The screening yielded three chemicals, SA-011, SA-059, and SA-069, that inhibited the in vitro polymerization activity of FtsZ in the micromolar range (IC₅₀ of 55–168 μM). The inhibition potency was significantly comparable with that of berberine, a known potential inhibitor of FtsZ. Understanding the biochemical basis of the effect of these inhibitors on *B. anthracis* growth would provide a promising path for the development of new anti-anthrax drugs.
Induction of Apoptosis by a *Vibrio vulnificus* Metalloprotease

Mi-Ae Lee\(^1\), Jeong-A Kim\(^1\), Yu Jin Yang\(^2\), Mee-Young Shin\(^2\), Soon-Jung Park\(^2\), and Kyu-Ho Lee\(^1\)

\(^1\)Department of Life Science, Sogang University,
\(^2\)Department of Environmental Medical Biology, Yonsei University College of Medicine

Vibrio vulnificus, a causative agent of septicemia and gastroenteritis, secretes various proteins, which are assumed to be involved in various functional types of interactions with hosts during infection process. Protease-zymogram analyses revealed the presence of multiple extracellular proteases in the supernatant cultured by *V. vulnificus*. One of them is a putative metalloprotease containing a Zn-binding motif, whose proteolytic activity was abolished by specific inhibitors against metalloproteases. Thus, it was named by VvpM to distinguish from VvpE that has been considered as a representative extracellular protease of *V. vulnificus*. To investigate whether this newly identified protease, VvpM has pathogenic role in host interaction in addition to proteolytic role, several human cell lines were incubated in the presence of rVvpM. VvpM-challenged cells showed typical apoptosis characterized by cell shrinkage, morphological changes in nucleus, and appearance of vacuoles in cytoplasm. Apoptotic cell death was further evidenced by estimating the Annexin V-stained cells, whose proportions were dependent upon the concentrations of rVvpM treated to human cells. To elucidate the signaling pathway for VvpM-induced apoptosis, three MAPKs were tested if their activation were mediated by rVvpM, and found that ERK1/2 was phosphorylated by rVvpM and rVvpM-induced cell death was blocked by a specific inhibitor against ERK1/2. Since mitochondrion is one of the components in amplifying apoptosis signaled via ERK activation, release of cytochrome c from mitochondria in rVvpM-treated cells was examined. It was found that the levels of cytochrome c in cytosol were increased as a VvpM concentration-dependent manner, while the levels of cytochrome c in mitochondria were decreased. These human cell deaths were further accompanied by apparent cleavages of procaspases-9 and -3 to the active caspases-9 and -3, respectively. Therefore, this study demonstrates that VvpM induces apoptosis of human cells via a pathway consisting of ERK activation, cytochrome c release, and then activation of caspases-9 and -3.
Translation of Leaderless Transcripts are Regulated by Non-coding RNAs in *Thermococcus onnurineus* NA1

Bo-Rahm Lee1, 2, Yoobok Cho1, Min-Sik Kim3, Suhyung Cho1, Sung Gyun Kang3, and Byung-Kwan Cho1, 2*

1Department of Biological Sciences and KI for the BioCentury, KAIST, Daejeon, 2Intelligent Synthetic Biology Center, Daejeon, and 3KIOST, Ansan

Thermococcus onnurineus NA1 isolated from a deep-sea hydrothermal vent area is a hydrogen-producing archaea. In spite of industrial potential for producing H2, it is still limited the information about the genomic features related with cellular events in *T. onnurineus* NA1. Here, we provide comprehensive transcriptome landscapes of *T. onnurineus* NA1 with 5'-end of individual RNA transcripts at single nucleotide resolution using directional and differential RNA sequencing methods. From the landscape, we could detect 874 transcription start sites (TSS), leading to the discovery of large portion of ‘leaderless’ genes (~31% of 874 TSS). Leaderless genes are lack of 5'-end untranslated region (UTR) which is the regulatory region of translation. Hence, it has been reported that leaderless genes can be translated by direct binding of mRNAs, the translational machinery composed of the translation initiation factor IF-2 (IF2) with Met-tRNA\textsubscript{Met}, and 30S ribosomal subunit. The important issue is how leaderless genes control the translation process efficiently. Interestingly, our analysis discovered that two of non-coding RNAs control the transcriptional level of IF2 depending on the experimental conditions. In conclusion, we could obtain the clues that explain the fine-tuning regulatory mechanism of leaderless genes by regulatory non-coding RNAs.

[1]This work was supported by the Ministry of Ocean and Fisheries, Republic of Korea.]
Inhibition of HCV Replication with HCV NS5B Specific RNA Aptamer

Chang Ho Lee, Ji Hyun Kim, and Seong-Wook Lee*
Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin

Almost 170 million people are chronically infected worldwide by HCV, and ~27% of all cases of liver cirrhosis and ~25% of hepatocellular carcinoma might be related to HCV infection, efficient, specific, and safe antiviral therapy has not yet been developed. In this study, we developed two anti-HCV approaches based on RNA aptamers targeting HCV NS5B replicase that is essential for HCV replication. (I) Aptamers were used as intracellular decoys against the target protein. We isolated RNA aptamers consisting of 2'-hydroxyl or 2'-fluoro pyrimidines, which bind tightly and competitively to NS5B. Cytoplasmic expression of 2'-hydroxyl aptamer or direct administration of chemically modified and liver-cell permeable ligand-conjugated 2'-fluoro aptamer inhibited various HCV genotypes through sequestering the target protein in cells. Importantly, the aptamers suppressed HCV replication without escape mutant appearance, neither causing toxicity, nor inducing innate immune response. Moreover, the aptamer showed good pharmacokinetic properties, efficient bioavailability and safety profile. Of note, therapeutically feasible quantities of the aptamer were delivered to liver tissue in mice. Therefore, cytoplasmic expression of 2'-hydroxyl aptamer or direct administration of chemically synthesized and ligand-conjugated 2'-fluoro aptamer against HCV NS5B could be a potent anti-HCV approach.
Novel Na⁺-Dependent Respiration in Hyperthermophilic Archaeon, *Thermococcus onnurineus* NA1

Jae Kyu Lim¹, Hyun Sook Lee¹,², Jung-Hyun Lee¹,², Volker Müller³, and Sung Gyun Kang¹,²*

¹Korea Institute of Ocean Science and Technology, Ansan, South Korea, ²Department of Marine Biotechnology, ²University of Science and Technology, Daejeon, ³Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany

Chemiosmotic energy transduction to ATP synthesis is the most basic process in life form. Throughout the prokaryotic membranes or mitochondrial inner membranes, energy-transducing protein complexes help transform the chemical energy from the cell's metabolic intake into various useful forms of energy for the cell. Some of these complexes couple reduction-oxidation (redox) reactions to transporting and establishing chemiosmotic gradient across the membrane to drive otherwise energetically unfavorable process such as ATP synthesis and assorted transporters of other ions and/or molecules. Complex I is the most well known energy transducing enzyme that consists of 14 enzymes in bacteria, transferring electrons from NADH through a complex chain to quinones which process pumps protons across membrane and then generate proton coupled electrical membrane potential. Complex I is an example of the modular structure composed of electron donor/transfer module, connecting module, and intrinsic membrane module in *Escherichia coli*, has been also thought to have close relationship with Group 4 hydrogenases. The group 4 hydrogenases that widely distributed among bacteria and archaea, have been recognized as a energy converting enzyme composed in modular structure as well as the key enzyme in hydrogen production. Of particular, Mbh hydrogenase from *Pyrococcus furiosus* which catalyzes the reduction of H⁺ with electrons derived from reduced ferredoxins has been demonstrated to conserve energy using proton gradient to synthesize ATP. However, the identity of osmotic ion in the respiratory chain of the group 4 hydrogenase, especially in archaea, has been often questioned. Sodium bioenergetics using a ΔpNa is considered an early step in the evolution of cellular bioenergetics. However, the energy conservation through sodium gradient has never been demonstrated in any biological system.

Previously, we reported that several hyperthermophilic archaeal strains belonging to Thermococcales including *T. onnurineus* NA1 were able to grow on formate and produce a substantial amount of H₂. *fdh2-mfh2-mnh2* gene cluster was reported to be responsible for formate-oxidizing, hydrogen-producing growth, and multisubunit monovalent cation/proton antiporter encoded by *mnh2* has been thought to participate in formate-dependent energy conservation for the synthesis of ATPs. The hydrogenase gene cluster was unique in retaining a putative cation/proton antiporter. The tripartite modular organization of group 4 hydrogenase could be found in many archaeal genomes, however, there is no report to unveil the physiological role of multisubunit monovalent cation/proton antiporter participating in mediating the electron relay of the respiratory chain to date. The multisubunit monovalent cation/proton antiporter (Mrp homologues) has been mainly studied in bacteria at a physiological function of alkaline pH homeostasis and Na⁺ resistance, cell sporulation, symbiotic nitrogen fixation, arsenite resistance and bile salt resistance.

Here, we try to address the identity of chemiosmotic ion to couple formate oxidation to ATP synthesis in the anaerobic respiratory mechanism of formate oxidation. Additionally, the physiological role of the multisubunit monovalent cation/proton antiporter related with ATP synthesis was considered.
Application of a New Cultivation Technology, I-tip, for Studying Microbial Diversity in Freshwater Sponges of Lake Baikal, Russia

Dawoon Jung1, Eun-Young Seo1, Slava S. Epstein2, Yochan Joung3, Jaemin Han1, Valentina V. Parfenova4, Olga I. Belykh1, Anna Gladkikh4, and Tae Seok Ahn1*

1Department of Environmental Science, Kangwon National University, 2Department of Biology, Northeastern University, USA, 3Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, 4Limnological Institute, Russian Academy of Sciences, Russia

One of the fundamental methods for cultivating bacterial strains is conventional plating on solid media, but this method does not reveal the true diversity of the bacterial community. In this study we developed a new technique and introduce a new device. We term it I-tip (in situ cultivation by tip), because its main element is a standard micropipette tip. The tip is filled with microbeads and agar; for cultivation it is positioned such that its narrow end touches the surface of the animal. Microorganisms are expected to proliferate in agar using nutrients diffusing from the environment; microbeads act as a barrier to prevent larger organisms to invade the space. We used the new method to cultivate microorganisms from Bakalian sponges and compared the results with conventional plating as well as a pyrosequencing-based molecular survey. The I-tip method produced cultures of 34 species from 5 major phyla, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, and Gammaproteobacteria, or 71% of what was detected by pyrosequencing. Standard cultivation produced a smaller collection: 16 species from Betaproteobacteria, Firmicutes and Gammaproteobacteria, or 42% of major phyla detected by pyrosequencing. We conclude that the I-tip method can narrow the gap between cultivated and uncultivated species, at least for some of the more challenging microbial communities such as those associated with animal hosts.
Comparative Genomic and Transcriptomic Analyses of *Acinetobacter* and *Alishewanella* Species Adapted to Different Habitats

Jaejoon Jung and Woojun Park*

Lab of Molecular Environmental Microbiology, Department of Ecological Engineering and Environmental Science, Korea University, Seoul 136-713

To understand the adaptation of bacterial species dwelling in different habitats, which belong to the same genus, *Acinetobacter* and *Alishewanella* were chosen because they are expected to have high adaptability to diverse environments and relevant genetic evidences as evolutionary records.

Acinetobacter species was chosen for comparative genomic analysis because they have been isolated from a variety of habitats such as soils, activated sludge, seawater, and human clinical specimens, suggesting the high adaptability of this genus to various environments. Soil-borne *Acinetobacter oleivorans* DR1 was of special interest due to the scarcity of research on natural environment-originated *Acinetobacter* species. Genome sequencing results showed that *A. oleivorans* DR1 possesses the largest genome (4.15 Mb) within *Acinetobacter* genus. The multiple genome alignment revealed that large genomic regions did not have significant matches in other genomes. These regions contained phage-related genes such as phage integrase, primase, prophage transcriptional regulator, and phage DNA methylase. Regarding transposases, only two fragmented genes were identified whereas the genomes of *A. baylyi* and *A. baumannii* harbored 14 and 19 predicted transposase-related genes, respectively. Incorporation of phage genes and a low abundance of IS elements and transposases may be the reason for the relatively large size of the DR1 genome. Comparative genomic analyses confirmed that DR1 was the only species which possessed gentisate 1, 2-dioxygenase (*nagI*) among all the other *Acinetobacter*. Growth test with gentisate as a sole carbon source confirmed the exclusive ability of DR1 to utilize gentisate. Reverse-transcriptase PCR, and quantitative real-time PCR confirmed the polycistronic expression of *nagI* and downstream genes when gentisate was provided as a sole carbon source, indicating that gentisate metabolism could distinguish soil-borne *A. oleivorans* DR1 from other species.

Alishewanella genus provides another good opportunity to chase evolutionary history because *Alishewanella* contains only 5 type species and their isolation sources were all different. *A. jeotgali*, *A. aestuarii*, and *A. agri* have been isolated from fermented seafood, tidal flat sediment, and soil, respectively. Diverse habitats of *Alishewanella* imply that they have a broad range of niches and high adaptability. Phylogenetic analysis of 16S rRNA genes from *Alishewanella* and taxonomically neighboring species showed that *Alishewanella* species have evolved from an ancestor dwelling in the marine environment. Interestingly, reciprocal BLASTP comparison determined that *A. agri* acquired genes horizontally from diverse soil bacteria, indicating that *A. agri* moved its habitat from marine environment to soil and the accumulation of exogenously acquired genes may have resulted from the genomic evolution of *A. agri*. Gene content of genomic islands also suggest that horizontal gene transfer may have conferred important physiological features with relevance to the environmental conditions and contributed to speciation from a common ancestor. Pectin utilization is an important characteristic of *Alishewanella* species. Genomic analysis showed genes coding for pectinolytic enzymes were closely associated on a genomic locus. Transcriptional analyses of *Alishewanella* species grown on pectin confirmed the expression...
of pectin metabolism-related genes. Most remarkable result from transcriptomic analysis was that glyoxylate bypass was highly expressed from 3 *Alishewanella* species whereas acetyl-CoA was not a direct metabolite. Flow cytometry analysis validated that pectin metabolism induced oxidative stress in *Alishewanella* species and oxidative stress could induce the glyoxylate bypass, suggesting that the up-regulation of glyoxylate bypass would be important in oxidative stress defense during pectin metabolism.

In conclusion, this study suggested that unraveling of genetic information and its experimental verification are important to understand bacterial adaptation because genome is considered as an archive of past adaptation processes. Comparative genomics and transcriptomic analyses performed with *Acinetobacter* and *Alishewanella* species isolated from different habitats will provide an essential clue to understand bacterial adaptation to different environments.
Genome-scale Probing of *In Vivo* Organization of Bacterial Transcription Initiation Complexes

Suhyung Cho¹, Yoo-Bok Cho¹, Eun-Ju Lee¹², Yeon I Woo¹², Jung-Hye Roe³, Sun Chang Kim¹², and Byung-Kwan Cho¹²

¹Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, ²Intelligent Synthetic Biology Center, ³School of Nature Sciences, Seoul National University

The DNA dependent RNA polymerase (RNAP) is the decisive enzyme for the transcription of the genetic information in all organisms, which is conserved from bacteria to human in its sequence, structure, and function. Numerous studies to investigate the mechanism of transcription have been performed through various approaches such as structural study, biochemical assay, and single molecule fluorescence resonance energy transfer (FRET) monitoring. Nevertheless, there are still restrictions to interpret the whole dynamic behaviors occurred by massive RNAP holoenzyme *in vivo*, since most studied have shown only frozen snapshots using specific genes or synthetic genes *in vitro*. Recently, a remarkable advance of high-throughput technology and data processing enabled us to observe the transcription event *in vivo* under genomic scale studies. Until now, some researchers tried to explain the transcription mode as tracking core proteins necessary for transcription. However it still remained unclear to interpret the dynamics of transcription microscopically owing to the low resolution of existing genome-scale experiments such as ChIP-chip or ChIP-seq data.

Here we first disclosed the dynamics of the transcription occurred in bacteria using ChIP-exo method with extremely high resolution of single base, together with ChIP-seq and RNA-seq. Individual promoters recognized by σ⁷⁰ and RNAP were discovered through differential RNA-seq method over the whole genome. Further the dynamic behavior of RNAP holoenzyme at transcription initiation was elucidated through the integral observation of active RNAP and sigma factor functioning *in vivo*. Through genome-scale scanning of RNAP and sigma factor, the transcription initiation is caused by the scrunching of DNA, not by the translocation of the RNAP, is proved experimentally. We could explain how sigma factor participates in subsequent transcription processing such as abortive RNA transcription as well as promoter recognition. Our research supports the reliable window to observe and interpret intricate transcription events in perspective of a genomic scale.
RNA-mediated Regulation of Photosynthesis in

Synechocystis sp. PCC6803

Yoo-Bok Cho¹, Seong-Joo Hong², Hyojin Kim¹, Hyeonseok Shin¹, Hyung-Kyoon Choi⁴,
Choul-Gyun Lee⁵, Hookeun Lee³, and Byung-Kwan Cho⁶

¹Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
²Department of Biotechnology and Marine Bioenergy (MBE) Research Center, INHA University, Incheon 402-751,
³College of Pharmacy, Gachon University, Incheon 406-799, ⁴College of Pharmacy, Chung-Ang University, Seoul 156-756

Non-coding RNAs (ncRNAs) have important roles on gene regulation in bacteria. In cyanobacteria, ncRNA consist of similar or larger fraction of the protein coding genes. However, their modes of regulation and functional relationship to photosynthetic processes are unclear. Here we use directional RNA-seq to identify ncRNAs to understand functional relationship with photosynthesis at the genome scale. With the support of proteogenomics and bioinformatics, we identified differentially expressed ncRNAs upon high light stress and low temperature stress and both conditions. Our result shows that ncRNAs mediate regulation of photosynthetic genes for temperatures stress as well as light stress.
Multiple Resistance Mechanisms of High-level Fluoroquinolone Resistant Aeromonas sp. Strain C3 Isolated from Waste Water Treatment Plant

Cung Nawl Thawng¹, Dae-Wi Kim¹, Yong-Joon Cho², Hor-Gil Hur³,⁴, and Chang-Jun Cha¹∗

¹Department of Systems Biotechnology, Chung-Ang University, Anseong, 456-756, ²Chunlab, Inc., Seoul National University, Seoul 151-742, ³School of Environmental Science and Engineering, ⁴International Environmental Research Center, Gwangju Institute of Science and Technology, Gwangju, 500-712

Aeromonas sp. strain C3 was isolated from a waste water treatment plant and found to be highly resistant to fluoroquinolones, suggesting a combination of various resistance mechanisms in this strain. We investigated multiple resistance mechanisms of the isolate to understand the high-level fluoroquinolone resistance. Analysis of quinolone resistance-determining regions (QRDRs) revealed point mutations on gyrA and parC genes, which confer fluoroquinolone resistance. The resistance of Aeromonas sp. strain C3 against fluoroquinolones was reduced in the presence of efflux pump inhibitors, indicating that efflux pumps were involved in the fluoroquinolone resistance. Production of N-acetyfluoroquinolone by the strain was found to be responsible for the aac(6’)-Ib-cr gene located in a natural plasmid. Sequencing of the plasmid (pAC3) revealed that it was an IncC-type plasmid (15,872 bp) and contained two fluoroquinolone resistance genes, aac(6’)-Ib-cr and qnrS. Increased MIC and acquired N-acetylation activity of E. coli DH5α containing pAC3 indicated plasmid-mediated quinolone resistance (PMQR) and transferability of the fluoroquinolone resistance. The expression of qnrS revealed by proteomic analysis could explain the resistance against enrofloxacin and perfloxacin which cannot be substrates for N-acetylation. This is the first report that a high-level fluoroquinolone resistant Aeromonas sp. possessed four different resistance mechanisms some of which were conferred by a transferable plasmid.
Metabolic Pathway Analysis for Efficient Succinic Acid Production

Won Jun Kim¹, Sol Choi¹, Tae Yong Kim¹², Hyun Uk Kim¹²⁴, and Sang Yup Lee¹²³⁴*

¹Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, ²BioInformatics Research Center, KAIST, Daejeon 305-701, ³BioProcess Engineering Research Center, KAIST, Daejeon 305-701, ⁴The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark

Mannheimia succiniciproducens, a capnophilic gram-negative rumen bacterium, has intensively been studied due to its native capabilities to produce a substantial amount of succinic acid. Although a metabolic network of M. succiniciproducens was previously studied in a systematic manner, it still has more to be explored. In order to gain further insights in its metabolic network for biotechnological implications, we used elementary mode (EM) analysis, one of the well-established metabolic pathway analysis approaches, and conducted comparative analysis of M. succiniciproducens and Escherichia coli metabolisms. In this study, we reconstructed a small scale model of M. succiniciproducens that consists of central metabolic reactions including biomass equation according to demand ratio of major precursor as described previously. Among the thousands of EMs, we designed a efficient approach, pathway clustering analysis, by clustering optimal EMs that have the higher succinic acid production without loss of growth rates to systemically identify metabolic network. It was shown that phosphoenolpyruvate carboxykinase (pckA) which converts phosphoenolpyruvate to oxaloacetate with simultaneously generating ATP is the major factor of efficient succinic acid production. Also, pathway clustering analysis could present linear relationships with biomass or succinic acid in both M. succiniciproducens and E. coli metabolic network. In this proof-of-concept study, the biochemical network of M. succiniciproducens was rewired to improve succinate production by overexpressing pentose phosphate pathway in LPK7 strain with ldhA (lactate dehydrogenase), pta-ack (phosphotransacetylase and acetate kinase) and pflB (pyruvate formate lyase) genes disrupted. In conclusion, the newly devised approach, pathway clustering analysis, has applied to M. succiniciproducens and E. coli to grasp the notable differences between two organisms. Furthermore, this analysis successfully redesigned the biochemical network for higher production of succinic acid.
Quorum Sensing for Biofilm Formation and Oil Degradation in *Acinetobacter oleivorans* DR1

Jisun Kim and Woojun Park*

Department of Environmental Science and Ecological Engineering, Korea University

The complete genome of *Acinetobacter oleivorans* DR1 contains AqsR and AqsI genes, which are LuxR and LuxI homologues, respectively. In a previous study, we demonstrated that quorum sensing (QS) signals play an important role in biofilm formation and hexadecane biodegradation. However, the regulation of genes controlled by the QS system in DR1 remains unexplored. We constructed an aqsR mutant and performed RNA sequencing analysis to understand the QS system. A total of 353 genes were differentially expressed during the stationary phase of wild-type cells compared to that of the aqsR mutant. AqsR appears to be an exceptionally important regulator, because knockout of aqsR affected global gene expression. Genes involved in posttranslational modification, chaperones, cell wall structure, secondary metabolites biosynthesis, and stress defense were highly up-regulated only in the wild type. Among up-regulated genes, both the AOLE_03905 (putative surface adhesion protein) and the AOLE_11355 (L-asparaginase) genes have putative LuxR binding sites at their promoter regions. Soluble AqsR proteins were successfully purified in *Escherichia coli* harboring both aqsR and aqsI. Comparison of QS signals in an AqsI-AqsR co-overexpression strain with N-acyl homoserine lactone standards showed that the cognate N-acyl homoserine lactone binding to AqsR might be 3OH C12HSL. Our electrophoretic mobility shift assays with purified AqsR revealed direct binding of AqsR to those promoter regions. AqsR functions as an important regulator and is associated with several phenotypes, such as hexadecane utilization, biofilm formation, and sensitivity to cumene hydroperoxide. Interestingly, QS-controlled phenotypes appeared to be inhibited by indole, and the aqsR mutant had the same phenotypes. We confirmed that the turnover rate of AqsR became more rapid without the AHL signal and that indole could increase the expression of many protease and chaperone proteins. The addition of exogenous indole decreased the expression of two AqsR-targeted genes, which were AOLE_03905 (putative surface adhesion protein) and AOLE_11355 (L-asparaginase). The overexpression of AqsR in *Escherichia coli* was impossible with the indole treatment. Surprisingly, [35S]-methionine pulse labeling data demonstrated that the stability and folding of the AqsR protein decreased in the presence of indole without changing the aqsR mRNA expression in *E. coli*. Here, we provided evidence for the first time showing that the indole effect on QS-controlled bacterial phenotypes is due to inhibited QS regulator folding and not a reduced QS signal.
Community Structure Analysis and Characterization of Soil Humic Substances-Degrading Bacteria from Cold Environments

Ha Ju Park1,2 and Dockyu Kim1*
1Division of Life Sciences, Korea Polar Research Institute
2Department of Biological Engineering, Inha University

Soil humic substances (HS), composed of mainly humic acids (HA) and fulvic acids (FA), are widely distributed in cold natural environments and known as an important fraction of soil organic carbon. Although bacteria dominate cold environments, there have been few studies on the HS utilization by individual bacterial strains. This study investigates the correlation between cold-adapted bacteria and their HS degradation. Under microcosm systems with subarctic HS-rich tundra soil (soil temperature in thawing period, ~5.6°C) of Council in Alaska, HA content significantly decreased to 48% after 99 day-incubation at 5°C by biologically mediated process, while FA, putative HA degradation products, consistently increased to 172% during the identical period. Culture-independent community analysis showed that, during the microcosm experiments, the relative abundance of phyla Proteobacteria largely increased, indicating their involvement in HS degradation. When the indigenous bacteria in the soil were enriched in an artificial mineral medium spiked with HA, the changes in relative abundance were most conspicuous in Proteobacteria (from 60.2% to 79.0%) and class Betaproteobacteria-related bacteria were highly enriched.

In order to examine the bacterial functions as HS-degraders in cold soil environments, a total of 122 bacterial strains were isolated on minimal agar plates containing HA from 66 different soil samples in Alaska. They were identified based on their 16S rRNA gene similarity using EzTaxon program, with Bacilli (79.5%) and Gammaproteobacteria (17.1%) comprising the largest portion. These isolates showed steady increase in HA degradation rates with temperature rise in a range of 0-20°C, with even more drastic increase at 8°C compared to 6°C. These results indicate that bacterial HS degradation is in progress at temperature as low as 5°C in cold tundra ecosystem. A detailed analysis of the sequences of 45 good HA-degraders showed that they are affiliated to several taxa: Paenibacillus spp., 27 strains; Pseudomonas spp., 15 strains; Rhodococcus spp., 2 strains; Serratia sp., 1 strain. The 45 strains were in detail tested on their degradability for HA and various monocyclic aromatics which are putative degradative metabolites of HS. Finally, two bacterial strains (Pseudomonas sp. PAMC 26793 and Paenibacillus sp. PAMC 26794) were selected as excellent HS-degraders and characterized to have different pathway(s) for HS degradation. When the initial and final structures of HA after incubation with PAMC 26793 or 26794 were compared, significant changes in the functional groups and molecular distribution were detected in the final structure by FT-IR and gel permeation chromatography analyses.

To search for essential initial enzymes for HS-degradation, the genomes of PAMC 26793 and 26794 were sequenced and analyzed. Interestingly, a laccase-coding gene was detected on PAMC 26793 genome. Because fungal laccases and other nonspecific oxidizing enzymes (i.e., lignin peroxidase and manganese peroxidase) have been known as the first actor for degradation of HS, the laccase gene is under the study for its function in HS-degradation through gene knockout. In addition, cold-adapted HA-utilizing bacterial strains were isolated also from the Antarctic King Sejong Station (53 strains) and the Arctic Dasan Station (20 strains) to examine the
distribution and function of HS degraders in bi-polar regions. The isolates had optimal degradability at 15-20°C, while they could not grow over 30°C. Based on 16S rRNA gene similarity, the 73 HA-degraders were affiliated to two main taxa: *Pseudomonas* spp., 69.9% and *Rhodococcus* spp., 13.7%. Among the bi-polar strains, 52 isolates (71%) showed approximately 142 bp-PCR products for laccase-like multicopper oxidases (LMCO) conserved region. In conclusion, the information on microbial degradative activities against HS would help us to predict the effects on polar ecosystems of climate change like global warming.
Development of Rapid One-Step Inactivation Tool and Engineering of E. coli to Produce Fumaric Acid

Chan Woo Song¹,³ and Sang Yup Lee¹,²,³∗

¹Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701,
²BioInformatics Research Center, KAIST, Daejeon 305-701,
³BioProcess Engineering Research Center, KAIST, Daejeon 305-701

We developed an integration helper plasmid-based gene manipulation system for more efficient and rapid engineering of E. coli and this tool was directly used for developing fumaric acid producing strains. The integration helper plasmid, pCW611, contains two recombinases which are expressed in reverse direction by two independent inducible systems. The main advantage of this system is that the time and effort required can be significantly reduced because the iterative transformation of the helper plasmids and curing steps are not required. We could delete one target gene in 3 days by using pCW611. To verify the usefulness of this gene manipulation system, the deletion experiments were performed for knocking out four target genes individually (adhE, sfcA, frdABCD, and ackA) and two genes simultaneously for two cases (adhE-aspA and sfcA-aspA). Also, sequential deletion of four target genes (fumB, iclR, fumA, and fumC) was successfully performed for the construction of fumaric acid producing strain. Additionally, strain performances were further improved by sequential deletion of the arcA, ptsG, aspA genes and replacement of native promoter with strong trc promoter. (Development of systems metabolic engineering platform technologies for biorefineries; NRF-2012-C1AAA001-2012M1A2A2026556) funded by the Ministry of Education, Science and Technology)
Genetic Bases of Enhanced *Pseudomonas aeruginosa* Biofilm Development by Sub-Minimum Inhibitory Concentration Treatment of Antibiotics

Keehoon Lee1,2 and Sang Sun Yoon1,2,3

1Department of Microbiology and Immunology, Yonsei University, College of Medicine, Seoul, 2Brain Korea 21 PLUS Project for Medical Science, 3Institute for Immunology and Immunological Diseases, Yonsei University, College of Medicine, Seoul

Pseudomonas aeruginosa is one of the most popular bacteria which studied by numerous microbiologist for many years. It is a nosocomial Gram negative opportunistic pathogen. The bacterium is readily isolated from environments around us and is not a serious threat to healthy individuals. *Pseudomonas aeruginosa*, however, can cause serious infections in immunocompromised individuals such as respiratory infections, urinary tract infections, otitis media, wound infections, gastrointestinal infections, and bacteremia. Most of these infections are associated with biofilms. *Pseudomonas aeruginosa* is known to be one of the powerful biofilm formers. Biofilm infections have been getting more attention recently because it is the mode of infection for chronic bacterial infections and capable of causing many serious problems. These problems include evasion of immune defense of hosts and increased resistance against antimicrobial agents.

The removal of biofilm from infected site was one of the biggest challenges to treat the biofilm infections. So far there are no effective ways to treat biofilm infections other than surgical removal of the infected sites. Few studies suggested that sub-inhibitory concentration of antimicrobial treatments can alter phenotypes of *Pseudomonas aeruginosa* to prevent the attachment of the bacteria on surfaces which results in preventing biofilm formation. However, this may not be the case because there are many other studies presenting that sub-Minimum inhibitory concentration (MIC) of antimicrobial treatments (carbapenems and aminoglycosides) enhances the development of biofilms. The phenomena had, also, been confirmed in our lab using two other types of antimicrobials (β-lamtams and polymyxin antibiotics). Even though the sub-MIC of antimicrobial treatments has shown to enhance biofilm developments, only few studies were conducted on the genetic and mechanism bases of the phenomenon. In this investigation, we are using forward-genetics techniques to identify the significant genes and possible mechanisms that influence the enhanced biofilm development. The identification of genetic factors for the biofilm enhancement under sub-MIC treatments of antimicrobials can be applied to preventing and reducing the chance of biofilm infections caused by residual antibiotics from previous treatments.
Comparison of CO-dependent H$_2$ Production with Strong Promoters in *Thermococcus onnurineus* NA1

Seong Hyuk Lee1,2, Min-Sik Kim1, Seung Seob Bae1,2, Ae Ran Choi1, Jin-Won Lee3, Tae Wan Kim1,2, Jung-Hyun Lee1,2, Hyun Sook Lee1,2*, and Sung Gyun Kang1,2*

1Korea Institute of Ocean Science and Technology, Ansan 426-744,
2Department of Marine Biotechnology, University of Science and Technology, Daejeon 305-350,
3Department of Integrated Biotechnology, Sogang University, Seoul 121-742

To overproduce biotechnologically valuable products, the expression level of target genes has been modulated by using strong promoters. In a hyperthermophilic archaeon *Thermococcus onnurineus* NA1, two promoters, P_{TN0413} and P_{TN0157}, which drive expression of the genes encoding the Slayer protein and glutamate dehydrogenase were inserted in front of a gene cluster encoding a carbon monoxide dehydrogenase, a hydrogenase and a Na$^+$/H$^+$ antiporter. Two promoters exhibited strong activity by increasing the transcription and translation levels of the gene cluster in the mutant strains by 2.5- to 49-folds and 1.4- to 3.3-folds, respectively, than the native promoter in the wild-type strain. While KS0413 with P_{TN0413} promoter exhibited 2.7 to 4.7 times higher transcript level than KS0157 with P_{TN0157} promoter, the levels of proteins were a little different between them. The biomass concentrations and H$_2$ production rates of two mutants were 2- to 3-fold higher than those of the wild-type strain in a bioreactor where CO was supplied at a flow rate of 120 ml/min. Two mutants showed differential response to the higher CO flow rate, 240 ml/min, in terms of growth pattern and product formation, indicating two promoters were regulated by culture conditions. The results demonstrate that not only promoter strength but also product-forming conditions should be considered in promoter engineering.
Characterization of Plasmid pEMB1 Harboring a β-Lactamase Gene and a Toxin-antitoxin System

Hyo Jung Lee and Che Ok Jeon*
Department of Life Science, Chung-Ang University, Seoul

Antibiotic resistance genes have become a major problem for human, animal and plant health. These genes are not only detected in clinical environments, including sewage, river, canal and wastewater, but also have been found in various natural (non-clinical) environments, such as remote Alaskan soil, Antarctic marine waters, ancient sediment sample and Glacier ice core. In present study, unique plasmid encoded ampicillin resistance gene with Toxin-Antitoxin system was isolated from clinical (sewage treatment plant from Tanchoen in Korea) and natural environment (Mt. Jeombong in Korea) by directly transformation into E. coli, named pEMB1. The plasmid pEMB1 was determined 8,744 bp in length and six putative ORFs (Open Reading Frames), including putative Tn3 transposon, consist of transposase (tnpA), DNA invertase (tnpR) and β-lactamase (bla), putative plasmid replication protein (repB), orf5 and putative toxin (parE). BLAST homology searches indicated that orf5 gene likely encoded a CopG family transcriptional regulator. Here, we report physiological and genetic evidence that orf5 gene encodes antitoxin. Accordingly, a name for orf5, parD, was proposed. Monitoring of the pEMB1-like plasmids was attempted from various clinical and natural environments by nested touchdown-PCR. As a result, pEMB1-like plasmids was identified from other human activity-related samples and remote mountain soil samples. This study will shed light on understanding the development of antibiotic resistant bacteria and the dissemination of antibiotic resistance genes in environments.
Identification and Role of the DNA-Damage Response Two Component System, DrtR/S, in *Deinococcus radiodurans*

Seonghun Im1,2, Don-Hee Park2, and Sangyong Lim1*

1Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185,
2Interdisciplinary Program of Graduate School for Bioenergy & Biomaterials, Chonnam National University, Gwangju 500-757

Bacteria are able to adapt to changes in the environment using two-component signal transduction systems (TCSs) composed of a histidine kinase (HK) and a response regulator (RR). HKs are the first proteins to sense and relay the environmental signal to its partner protein, RR. *Deinococcus radiodurans*, one of the most resistant organisms to ionizing radiation, has 20 putative HKs and 25 putative RRs. In this study, we constructed 12 *D. radiodurans* mutant strains lacking a gene encoding a HK and surveyed their resistance to γ-radiation, UV-B radiation, mitomycin C (MMC), and H2O2. Among them, *dr2416* (HK) mutant is sensitive to γ-radiation, UV-B, MMC, and H2O2 compared with the wild-type strain. DR2415, which seems to be a cognate RR of DR2416, plays a role in the resistance to DNA-damaging agents. Thus, we named this TCS, composed of DR2415/DR2416 DrtR/S, the DNA damage Response TCS Regulator/Sensor. We investigated the expression of the *dr0053* gene known as a DNA damage-inducible (*din*) gene, in *dr2415* and *dr2416* mutant strains. The *dr0053* gene was highly induced upon gamma radiation in the presence of DrtR/S as well as RecA, suggesting that the DrtR/S is involved in *din* gene. Microarray analysis was performed in the absence of *drtR*. The function of up-regulated genes, *drB0007* and *drB0125*, belong to iron uptake system. Considering the capacity of iron to generate reactive oxygen species, this result suggests that DrtR/S can exert its protective effect by modulating iron homeostasis.
Potassium Ion-Mediated Regulation of Biofilm Formation via Controlling Cellular Level of Sigma S

Yu-Sook Chung, Kyung-Jo Lee, and Kyu-Ho Lee*
Department of Life Science, Sogang University

Biofilm-forming activity of *Vibrio vulnificus* is essentially required for eliciting the pathogenicity in host environments. Thus its activity is programmed to be regulated at multiple levels during the whole period of biofilm developmental stages. Upon maturing biofilms, quorum-sensing plays a regulatory role by inducing production of capsular polysaccharide (CPS) and enhancing dispersal of cells to enter the final stage of biofilm life-cycle. Since cells within a mature biofilm of high cell-density structure are presumed to be starved for some essential nutrients, a global stress regulator, RpoS was investigated in this study whether it functions as a key factor for another regulatory circuit controlling formation of biofilm. *rpoS*-deficient *V. vulnificus* formed significantly increased biofilms compared to wild type. Examination of the mutant phenotypes revealed that *rpoS* mutant exhibited reduced production of CPS due to decreased transcription of the gene-cluster for CPS biosynthesis. Reduced CPS production provided its cell surface with increased hydrophobicity, resulting in increased formation of biofilm. Regulation of RpoS expression is achieved at various levels including transcription, post-transcription, and post-translation. In addition, potassium ion has been shown to regulate the RpoS activity in *E. coli*. Thus, the effect of potassium ion on RpoS was investigated in *V. vulnificus* and found that cellular level of RpoS was increased under the limited concentrations of potassium ion, due to an increased stability of RpoS *in vivo*. Furthermore, the potassium ion-depleted cells showed increased CPS production and reduced biofilms. Therefore, this study suggests that biofilm cells under limited supply of essential nutrients, such as potassium ion, are facilitated to be dispersed to other niches via increased production of CPS, which is achieved by increased level of its transcription activator, RpoS.
Kimchi is a Korean traditional food made by fermentation of vegetables. Lactic acid bacteria are well known to perform significant roles in kimchi fermentation. In this study, metagenomic and metatranscriptomic analyses were performed to monitor changes in microbial community structure, metabolic potential, and gene expression during the kimchi fermentation. Metagenomic DNA and expressed mRNA were extracted from periodic kimchi samples and sequenced using 454 GS FLX Titanium and Illumina GA IIx, respectively. Taxonomic analysis based on 16S rRNA genes from the metagenome indicated that the kimchi microbiome was dominated by Leuconostoc (Lc.), Lactobacillus (Lb.), and Weissella (W.). Assignment of metagenomic sequences to SEED categories revealed the prevalence of carbohydrate metabolism and lactic acid fermentation. Interestingly, a large number of phage DNA sequences were identified, possibly indicating a high proportion of cells were infected by bacteriophages during fermentation. To investigate metatranscriptomic gene-expression profiles, the mRNA sequencing reads were mapped onto representative genome sequences of the predominated six LAB species (Lc. mesenteroides, Lb. sakei, W. koreensis, Lc. gelidum, Lc. carnosum, and Lc. gasicomitatum), which showed that Lc. mesenteroides was most active during the early-stage fermentation, whereas gene expression by Lb. sakei and W. koreensis was high during later stages. However, gene expression by Lb. sakei decreased rapidly at 25 days of fermentation, which was possibly caused by bacteriophage infection. Many genes related to carbohydrate transport and hydrolysis and lactate fermentation were actively expressed, which indicated typical heterolactic acid fermentation. These results provide insights into the kimchi microbial community and also contribute to knowledge of the active populations and gene expression in the LAB community responsible for an important fermentation process.
Staphylococcus aureus Vesicles Modulate the Surface Hydrophobicity Which Inhibits Other ESKAPE Pathogens from Forming Biofilms

Hansol Im¹, Sujin Lee², Steven A. Soper¹*, and Robert J. Mitchell¹*

¹ School of Life Science, Ulsan National Institute of Science and Technology (UNIST),
² Department of Internal Medicine, Pusan National University School of Medicine

TEL: +82-52-217-2513, FAX: +82-52-217-2509
Technology Workshops

Sponsored by Korea National Research Resource Center

2014 International Meeting of the Microbiological Society of Korea
차세대 시퀀싱 기술은 기존의 Sanger 시퀀싱 방법에 비해 훨씬 저렴하면서도 막대한 양의 데이터를 얻을 수 있는 장점이 있지만, 다양한 시퀀싱 플랫폼 및 그로부터 유래되는 방대한 양의 데이터는 분석에 있어서 오해의 여지가 있는 요소가 되고 있습니다. 현재 Illumina와 Roche 454 시퀀싱 기술은 미생물 게놈 분석에 가장 널리 사용되는 기술로 각각 생산되는 데이터 대비 비용이 저렴하고 시퀀스 길이가 긴 장점이 있으며, 이외에도 Pacific Biosciences의 SMRT 시퀀싱 기술 및 Life Technologies의 Ion torrent 등의 여러 다른 기술들이 개발되어 있습니다. 연구자의 목적에 부합하는 시퀀싱을 위해서는 각 NGS 시퀀싱 플랫폼의 특징을 알고 용도에 맞게 적합한 필요가 있습니다. 이에 각 NGS 시퀀싱 플랫폼의 원리와 그 결과 데이터의 특성, 적합한 용도 등에 대하여 알아보고자 합니다.
Next-generation Sequencing 기술을 이용한 세균의 분류동정

Mincheol Kim
KOPRI
Email: mimhmw@gmail.com

Genetic information has been used as one of the key elements in circumscribing bacterial species since the molecular method was introduced to the field of microbiology. With the recent revolution of DNA sequencing technologies, the number of sequenced bacterial genomes has been increased dramatically at an unflagging rate. With the combination of low-cost genome sequencing methods and suitable bioinformatics tools, the use of whole genome information has a great potential in bacterial taxonomy, especially in ways that bacterial species is defined. Traditional taxonomic traits could be replaced or refined by more precise and accurate genome-driven traits. DNA G+C content can be determined more accurately by simply counting the proportion of guanine and cytosine from genome sequences. Laborious DNA-DNA hybridization (DDH) can be superseded by ‘digital’ DDH (e.g. average nucleotide identity) by direct comparison between two genome sequences. Bacterial taxonomy can also be improved by additional genome information. Phenotypic traits can be further supported by the presence or absence of diagnostic genes. Phylogenomic approach based on whole genome data is able to provide a more comprehensive view in inferring the evolutionary relationship between organisms. As genome sequencing becomes more common, genomics will be more rapidly incorporated into the current taxonomic framework of bacteria.
Over the past decade or so, dramatic developments in our ability to experimentally determine the contents and functions of genomes have taken place. In particular, high-throughput technologies are now inspiring a new understanding of the bacterial genome on a global scale. Recently, the development of next-generation DNA sequencing (NGS) techniques provide the ability to overcome the limitations of microarrays and now allow for the investigation of transcription at single nucleotide resolution with better signal-to-noise ratio. In particular, NGS techniques offer thousands of times faster, deeper and cheaper reading tools than traditional methods for obtaining genome-wide profiles of mRNAs, regulatory RNAs, transcription factor binding regions, structure of chromatin and DNA modification patterns in addition to the genome sequencing. NGS tools are being used to study laboratory evolution by providing complete determination of the genetic basis of adaptation. Here, we introduce how to apply genome resequencing tool to elucidate the genetic basis of adaptation and the dynamics with which laboratory populations evolve.
Transcriptome Analysis and Its Applications by Using Stranded/Differential RNA-sequencing Technologies

Bo-Rahm Lee
Intelligent Synthetic Biology Center, KAIST
Email: boramu05@gmail.com

Unlike the previous microarray experiments, RNA-sequencing technology, which directly sequence RNA, does not use the hybridization probes for the experiments. Thus, the RNA-seq reduces noise signals level that occur on the hybridization step. In addition, RNA-seq has much more dynamic range than microarray; RNA-seq utilizes number of reads to determine expression level.

The procedure of RNA-seq is as followed: i) total RNAs are collected from cells, and fragmented into small pieces around the specific size, ii) adaptors are ligated at both ends of RNA, iii) cDNA gets synthesized by the adaptors, iv) finally, cDNAs are amplified by PCR, then DNA library is completed. This library contains information on the whole transcriptome. When cDNA is synthesized by using only primary transcripts, which constructed by an enzyme treatment of total transcripts (differential RNA-sequencing), more accurate genome architectures can be identified. At last, transcriptome sequencing prepared by the strand-specific RNA (stranded RNA-sequencing) produces more reliable expression level and unique mapping regions than microarray data.

In this talk, procedures of stranded RNA-seq and differential RNA-seq and various applications will be presented in detail.
Principle and Application of ChIP-seq to Understand Transcriptional Regulation

Yoo-Bok Cho
Department of Biological Sciences, KAIST
Email: newman73@gmail.com

ChIP-seq is the primary method for the discovery of the regions where a DNA-binding protein binds the genome in vivo on a genomic scale. The most widely investigated DNA binding protein is transcription factors but any proteins that have DNA-binding ability such as DNA-binding enzymes, chaperones, or nucleosomes can be investigated. ChIP-seq is conducted by crosslinking bounded proteins to the DNA fragments and selectively captures the DNA-proteins complexes by using an antibody specific to the protein. Captured DNA fragments are rendered to massive sequencing by using next-generation sequencing (NGS). Through the computational analysis of the sequenced DNA identifies the genomic locations and thereby show the role and regulation of the DNA-binding protein. In this talk, the principle of ChIP-seq experiment and their computational analysis will be presented.
Translaticomic Analysis by Using Ribo-seq Technique

Yujin Jeong
Department of Biological Sciences, KAIST
Email: dbwls54@kaist.ac.kr

Development in sequencing technologies have allowed huge advances in genomics and transcriptomics. However research for translatomics has not benefit yet until the recent development of the Ribo-seq method. Ribo-seq allows the sequencing of mRNA buried inside the active ribosomes for translation. By analyzing these mRNAs, we can obtain data on actual mRNA sequence that are being translated, identity of the reading frames, and ribosomal density at position within the mRNAs. These data allows the calculation of translation efficiency (TE) and determine different regulation of translation in comparison to mRNA level. In this workshop, we present actual application of Ribo-seq for the *Streptomyces coelicolor*.
Introduction to Metabolomics: Methods, Protocols and Applications

Young-Sang Jung

Integrated Metabolomics Research Group, Korea Basic Science Institute
Email: ysjung@kbsi.re.kr

Metabolomics, as integral part of the whole ‘-Omic’ sciences, is “comprehensive analysis of the whole metabolome under a given set of conditions” (Fiehn, O., et. al Nat. Biotechnol. 2000;18:1157-1161). In the near future, metabolomics might play central role in ‘-Omics’ science since the metabolome is outcome of up-stream regulatory events of genome, transcriptome, and proteome, and its level change can be regarded as the ultimate response of biological systems to genetic or environmental changes, and is the most predictive of phenotype.

This presentation introduces nuclear magnetic resonance (NMR) spectroscopy and mass spectroscopy (MS) methods and protocols for metabolomics; (i) instrumentations and principles, (ii) sample and preparation, (iii) data acquisition and processing, (iv) metabolite identification and quantification, (v) and multivariate analysis, such as principle component analysis (PCA), partial least squares discriminant analysis (PLS-DA).

Finally, based on published papers, exemplary applications of metabolomics in clinical cancer research, plant biology, and microbial research are presented.
Glycosylation 분석을 위한 질량분석기 원리와 응용

Kyoung-Soon Jang
Division of Mass Spectrometry Research, Korea Basic Science Institute
Email: ksjang@kbsi.re.kr

당화(Glycosylation)는 박테리아와 같은 미생물에서 암세포 등의 동물세포까지 거의 모든 세포표면에 나타나 있으며, 다당체(Polysaccharides), 당단백질(Glycoproteins), 당지질체(Glycolipids) 등의 당복합체(Glycoconjugates) 형태로 존재한다. 주로 세포표면에 발현되어 있는 이러한 당복합체는 외부자극과 가까운 곳에 있기 때문에, 세포-세포 상호작용, 숙주-병원균 상호작용, 병원균의 향생체 내성 및 병독성 등 생물학적으로 중요한 역할을 담당하고 있다. 그럴기 때문에 특정 당복합체의 생물학적 역할을 이해하기 위해서 그 분자구조를 분석하고 규명하는 것이 필요하다. 최근에는 극미량의 샘플로부터 정확한 분석을 구현하는 고분해능 질량분석기(High-resolution mass spectrometry)의 장점으로 인해 미량의 다양한 생체시료들로부터 특정 물질의 정성/정량 분석이 가능해지고 있다. 본 워크샵에서는 질량분석기를 이용해서 박테리아에서 보고되고 있는 당단백질(\(O\)- and \(N\)-linked glycoproteins)을 분석하기 위해 필요한 과정에 대해 설명하고자 한다.
Principle and Application of Bimolecular Fluorescence Complementation Assay for Protein-protein Interaction Study

Yong Bhum Song, Min-Kyung Sung, and Won-Ki Huh*

Department of Biological Sciences and Institute of Microbiology, Seoul National University

Email: songyb@snu.ac.kr

Protein-protein interactions (PPIs) are crucial for all biological processes. Their identification and characterization are necessary in order to elucidate these processes and for the functional identification of unknown proteins. There are many methods currently in use for the detection of protein interactions with new methods continually being developed. Bimolecular fluorescence complementation (BiFC) is a suitable technique to investigate the formation of protein complexes and the localization of protein–protein interactions in the natural cellular context. Here, we introduce a BiFC technique to study PPI in a high-throughput manner in living cells. First, we describe the construction of a Saccharomyces cerevisiae fusion library in which each endogenous gene is C-terminally tagged with the N-terminal fragment of Venus (VN) for a genome-wide BiFC assay. Using the VN fusion library, we systematically analyzed the interactome of the small ubiquitin-related modifier (SUMO). Furthermore, we also report a high-throughput method for cloning human G-protein coupled receptor (GPCR) cDNAs into adenoviral bimolecular fluorescence complementation (AdBiFC) vectors, performing the β-arrestin BiFC assay and screening GPCR heterodimerization in mammalian cells. Collectively, the VN fusion library and the AdBiFC system provide a useful research tool that makes it feasible to systematically analyze PPIs in the natural cellular context.
Synthetic Regulatory Small RNA for Fine-tuning Gene Expression and Its Application

Seung Min Yoo

Department of Chemical and Biomolecular Engineering, BioProcess Engineering Research Center, KAIST
Email: smyoo@kaist.ac.kr

Efficient and convenient control over gene expression in genome-wide scale is essential in fundamental and applied biological studies, but is still one of great challenges due to the difficulties in constructing libraries. Small regulatory RNAs (sRNAs) are short non-coding RNAs that can finely control the expression of target genes in trans at the translational level in prokaryotes. Recently, I reported the development of a new genome-wide gene expression control system based on synthetic sRNAs, which utilizes the abilities and characteristics of natural sRNAs. Synthetic sRNAs can be utilized for diverse experiments where gene expression regulation is needed. One of promising applications is high-throughput screening of the target genes to be manipulated and multiple strains simultaneously to enhance the production of chemicals of interest. Such simultaneous optimization of gene targets and strains has been one of the big challenges in metabolic engineering. Another application is to fine tune the expression of the screened genes for flux optimization, which would enhance chemical production further by balancing the flux between biomass formation and target chemical production. Synthetic sRNAs can also be applied to finely regulating genetic interactions in a circuit or network, which is essential in synthetic biology. This lecture will be useful for all researchers in the academia and industry who are interested in the use of synthetic sRNAs for fundamental and applied biological and biotechnological studies.
The Principle and Application of RNA-guided Nuclease Based Genome Editing

Sooin Lee
Department of Biological Sciences, KAIST
Email: lee_sooin@kaist.ac.kr

Since the success of Human Genome Project, gene therapy tools like zinc-finger nuclease (ZFN) and transcription activator-like effector nuclease (TALEN) became spotlighted as a solution for genetic disorders. With specific interaction of nucleotide and protein domains, these genome editing tools induce non-homologous end joining or homologous recombination by introducing double-stranded break to target genome locus. Although its advantage of site-specific genome engineering, it has great deficiency due to protein library construction which requires time consuming procedure. Clustered regularly interspaced short palindromic repeats (CRISPR) system, which functions as a defense mechanism against bacteriophages in bacteria, arisen as a novel genome editing tool. It works with CRISPR RNAs (crRNAs) that lead Cas9 protein to specific genome locus. Because the target diversity of the system is depend on crRNAs, it allows much more efficient genome editing system. Throughout the session, the principle and application of CRISPR/Cas based genome editing tools and its experimental procedure will be introduced.
Bio-Imaging: How to Make a Good Digital Image

Nuri Kim
Department of Biological Sciences, KAIST
Email: tesdar@gmail.com

Image is an artificial record of visual information, usually captured by optical devices. There has been a tremendous improvement in tools for imaging, but the core rules that build an image have never changed since the development of the first camera by Joseph Nicéphore Niépce in 1826. In this talk, I would like to briefly introduce elements of an image, how the image is taken, and discuss about how to make a good image that can effectively depict the information. Contrast and Resolution are the two main keys, and components that build these two will be presented. As images of biological specimen in these days are obtained and stored in electronic devices, digital image and its processing will be mainly reviewed. Also, this talk will cover recent developments of bio-imaging, in the regard of super-resolution microscope for the breakthrough of resolution limit to see the unseen by traditional methods.
Workshop

ChunLab, Inc.

2014 International Meeting of the Microbiological Society of Korea
RNA-Seq Analysis: Current Methods and Its Applications

Namil Kim and Jongsik Chun

ChunLab, Inc.

RNA sequencing measures all gene expressions in specific species with a single experiment. RNA-Seq makes it possible to obtain more accurate and diverse information whether the genes are expressed, the level of expression or how the expression varies under certain conditions.

DNA microarray measures the hybridization of the cDNA on the microarray slide, however, RNA-Seq sequences the cDNA to map it against a reference gene in order to calculate the number of sequence reads. Sequencing results are mapped based on sequences from the reference genome. The number of sequence reads mapped for each gene are measured and normalized into RPKM values. The type of data that can be obtained from ChunLab’s RNA-Seq service are Raw data as FASTQ file formats and analysis files as clt (*.clt) file formats, which can be viewed and analyzed with ChunLab’s CLRNASeq™ bioinformatics software. CLRNASeq™ provides various functions such as 1) mapping status browser 2) annotated RPKM table 3) scatter plot analysis and 4) clustering analysis (hierarchical clustering, K-Means clustering, SOM clustering).

RNA-Seq technology is more reproducible, convenient, and accurate than any other methods. To date, several protocols were designed for various applications. We will review current NGS technology in terms of RNA-Seq technology and our incredible service.
Poster Sessions

A. Systematics
B. Ecology and Environmental Microbiology
C. Applied Microbiology
D. Immunology and Microbial Pathogenesis
E. Physiology and Biochemistry
F. Genetics
G. Biotechnology
H. Others
A Polyphasic Investigation on a Novel Anaerobic Actinobacterium Isolated from Human Faeces

Jong-Sik Jin1, Keun Chul Lee2, In-Sooon Park2, Kwang Kyu Kim3, Jong Seong Ahn4, Yoshimi Benno5, Masao Hattori6, and Jung-Sook Lee7
1Department of Oriental Medicine Resources, College of Environmental & Bioresource Sciences, Chonbuk National University, 2Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 3Chemical Biology Research Center, Ocham Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 4Benno Laboratory, RIKEN Innovation Center, Wako, Japan, 5Institute of Natural Medicine, University of Toyama, Toyama, Japan

A novel actinobacterial strain, designated CAT-2T, was isolated from human faeces as a bacterium capable of dehydroxylating (+)-catechin derivative. Strain CAT-2T was found to be strictly anaerobic, Gram-positive, non-motile and non-spore-forming coccobacilli. The major fatty acids were C14:0 DMA (dimethyl acetate), C16:0 anteiso-C15:0 and iso-C15:0. The three predominant menaquinones were identified as MK-6 (menaquinene-6), MMK-6 (monomethylmenaquinone-6) and DMMK-6 (dimethylmenaquinone-6). The polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol and four unidentified glycolipid. The DNA G+C content of strain CAT-2T was 68.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain CAT-2T belongs to the genus Gordonia, sharing the highest level of sequence homology with Gordonibacter pumilaeae DSM 19378T (97.3%). Combined phenotypic, chemotaxonomic and phylogenetic characteristics supported the conclusion that the strain CAT-2T represents a novel species, for which the name Gordonia catheohominis sp. nov. is proposed. The type strain is CAT-2T (=KCTC 15204T =JCM 16058T).

Neptunomonas daebuensis sp. nov., Isolated from a Sediment of the Daebu-Island, Korea and Emended Description of Members of the Genus Neptunomonas

Sung-Hyun Yang, Hyun-Seok Seo, Jung-Hyun Lee, Sang-Jin Kim, and Kae Kyong Kwon
Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology

A Gram-negative, aerobic, rod-shaped and non-motile marine bacterium, designated as MEBiC 06243T was isolated from a sediment at the Daebu-Island in the Yellow Sea, Korea. The 16S rRNA gene sequence analysis revealed that strain MEBiC 06243T showed high similarity with the Neptunomonas naphthovorum NAG-2N-126T (96.3%). Growth was observed at 10.2-38.7°C (optimum 30°C), at pH 6.0-9.0 (optimum 7) and with 0-7% (optimum 2.5) NaCl. The predominant cellular fatty acids were C16:0 3-OH (6.1%), C12:0, (5.8%), C16:0, (30.5%), C18:1 ω9c (24.2%), C18:1 ω7c (21.6%) and summed feature 3 (30.7%). The DNA G+C content is 41.4 mol%. The major respiratory quinone is Q-8. Phosphatidylethanolamine, phosphatidylglycerol, phosphatidylglycerol and two unidentified lipids, one unidentified aminolipid and three unidentified aminophospholipids were detected as major polar lipids. On the basis of this polyphasic taxonomic data, strain MEBiC 06243T should be classified as a novel species in the genus Neptunomonas and it is proposed as Neptunomonas daebuensis sp. nov. The type strain is MEBiC 06243T (=KCCM 42975T =JCM 18291T).

Owenweeksia salteri sp. nov., a Marine Bacterium Isolated from Seawater in the Saltern

Hyun-Seok Seo1, Sung-Hyun Yang1, Ji Hye Oh1, Jung-Hyun Lee2, and Kae Kyong Kwon3
1Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, 2Department of Marine Biotechnology, University of Science and Technology

A novel Gram-negative rod-shaped aerobic and motile strain, designated MEBiC 09403T, was isolated from seawater in the solar saltern of the Jeolla province, South Korea. Strain MEBiC 09403T produces orange-coloured colonies on Marine Agar and possess a single polar flagellum. On the basis of 16S rRNA gene sequence analysis, the closest relative was Owenweeksia hongkongensis DSM 17368T with 93.3% similarity and followed by Phaeocystidibacter laterus PG201T with 89.9% similarity. Growth was observed at 12.4-33.5°C (optimum, 21°C). When assayed with the API Zym systems acid phosphatase, alkaline phosphatase, leucine arylamidase and valine arylamidase activities were present. Based on phenotypic properties and phylogenetic data, strain MEBiC 09403T should be classified within the genus Owenweeksia and suggest O. salteri sp. nov. with strain MEBiC 09403T is proposed. [Supported from KIOST & MBRB]
Flavihumibacter solisilvae sp. nov., Isolated from Forest Soil

Sang Eun Jeong, Hyo Jung Lee, and Che Ok Jeon
Department of Life Science, Chung-Ang University

A Gram-staining-positive, strictly aerobic, yellow colony-forming bacterium, designated strain 3-3\(^{T}\), was isolated from forest soil of Baek Kan Province in Vietnam. Cells were non-motile rods without gisting motility, showing oxidase- and catalase-positive reactions. Growth was observed at 20-37\(^{\circ}\)C (optimum, 28\(^{\circ}\)C) and pH 5.5-9.5 (optimum, pH 7.5). The major cellular fatty acids were iso-C\(_{15:0}\), iso-C\(_{17:0}\), G, and summed feature 3 (comprising C\(_{15:0}\) 9c and/or C\(_{16:0}\) 3c). The G+C content of the genomic DNA was 49.5 mol% and the only isoprenoid quinone detected was menaquinone 7 (MK-7). Phlogenetic analysis based on 16S rDNA gene sequences indicated that strain 3-3\(^{T}\) formed a tight phylogenetic lineage with Flavihumibacter petaseus T41\(^{T}\) with a bootstrap value of 100%. Strain 3-3\(^{T}\) was most closely related to F. petaseus NBRC 106054\(^{T}\) with 97.3% 16S rDNA gene sequence similarity and their DNA-DNA relatedness level was 9.6±1.2%. Based on phenotypic, chemotaxonomic and molecular features, strain 3-3\(^{T}\) represents a novel species of the genus Flavihumibacter, for which the name Flavihumibacter solisilvae sp. nov. is proposed. The type strain is 3-3\(^{T}\) (=KACC 17917\(^{T}\) = JCM 19891\(^{T}\)).
A009

Antarctobacter jejuensis sp. nov., Isolated from Seawater in Jeju, Korea

Hyangmi Kim1, Jae-Bong Lee2, Hyun-Woo Oh1, Kang Hyun Lee1, Kyung Sook Bae1, and Doo-Sang Park2

1Microbological Resources Center, Korea Research Institute Bioscience & Biotechnology, 2Dokdo Fisheries Research Center, National Fisheries Research and Development Institute

A novel bacterium, designated strain 13-2-B6T, was isolated from seawater in front of Songak Mountain on Jeju Island, South Korea. On the basis of 16S rRNA gene sequence similarity, strain 13-2-B6T was shown to be phylogenetically closely related to the type strain of Antarcticobacter heliothermus, the sole species of the genus Antarcticobacter. The similarity of the 16S rRNA gene sequences of the strain 13-2-B6T and A. heliothermus EL-219 was 96.85%. Strain 13-2-B6T grew optimally at 25-30°C, pH 7.5-8.0 and in presence of 3% (w/v) NaCl. Strain 13-2-B6T contained ubiquinone Q-10 as the predominant isoprenoid quinones and C15:0 3- / C16:0 as the major fatty acids. The G+C content of strain 13-2-B6T was 62 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain 13-2-B6T is considered to represent a novel species of the genus Antarcticobacter, for which the name Antarcticobacter jejuensis sp. nov. is proposed. The type strain is 13-2-B6T (=KCTC 42009T).

[Supported by grant from the National Fisheries Research and Development Institute]

A010

Seasonal Differences of Bacterial Communities Associated with the Marine Sponge, Callyspongia elegans Based on DGGE

Jong Bin Jeong and Jin-Sook Park

Department of Biological Science and Biotechnology, Hannam University

Seasonal differences of bacterial communities associated with the marine sponge Callyspongia elegans, were analyzed by the PCR-DGGE based on culture-independent method. The 16S rRNA gene sequences derived from the DGGE bands showed 81–100% similarities to the known bacterial species in the public database. The bacterial community structure of C. elegans sponge (131mur20) collected in winter was composed of 3 phylum, 6 classes: Proteobacteria (Alpha-, Beta-, Gamma-, Delta-), Cyanobacteria and Chloroflexi. Another sponges (138mur2, 138mur3 and 138mur4) collected in summer, were composed of 2 phylum, 4 classes: Proteobacteria (Alpha-, Beta-, Gamma-) and Cyanobacteria. Deltaproteobacteria and Chloroflexi were found only in the winter sponge and there are seasonal differences between the community structures of same sponge, C. elegans.

A011

Structure of ribosomal RNA Gene and Phylogeny of Nosema Isolates in Korea

Ji-young Choi, Kwan-ho Park, Young-Choel Choi, and Pil-don Kang

Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration

The ribosomal RNA (rRNA) gene region of the four Nosema sp. isolates (C01, C02, C03 and C04) from Pieris rapae in Korea has been examined. Complete DNA sequence data (3779 bp) of the rRNA gene of Nosema sp. C01 are presented for the small subunit gene (SSU rRNA: 1236 bp), the internal transcribed spacer (ITS: 37 bp), and the large subunit gene (LSU rRNA: 2506 bp). The secondary structures of Nosema sp. C01 SSU and LSU rRNA genes are constructed and described. The SSU rRNA showed a hypervariable V4 region identified four additional stems including a pseudoknot. Phylogenetic analysis based on the SSU rRNA suggests that the four isolates belong to the 'true Nosema group. In contrast to the Vairimorpha /Nosema clade, the members of the group are highly divergent.

A012

Paenibacillus cucumis sp. nov. Isolated from Greenhouse Soil

Jae-Hyung Ahn, Byung-Yong Kim, Jaekyeong Song, Soon-Wo Kwon, and Hang-Yeon Weon

Agricultural Microbiology Division, National Academy of Agricultural Science

Strain CO 4-7T was isolated from greenhouse soil cultivated with cucumber in Korea. The 16S rRNA gene sequence of strain CO 4-7T showed the highest sequence similarity with Paenibacillus contaminans CKB6P-6 (94.2%) among the type strains. The strain CO 4-7T was a strictly aerobic, Gram-staining-positive, endospore-forming, and motile rod-shaped bacterium. The strain grew at 10-45°C (optimum, 30°C), at pH 6.0-7.5 (optimum, pH 6.5) and in the presence of 0-5% NaCl (optimum, 0.5%). The DNA G+C content of strain CO 4-7T was 48.5 mol%. It contained MK-7 as the major isoprenoid quinone and anteiso-C15:0 (51.8%), C16:0 (12.7%), and iso-C15:0 (8.6%) as the major fatty acids. On the basis of evidence from our polyphasic taxonomic study, it was concluded that strain CO 4-7T should be classified within a novel species of the genus Paenibacillus, for which, the name Paenibacillus cucumis sp. nov. is proposed. The type strain is CO 4-7T (=KACC 17444T =JCM 19515T).

[Supported by grants from "Research Program for Agricultural Science & Technology (Project No. PJ90712702)" of the National Academy of Agricultural Science, Rural Development Administration, Republic of Korea.]
Oryzihumus terrae sp. nov., Isolated from Soil

Agricultural Microbiology Division, National Academy of Agricultural Science, Department of Microbiology, Dankook University

Gram-stain-positive, aerobic, non-flagellated bacterium, designated KIS22-12T, was isolated from a soil sample, Republic of Korea. Cells were non-spore-forming, coccus showing catalase-positive and oxidase-negative reactions. Strain KIS22-12T contained MK-8(H4) as the predominant menaquinone, and C17:0 3-OH, iso-C15:0 and anteiso-C15:0 as the major fatty acids. Strain KIS22-12T contained DPG, PI, three unknown PLs, one unknown AL, and one unknown lipid. Peptidoglycan type is A1γ.

The G+C content of the genomic DNA was 69.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain KIS22-12T formed a phyletic lineage with Oryzihumus leptocrescens KU35-8T (90.9%) and Parafilimonas terrae KU58-8T (93.6%) (91.2%). The major cellular fatty acids of the novel strain were iso-C15:0 (63.78%), and iso-C16:0 (10.73%).

On the basis of phenotypic, chemotaxonomic and molecular properties, strain KIS22-12T represents a novel species within the genus Oryzihumus, for which the name Oryzihumus terrae sp. nov. is proposed. The type strain is KIS22-12T (=KACC 16543T).

This study was supported by National Academy of Agricultural Science, RDA.

Parafilimonas terrae gen. nov., sp. nov., Isolated from Greenhouse Soil

Soo-Jin Kim, Jun-Muk Lim, Ji-Young Moon, Jae-Hyung Ahn, Hang-Yeon Weon, and Soon-Wo Kwon

Agricultural Microbiology Division, National Academy of Agricultural Science

Strain 5GHs7-2T was isolated from a soil sample in South Korea. 16S rRNA gene sequence analysis of strain 5GHs7-2T indicated that the isolate belonged to the family Chitinophagaceae and exhibited the highest sequence similarities with the genus Terrimonas members (92.0-92.6%).

The predominant fatty acids are Summed feature 8 (C18:1ω7c/ω6c) (90.9%) and Flavibacterium petaseus T41T (91.2%). The major cellular fatty acids of the novel strain were iso-C15:0, iso-C17:0 3-OH and iso-C15:0 3-OH. The polar lipid profile consisted of a large amount of PE, and small amounts of several unknown ALs, APL, and lipids. The only respiratory quinone of strain 5GHs7-2 T was MK-7, and the DNA G+C content was 47.6 mol%.

The type strain of Parafilimonas terrae sp. nov. is 5GHs7-2T (KACC 17343T).

This study was supported by National Academy of Agricultural Science, RDA.

Paenibacillus acervicinus KUDC4121 sp. nov., Isolated from Rhizosphere Soil of a Acer okamotoanum

Ye-Ji Hwang and Sa-Youl Ghim

School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project) and Institute for Microorganisms, Kyungpook National University

Strain KUDC4121 (=DSMZ 24950, KCTC 13870) was isolated from the rhizosphere of Acer okamotoanum, a native plant in Ulleungdo island in September 2006. The G+C content of genomic DNA was 48.28 mol%.

On the basis of phenotypic-, chemotaxonomic and molecular properties, strain KUDC4121 sp. nov. is proposed. The type strain of Paenibacillus acervicinus sp. nov. is KUDC4121 T (KACC 13870).

A Bacterium Representing Novel Species in the Genus Roseomonas, Isolated from Freshwater of Woopo Wetland

Ji Hee Lee, Mi Sun Kim, and Chi Nam Seong

Department of Biology, College of Life Science and Natural Resources, Sunchon National University

A Gram-stain-negative, non-motile, aerobic and pink pigmented bacterium, designated strain WW53T, was isolated from wetland freshwater (Woopo wetland, Republic of Korea). Strain WW53T grew at 15-40°C (optimally at 37-40°C), pH 6-8 (optimally at pH 7) and 0-0.5% of NaCl. Catalase and oxidase activities are present. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain WW53T formed a distinct lineage within the genus Roseomonas and was the most closely related to Roseomonas stagnis HS-69T (95.3% 16S rRNA sequence similarity). The predominant fatty acids are Summed feature 8 (C18:1ω6c/ω7c) (32.5%), C16:0 (18.5%) and Summed Feature 3 (C18:1ω9c/C16:0ω7c) (9.6%). The major quinone is ubiquinone 10 (UQ-10).

On the basis of phenotypic-, chemotaxonomic data and phylogenetic inference, strain WW53T should be classified into the genus Roseomonas, as a member of a novel species, for which the name Roseomonas woopoensis sp. nov. is proposed. The type strain is WW53T (=KCTC 32534T).

This research was supported by the project on survey and excavation of Korean indigenous species of the NBR under the Ministry of Environment, Republic of Korea.
Burkholderia jiriense sp. nov. Isolated from Forest Soil

Seil Kim1, Gyeongtaek Gong2, and Youngsoo Um3
1Center for Bioanalysis, Korea Research Institute of Standards and Science, 2Clean Energy Research Center, Korea Institute of Science and Technology, 3Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies

A Gram-negative, obligate aerobic bacterium designated as JRM2-1T was isolated from forest soil of Jirisan Mountain and its taxonomic position was investigated based on the polyphasic taxonomy. On the basis of 16S rRNA gene sequence analysis, the closest neighbor of the strain JRM2-1T was Burkholderia terrae KMY02T (97.2%). The major cellular fatty acids were C16:0, cyclo-C17:0 and cyclo-C19:0. Polar lipid analysis showed that the polar lipids profile of the strain JRM2-1T was consisted with unidentified amino lipids and unidentified amino-diphosphatidylglycerol, phosphatidylglycerol, phosphatidylenthanolamine, several unidentified amino lipids and unidentified amino-phospholipid. Major isopenoid quinone was Q-8. The G+C content of the strain JRM2-1T was 63.7 mol%. On the basis of polyphasic taxonomical investigation, the strain JRM2-1T was proposed to be classified as a novel species in the genus Burkholderia for which the name Burkholderia jiriense sp. nov. is proposed.

A018

Lewinella jeungdonensis sp. nov., Isolated from the Seawater in Korea

Heeyoung Kang1, Su Ji Kim2, Haneul Kim2, Yochan Joug3, and Kiseong Joh3
1Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, 2Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University

A Gram-staining-negative, rod-shaped, orange colored strain HME9321T, was isolated from the seawater in Yellow sea, Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HME9321T grouped with members of the genus Lewinella. The 16S rRNA gene sequence similarity of strain HME9321T was related to Lewinella marina MKG-38T (94.4 %) and Lewinella latea FYK2402M69T (91.5 %). The major fatty acids were summed feature 3 (comprising C16:1 ω7c and/or C16:0 3-OH; 35.0 %), iso-C15:0 2-OH (21.0 %) and summed feature 9 (comprising iso-C15:0 10-methyl and/or C16:0 3-OH; 15.8 %). The DNA G+C content was 58.4 mol%. On the basis of the evidence presented in this study, strain HME9321T represents a novel species of the genus Lewinella, for which the name Lewinella jeungdonensis sp. nov., is proposed the type strain HME9321T (=KACC 17617T = KCTC 32463T = CECT 8417T).

A019

Erythrobacter persica sp. nov., Isolated from Sea Water in Korea

Haneul Kim1, Yoonsun Bang2, Heeyoung Kang3, Yochan Joug2, Tae Yong Jang1, and Kiseong Joh7
1Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, 2Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University

A rod-shaped, Gram-staining-negative and orange pigmented bacterium, designated strain HME9302T, was isolated from sea water of the Yellow sea in Korea. The major fatty acids were summed feature 3 (comprising C16:1 ω7c and/or C16:0 3-OH; 28.3 %), summed feature 8 (comprising C18:1 ω7c and/or C18:1 9c; 26.7 %), C12:0 2-OH (18.7 %) and C16:0 (10.7%). Phylogenetic tree based on 16S rRNA gene sequence showed that strain HME9302T formed a lineage within the genus Erythrobacter. The strain HME9302T was closely related to Erythrobacter jejuensis CNU001T (95.8% sequence similarity), Erythrobacter seohaenensis SW-135T (95.3%) and Erythrobacter citreus RE35F1T (95.3%). The DNA G+C content was 62.0 mol%. On the basis of the evidence presented in this study, strain HME9302T represents a novel species of the genus Erythrobacter, for which the name Erythrobacter persica sp. nov., is proposed the type strain HME9302T (=KACC 17617T = KCTC 32463T = CECT 8417T).

A020

Paenibacillus changnamensis sp. nov., Isolated from the Root of Oenothera biennis

Tae-Su Kim1, Ji-Hye Han1, Yochan Joug2, and Seung Bum Kim3
1Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 2Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies

A novel Gram-staining negative, aerobic and rod-shaped bacterium designated strain DT7-4T was isolated from the root of evening primrose (Oenothera biennis). Colonies were pale grey, round and flat. The strain grew at 15-37°C (optimum = 30°C), at pH 6-7, and also in the presence of 0-2 % (w/v) NaCl (optimum = 0%). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DT7-4T is most closely related to Paenibacillus phyllosphaerae KACC15578T and Paenibacillus tahuaensis THMBG22T sharing the 16S rRNA gene sequence similarity of 96.3%. The major cellular fatty acid of strain DT7-4T was anteiso-C15:0 (45.4%). The cellular polar lipids were composed of DPG, PE, PG and unidentified polar lipids. The diamino acid found in the cell wall peptidoglycan was meso-diaminopimelic acid. The DNA G+C content of strain DT7-4T was 50.8 mol%. The biochemical analyses distinguished the strain from related species. Based on the results of the polyphasic taxonomic analysis, strain DT7-4T should be classified into genus Paenibacillus as a member of a novel species, for which the name Paenibacillus changnamensis sp. nov. proposed. The type strain is DT7-4T (=JCM 19573).
A non-motile, Gram-staining-positive, halophilic, non-motile cocci, aerobic bacterium, designated strain SJ5-4T, was isolated from seaweed. Growth of strain SJ5-4T was observed at 15-40°C, at pH 6.0-9.5 and in the presence of 1-17% (w/v) NaCl. Anteiso-C15:0, iso-C15:0, anteiso-C17:0, iso-C16:0 and C18:0 as major fatty acids. The G+C content of the genomic DNA was 61.8 mol%. MK-7, MK-8 and MK-9 were detected as the isoprenoid quinones. The 16S rRNA gene sequence similarity was closely related to the genus Nesterenkonia with a 93.1-94.8%. However, phylogenetic analyses showed strain SJ5-4T formed a distant phylogenetic lineage from members of the genus Nesterenkonia. Phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol were detected as the polar lipids. The peptidoglycan type contained lysine, 2, 4-diaminobutyric acid, alanine, glutamic acid and aspartic acid, which also supported that strain SJ5-4T could be differentiated from the genus Nesterenkonia. Based on phenotypic and genotype features, strain SJ5-4T represents a novel genus for which the names *Garumicola koreensis* gen. nov., sp. nov., is proposed. The type strain is SJ5-4T (=KACC 16909T=JCM 18572T=DSM 28238T).

A022

Description of *Hymenobacter wooponensis* sp. nov., Isolated from Freshwater of Woopo Wetland in Korea

Joo Won Kang¹, Mi Sun Kim¹, Dae In Kim¹, Keun Sik Baik¹, and Chi Nam Seong²

¹Department of Biology, College of Life Science and Natural Resources, Sunchon National University, ²Department of Biology Science, Chung-Ang University

A non-motile, Gram-staining-negative, red-pink colored bacterium, designated WM78T, was isolated from the freshwater of Woopo wetland, Republic of Korea (35.33N 128.25E). Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belonged to the genus *Hymenobacter*, with the closest relatives being *Hymenobacter gelisparusarvensis* DSM 11167T (97.71% 16S rRNA gene sequence similarity), *Hymenobacter perfusus* LMG 26000T (96.12%) and *Hymenobacter rigui* KCTC 12533T (95.89%). Cells grow on NA, PCA, GYEA and R2A, but not on MA and TSA. Growth occurred at 10-40°C (optimum, 30°C) and pH 6.0-8.0 (optimum, 7.0). Oxidase-negative and catalase-positive. Strain WM78T contained iso-C15:0, anteiso-C17:0, summed feature 3 (C16:1ω6c and/or C16:1ω7c) and summed feature 4 (iso-C15:0 2ω6c and/or C16:1ω6c) as the major fatty acids. The major respiratory quinone is menaquinone 7 (MK-7). Strain WW78T represents a novel species of the genus *Hymenobacter*, for which the name *Hymenobacter wooponensis* sp. nov. is proposed. [This research was supported by the project on survey and excavation of Korean indigenous species of the NIBR under the Ministry of Environment, Republic of Korea.]
A025

Psychrosepens marinus sp. nov., Isolation from Antarctic

Kiwoon Baek, Yung Mi Lee, You-Jung Jung, Chung Yeon Hwang, Soon Gyu Hong, and Hong Kum Lee
Division of Polar Life Sciences, Korea Polar Research Institute

A Gram-stain-negative, yellow-pigmented, aerobic, rod-shaped, non-motile bacterium, designated strain PAMC 27130T, was isolated from marine sediments of the Ross Sea, Antarctica. Optimal growth of strain PAMC 27130T was observed at 15°C, pH 7.0 and the presence of 2% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain PAMC27130T belonged to the genus Psychrosepens and was closely related to *Psychrosepens mesophilus* (97.2% sequence similarity), *Psychrosepens damagomensis* (94.7% sequence similarity) and *Psychrosepens bartonensis* (94.2% sequence similarity). The major respiratory isoprenoid quinone was menaquinone-6 (MK-6) and major polar lipids were phosphatidylethanolamine. On the basis of genotypic and phenotypic data collected in this study, it is proposed that strain PAMC 27130T represents a novel species of the genus Psychrosepens, for which the name Psychrosepens marinus sp. nov. is proposed.

A027

Purification of Tiny Colony throughout the Long Term Incubation and Identification of Novel Bacteria

In-Hwa Jeon†, Geon-Yeong Cho†, Song-Ih Han†, and Kyung-Sook Whang†
1Department of Microbial & Nano materials, Mokwon University; 2Institute of Microbial Ecology and Resources, Mokwon University

The number of colonies usually increased throughout the 50 days in a stepwise manner that can be simulated by a colony forming curve (CFU). The typically tiny colonies (<0.5 mm diameter) that appeared in less than 900 h of incubation. Cells were picked from 22 tiny colonies and subcultured in fresh medium. Three isolations designated PKR-39, PKR42 and SKR71 were affiliated with an uncultivated lineage within the *α*-proteobacteria and the nearest cultivated neighbors were bacteria in the genera in the family Methylocystaceae (92.5~93.8% 16S rRNA gene sequence similarity) and Beijerinckiaceae (92.7~93.5%). The strain PKR-39T was a chemoorganotrophic bacterium, which was incapable of growth on C1 substrates. Atmospheric nitrogen fixation and nitrate reduction were negative. The strain contained the ubiquinone Q-10 and major cellular fatty acids were C16:0 3OH and C18:0 10-methyl (TBSA). The major polar lipid was phosphatidylethanolamine. The DNA G+C content was 62.3 mol%. On the basis of the information described above, the new genus and species, Panacibacter rhizospherae gen. nov., sp. nov. is proposed in the order Rizobiales. The type strain is PKR-39T (=KACC 17632T =NBRC 109815T).

A026

Physiology and Genomic Characteristics of Strain IMCC13023, a Marine Actinobacterium Isolated from Arctic Seawater

Taeyeang Kwon, Ilnam Kang, Kiyoung Lee, and Jang–Cheon Cho
Division of Biology and Ocean Sciences, Inha University

It has been known that a part of marine actinobacterial populations are closely related to several freshwater lineages of actinobacteria. However, studies on those marine actinobacteria have been hampered by the lack of relevant isolates. Here we report on the polyphasic taxonomy and genome characteristics of IMCC13023 that was isolated from Arctic seawater but was closely related to *Candidatus Aquiluna rubra*, a freshwater actinobacterial clade, with 97.46% of 16S rRNA gene sequence similarity. Optimal growth of strain IMCC13023 was observed at 15°C, pH 7-8, and in the presence of 1% NaCl. Some biochemical characteristics, major fatty acids, and polar lipid profiles differentiated the strain from other genera in the Actinobacteria. Illumina sequencing followed by combinatorial PCR resulted in the complete genome sequence of 1.36 Mb, the smallest genome size ever reported among free-living actinobacteria, with G+C content of 51.7 mol%. An actinorhodopsin gene was predicted from the genome, suggesting a photoheterotrophic metabolism.

A028

Nocardioides soli sp. nov. Isolated from Soil

Jae-Hyung Ahn, Soo-Jin Kim, Soon-Wo Kwon, and Hang–Yeon Weon
Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration

One strain, designated KIS31-44T, was isolated from a soil sample collected from Dokdo Island, South Korea. The strain is Gram-stain-positive, aerobic, non-spore-forming and non-motile. It grows optimally at 28-30°C, at pH 7.0 and 0% NaCl. 16S rRNA gene sequence analysis showed that strain KIS31-44T belonged to the genus Nocardioides and shared the highest sequence similarities with *Nocardioides aestuarii* JC2056T (95.5%) and *Nocardioides terrae* VA15T (95.0%). The major fatty acids of strain KIS31-44T were C17:1ω6c, C16:0 9c, summed feature 3 (C16:1ω6c and/or C16:1ω7c), iso-C15:0, C12:0 10-methyl (TBSA), C16:0 2-OH, C12:0 10-methyl and iso-C15:0 H. The major isoprenoid quinone was MK-8 (H4). The strain contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the major polar lipids. The peptidoglycan structure was A3γ-type with l-lysinoamiclic acid. Based on these data, the isolate represents one novel species in the genus Nocardioides, for which the name *Nocardioides soli* sp. nov. (type strain KIS31-44T = DSM 27142T = KACC 17309T) is proposed.
Characterization of Pelagica sp. TJ5, a Novel Alphaproteobacterium Isolated from Marine Sample

Seonghyeon Cho1 and Sang–Seob Lee2
1Department of Bioengineering, Kyonggi University, 2Department of Life Science, College of Natural Science, Kyonggi University

A gram-negative, motile, aerobic and short-rod to ovoid bacterium, designated as strain TJ5, was found to grow optimally at temperature 30°C, at pH 7.0–8.0 in the presence of NaCl 2.0–3.0% (w/v). It contained Q-10 as the predominant ubiquinone and C18:1ω7c as predominant fatty acid. The determined major polar lipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content of strain TJ5 was 58.6% and its DNA-DNA relatedness between strain TJ5 and closest type strain Pelagica litorisediminis D1-W8 was 13%. Phylogenetic data and 16S rRNA gene sequence exhibit that strain TJ5 is belonging to genus Pelagica and showed the similarity values of 97.12% with Pelagica litorisediminis D1-W8 and 97.06% with Roseovarius aestuarii SMK-122T. Based on phenotypic, chemotaxonomic and phylogenetic data, strain TJ5 is considered to represent a novel species of genus Pelagica.

Isolation and Characterization of a Novel Alphaproteobacterium from Tongyeong Sea-Water of Korea

A novel strain, designated as KF89T, was isolated from Tongyeong seawater, South Korea. Strain KF89T is Gram-negative, non-spore-forming, motile, rod- to cocci shaped bacterium. Growth occurred between 10 and 35°C (optimum 32°C) and at pH 6.0–9.0 (optimum pH 7.0) and at NaCl 0.7% (optimum NaCl 2%). The 16S rRNA gene sequence analysis identified this strain as a member of the genus Paracoccus that belongs to the phylum Proteobacteria. The highest degree of gene sequence similarities were determined to be with Paracoccus homiensis DD-R1T (97.19%). The major quinone is ubiquinone Q-10; the DNA G+C content is 57%; the major fatty acid is C18:0 3OH (85.33%); polar lipid profile contained phosphatidylglycerol (PG), phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), unidentified phospholipid (PL), unidentified amino lipid (AI), and unidentified lipids (L1-3). Furthermore analysis, I will research DNA-DNA hybridization and more enzyme activities. Based on the results, obtained during this study suggest, that the strain KF89T could represents a novel candidate in the genus Paracoccus.

Characterization of Neptunomonas sp. nov., Isolated from Tongyeong Sea Water of Korea

Saet–Byeol Moon1 and Sang–Seob Lee2
1Department of Biological Engineering, Kyonggi University, 2Department of Life Science, College of Natural Science, Kyonggi University

Three bacterial strains were isolated from Tongyeong sea water of Korea. The isolated strains, 2R1T, 2R7 and 2R12 are Gram-negative, rod-shaped, motile, and aerobic bacteria. Phylogenetic analysis based on 16S RNA gene sequences indicated that the novel strain 2R1T was most closely related to Neptunomonas naphthovorans NAG-2N-126 (97.97% sequence similarity), strain 2R7 was most closely related to N. naphthovorans NAG-2N-126 (98.08% sequence similarity), strain 2R12 was most closely related to N. naphthovorans NAG-2N-126 (98.06% sequence similarity). Three strains are positive for catalase. The major cellular fatty acid of 2R1T is 18:1ω7c (41.54%), 16:0 (25.24%), 16:1ω7c:16:1ω6c (17.81%), and minor fatty acids are 10:0 3OH (5.45%), 2R7 is 18:1ω7c (36.16%), 16:0 (27.73%), 16:1ω7c:16:1ω6c (18.79), and minor fatty acids are 12:0 (5.75%), 2R12 is 18:1ω7c (36.23%), 16:1ω7c:16:1ω6c (28.53%), 16:0 (22.11%), and minor fatty acids are 10:0 3OH (4.14%). Three strains contained Q-8 as the predominant ubiquinone. Based on the phenotypic, genotypic and phylogenetic results, the strains 2R1T, 2R7, and 2R12 represent novel candidate belonging to the genus Neptunomonas.

Characterization of Donghicola sp. nov Isolated from Sea Water of Tong-Yeong in Korea

Kalam Lee and Sang–Seob Lee
Department of Life Science, College of Natural Science, Kyonggi University

A novel strain, FJ12T is Gram-negative, aerobic, motile, rod-shaped bacteria which was isolated from sea water, Tong-Yeong, Korea. Phylogenetic analysis based on 16S RNA gene sequences reveal that the novel strain include Donghicola genus, closest species is Donghicola eburneus (95.37% similarity), Aestuarichabantis bidentigenesis (95.31%), Salificibacter pontiacus (94.91%), Rossialatumantarcticus (94.76%), Charonmicrobium ambiphototrophicum (94.74%), and Marivita hyasnessa (94.66 %). The major cellular fatty acids are C18:1ω7c (61.64%), C16:0 (16.44%), 16:1ω7c:16:1ω6c (9.71%), C10:0 3OH (5.5%), C18:0 (2.11%), and C19:1ω6c (2.11%). The DNA G+C content of novel strain FJ12T is 69 mol%. Strain FJ12T contained Q-10 as the predominant ubiquinone. Based on phenotypic characteristics, phylogenetic data, physiological and chemotaxonomic data, FJ12T should be classified as a novel Donghicola.
Gram positive, aerobic, non-motile, spore forming, and rod-shaped bacteria designated as strains U13, U14 and U27, was isolated from soil from Ukraine. Three strains were isolated based on serial dilution method on R2A agar plate and based on the 16S rRNA gene sequencing, they are from Ukraine. Thirteen strains were isolated with 0.1% of lignin or cellulose at 50 °C. The 74 dimensional, however, many of which still not identified. Thermophilic bacteria were enriched with 0.1% of lignin or cellulose at 50 °C. The 74 isolates constituted novel taxon. Some of the isolates closely affiliated with Thermotoga matsuii (83%), Rhodothermus profundus (MEBiC 09517, 89%), and showed 50% similarity to Mesorhizobium palustris (93%). The DNA G+C content of this novel isolate was 65.7%. On the basis of physiological tests showed that this strain represents a novel species of Catenulispora, for which the name Catenulispora purpureus sp. nov. is proposed. The type strain is SA-246 (=KACC 17784=NIBRC 110074).

A035

Catenulispora purpureus sp. nov., Isolated from Forest Soil

Hyo-Jin Lee, Su-Jin Kim, and Kyung-Sook Whang

1Department of Microbial & Nano Materials, Mokwon University, 2Institute of Microbial Ecology & Resources, Mokwon University

An actinomycete strain, designated strain SA-246, was isolated from forest soil sample collected from Chungsang, South Korea. Applying a polyphasic approach, the isolate was identified as a member of the genus Catenulispora using morphological and chemotaxonomic characteristics, including the presence of l1-diaminopimelic acid, glutamic acid, alanine and glycine. Whole-cell hydrolysates contained predominantly rhamnose, mannose, ribose, arabinose, galactose and glucose. The major menaquinones were MK-9 (H4), MK-9 (H6) and MK-9 (H8). 16S rRNA gene sequence analysis revealed similarity to C. yoronensis TT N02-20 (98.7%), C. subtropica TT 99-48T (98.2%), C. graminis BR-34T (97.4%), C. rubra Aac-30 (97.4%) and C. acidiphila ID139908 (97.3%), respectively. Analysis of its 16S rRNA gene sequence, DNA-DNA hybridization studies and the results of physiological tests showed that this strain represents a novel species of Catenulispora, for which the name Catenulispora purpureus sp. nov. is proposed. The type strain is SA-246 (=KACC 17784=NIBRC 110074).

A036

Novosphingobium daejeonensis sp. nov., Isolated from Ground Water

Jae-Chan Lee, Yejin Lee, and Kyung-Sook Whang

1Institute of Microbial Ecology and Resources, Mokwon University, 2Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University

A Gram-negative, strictly aerobic, non-motile, non-spore-forming, yellow colored and rod-shaped bacterium, designated E-II-3T, was isolated from ground water at Daejeon in Korea. Strain E-II-3T grew between 4 and 45°C (Opt. at 28°C), between pH 6.0 and 9.0 (Opt. at pH 7.5) and at salinities of 0–2.0% (w/v) NaCl (Opt. at 0.5% NaCl). On the basis of 16S rRNA gene sequence analysis, strain E-II-3T was shown to belong to the genus Novosphingobium and showed closest phylogenetic similarity to Novosphingobium ginsenosidimutans FW-6 (97.7%) and Novosphingobium aromaticivorans F199 (96.9%). The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. The predominant ubiquinone was Q-10. The major fatty acids were C15:0, C16:0 (34.0%), C17:1ω7c and/or C17:0 3OH (23.8%) and C18:1ω9c (19.3%). The DNA G+C content of this novel isolate was 62.7 mol%. On the basis of polyphasic evidence, strain E-II-3T represents a novel species of the genus Novosphingobium for which the name Novosphingobium daejeonensis sp. nov. is proposed. [Supported by a grant from the Regional Subgenebank Support Program of RDA]

A033

Isolation and Characterization of Novel Tumebacillus sp., Isolated from Ukraine Soil

Jahee Hei and Sang-Goo Lee

1Department of Life Science, Kyonggi University, 2Department of Life Science, College of Natural Science, Kyonggi University

Three strains were isolated based on serial dilution method on R2A agar plate and based on the 16S rRNA gene sequencing, they are from Ukraine. Thirteen strains were isolated with 0.1% of lignin or cellulose at 50 °C. The 74 dimensional, however, many of which still not identified. Thermophilic bacteria were enriched with 0.1% of lignin or cellulose at 50 °C. The 74 isolates constituted novel taxon. Some of the isolates closely affiliated with Thermotoga matsuii (83%), Rhodothermus profundus (MEBiC 09517, 89%), and showed 50% similarity to Mesorhizobium palustris (93%). The DNA G+C content of this novel isolate was 65.7%. On the basis of physiological tests showed that this strain represents a novel species of Catenulispora, for which the name Catenulispora purpureus sp. nov. is proposed. The type strain is SA-246 (=KACC 17784=NIBRC 110074).
A novel strain designated SR18T was isolated from the rhizosphere soil of a ginseng in Korea. Cells were Gram-staining-positive, motile by gliding, catalase-positive and oxidase-negative, non-spore-forming rods. The isolates grew aerobically at 15-45°C (opt. at 28°C), pH 5.5-7.5 (opt. pH 6.0) and 0-3.0% (w/v) NaCl (opt. 1.5% NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain SR18T belongs to the genus Chitinophaga with the sequence similarity of 97.2% and 97.0% to Chitinophaga japonensis 785T and Chitinophaga rigida TCS5-B1T, respectively. The predominant menaquinone was MK-7. Major fatty acids were iso-C\textsubscript{15:0} and C\textsubscript{16:1} \textit{a}9c. The polar lipids contained phosphatidylethanolamine, unidentified phospholipids, unknown aminolipids and unknown lipids. The genomic DNA G+C content was 45.3 mol%. DNA-DNA relatedness between strain SR18T and Ch. japonensis NBRC 16041T was 28.5-32.4%. On the basis of polyphasic analysis from this study, strain SR18T represents a novel species of the genus Chitinophaga for which the name Chitinophaga ginsengihumi sp. nov. is proposed.

[Supported by a grant from the Regional Subgebenbank Support Program of RDA]

Methane (CH\textsubscript{4}) is produced in the rumen by methanogens (Archaea) mainly through reduction of carbon dioxide by hydrogen, released by protozoa, fungi, and bacteria during degradation of the feed. The microbial diversity of rumen was investigated in Korean native cattle (HanWoo; Bos taurus coreanae) emitted methane considered to be an important contribution factor to global warming and climate change. The rumen microbial population was evaluated using 16S rRNA gene libraries, qRT-PCR and NGS to compare methane emission group and non-methane emission group for enteric production of methane from nine Korean native cattle. All selected strains that were isolated from the rumen fluid were classified into 5 genera and 10 species for anaerobic strains, 9 genera and 27 species for aerobic strains and 2 genera and 5 species for methanogen strains based on the study of pure cultures and analysis of small subunit rRNA gene sequence data. Strain GH1 (anaerobic strain) and JH1 (methanogen strain) were then selected to be characterised for 16S rRNA gene sequence similarity, phenotypic, chemotaxonomic and phylogenetic analysis.

[Supported by the Agriculture Science & Technology Development Project]

Introduction of the Value Evaluation Study of Actinobacterial Resources Based on the Microbial Products

Yoonjung Ju, Jee-min Lim, Dong-Jun Park, and Chang-Jin Kim
Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology

Amongst prokaryotes, actinomycetes remain a rich source of new natural products, including useful antibiotics, antitumour agents, and so on. Even we have amount of actinobacterial resources, but the utilization and application are insufficient. It is necessary to evaluate microbial resources for the researchers that can utilize them well.

The purpose of this study is to support and help researchers, by constructing of the infra-structure and mass-analysis of the microbial characteristics. We focus on analyzing sequences for molecular taxonomy and cultural characteristics. In order to improve their values, we are assembling each microbial strain information data such as 16S rRNA sequences, enzymes and antimicrobial activities, growth conditions depend on temperature, pH, NaCl and LC/MS profiles. Microbial products are being prepared and the microbial culture packages of taxonomic or functional groups are being manufactured for mass-distribution. More than 13,000 actinobacterial strains are collected until now. And these will be helpful to the researchers who need high-throughput screening assay.

[This research was supported by Ministry of Science, ICT and Future Planning (MSIP).]
New Fungal Species of *Penicillium* from *Viscum album* var. *coloratum*

Hye Yeon Mun and Hyang Burn Lee*
Division of Applied Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University

Mistletoe (*Viscum album* var. *coloratum*) plant has been used as an important traditional Chinese medicine. Two isolates of *Penicillium* were purely isolated from a sample of stored mistletoe kept in the refrigerator at 5°C. Based on the morphological characteristics and rDNA ITS, beta-tubulin and calmodulin genes sequence data, the fungus was provisionally identified as a new *Penicillium* species showing a separate phylogenetic status. The colony of the two isolates, EML-WPF1 and 2 on YES agar was radially sulcate, velutinous, grey green, clear droplets on surface and orange to blackish green on reverse side. The penicillate form of the isolates was two-stage branched (terverticillate) on the medium. Sequence analysis by BLAST indicated that the fungus was closest to *Penicillium* spp. (accession number, *Penicillium* sp. HQ225717 and *Penicillium* sp. HQ637354, *Penicillium* sp. KF021538 and *Penicillium* sp. JX996973) with 99, 94-95, 93% sequence similarities of ITS, beta-tubulin and calmodulin genes, respectively. Our results showed that the fungus isolated from mistletoe plant is new to science.

[Supported by grants from NIBR.]

New Record of *Penicillium viridicatum* from *Viscum album* var. *coloratum* in Korea

Hye Yeon Mun and Hyang Burn Lee*
Division of Applied Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University

One isolate of *Penicillium* was purely isolated from a sample of stored mistletoe plant kept in the refrigerator at 5°C. Based on the morphological characteristics and rDNA ITS, beta-tubulin and calmodulin genes sequence data, the fungus was provisionally identified as a known *Penicillium* species, *P. viridicatum* belonging to Fasciculata clade. The colony of the fungus on YES agar was radially sulcate, velutinous, grey green, clear droplets on surface and orange to blackish green on reverse side. The penicillate form of the fungus was two or three-stage branched (terverticillate) and the conidia was subglobulose or globulose on the medium. Sequence analysis by BLAST indicated that the isolate was closest to *P. viridicatum* (accession numbers, AF033478, AY674295 and GQ979712) with 99% ITS, beta-tubulin and calmodulin sequence similarity. Our study showed that this is the first record of *Penicillium viridicatum* on stored mistletoe plant in Korea.

[Supported by grants from NIBR.]
B001

Polar and Alpine Microbial Collection (PAMC): A Culture Collection Dedicated to Polar and Alpine Microorganisms

Yung Mi Lee, You-Jung Jung, GoHeung Kim, Kiwoon Baek, Soon Gyu Hong, and Hong Kum Lee
Korea Polar Research Institute

The number of microbial strains isolated from polar and alpine areas is increasing and they are recognized as valuable resources in fundamental studies, such as ecology, physiology, and -omics. Thus, the necessity of culture collection dedicated to the polar and alpine microorganisms has increased. Korea Polar Research Institute (KOPRI) established the Polar and Alpine Microbial Collection (PAMC) to share biodiversity information and bio-resources collected from polar and alpine areas in science and public communities. Approximately 2,000 out of 6,500 strains maintained in PAMC have been identified and belonged primarily to the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Many of the microbial strains of PAMC can grow at low temperature and produce proteases, lipases, and/or exopolysaccharides. PAMC provides search tools based on keywords such as taxonomy, geographical origin, habitat and physiological characteristics. Biological materials and information provided by PAMC will be important resources for those who have had no opportunity to visit polar and alpine areas and are expected to contribute to the development in the extreme life sciences (PE14080).

B002

Stable Isotope Probing and Metagenomic Reconstruction Reveals Pathways of Aromatic Hydrocarbon Metabolism by an Uncultivated Denitrifying Bacterium in the Genus Herminimonas

So-Jeong Kim, Man-Young Jung, Jong-Geol Kim, Ui-Gi Min, and Sung-Keun Rhee
Department of Microbiology, Chungbuk National University

Stable isotope probing is a cultivation-free methodology that provides information about the identity of microorganisms participating in assimilatory processes in complex communities. In this study, a Herminimonas-related bacterium was identified as the dominant member in a denitrifying enrichment culture fed 13C-toluene. The draft genome of the uncultivated toluene-degrading bacterium was obtained after applying pyrosequencing to the heavy DNA fraction, and assembly of 131 contigs. Metabolic reconstruction of aromatic hydrocarbons (toluene, benzene, p-cresol, 4-hydroxybenzoate, phenylacetate and cyclohexane carboxylate) degradation indicated that the bacterium might be specialized in anaerobic hydrocarbon degradation, which is novel for the order of Burkholderiales within the class Betaproteobacteria. Under oxic conditions, the benzene oxidation gene cluster (BOX) system is likely involved in the degradation of benzene via benzoate-CoA. Putative mobile genetic elements associated with these catabolic genes were highly abundant—suggesting gene acquisition by Herminimonas via horizontal gene transfer. [Supported by Mid-career Researcher Program through a NRF and BK21+ program.]

B003

Microbial Flora in Photobioreactors Culturing Microalgae, Chlorella sp. KR-1

Mira Yoon, You-Kwan Oh1, and Sunja Cho
1Department of Microbiology, Pusan National University, 2Korea Institute of Energy Research

To understand the effects of microorganisms in photobioreactors cultivating microalgae, which is emerging as a feedstock of biofuels, microbial community structure was investigated by pyrosequencing technique in the reactors culturing Chlorella sp. KR-1. In addition to this, several dominant microorganisms were isolated from the reactors after dilution of the culture solution by a plate method. In the reactors, Chlorella sp. KR-1 was cultured in an artificial inorganic medium supplemented with 10% carbon dioxide in air as a carbon source. The meta-genomic DNAs for the pyrosequencing were obtained from biomass samples derived from the seven photobioreactors on four different periods. According to the pyrosequencing results, gamma proteobacteria were dominant at the initial stage of the cultivation while alpha proteobacteria were dominant on cultivation time. Major isolates by the plating method were identified by blast search of NCBI with the sequencing results of 16S rRNA gene. They are Sphingomonas sp., Leifsonia sp., Flectobacillus sp., and Herbasprillum hutienne. [Supported by grants from NRF2013011775.]

B004

pH Caused the Constitutional Shift of Bacterial Community in Soil Ecosystem

Sun Ja Cho1, Mi Hee Kim2, and Young Ok Lee2
1Department of Microbiology, Pusan National University, 2Basan Metropolitan City Institute of Health and Environment, 3Department of Biological Sciences, Daegu University

In order to compare bacterial community structure of mountain soil with pH of 5.2 (Jiri Mountain) with those of pH of 7.7 (Jang Mountain located close to big city), their DNAs were extracted, amplified using PCR with 27F/800R primers and pyrosequenced using Roche 454. The results were expressed in ratio (%) of numbers of same reads to those of total reads on phylum level. As results, in the Jiri Mountain soil with acidic pH (5.2), almost half was Proteobacteria (49%), and followed by other 11 different phyla. By contrast, in Jang Mountain soil three dominant phyla, Actinobacteria (28%), Proteobacteria (26%), Bacteroidetes (23%) made up 78% and followed by only 4 other phyla. So it suggests that the ecologically stable Jiri Mountain showed more diverse bacterial community than ecologically less stable Jang Mountain even with fairly optimal pH (7.7). As supported by the above mentioned result, the diversity of species composition evaluated by Shannon- and Simpson-index was higher in Jiri Mountain than Jang Mountain. The finding shows that the large gap of pH caused a large shift in their bacterial community structure. [Supported by Daegu University Research Grant 2011]
Evaluation of Microbial Community Depending on Setting Anodic Potential in Microbial Fuel Cell

Younghun Park, Van Khanh Nguyen, Heechun Yang, and Taeho Lee
Department of Civil & Environmental Engineering, Pusan National University

Microbial fuel cells (MFCs) are innovative processes that use microorganisms as a catalyst to produce an electrical current from a variety of organic matters. The anodic potential in MFCs controls the theoretical energy gain for these microorganisms. To investigate microbial community variation depending on setting potential, we set four different anode potentials (-0.3, -0.2, -0.1, +0.1 V vs. Ag/AgCl) using a potentiostat also used acetate and wastewater as substrate. The microbial community analysis based on DGGE profile showed significantly different between acetate-fed MFCs (A-MFCs) and wastewater-fed MFCs (W-MFCs). Geobacter sp. (99% identity), which was most closely related to the exoelectrogen, and Zoogloea sp. (100% identity) were detected in all case of A-MFCs. The anode community at the most positive potential (+0.1 V) revealed high band intensity of exoelectrogen, and Zoogloea sp. (100% identity), which was found in activated sludge, was most dominant species, but representative exoelectrogens such as Geobacter sp. were not detected.

This work was supported by the MFC R&BD center co-founded with K-water, Hanwha E&C and Taeyoung E&C

Comprehensive Analysis of Soil Bacterial Community Structure in King George Island, Maritime Antarctica

Ahnna Cho1,2, Hyoun Soo Lim3,4, Soon Gyu Hong1, Hyunju Noh1, Tae-Geok Ahn1, and Ok-Sun Kim1
1Division of Polar Life Sciences, Korea Polar Research Institute, 2Department of Environmental Science, Kangwon National University, 3Division of Polar Climate Research, Korea Polar Research Institute, 4Department of Geosciences, Pusan National University

In recent years, applications of molecular methods to study microbial ecology have allowed the extension of our knowledge that Antarctica contains unexpected high diversity of bacteria and their complex of community. Total 263 samples from 51 sites were collected from December 2010 to February of 2012. From these samples, we have presented the preliminary results with 85 samples. On the basis of the 16S rRNA genes amplicon using NGS, total 172,198 sequence reads were obtained and 9,673 OTUs were defined using 97% similarity cutoff. Actinobacteria (21.4%), Proteobacteria (20.0%) and Acidobacteria (11.3%) were dominant across all habitats. Interestingly, candidate phylum AD3 (4.0%) was abundant in several soil samples, which has not been recognized in previous studies. The bacterial community structures confirmed habitat specific with significant patterns that the predominant phylum is Bacteroidetes in coastal soil, Proteobacteria in upper layer soil and Actinobacteria in lower layer soil. These findings may be inferred that the bacterial specific adaptation to these terrestrial environments was affected by the underlying soil parameters.

[Supported by grants from KOPRI]

Divergence of Bacterial Community Catalyzing Autotrophic Denitrification at Biocathodes of Bioelectrochemical Systems with Either Abiotic or Biotic Anodes

Van Kanh Nguyen, Younghun Park, Heechun Yang, and Taeho Lee
Department of Civil & Environmental Engineering, Pusan National University

Bioelectrochemical systems (BESs) were operated to investigate the structure of bacterial community catalyzing autotrophic denitrification at the biocathodes when using abiotic and biotic anodes. Acetate was used as electron donor in BESs with biotic anode, whereas a direct current power supply was used as energy source in BESs with abiotic anode. The laboratory results showed that the highest efficiency (78.0%) of autotrophic denitrification was achieved when electron transfer from the biotic anode chamber of BESs was used. Data from denaturing gel gradient electrophoresis and principal component analysis indicated that the bacterial community catalyzing autotrophic denitrification in BESs with abiotic anodes was entirely different with those in BESs using biotic anodes. The results of phylohenetic analysis suggested that denitrification in BESs with abiotic anode could be attributed to Nitratireductor sp., Shinella sp., and Dyella sp., whereas the dominant bacterial denitrifiers in BESs with biotic anode were found to be Pseudomonas sp., Curtobacterium sp., and Aeromonas sp.

This work was supported by National Research Foundation of Korea grant funded by the Korea government

Comparative Analysis of Bacterial Community Composition in Lakes of the Dry Valleys, East Antarctica

Miye Kwon1, Mincheol Kim1, John C Priscu2, Soon Gyu Hong1, Sang Jong Kim1, and Ok–Sun Kim1
1Division of Polar Life Sciences, Korea Polar Research Institute, 2School of Biological Sciences, College of Natural Sciences, Seoul National University, 3Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA

McMurdo Dry Valleys (MDVs) are located in the coldest and the driest on earth as the ice-free region. To date, despite biogeochemical constraints, many studies have shown that the molecular diversity was examined of cold active microorganisms and reported their important roles in these lakes. In the current study, the community composition of bacteria were investigated the perennial ice-covered lakes in the fine scale using 454-pyrosequencing; Fryxell (FRX), Hoare (HOR) and Miers (MIE).

Based on 16S rRNA gene, total 124,803 sequences were quality filtered using 97% similarity cutoff, and 55 phyla were recovered containing the major phyla Actinobacteria (29%), Bacteroidetes (24.4%) and Proteobacteria (14%). In the phylum level, the bacterial taxonomy were highly shown the heterogeneous communities. Microbial community composition varies not only between lakes, but also along the depth gradients within lake. Taken together, the diversity of microbial communities in lakes of MDVs provided a crucial evidence to understand the impact of microbial ecological roles in these ecosystems.
Comparative Proteomic Analysis of Extracellular Vesicles (EVs) from the Hyperthermophilic Archaea, Thermococcus onnurineus NA1

Dong Hee Choi1, Yong Min Kwon1, Sung-Ho Yun1, Seung-Ill Kim1, Seung Seob Bae1,2, Sung Gyun Kang3, Jung-Hyun Lee3,4, and Sang-Jin Kim2

1Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, 2Division of Life Science, Korea Basic Institute, 3Department of Marine Biotechnology, University of Science and Technology

Thermococcus onnurineus NA1 is able to produce extracellular vesicles (ToEVs) under anaerobic cultivation at 80°C. EVs were purified through ultra membrane filtration and CsCl-density gradient ultracentrifugation. Two major bands (B & C) were obtained and their proteomes were further analyzed by LC MS/MS spectrometry. It was revealed that the ToEVs of band B and C contained 294 and 426 proteins, respectively. Ratio of membrane protein to total protein in bands B and C ToEVs was slightly higher than that of parental cells. The analysis of predicted metabolic function of proteins from two major bands based on the COG database indicated that there was no big discrepancy between them. Proteomic comparison among parental cell, band B and C ToEVs using Venn diagram showed overlapping zone where we could find 238 proteins. The total numbers of protein which was found from EVs but not from parent cells were 15. The role of specific proteins mainly packaged from parental cell to ToEVs will be discussed.

Biosorption of Ionic Dye and Precious Metal from Aqueous Solution by Bacillus sp. JB-007 Biomass

Su Young Kim, Mi Ra Jin, Ju Kim, Chang Ho Chung, Ye Jin Jang, and Kang Yool Yu

Jeonju Biomaterials Institute

The main aim of this work was to evaluate the biosorption capacity of Bacillus sp. JB-007 (JB-007) biomass for the removal of anionic dye Reactive Red 4 (RR 4) and recovery of precious metal gold (Au (I)), as the industrial materials. In the pH edge experiments, the adsorption of RR 4 and Au (I) increased in acidic pH. The equilibrium isotherm experiments indicated that JB-007 biomass exhibited the maximum uptake for RR 4, i.e. 192.03 mg/g and 91.90 mg/g for Au (I) at pH 2.0. Of the two isotherm models considered, the Langmuir model provided a better description of the experimental isotherms. Kinetic experiments revealed the RR 4 and Au (I) sorption processes were found to be very rapid, and the equilibrium of the sorption processes could be reached within approximately 10 min. In order to identify the binding sites for the dye and precious metal molecules, the biosorbent was analyzed by FTIR analysis. These results indicate that Bacillus sp. JB-007 biomass has good properties as an industrial biosorbent for the removal of anionic dye and recovery of precious metal from wastewater.

[This subject is supported by Korea Ministry of Environment as "The Eco-Innovation project"]

Genome-wide Transcriptional Profiling of Acinetobacter oleivorans DRI in Response to Different Class Antibiotics

Aram Heo1, Hyun-Jin Jang2, Jung-Suk Sung2, and Woojun Park3

1Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, 2Department of Life Science, Dongguk University

To understand common and specific gene expression patterns in A. oleivorans DRI, we investigated RNA-seq-based transcriptomic profile under different class of antibiotics (ampicillin; Amp, kanamycin; Km, tetracycline; Te, and norfloxacin; Nor). Genes related to transporters, integrase, membrane proteins and stress response were commonly upregulated under 4 antibiotics conditions. Metabolic pathway related to arginine and proline biosynthesis was specifically upregulated in Km and Te conditions, SOS response and DNA repair genes were induced by Nor, and lipid transporters by Amp. All antibiotics changed membrane permeability, filamentation, and ROS production. Gene expression patterns were consistent with the phenotypic changes such as ROS generation, motility, cell morphology, growth defect and DNA repair. Interestingly, loss of base-excision repair ability was observed with Te and Km. The most dramatic phenotypic changes were observed under Km: enhanced motilities, increased fimbrial expression, elongated cell shape and loss of DNA repair capability. This study provides novel insight into antibiotics resistance of environment-originated Acinetobacter species.

PCR-DGGE-based Analysis of Bacterial Community Change in Agricultural Soil Stimulated with Red Clay

Kyoyoung Kim and Woojun Park

Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University

Red clay could be used to promote bacterial growth and was proven to have bio-stimulation effect on diesel-polluted soils. However, high concentration of red clay in soil could have inhibitory effect on some bacterial population. To explain the relationship between concentration of red clay and bacterial population change, agricultural soils were collected and incubation was conducted at 20°C as a slurry in the microcosm for 7 weeks after red clay amendment [0, 0.1, 0.5, 1, and 5% (w/v)]. Ribosomal gene fragments were amplified with PCR using soil DNA and were loaded on denaturing gradient gel electrophoresis (DGGE) to analyze bacterial community change. Our data showed that different group of bacterial community became dominated by different concentration of red clay. The highest diversity was detected in the sample treated with 0.1% red clay, as the number of bands was greater than other samples. Interestingly, some strains flourished only under a particular concentration of red clay. High concentration of red clay (5%) appeared to be toxic to some bacterial species because less DGGE bands were detected. Bacterial community is being currently investigated by sequencing DGGE bands.
BO13

A Novel Function of Extracellular Vesicles Produced from Rhodopsins-containing Flavobacterium Sediminicola sp. YIK13

Yong Min Kwon¹, So-young Kim², Kwang-Hwan Jung³, and Sang-Jin Kim⁴

¹Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, ²Department of Life Science, Sogang University, ³Department of Marine Biotechnology, University of Science and Technology

We isolated and purified the extracellular vesicles (EVs) produced from rhodopsins-containing a parent bacterium, Sediminicola sp. YIK13 (S13), using by ultra membrane filtration followed by CsCl density equilibrium ultracentrifugation. The production rate of S13 EVs was estimated by 3.97 × 10⁷ ml⁻¹ from the total number of parental bacteria, 6.67 × 10⁹ ml⁻¹. The buoyant density of S13 EVs ranged from 1.3730 to 1.4065 g cm⁻³. S13 EVs showed a spherical shape. The range of diameter was between 88 to 227 nm and the median size was 117 nm. Interestingly, S13 EVs contained orange color pigment as same as parental cells. The absorbance of S13 EVs indicated the presence of carotenoid and PR pigments which were certainly packaged from parental cells. S13 EVs showed the light driven proton pump activity as similar as the parental cells although the EVs represented stronger proton inward pump activity rather than that of parental cells. This is the first report of extracellular vesicles of which rhodopsins-containing a parent bacterial. We showed that these extracellular vesicles, those photo proteins of EVs generated the proton motive force which could be utilized for the ATP synthesis.

BO15

Changes of Stress Shock Proteins DnaK and GroEL by Explosive RDX in xenA/xenB knock-out Pseudomonas sp. HK-6 Mutants

Moon-Seop Cho¹, Bheong-Uk Lee², and Kye-Heon Oh³

¹Department of Life Science and Biotechnology, Soonchunhyang University, ²Division of Biological Sciences, Konkuk University

Our previous research has demonstrated that stress shock proteins, 70-kDa DnaK, and 60-kDa GroEL, are induced in wild-type Pseudomonas sp. HK-6 in response to sublethal concentrations of explosive hexahydro-1, 3,5-trinitro-1,3,5-triazine (RDX) [Chang et al. (2004) Appl. Microbiol. Biotechnol. 63:323-329]. In the present work, the changes of stress shock proteins in xenA/xenB knock-out Pseudomonas sp. HK-6 mutants in response to the explosive RDX were investigated. Bacterial growth and RDX degradation by wild-type and xenA/xenB knock-out mutants of Pseudomonas sp. HK-6 with time in the presence of different concentrations of RDX was monitored. The stress shock proteins, which contribute to the resistance of the cytotoxic effect of RDX, were diminished at different RDX concentrations in growing cultures of xenA/xenB knock-out Pseudomonas sp. HK-6 mutants, whereas the stress shock proteins were gradually induced in wild-type Pseudomonas sp. HK-6. The proteins were identified as 70-kDa DnaK and 60-kDa GroEL by SDS-PAGE and Western blot using the anti-DnaK and anti-GroEL monoclonal antibodies. [This research was supported by NRF (#2010-0022225)].

BO14

Comparative Analysis of Fecal Microbiome in the Different Swine Group by Pyrosequencing

Soo-Je Park¹, Jong-Soo Lee², and Hong-Ik Kim³

¹Department of Biology, Jeju National University, ²College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, ³R&D Division, VITABIO, Inc.

Complex microbial communities in the swine gastrointestinal tract play a critical role in health and disease. To detect a core of microorganisms in the gastrointestinal tract in two different groups separated by meat quality and weight grades, we used high-throughput 16S rRNA gene-based pyrosequencing. At high levels of taxa, two bacterial populations (Bacteroidetes and Firmicutes) were dominated and shared between difference groups. However, significant differences between groups were found at the genus level. The genera Lactobacillus and Oscillibacter in level 2 (0.4-1.4% of the classified reads) were higher than respective difference groups. Moreover, the genera Clostridium, Oscillibacter and Roseburia work as core microorganisms. In conclusion, the presence of core bacteria in the swine gut positively affects to increase amount and meat quality with the reduced body fat in swine.

BO16

Enhanced Functionality of Mixed Lactic Acid Bacteria Isolated from Dongchimi, Korean Fermented Watery Kimchi

Moon-Seop Choi, Dong-Keun Lee, Hae-Min Yang, Da-Sol Jeon, and Kye-Heon Oh

Department of Life Science and Biotechnology, Soonchunhyang University

The aim of this work was to investigate the several functionalities of lactic acid bacteria (LAB) and to compare the enhanced functionalities in individual LAB (e.g., DK-3, DK-6, DK-13) and these three mixed LAB as probiotics isolated from Korean fermented watery Kimchi, Dongchimi. We monitored growth rate, production of organic acids (e.g., lactic acid and acetic acid) as metabolites, and pH change during the growth as well as functional properties including antioxidant activity, nitrite scavenging, β-galactosidase, and antimicrobial activity. At the end of the incubation period, all cultures produced organic acids and showed acidic pH. Functionality values obtained from the mixed LAB cultures have been shown to be higher than those of individual LAB cultures. These studies demonstrate that the functionalities in mixed cultures compared to individual cultures can be enhanced. Both BIOLOG system and 16S rRNA sequencing were conducted to identify the LAB strains, which were assigned to Leuconostoc mesenteroides DK-3, Leuconostoc dextranicum DK-6, and Lactobacillus curvatus DK-13, respectively.
Bacterial Community Successions during Fermentation of Anchovy (Myeolchi-jeot) with Different Anchovy Sizes

Se Hee Lee, Ji Young Jung, and Che Ok Jeon
Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University

To investigate microbial communities of myeolchi-jeot, made by the fermentation of highly salted [25% (w/v)] anchovy in Korea, four sets of samples were prepared using anchovy (Engraulis japonicus) with different sizes and fishery zones and their bacterial and archaeal abundances, pH, and bacterial communities were analyzed. Bacterial community analysis using pyrosequencing revealed that Psychrobacter, Vibrio, and Psychrophilic Lab belonging to the phylum Proteobacteria were dominant at the beginning of the fermentation (day 0) and the bacterial communities were significantly different depending on myeolchi-jeot samples during the early fermentation period, but eventually members of Tetragenococcus, halophilic LAB, belonging to the phylum Firmicutes became predominant. The bacterial community changes in myeolchi-jeot samples prepared by smaller size anchovy occurred more rapidly. In conclusion, bacterial successions in myeolchi-jeot were different during the early fermentation period depending on anchovy size and fishery zones, but eventually Tetragenococcus became predominant in all samples regardless of anchovy sizes and fishery zones during the late fermentation period.

Bacterial Populations in the Leaves of the Prunus Species

Yeonghwa Jo, Jin Kyong Cho, and Won Kyong Cho
1Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 2Department of Fruit Tree, Korea National College of Agriculture and Fisheries

The surface of leaves called as phyllosphere is the main microbial habitats on the earth. In this study, we performed a metagenomic analysis to identify bacterial populations in the leaves of the Prunus species. Four different 16S rDNA libraries were prepared and subjected for sequencing using the FLX 454 Plus system. We obtained a total of 163,686 rRNA reads. The 16S rRNA sequences from the plant organelles such as mitochondria and chloroplasts were dominant. According to the bacterial species, 473, 527, 425, and 614 operational taxonomic units (OTUs) were identified for apricot, cherry, peach, and plum, respectively. We identified a total of seven phyla belonging to nine classes including 31 orders which were further divided into 76 families and 159 bacteria species. We compared the identified bacteria in each sample at the genus level. Only 23 genera out of 159 genera were commonly identified in four phyllospheres. In particular, several alphaproteobacteria such as Sphingomonas and Methylobacterium were dominant in the phyllosphere of four fruit trees. Taken together, our metagenomic analysis revealed strong bacterial diversity in the leaves of the Prunus species.

Endolichenic Fungal Communities Associated with Dominant Lichens in the Maritime Antarctica

Nan Hee Yu, Soon Gyu Hong, Jae Sung Jung, and Jae-Seoun Hur
1Korean Lichen Research Institute, Sunchon National University, 2Division of Polar Life Sciences, Korea Polar Research Institute, 3Department of Biology, Sunchon National University

King George Island is the largest island in the South Shetland Islands, the maritime Antarctic zone. Bryophyte and lichen are one of the microhabitats richest in microfungi in the Antarctic environment. We isolated 60 endolichenic fungi from 44 lichens belonging to 10 family and 22 lichen species collected from King George Island, using the surface sterilization method. Total 60 endolichenic fungi isolates were grouped into 37 fungal strains by ITS nuclear ribosomal gene sequencing. Phylogenetic analysis represents 37 endolichenic strains belonging to the phyla Ascomycota and five classes and ten orders. We compared 37 endolichenic fungi with 16 endophytic fungi isolated from bryophytes and evaluated whether these fungi represent distinct ecological guild of flexible symbiotsphes capable of colonizing lichens or bryophytes indiscriminately. We found that identical fungal isolates were detected from the lichen and bryophyte. This result suggested that evolutionary adaptation of these microorganisms was not simply governed by host specificity. We firstly reported ecologically flexible endophytic fungus that occurs both in lichen and bryophyte in the maritime Antarctica.

Growth Promotion of Tomato under Drought Stress and Drought-Related Gene Expression by Some Rhizobacteria

Young-Hoon Jo and Hong-Gyu Song
Department of Biological Sciences, Kangwon National University

To select rhizobacteria that can promote plant growth under drought stress, many bacteria were isolated from the rhizospheres of wild plants grown at barren land. Among them one strain which secreted high concentration of 1-aminoacyclopropane-l-carboxylic acid (ACC) deaminase that can tolerate drought stress by degradation of stress hormone ethylene and indole-3-acetic acid (IAA) that can enhance plant growth, was selected and identified as Enterobacter ludwigii SJR3. Strain SJR3 could produce 45.79 mg/L of IAA and show ACC deaminase activity of 13.76 µmol u-ketobutyrate/h/mg protein. Strain SJR3 could also produce gibberellin and zeatin and solubilize insoluble phosphate. When tomato seedlings were treated with SJR3 and grown for 21 days under drought stress, root length of tomato plants increased by 26.44% than that of the uninoculated control. Shoot/root ratio was also lower than the control. Expressions of drought-related genes, DREB2, DREB3, ACS4 and ACS6 of tomato treated with SJR3 strain were lower than those of the uninoculated control plants under drought stress conditions, which indicated that the tomato inoculated with strains acquired dehydration resistance.
B021

Characterization of Heterotrophic Nitrification and Aerobic Denitrification by *Alcaligenes faecalis* NS13

Taek-Kyung Jung and Hong-Gyu Song*
Department of Biological Sciences, Kangwon National University

Ammonium removal from wastewater is important to prevent eutrophication of aquatic environments. To solve the problem of high cost of chemical and physical methods of N removal, environment-friendly measure using microbes can be an alternative one. We isolated a heterotrophic bacterial strain NS13 from wastewater, which showed the high removal rate of ammonium and was identified as *Alcaligenes faecalis* by 16S rRNA gene sequence analysis. This bacterium could remove over 99% in a heterotrophic medium containing 140 mg/L of ammonium at pH 6~9, 25~37°C and 0~4% of salt concentrations within 2 days. Strain NS13 showed the higher ammonium removal at the higher initial ammonium concentration in the medium with the removal of 55.2, 99.9 and 210.4 mg/d during 4 days at 300, 600 and 1500 mg/L of initial ammonium concentration, respectively. *A. faecalis* NS13 could reduce nitrate by nitrate reductase which was confirmed by detection of nitrate reductase gene *napA* by PCR. One of denitrification metabolite N2O was also detected from the headspace of bacterial culture. This bacterium was speculated to perform the heterotrophic nitrification and aerobic denitrification at the same time.

B022

Growth Promotion of Tomato by Application of Immobilized *Arthrobacter woluwensis* ED in Alginate Beads

Seung-Tak Kwon and Hong-Gyu Song*
Department of Biological Sciences, Kangwon National University

In order to increase the persistence of plant growth promoting rhizobacteria (PGPR) in rhizosphere soil, the growth of tomato was examined after the application of *Arthrobacter woluwensis* ED immobilized in alginate bead. When tomato seedlings were treated with *A. woluwensis* ED of 1 x 10^6 cells g soil^-1^ and incubated for 30 days, shoot and length, fresh and dry weight of tomato plants treated with the suspended inoculants significantly increased by 36.2, 59, 51.1 and 37.5%, respectively compared to those of the uninoculated control. The treatment of the immobilized bacteria increased those by 42, 67.4, 62.5 and 60.4%, respectively compared to those of the control. The effects of the inoculation on soil bacterial community and the fate of the inoculated bacteria were monitored by DGGE analysis. The DNA band intensity of *A. woluwensis* ED in the tomato rhizosphere treated with the immobilized inoculants showed the maximum at 1 week after inoculation and the decreasing rate was less than that of the suspended inoculants. Encapsulation of PGPR in alginate beads may be more effective than liquid inoculant for the plant growth promotion and survival of PGPR at plant rhizosphere.

B023

Screening of Plant Growth-promoting Rhizobacteria as Biological Control Agents against *C. acutatum* in Pepper

Byung-Woong Park and Sa-Youl Ghim*
School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), and Institute for Microorganisms, Kyungpook National University

Plant growth-promoting rhizobacteria (PGPR) are colonizing plant root and rhizosphere with stimulating the plant growth, suppressing the pathogen and reducing the damages caused by stressful environmental conditions. In this study, we screened rhizospheric soil in pepper to examine their microbiome and characteristics related to plant health. From the results, total 150 bacteria were isolated from rhizospheric soil of pepper field in Mir-Yang, Korea. All bacterial isolates were identified by 16S rDNA sequences and phylogenetic analysis was performed for comparative purpose. To determine the plant growth promotion characteristics, all isolates were tested for phosphate solubilization, production of siderophore and indole-3-acetic acid (IAA). Among total 150 bacteria, 28 isolates had the ability to produce indole-3-acetic acid (IAA), 92 isolates were able to produce siderophore, and 65 isolates solubilized phosphate. In addition, we conducted in vitro antifungal assay to find the good biological agents against *Colletotrichum acutatum*. Forty four strains among total 150 isolates showed antifungal activity.
[Supported by NRF: No. 2011-0011565]

B024

Evaluation of the Effect of Exogenous Phenylacetic Acid Application on Growth and Induced Systemic Resistance of Tobacco Seedlings against *Pectobacterium carotovorum* subsp. *carotovorum*

Marilyn Sumayo and Sa-Youl Ghim*
School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project) and Institute for Microorganisms, Kyungpook National University

The non-indole compound phenylacetic acid (PAA) can influence plant-pathogen interactions. PAA was identified as one of the metabolites of the plant growth-promoting rhizobacteria (PGPR) *Ochrobactrum lupini KUDC1013* that induced systemic resistance (ISR) of tobacco against the leaf soft rot pathogen *Pectobacterium carotovorum* subsp. *carotovorum* (PCC). In the present study, the effect of exogenous PAA application on the growth and ISR of tobacco against PCC were examined. The lowest disease incidence was observed in plants treated with 0.5 mM PAA. Activities of PDF1.2 genes in transgenic tobacco plants carrying plant defense genes fused with the beta-glucuronidase (GUS) reporter gene (PDF1.2::GUS) and of the defense related enzyme, phenylalanine ammonia-lyase (PAL) were enhanced. PAA also modulated the expression of defense related genes. High concentrations of PAA decreased the primary root length however, increased PAA concentrations led to an observable increase on lateral root formation. Altogether, this study supports the role of PAA in plant growth development and in eliciting plant defense signaling.
Plant Growth-Promoting Effect and Elicitation of Systemic Resistance in Pepper by Volatile Organic Compounds

Upeksha Muhandiram and Se-Youl Gin
School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), and Institute for Microorganisms, Kyungpook National University

Volatile organic compounds (VOC) which are defined from their properties of high vapor pressure at room temperature and low boiling point are also found as elicitors of systemic induced resistance (ISR) in plants. The strain Ochrobactrum lupini KUDC1013 was previously reported to elicit induced systemic resistance (ISR) in tobacco and pepper. The crude supernatant obtained from this strain contained linoleic acid (LA), phenylacetic acid (PAA) and 1-hexadecene which elicited ISR against leaf soft rot in tobacco. We studied the effects of different concentrations of the three chemicals for the elicitation of systematic resistance against fungus Stemphylium lycopersici, which induces gray leaf spot disease in pepper. And we performed in-vitro antifungal assay using different concentration gradients of three chemicals against S. lycopersici. To investigate the influence of above three chemicals on growth-promoting, the seed germination was assayed in pepper.

[Supported by NRF: No.2011-0011565]

Analysis of Pathogenic Microorganism’s Contamination on Production Environment of Tomato in Korea

Deok-Hoon Yoon1, Ki-Woong Nam2, Eun-Yeong Lee2, and Soh-Young Oh2
1Research Institute of International Agriculture, Technology and Information, Hankyong National University, 2Department of Horticulture, Hankyong National University, 3Graduate School, Hankyong National University

The purpose of this study was to analyze microbiological hazards for cultivation environments and personal hygiene of tomato farms at the growth and harvesting stage. A total of 1944 samples including air born, soil or medium, mulching film, harvest basket, groves and irrigation water etc. were collected from farms. As a result, total soil or medium, mulching film, harvest basket, groves and irrigation water were detected in all samples. In particular, the amount of S. aureus and B. cereus detected in tomato farms was less than the minimum amount required to produce a toxin that induces food poisoning. In this way, the degree of contamination of food poisoning bacteria was lower in the production environment of the Korea tomato, but problems can be caused by post-harvest management method.

Isolation and Characterization of Bacteria from Lake Alginskoe in Russia

Seung Cheon Yang1, Yochan Joung2, Eun Young Seo1, Dawoon Jung1, and Tae Seok Ahn2
1Department of Environmental Science, Kangwon National University, 2Department of Microbiology and Molecular Biology Chungnam National University

We isolated bacteria from Lake Alginskoe in Russia. The isolated bacteria were analyzed 16S rRNA sequence. Enzyme activities and growth rate were tested. As the results, total 43 species bacteria belonging to 3 taxonomy groups (Proteobacteria, Actinobacteria, Firmicutes) were isolated from Lake Alginskoe. And most isolates were halophilic bacteria. Moreover 2 isolates were new species. Enzyme activities, amylase, cellulase, lipase and protease of isolates were analyzed. Twenty two isolates had one or more enzyme activities at least. And four isolates had three enzyme activities (Cupriavidus pauculus, Bacillus safensis, Brachybacterium paraconglomeratum, Bacillus aryabhattai). And the growth rate of isolates in different salinity were analyzed. Cupriavidus pauculus showed high growth rate at 0% salinity. But Cupriavidus pauculus showed the growth rate of decreased significantly with the increase of salinity. Bacillus safensis showed faster growth rate than other species in highly saline condition. Brachybacterium paraconglomeratum and Bacillus aryabhattai increased the growth rate in 0~7% of salinity, the growth rate was faster than the other species.

Metagenomic Analysis of Bacterial and Viral Diversity in the Intestines of Abalone (Haliotis discus hannai) and Spoon Worm (Urechis unicinctus)

Young-Sam Kim and Kyoung-Ho Kim
1Department of Microbiology, Pukyong National University, 2Department of Environmental Science, Kangwon National University, 3Department of Microbiology, Pukyong National University

Abalone is one of typical invertebrate aquacultured in South Korea and the abalone production has been sharply increasing as well as mortality rate caused by microorganisms. In case of spoon worms, they inhabit almost all around the world, but they still have difficulty to be cultivated artificially. In this study, bacterial diversity in abalones and spoon worms were revealed using the recently revised metagenomic tools and the results from this study are expected to be applied to the probiotic applications for abalone and spoon worm aquaculture as fundamental informations. Results showed that Mycoplasma species took over 70% in the whole bacterial population in abalone intestine, whereas Fibrobacter species occupied about 10%. In spoon worm samples, Lactic acid bacteria such as Lactococcus and Leuconostoc species were dominant occupying 63.6% in the whole bacterial population. Viral diversity analysis revealed that viral compositions of both abalone and spoon worm samples were mainly occupied by ds DNA viruses such as Myoviridae, Siphoviridae and Podoviridae belonging to Caudovirales and ss DNA viruses such as Chlamydia phages related to Microviridae.
Optimization of Biodegradation Conditions with a Sea Tidal Flat BTEX-degrading Bacterium, Janibacter sp. SB2, Using Experimental Design Method

Hyun Mi Jin, Ji Min Lee, and Che Ok Jeon
Department of Life Science, Chung-Ang University

The objective of this study was to isolate a BTEX (benzene, toluene, ethylbenzene and o-, m- and p-xylene)-degrading bacterium from contaminated sea-tidal flat and to optimize its degradation condition for efficient degradation of BTEX compounds. An enrichment culture was established using seawater containing BTEX compounds and the enriched microbial community was monitored by DGGE profiling, which indicated that Janibacter species was dominated during the enrichment. Strain SB2 corresponding to the major band, able to degrade all six BTEX compounds, was isolated and characterized. NH4Cl, NaH2PO4, cell mass and BTEX concentrations were used as independent variables and a statically significant (R² =0.8933, P <0.0001) quadratic polynomial mathematical model was suggested. In a slurry system containing 3.0 × 10⁸ cells/L, 45.5% BTEX degradation for the initial concentration of 240 mg/L BTEX was observed under the optimum condition of NH4Cl and NaH2PO4 at 60 h; 32.2% BTEX degradation was observed for untreated samples.

Studies on the Strategies to Cope with High Salinity Environments through the Genome Analysis of Salimicrobium jeotgali

Kyung Hyun Kim and Che Ok Jeon
Department of Life Science, Chung-Ang University

To cope with high salt environment, microorganisms have selected several strategies. Salimicrobium jeotgali, isolated from ‘myeolchi-jeot’, a traditional salted and fermented anchovy of South Korea, is one of halophilic bacteria which can survive up to 24% NaCl. In high salt environment, Salimicrobium jeotgali has various strategies for survival. We compared the ratio of acid to basic membrane protein in Salimicrobium jeotgali between other gram-negative bacteria. Ratio of Acid/ basic membrane protein in Salimicrobium jeotgali is higher than other. Transporter has in an important role as protect in osmotic pressure Salimicrobium jeotgali has three NhaC-type and four NhaP-type Na+/H+ antiporter to maintain Na+ homeostasis. A compatible solute is a substance compatible with the cellular metabolism that accumulates in the cytoplasm to balance external osmotic pressure. Ectoine, Glycine-betaine and Glutamine which are uptaken from external to internal by ProU, OpuC and BCC7-type transporter and made by biosynthesis pathway in the cell are used Salimicrobium jeotgali as major compatible solutes.
Diversity and Activity of Ammonia Oxidizing Archaea and Bacteria at Estuary Ecosystem

Kyunghwa Baek and Che-Ok Jeon*
Department of Life Science, Chung-Ang University

Ammonia oxidation is a key part of nitrogen transformation in the estuary ecosystem. It is essential to understand the distributions of ammonia oxidizing archaea and bacteria in these sediments and how they respond to changes in chemical properties along the river (freshwater-marine). Here, we investigated the distribution and abundance of bacterial and archaean amoA genes in estuarine sediments in winter and summer. The abundance of bacterial amoA genes by qPCR was greater than that of archaean amoA genes in all sites. Pyrosequencing data of bacterial and archaean amoA revealed that the bacterial amoA OTUs were clearly different at terrestrial and tidal sediments. The Nitrosospira lineages 1, 3a, 3b, and 4 were dominated at terrestrial sediments, while Nitrososphaera, Nitrosopumilis, and Nitrospinae clusters were co-existed at terrestrial and tidal sediments. Salinity and pH strongly affected the AOB community. The results implied that AOB might play a more important role in estuary sediments.

Investigation of Effective Cell Disruption Methods for Lipid Extraction from Microalgae

Geun Ho Gim¹, Jae Gyeong Lee², Hae Gwang Jung¹, Jong Min Kim³, and Si Wouk Kim¹
¹Department of Environmental Engineering, Chosun University
²Department of Energy Convergence, Chosun University

The main goal of this study is to find out an efficient microalgal cell disruption method to get high lipid yield. Four microalgae (Chlorella vulgaris CCAP211/11B, Botryococcus braunii LB572, Dunaliella salina and Nannochloropsis oculata CCAP 849/1) were tested. The highest total lipid extraction was obtained at optimized conditions under microwave cell disruption (at 150°C, 2,450 MHz and 15 min.) and autoclave cell disruption (at 121°C, for 1.5 MPa, and 30~60 min). The total lipid extraction was obtained using microwave disruption at optimum conditions under microwave cell disruption (at 150°C, 2,450 MHz and 15 min.) and autoclave cell disruption (at 121°C, for 1.5 MPa, and 30~60 min). The total lipid extraction was obtained using microwave disruption at optimum conditions.

Enrichment and Genome Sequence of the Group I.1a Ammonia-Oxidizing Archaeon “Ca. Nitrosoterreus chungbukensis” Representing a Clade Globally Distributed in Deep Oligotrophic Soil Horizon

Man-Young Jung¹, Young-Jun Byun¹, Seon-Bin Choi¹, Jong-Geol Kim¹, Che Ok Jeon², and Sung-Keun Rheet³
¹Department of Microbiology, Chungbuk National University, ²Department of Life Science, Chung-Ang University

The first step of nitrification, i.e., the oxidation of ammonia, was long considered to be performed exclusively by ammonia-oxidizing bacteria (AOB). However, the theory of soil and marine nitrification changed significantly after the discovery of AOA. This study reports the discovery of a chemolithoautotrophic ammonia oxidizer that belongs to a distinct clade of non-marine thaumarchaeal group I.1a, which is widespread in terrestrial environments. Extensive growth assays showed that strain MY2 was chemolithoautotrophic, mesophilic (optimum temperature 30°C), and neutrophilic (optimum pH 7 to 7.5). The genome size of strain MY2 was 1.76 Mb, similar to that of N. maritimus and “Ca. N. koreensis”, and the repertoire of genes required for ammonia oxidation and carbon fixation in thaumarchaeal group I.1a was conserved. High representation of conserved orthologous genes of signal transduction and motility in the non-core genome might be implicated in niche adaptation by strain MY2. On the basis of phenotypic, phylogenetic, and genomics characteristics, we propose the name “Candidatus Nitrosoterreus chungbukensis” for the ammonia-oxidizing archaean strain MY2.

Detection of Saxitoxin Gene in the Korean Freshwaters

Kyoung-Hee Oh¹, Hye-Ryoung Kim¹, and Young-Seol Choi¹
¹Biotechnology Research Institute, Chungbuk National University, ²Department of Environmental Engineering, Chungbuk National University

Saxitoxin causes the paralytic shellfish poisoning syndrome, which produced by dinoflagellates in the sea. Recently it was revealed that the freshwater cyanobacteria such as Cyanidioschyzon raciborskii also produced this toxin. In this study the PCR primers were designed from the gene sequences of stxG involved in the saxitoxin production. PCRs were conducted with the water samples taken from the Daechung Reservoir at the Hyenam and Chuso sites. The amplicons of PCR reaction were found in the samples taken on Sep. 2010. The saxitoxin, however, was not detected in these samples. These results indicated that the potential producer of saxitoxin exists in the analyzed reservoirs and the routine monitoring of the concentrations of saxitoxin and the existence of its producer is required to maintain the source of water supply safe. [Supported by grants from National Institute of Environmental Research]
B037

Comparison of the Relative Sensitivity of Protein Phosphatase Inhibition Assay to Congeners of Microcystins at Different Combinations of Enzymes and Substrates

Yong Jun Kim¹, Kyoung-Hee Oh², and Young-Cheol Cho*¹

¹Department of Environmental Engineering, Chungbuk National University, ²Biotechnology Research Institute, Chungbuk National University

The protein phosphatase inhibition assay is one of the most popular methods to measure the concentration of microcystins (cyanobacterial toxins) in the environmental samples because of its simplicity and consistency. In this study, the extent of enzyme inhibition of combinations of enzymes and substrates of microcystin congeners was examined. The protein phosphatase 1 and 2A as enzymes, methyl umbelliferylphosphate (MUP), p-nitrophenylphosphate (pNPP), phosvitin, and phosphorylase as substrates, and microcystin-LR, LA, YR, and RR were used in this study. The extent of enzyme inhibition was in the order of microcystin-LR, -LA, -YR, and -RR of the same concentration of congeners in all combinations. Moreover, the inhibitory proportion of each congener with the different combination of enzymes and substrates was not statistically different, indicating any combination can be used to analyze the concentrations of microcystins. The most recommendable combination for microcystin analysis is protein phosphatase 1 and MUP because of its sensitivity and cost.

[Supported by grants from NRF and National Institute of Environmental Research]

B038

Confocal Laser Scanning Microscopic Observation of Pseudomonas alkyphenolica Pellicles

Ju Beom Kang, Myeong Mi Song, and Kyoung Lee*

Department of Microbiology, Changwon National University

Bacteria have a capacity to develop a niche-specific biofilm, a pellicle, to optimally occupy the air-liquid interface. *Pseudomonas alkyphenolica* forms unique circular pellicles in a diameter of 0.3-0.5 mm. The number of pellicles on the liquid surface is increased under a condition of decreased level of oxygen or with a supplement of glucose. Experiments with GFP-tagged cells showed that pellicle formation is due to clonal growth rather than assembly of existing cells. Mutagenesis study showed that a gene cluster, named *epm*, that shows similarity to the *alg* gene cluster, encoding alginate biosynthesis, is required. The GFP reporter gene coupled to the *epm* promoter was highly expressed at the upper layer and at the rim of the pellicles. The dead cells stained by EtBr were present at the lower layer of the pellicles and inside the zone expressing the active *epm* genes. This pellicle developmental process will provide an insight into bacterial sensing of an air-liquid interface and subsequent progress to floating macro-cellularity.

[Supported by grants from KRF]

B039

Bacterial Community Changes under the Temperature and Precipitation Manipulation Experiment in Cambridge Bay, Canada High Arctic

Hye Young Kwon, Ok-Sun Kim, Ji Young Jung, Sungjin Nam, Joo Han Lee, and Yoo Kyung Lee*

Korea Polar Research Institute

According to the rapid rate of warming permafrost, increasing carbon dioxide (CO₂) will result in global temperature increases and hydrological cycle changes. Therefore, Arctic is sensitive ecosystems to climate change. We are studying on understanding how microbial community structure and soil organic carbon (SOC) will respond to climate change in the future. To examine the effects of climate factors on microbes and SOC, we established open-top chambers (OTC) with total five replicated blocks containing four treatments (NWNP: no-warming and no-precipitation as a control, NWP as no-warming and precipitation, WNP as warming and no-precipitation, and WP as warming and precipitation) in Cambridge Bay. There are two types of plot with monitoring plots and destructive plots. At the end of June 2012, this OTC set was installed after the ground-penetrating radar survey for the measurement of the active layer depth, and soils were sampled in each plot for baseline data in the both of plots. From 2013, soil will be sampled in the destructive sampling plots in order to monitor the changes of microbes and SOC.

[Supported by grants from Korea Polar Research Institute (PN13082) and NRF]

B040

Microclimate Monitoring Around Lichen Habitat in Barton Peninsula, King George Island, Antarctica

Hyun-Ju Noh¹, Jang-Cheon Cho², and Soon Gyu Hong³

¹Division of Polar Life Sciences, Korea Polar Research Institute, ²Department of Biological Sciences, Inha University

Lichens ability to withstand extreme environmental conditions like polar area, they exist more than 70% of plant biodiversity in Antarctic terrestrial ecosystem. Barton Peninsula, King George Island has complicated geographic features and diverse flora specially lichen. Geographic difference remarkably affects microclimate characteristics. To study about how lichens responded and adapted to environmental change, we selected five long term monitoring sites. We measured air temperature, relative humidity, temperature of the lichen habitat, moisture contents and photosynthetically active radiation (PAR) from February 2013 to January 2014. Three sites were foamed patterned gradient of different kind of lichens. We observed 28 lichens included Cladonia gracilis, Stereocaulon alpinum, Sphaerophorus globosus, Psoroma sp. and Ochrolechia sp..

PAR reached 2338.7 µE in January, minimum was 1.2 µE and never zero. Air temperature was measured 20 celsius degree in the summer and -17 degree in the winter. Relative humidity ranged from 34 % to 100 %. Temperature of the lichen habitat was at least -15 to 13 celsius degree. Water content was logged at least 0.19 to -0.13 m³/m³.

Water content was logged at least 0.19 to -0.13 m³/m³.
The phylum Verrucomicrobia is widely distributed in marine environments, but only a limited number of verrucomicrobial isolates have been cultured from marine ecosystems. In this study, draft genome sequence and polyphasic taxonomy are reported for a verrucomicrobial strain IMCC8625 that was isolated from surface seawater of the East Sea by dilution-to-extinction cultivation. The 16S rRNA gene phylogeny revealed that strain IMCC8625 belong to the Verrucomicrobia subdivision IV and is closely related to the genus Coraliomargarita alaquimerei DSM45221T (95.4%, similarity) of the family Puniceicoccaceae. Predominant fatty acids were revealed to be C15:0 3-OH (23.0%), iso-C16:0 (19.1%) and C16:0 (10.2%). The genome sequence of IMCC8625 was obtained using Illumina sequencing. The 2.84 Mb genome was assembled into 69 contigs, with N50 of 93 kb. The DNA G+C content was 54.3 mol%. The genome of strain IMCC8625 has been found to possess 2,621 protein coding genes, including a gene for a protein FtsZ, a cytoskeletal protein involved in cell division. Additionally we found the presence of many ABC transporters for proline/glycine betaine and amino acids.

Coexistence of Multiple Endosymbionts in the Tubeworm Lamellibrachia satsuma Revealed by Comparative Metagenomic Analysis

Ajit Kumar Patra, Yoshihiro Fujitani, and Sang-Jin Kim

B. Ecology and Environmental Microbiology

Cultivation and Genome Characteristics of Strain IMCC19250 Belonging to the LD28 Clade, Isolated from Soyang Lake

Mihye Im, Inam Kang, Md.Rashedul Islam, and Jang-Cheon Cho

Cultivation and Draft Genome Sequence of Marine Verrucomicrobial Strain IMCC8625, Isolated from the East Sea

Ahyoung Choi, Seung-Jo Yang, Ilnam Kang, and Jang-Cheon Cho

Metagenomic Analysis of Nitrogen Metabolism During a Full Scale Tannery Wastewater Treatment Process Bioaugmented with BM-S-1

In-Soo Kim, Kalu Ibe Esiphere, Bong-Soo Kim, Woo Jun Sul, Shin-Young Hah, Jong-Tae Kim, Hong-Gi Kim, and Sung-Chen Kim

Bacteriological tannery treatment technologies often require pretreatment for effective and efficient treatment, and are known to generate enormous amount of sludge. Here, we treated tannery wastewater using the novel consortium BM-S-1 without any pretreatment process. Our goal is to elucidate the functional gene structures and roles of microbial communities involved in the treatment process. We analyzed whole-metagenome sequencing data using Illumina MiSeq Sequencer to determine microbial community structures and functional genes associated with nitrogen metabolism. Genes involved in nitrogen fixation (nitrogenase, dinitrogenase reductase, nitrite reductase, nitric oxide reductase, and nitrogenase reductase), denitrification (nitrate/nitrite reductase, and nitrous oxide reductase), and assimilation (nitrate reductase, ammonium transport proteins, and nitrate transport proteins) were more abundant in PA than the other stages. Moreover, nitrogenase genes, involved in nitrogen fixation, and nitrogen-assimilation genes were abundant in PA and B which corroborated with the chemical data (COD, T-N, and T-P, etc.) obtained from all the stages during the treatment process. These results indicate that metagenome analysis of the microbial biomass of each treatment process could provide a comprehensive metabolic insight into mechanistic basis of the eco-friendly tannery wastewater treatment.

This work was supported by NRF grant (No. 2012-0095136) from the Korean government and also supported by the Munpower Development Program for Marine Energy, as part of MLTM.
We performed the bacterial community analysis to reveal bacteria composition in rhizosphere soil (RS) and bulk soil (BS) of ginseng using pyrosequencing. We measured species richness and diversity indices were slightly higher in BS than in RS. At the phylum level, Proteobacteria was a predominant phylum (34.3–58.5%) in all samples and Actinobacteria (7.3–19.2%), Acidobacteria (9.3–14.6%), Firmicutes (1.6–7.3%) and Bacteroidetes (1.5–7.3%) were followed. The phyla, Proteobacteria, Actinobacteria and Bacteroidetes were relatively more abundant in RS. At the genus level, the genera Sphingobium (2.9%), Pseudomonas (2.5%), Novosphingobium (1.2%), Microbacterium (1.2%) and Streptomyces (0.8%) were detected much more in RS. It was revealed that sphingomonads, Sphingomonas, Sphingobium, Novosphingobium and Sphingopyxis were predominant genera in RS, indicating that ginseng is one of the best sources to isolate sphingomonads. This study suggests that the genera Streptomyces and Pseudomonas can be good sources for screening microbial agent to control some diseases of ginseng.

Phylogenetic Composition of Bacterioplankton Cultivated from Soyang Lake Using Dilution-to-extinction Approach

Suhyun Kim, Ilnam Kang, and Jang–Cheon Cho
Department of Biological Sciences, Inha University

High throughput cultivation based on dilution-to-extinction showed a great potential to isolate uncultured oligotrophic marine bacteria. In this study we report the application of dilution-to-extinction culturing to freshwater bacterioplankton. Similar to marine systems, many important freshwater bacterial clades have been reported to be uncultured yet, including LD12 of the Alphaproteobacteria, LD28 of the Betaproteobacteria, and act I of the Actinobacteria. A water sample of Soyang Lake was examined using dilution-to-extinction culturing with very low nutrient-amended lake water as culture media. Most of the 313 strains cultivated from 720 inoculated wells belonged to the Betaproteobacteria and Alphaproteobacteria, with a very small number of Actinobacteria and Gammaproteobacteria. Only 73 strains formed colonies on 1/3R2A and/or 1/10R2A agar plates. Interestingly, we successfully isolated several major freshwater bacterial groups, particularly act I of the Actinobacteria; Limnobacterium and Polynucleobacter of the Betaproteobacteria, which suggests the potential of dilution-to-extinction culturing in cultivating representatives of previously uncultured freshwater bacterial groups.

Etiological Agent of Fish Lead in the Rivers of Inje: Pathogenic Bacteria, Organic Substrate and Water Temperate

Hae Jin Cho, Myung Soo Park, Jonathan J. Fong, and Young Woon Lim
School of Biological Sciences, Seoul National University

Inje County, located in the Taebaek Mountains of Gangwon Province in South Korea, is famous for its pristine landscapes and untouched nature. Three major rivers flow through the area: Inbuk River, Buk River and Naerim River. Recently, there was an episode that fish died an masse in Inbuk River. We study the area to try to determine the cause of the deaths. We isolate and identify the bacterial community found on the dead fish in Inbuk River in June 2013 by isolating and sequencing the 16S ribosomal DNA marker. Dominant bacteria identified on the dead fish were Aeromonas veronii (32 isolates, 37%) and A. hydrophila (30 isolates, 35%). To investigate and understand the seasonality and geography of the etiological agents of fish disease, we take water samples from several points of the three rivers in Inje between June 2013 and March 2014. Through targeted PCR method using specific primers, we discover the existence of these two pathogenic bacteria in many points in the river. We measure temperature and levels of organic compounds and find that fish death may be correlated with water temperature and total amount of organic substrate such as Phosphate (P) and Nitrate (N).

Comparative Metagenomic Investigations of Microbial Communities and Functions in Deep Marine Sediment of Ulleung Basin, East Sea

1Marine Biotechnology Research Division, Korea Institute of Ocean Science & Technology, 2Departments of Microbiology, Chungbuk National University, 3Korea Institute of Geoscience and Mineral Resources

Marine sediments are the largest global reservoir of methane, and it was known that most of methane is biologically consumed at sulfate methane transition zone (SMTZ) by anaerobic oxidation of methane (AOM). We have compared the taxonomic composition and functional gene diversity between surface and SMTZ sediment obtained at Ulleung Basin, East Sea, by using pyrosequencing data. Community analysis based on homology search of the protein-coding genes showed the majority of genes derived from Deltaproteobacteria, which may reflect the greater access to sulfate reduction metabolism in the both sediments. However, there was a significant overrepresentation of the methane related class Methanomicrobia and Archaeoglobi was found in the SMTZ. Compared to surface sediment, the functional gene analysis showed that a significant difference in microbial methane metabolism was found in SMTZ. The annotated genes related with methane metabolism are especially enriched in the SMTZ, which were originated from ANME-1 by using reference mapping analysis. This study may serve as a relationship between AOM and functional capability of ANME-1 members.
The genus *Limnohabitans* was previously identified as one of the major genera inhabiting 5 major freshwater bodies of Korea based on pyrosequencing analysis. In this study, strains of *Limnohabitans* were isolated and their taxonomic properties were examined. Members of *Limnohabitans* are known as free-living and abundant in neutral or alkaline aquatic habitats. The symbiotic relationship between *Limnohabitans* and algae has also been reported. Based on these reports, strategies for the isolation of *Limnohabitans* were established. Samples were taken from locations of Keum River where algal growth was observed. Terminal restriction fragment length polymorphism (T-RFLP) analysis was carried out to confirm the presence of *Limnohabitans* in the samples. The filtration-acclimatization method (FAM) and dilution-acclimatization method (DAM) were used for the isolation. Three strains of *Limnohabitans* were isolated, and the 16S rRNA gene sequence similarity indicated that the strains were mostly related to *Limnohabitans curvus* MWH-C5 at the sequence similarity of 99.1-99.9%. The ongoing study includes phenotypic characterization of the isolates to elucidate their possible roles in environment.

B051

Degradation of Aromatic Compounds by Photosynthetic Bacteria under Dark Condition

Hyun-Sook Kim, Daniel Kim, and Sang-Seob Lee

Department of Bioengineering, Kyunggi University, "Department of Life Science, College of Natural Science, Kyunggi University

Most widely caused from petroleum or gasoline storage tank leaks underground, LNAPLs are highly toxic volatile organic compounds (VOCs) such as BTEX, which can and have been negatively affecting humans as well as the environment. This study observed the removal of benzene, toluene, and ethylbenzene using a more stable and environment friendly method by non-pathogenic photosynthetic bacteria. Ultimately, purple non-sulfur bacteria, *Rhodopseudomonas capsulata*, showed efficient degradation of 20 mg/L of BTEX. 1 g/L of cell mass was inoculated to MSM (pH 6.8±0.2) with 0.1% di-sodium succinate under aerobic condition. In 8 days, 85.51% of BTEX was removed. Analysis of degradation efficiency was performed using headspace method via GC-FID. Molecular level experiments, such as Real-Time PCR were also used to identify and confirm the target gene responsible for the degradation of BTEX in aerobic condition. Oxygenase was identified as a common intermediate in the aerobic degradation pathway of BTEX. Molecular level experimental results allow us to know what is happening during bioremediation of BTEX under aerobic conditions.
Isolation, Identification and Characterisation of Antifungal Activity by Pseudomonas 43-4 against Cylindrocarpon destructans

Aravind Sundararaman¹ and Sang-Soon Lee²
¹Department of Bioengineering, Kyonggi University, ²Department of Life Science, Kyonggi University

Panax Ginseng (C.A.Meyer) is a medicinal crop with high demand all over the world. The major producers of ginseng are China, Russia, Japan, Korea, and America. The crop is used to cure ailments in respiratory tract, anti-aging, and in treatment of cancer. The bacteria were isolated by serial dilution method. All the isolated strains were screened against phytopathogen Cylindrocarpon destructans. Identification of the strains was performed by 16S rRNA partial sequencing. Pseudomonas sp. are ubiquitous bacteria commonly present in the ginseng Rhizosphere. The strain 43-4 showed the maximum antifungal activity and was characterized by morphological, physical and biochemical tests. The bacteria was cultured on various media such as nutrient broth, brain heart infusion broth, potato dextrose broth, Luria-Bertani broth to test maximum antagonist effect. The best media was chosen for the culture filtrate assay. Further studies focuses on the isolation of the antifungal compound and identification.

Conversion of 4-Methoxybenzoate into Bioplastics by Comamonas testosteroni P19

Motakatla Venkateswer Reddy¹, Kui-Jae Lee¹², and Jong-Chan Chae²³
¹Division of Biotechnology, Chonbuk National University, ²Advanced Institute of Environment and Bioscience, Chonbuk National University

Bioplastics production from an aromatic compound, 4-methoxybenzoic acid (4-MBA) was investigated at different concentrations (1, 3, 5, 8 and 11 mM) using Comamonas testosteroni strain P19. The strain showed highest (64%) bioplastics production when 4-MBA at 5 mM was supplied and the production efficiency was followed by 8 mM (58%), 3 mM (48%), 1 mM (46%), and 11 mM (38%) of 4-MBA. After optimizing substrate concentration (4-MBA), further experiments were carried out for optimization of nitrogen concentration. Nitrogen limitation was found to have a significant effect for bioplastics production, determining 50 mg/L of ammonium sulphate as optimum. The functional groups present in the produced bioplastics were confirmed using FT-IR spectroscopy. Results from this study indicated that strain P19 was capable of utilizing 4-MBA as sole carbon and energy sources, and converting 4-MBA into useful bioplastics under nitrogen limitation condition.

Bacillus sp. NWO Isolated from Oysters (Crassostrea gigas) with a Broad Range of Enzyme Activities for the Removal of Organic Compounds from Environment

Seyeon Shin and Hyung-Yeol Kahng
Department of Environmental Education, Sunchon National University

The marine bacterium, Bacillus sp. NWO isolated from oysters (Crassostrea gigas) aquacultured in Wando seawater was analyzed owing to broad range of enzyme activities which can be used for industrial application. It was creamy in yellow colour, Gram-negative, facultative aerobic, non-motile, fermentative, and rod-shaped. Strain NWO grew at the temperature range of 15-50°C, at the salinity range of 0-11% (w/v) NaCl, and at pH range of pH4-8. Strain NWO was revealed the closest to both Bacillus methylotrophicus CBMB205 and B. amyloliquefaciens subsp. ptaunarium FZB42 with 99.9% similarity based on 16S rRNA. Biochemical test revealed that it exhibited positive enzyme activities of acid- and alkaline-phosphatase, DNase, cellulase, amylase, protease, esterase (C4) and esterase lipase (C8), which can be applicable to the removal of organic compounds from environment.

Identification of Genes for Metabolism of 4-Methoxybenzoate in Comamonas testosteroni P19

Motakatla Venkateswer Reddy¹, Kui-Jae Lee¹², and Jong-Chan Chae²³
¹Division of Biotechnology, Chonbuk National University, ²Advanced Institute of Environment and Bioscience, Chonbuk National University

The microorganism Comamonas testosteroni strain P19 was capable of utilizing 4-methoxybenzoic acid (4-MBA) as sole carbon and energy sources. Using plasposon mutagenesis, a mutant strain (N28) which lost the ability to degrade 4-MBA was identified. A gene encoding demethylase was knocked out in the mutant strain. Two ORF were organized consecutively encoding monoxygenase and fusion protein containing domains for oxidoreductase and ferredoxin. In real-time PCR analysis, the demethylase gene expression was specifically induced by 48 folds responding to 4-MBA. The demethylase genes (two ORF) were cloned into pQE31 vector and the recombinant E. coli successfully transformed 4-MBA into 4-HBA in resting cell assay. Results from this study showed that 4-MBA was metabolized through demethylation converting to 4-hydroxybenzoate which was catalyzed by demethylase in strain P19.
B057

Cyclobacterium holothuriaincola sp. nov., Isolated from a Sea Cucumber (*Holothuria* sp.) Aquaculture Farmland

Syeon Shin, Gunhee Kim, and Hyung-Yeel Kahng

Department of Environmental Education, Sunchon National University

The taxonomic position of a novel bacterium, designated SD70, isolated from a sea cucumber (*Holothuria* sp.) aquaculture farmland was determined. It was a Gram-negative, aerobic, non-motile, and horseshoe-shaped. The optimal growth conditions for strain SD70 were pH 7.0-8.0, 25-37°C and 3.0-5.0% (w/v) NaCl. 16S rRNA gene sequence analysis revealed that strain SD70 was placed into the genus *Cyclobacterium*. Strain SD70 exhibited 16S rRNA gene sequence similarities of 97.3–8.5% to the type strains of species of the genus *Cyclobacterium*. The phylogenetic and genetic distinctiveness and several differentiating phenotypic properties revealed that strain SD70 was separated from other species of the genus *Cyclobacterium*. Strain SD70 exhibited no enzyme activities for degradation of casein, starch, cellulose and Tween 40, 60, 80 except for Tween 20. On the basis of the data presented, strain SD70 represents a novel species of the genus *Cyclobacterium*, for which the name *Cyclobacterium holothuriaincola* sp. nov. is proposed. Notably, it exhibited enzyme activities such as esterase (C4), esterase lipase (C8), and lipase (C14), all of which are responsible for the degradation of lipid.

B058

Characterization of Phosphate-solubilizing Bacteria *Enterobacter* sp. 04-P-1 with Antimicrobial Activity against Fungal Phytopathogen

Jeong-See Kim, Hang-Yeon Weon, Jae-hong Yoo, and In-Cheol Park

Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration

Phosphorus is an essential nutrient in plants, but it is easily converted to insoluble form in soil. Thus, P fertilizer is used in amounts excessive to those actually required by plants. It causes not only negative effects on the environment but also economic problems. In this study, a phosphate-solubilizing bacterium strain 04-P-1 isolated from forest soil was able to convert insoluble P in soil. The 16S rRNA gene sequence analysis showed that the isolate was most similar to the type strain of *Enterobacter amnigenus* (ATCC 33072)². The P-solubilizing activity of the isolate was confirmed, as the tri-calcium phosphate medium became more acidic (pH of 4.44) and available phosphate was increased to 596.6 ppm. In sterilized soil, available P increased 3.5-fold when the isolate was inoculated compared to the non-inoculated control. In addition, the isolate showed antimicrobial activity against *Botrytis cinerea*, which causes gray mold. Thus, we can expect the bacteria to reduce the use of phosphate fertilizers in soil with the insoluble phosphate and the isolate will be useful to biotic pesticides.

[Supported by grants from Agenda Program (PJ00858002), Rural Development Administration]

B059

Isolation of a New Species and Three New Recorded Fungi from Dokdo Island, Korea

Hye Won Lee¹, Thi Thuong Thuang Nguyen¹, Changmu Kim², Yong-jin Kim², and Hyang Burn Lee³

¹Division of Applied Bioscience and Biotechnology, College of Agriculture & Life Sciences, Chonnam National University; ²National Institute of Biological Resources; ³Gwangju Korea Meteorological Administration

Dokdo island is located in the northeastern part of Ulleungdo, extremity of Korea and known as volcanic island. In total, 53 fungal isolates were collected from the soil sample, using dilution plate technique. The isolates were identified on the basis of morphological characteristics and rDNA ITS sequence analysis. From the results, a new species and three new recorded fungi were established. When the sequences of EML-DDSF4 isolate were compared with related species retrieved from NCBI BLASTN, it was closest to *Mortierella oligospora* (accession number, JX976032) with 100% sequence similarity and tentatively identified as *M. cf. oligospora*. The EML-MF30-1 isolate was closest to *Closstachys cf. rosea* (accession number, KC311107) with 97% sequence similarity and the EML-IF9 isolate was closest to *Metharizium guizhouense* (accession number, HM055445) with 98% sequence similarity. The EML-IFS45 isolate was closest to *Absidia sp.* (accession number, JQ683214) with 92% sequence similarity, showing that the isolate is new to science. In addition, three species of *M. oligospora, C. rosea* and *M. guizhouense* represented new records of fungi from Dokdo island, Korea.

[Supported by grants from NIBR.]

B060

Two New Records of Seed-borne Fungi from Korea

Sun Jeong Jeon and Hyang Burn Lee

Division of Applied Bioscience & Biotechnology, College of Agriculture and Life Sciences, Chonnam National University

During the course of investigation and detection of seed-borne fungi, a total of 332 isolates were collected from the grains including rice, barley, corn and wheat. Out of them, two species of *Bipolaris spicifera* and *Sordaria lappae* represented new records from Korea. A mitosporic fungus, *B. spicifera* was isolated from wheat seed. The shape of the spores were straight, oblong, cylindrical and dark brown with three distosepta on PDA medium. The dimension was 0.7-0.9 (av. 0.8) µm wide x 1.5-2.3 (av. 2.1) µm long. An ascomycetous fungus, *S. lappae* was isolated from barley seed. The fungus produced round-shaped peritheciun 1 week after culture on PDA at 27°C. The perithecium released lots of asc through ostiole. A maturing cylindrical ascus in which all 8 ascospores were linearly arranged. For investigation, the seeds were surface treated with 2% NaOCl for 30 seconds, washed in D.W and plated on moist blotter directly or after deep-freezing for 1hr. The detection rates of major genera represented *Alternaria* spp. (29.5%), mycelia sterilia (18.7%), *Penicillium* spp. (16.7%), *Aspergillus* spp. (15.7%) and others (19.4%).

[Supported by grants from NIBR and KOFAC.]

www.msk.or.kr | 199
Gnotobiotic Culture of Brine Shrimp with Bacteria Enhances Growth and Development of the Shrimps

Xihui Li, Mi-Nan Lee, Doo-Hwan Yeom, Soo-Kyoung Kim, and Jeon-Hoe Lee

College of Pharmacy, Pusan National University

Brine shrimp is an aquatic crustaceans belonging to a genus of Artemia. This organism is widely used for testing the toxicity of chemicals. In this study, a brine shrimp, Artemia salina was infected with various pathogenic bacteria for the bacterial virulence analysis. Interestingly, despite of the virulence, some brine shrimps surviving the infection were found to grow bigger and faster. Among bacterial strains tested in this study, Pseudomonas aeruginosa and Escherichia coli showed the growth-promoting effect on the brine shrimp. To explain this phenomenon, the symbiosis of these bacteria in shrimps was addressed by counting and observing live bacterial cells in the brine shrimp gut. Both E. coli and P. aeruginosa could survive in the brine shrimp gut, but E. coli was able to survive only for limited period whereas P. aeruginosa survived more and longer in the gut than E. coli. These results strongly suggest that P. aeruginosa survives in the brine shrimp gut, probably as a symbiont and this brine shrimp-P. aeruginosa may be an artificial model system to study the symbiosis.

Characteristics of Anaerobic Methane Oxidation Process at the Ulleung Basin, East Sea of Korea

Je-Hye Shin, Jin-Woo Lee, and Dong-Hun Lee

1Department of Microbiology, Chungbuk National University, 2Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology

Despite the fact that other electron acceptors are more energetically favorable (nitrate, nitrite and so on) the most thoroughly investigated hypothesis for anaerobic oxidation of methane (AOM) is reverse methanogenesis using sulfate as the terminal electron acceptor. In this study, we investigated the characteristics of the AOM process that can occur in a variety of ways in the sediment of the Ulleung basin which include methane hydrate. Quantitative real time PCR analysis of methyl coenzyme M reductase (mcrA) gene revealed the highest copy number at sulfate methane transition zone (SMTZ), where it comprised 25% of the number of archaeal 16S rRNA gene. Nitrate reductase (narG) gene was dominant compared to the nitrite reductase (nirS and nirK) and the dissimilatory sulfite reductase (dsrAB) gene. Phylogenetic analysis of mcrA, narG and 16S rRNA gene clone libraries showed that ANME-1 related archaea and Halomonas were predominant. This results suggest that AOM process from the Ulleung basin is carried out by the syntrophic consortium of ANME-1 and Halomonas which is known to be a member of denitrifier.

[SUPPORTED BY GRANTS FROM KIOST]

Sterilization Efficacy of a Pipe Type Water Treatment System Using Low Temperature Plasma

Da Jeong Kim, Hyeon Ik Kim, Young Gu Cheun, Jae Il Lee, Hyun Jung Kim, Myoung Ju Jeong, and In Seop Kim

1Department of Biological Sciences and Biotechnology, Hannam University, 2R. TONG ENT

Plasma is loosely described as an electrically neutral medium of positive and negative particles. Plasma contains free charges (electrons, ions), free radicals, excited molecules, photons (UV) and generate a transient electric filed. Several studies have demonstrated the efficacy of sterilization by atmospheric nonthermal plasma. Recently a Korean company has made a pipe type water treatment system using low temperature plasma to effectively sterilize waterborne pathogens. In order to evaluate the sterilization efficacy of the system in swimming pool water and tap water, a variety of experimental model bacteria, fungus, and viruses for human pathogens, including E. coli, B. subtilis, S. aureus, C. albicans, hepatitis A virus, bovine herpes virus, and porcine parvovirus were all selected for this study. From the inactivation study, it was found that the pipe type water treatment system using low temperature plasma can be an alternative measure to sterilize waterborne microorganisms in swimming pool and ballast water.

[Supported by Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2013.]

Isolation and Identification of Insect Pathogen Serratia marcescens in Protaetia brevitarsis seulensis (Kolbe) from Korea

Kyu-Won Kwak, Ji-Young Choi, Sung-Hee Nam, Myung-Sae Han, Seok-Hyun Lee, Young-Choel Choi, and Kwan-Ho Park

1National Academy of Agricultural Science, Kyungpook National University

According to efficiency of the larvae of P. b. seulensis about anti-oxidant, anti-hepatic disorder, and anti-diabetic effect, P. b. seulensis were reared increasingly in local, Korea, and Protaetia brevitarsis seulensis (Kolbe) has been focused on a protein alternate and functional food with pharmacological effect in Korea. The purpose of this study is the evaluation of the the reared larvae of P. b. seulensis from Gyoseong-gi in Korea were infected with Spo-1 and identification of the bacteria is Serratia marcescens using 16S rRNA PCR, electron-microscope and verifying through Bioassay.
B. Ecology and Environmental Microbiology

B065

Cyanobacterial Diversity and Seasonal Changes in Paldang Reservoir (Korea) Explored by Microscopy and 454 Pyrosequencing

Boopathi Thangavelu, Ponmani Thangaraj, Ruoyu Guo, Man-Duck Lee, Won Bae Yu, Min-Ah Lee, and Jang-Seu Ki

Department of Life Science, Sangmyung University

Cyanobacteria are the major component of the bloom forming community that has to be monitored frequently. Hence, we have analyzed molecular diversity and seasonal changes of cyanobacteria in Paldang reservoir using morphological and 16S rRNA pyrosequencing. The samples were collected from four stations during Mar.-Dec. 2012. Totally, 40 phyotypes of cyanobacteria were identified after comparing 49,131 pyrosequence reads. The cyanobacterial genera such as *Anabaena*, *Aphanizomenon*, *Microcystis*, *Sympycteis* were predominantly present in the samples. However, majority of cyanobacterial sequences (65.9%) identified here were of uncultured origin. In contrary, morphological identity of cyanobacteria revealed different pattern which resolved eight cyanobacterial genera. Seasonal pattern of cyanobacterial community was also observed, with no occurrence in Mar. and Dec. The relative abundance of cyanobacterial sequences was observed as high in Aug. These suggested that pyrosequencing approach can reveal cyanobacterial diversity that undetected morphologically, and can be used as a reference for studying and monitoring of cyanobacterial communities in Paldang Reservoir.

B066

Biodegradation of Polycyclic Aromatic Hydrocarbons in the Marine Bacterium, *Novosphingobium pentaromativorans* US6-1

Sung Ho Yun1, Chi-Won Choi2, Sang-Youp Lee3, Joseph Kwon1, Sun Hee Leem2, Young Ho Chung3, Hyeong-Yeil Kahng3, Sang Jin Kim4, Kae Kyong Kwon4, and Seung Il Kim5

1Division of Life Science, Korea Basic Science Institute, 2Department of Biology, Dong-A University, 3Department of Environmental Education, 4Korea Institute of Ocean Science & Technology, 5Department of Bio-Analytical Science, University of Science and Technology (UST)

Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade PAHs. Genome sequence analysis revealed that the large plasmid pLA1 present in *N. pentaromativorans* US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. Up-regulated biodegradation enzymes were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, *N. pentaromativorans* US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that *N. pentaromativorans* US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in *N. pentaromativorans* US6-1.

B067

Effect of Surface Water on Microbial Community Structure of Alluvial Aquifer Groundwater in Long Term-Operated River Bank Filtration Site

Ji-Hoon Lee1, Uk Yun1, Bong-Joo Lee2, Kyochool Ha3, Heejun Suk1, Yongcheol Kim1, and Tatsuya Unno2

1Korea Institute of Geoscience and Mineral Resources, Groundwater Department, 2Jeju National University, Faculty of Biotechnology

Municipal and agricultural demands of groundwater derived construction of river bank filtration systems to overcome draw down of water level, which use extraction wells in a distance from a water body, such as river, to purify the drawn-off water by passing it through the geological media for use as drinking water. For more than 7 years, river bank filtration has been operating in the alluvial aquifer in proximity of Nakdong River as a water supply for Daesan Filtration Plant, Changwon, South Korea. This study aims to evaluate changes in microbial community structure in the subsurface environment affected by surface water infiltration into groundwater at the river bank filtration site. Along with the geochemical and hydrological data indicating obvious intrusion of river water into the aquifer, pyrosequencing analysis of groundwater DNAs suggested significant changes in the microbial community structures. The results imply that changes of environmental condition, here surface water into groundwater, can change the microbial community structure in a prolonged time period, and further biogeochemical reactions in the geologic media. [Supported by KIGAM project (14-3211)]

B068

Bacterial Community Diversity in the Guts of Three Xylophagous Insect Species

Min-young Choi, Jae-Hyeong Ahn, Eun-Hye Jo, Tae-Hwa Kang, Sang-Hoon Han, Jaekyung Song, and Hang-Yeon Weon

Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration

Insect guts present distinctive environments for microbial colonization, and bacteria in the gut potentially provide many beneficial services to their hosts. Especially, the gut bacterial community associated with xylophagous insect larvae were of interest for potential biotechnological applications in lignocellulose degradation. In this study, we used pyrosequencing to characterize bacterial diversity and community structure in the guts of three different insects. The dominant bacterial phyla/classes were *Firmicutes* (18.5%) and *α-Proteobacteria* (17.1%) in giant rhinoceros beetle (*Allomyrina dichotoma*), *Cloroflexi* (31.0%) in giant stag beetle (*Dorcus titanus*), and *Sphingobacteria* (32.7%) and *Bacteroidetes* (32.5%) in termite. The principal coordinates analysis (PCoA) showed that individual insect species harbored unique gut communities. Guided by this preliminary result, we are exploring the gut microbiome in more detail for their health improvement and cultivable bacterial diversity from their gut for application in the field of bioenergy.

www.msk.or.kr | 201
Study on the Improvement of Drinking Water Quality of Vulnerable Area as Small-Scale Water Supply Facilities

Jihye Kim, Bo-ram Lee, Siwon Lee, Sujeong Park, Hyon-Mi Chung, and Weon hwa Jheong
Water Supply and Sewerage Research Division, National Institute of Environmental Research

This study developed a complex water treatment system that removes 99.99% of pathogenic microorganisms such as Norovirus through laboratory and on-site experiments. When the system was applied on-site, it was found that the water quality and maintenance were stable in general. Although Norovirus was detected in a groundwater source of one small-scale water supply facility (Gangwha), in the treated water the virus was not detected, which was the first case that Norovirus was removed through the treatment system on-site. We also conducted a complete survey on the areas supplied with water treated by the new system. According to the results, microorganisms were detected in some households because of secondary pollution caused by damage to water pipes, which requires appropriate measures. Renovation of worn-out water treatment facilities and prioritization of investments considering water quality properties could improve small-scale water supply facilities. In particular, it is expected that the new water treatment system can be a good way to provide safe drinking water and the remote alarm system will help effectively manage the water treatment system.

Study of Microbial Diversity in the Bioaerosols in South Korea

Bo-ram Lee, Jihye Kim, Siwon Lee, Sujeong Park, Weon hwa Jheong, and Hyon-Mi Chung
Water Supply and Sewerage Research Division, National Institute of Environmental Research

The dynamics of the Atmosphere’s microbial inhabitants have potential implications for human health. To evaluate microbiology aerosol, we used an aerosol sampler (SPM) and a 1.2 µm pore size GF/C filter (110 mm diameter, Whatman) to collect samples in the NIER (National Institute for Environmental Research). They were cultured on an R2A agar and a TSA plates for identification. Using a 16S rRNA, we detected and monitored bacterial populations. As a result, the mostly found genus is Bacillus. Other genera of bacteria detected are Methylobacterium, Bradhizobium and Streptomyces. This concluded that monitoring requires bacteria to be present in a large variety of bioaerosols. As a future plan, we plan to further investigate the microorganism diversity in atmosphere.

Comparison of Biodiversity of Bacterial Flora Inhabiting Rhizospheres of Indigenous Plants and Naturalized Plants in Oligotrophic Cover Soils over Ultramafic Rocks

Ju-Hun Kim, Minji Kim, and Young-Gun Zo
Department of Biology, Kyungsung University

We hypothesized that the indigenous and naturalized plants have different bacterial community in their rhizosphere to make naturalized plants have relative advantages. To test the hypothesis, we identified rhizobacterial species and their metabolic functions. As the indigenous plants Setaria viridis and Gypsophila oldhamiana were used. As the naturalized plant Ambrosia artemisiaeflora was used. Bacteria were isolated, and their 16S rRNA genes were sequenced. Number of viable bacteria in indigenous plants, G. oldhamiana and S. viridis were 4.1×10^6 CFU/g and 1.1×10^7 CFU/g at TSA media with neutral pH, respectively. The bacterial species commonly in rhizosphere of indigenous plants predominated by the oligotrophic bacterium Ralstonia piketti, and its dominance reached 44 – 60%. Number of viable bacteria in A. artemisiaeflora rhizosphere was 3.9 $\times 10^6$ CFU/g, Enterobacter ludwigi predominated by 54% in rhizosphere of A. artemisiaeflora. R. piketti is known to promote growth of indigenous plants in oligotrophic soils. Functions such as nitrogen fixation with heavy metal tolerance appeared to be contribute to propagation of indigenous. [Supported by grants from KRF and RDA.]

Metabolic Succession Based on Structural Dynamics of Bacterial Community in Mesocosms of Carcass Landfills Treated with Quicklime

Jin-Nam Kim and Young-Gun Zo
Department of Biology, Kyungsung University

When livestock carcasses are buried, quicklime is treated for preventing spread of pathogens in the landfill soil. Quicklime may kill soil bacteria, so soil ecosystem can be destroyed. It can lead to inhibition of livestock carcasses decomposition. Understanding of bacterial community structure and their metabolic processes is necessary for promotion of livestock carcasses decomposition in landfills. Mesocosms of carcass landfills were made using mixture of soil, meat (40% w/w) and quicklime (0-10%). We investigated succession process of soil bacterial community using 454 pyrosequencing of 16S rRNA gene. The succession of bacterial community in the mesocosms was observed genus Clostridium (47.8%), genus Leuconostoc (55.6%) and genus Tissierella (19.9%). Based on the succession of bacterial community and metabolism of the dominant species, metabolism of soil bacteria in the mesocosms followed amino acids fermentation, lactic acid fermentation and anaerobic respiration. [Supported by KRF.]
B073

Fungal Diversities Associated with Thrips (Thysanoptera: Thripidae) Feeding on the Evening Primrose, Oenothera biennis L.

Ji-Hyun Nam, Jin-Nam Kim, and Young-Gun Zo*
Department of Biology, Kyungsung University

We investigated fungal diversity associated with the thrips by using 454 pyrosequencing of the internal transcribed spacer (ITS) region. We collected thrips species from evening primrose in Busan. The thrips were identified Frankliniella intonsa and Thrips plami. The fungal communities of gut and salivary gland in thrips were compared between F. intonsa and T. plami. By sequencing a total of 155,356 reads, we identified 113 different OTUs in the four samples. The OTUs related to the phylum Ascomycota were observed predominantly (21.2-93.5%) in 4 tissues. The Ascomycota had similar fungal patterns at the phylum and lower taxonomic levels. Individuals of the two thrips species had similar overall fungal communities in their guts. In case of salivary glands, F. intonsa had high count of Myrothecium while T. plami had high count of Cladosporium. Our work shows that the Ascomycota associated with thrips. Ascomycota are responsible for most of phytopathogenic fungal diseases that causes leaf spot and disorders, rots, and cankers in various plants. This association appears to have a potential application in insect pest control.
[Supported by grants from RDA.]

B074

Potential of Smartphones as a Reservoir of a Wide Variety of Bacterial Species

Hyein Jin, Sunghun Han, and Young-Gun Zo*
Department of Biology, Kyungsung University

Smartphones may act as a reservoir of a wide variety of bacterial species, many of which may have the potential to be pathogenic. Smartphones used by parents are of particular interest, as they may be implicated in the spread of pathogens to children. Smartphone accessories may also function as a pathogen reservoir. Although many of these items are subjected to very high hygienic standards, standard cleaning procedures or even guidelines for the use of smartphones are yet to be established. In this study, we cultured staphylococcal bacteria from smartphone surfaces. Results showed a correlation between isolated bacterium found on parents’ mobile devices and respective questionnaires, demonstrating the cross-contamination potential of smartphones in the nurture environment. Out of 52 samples, Total coliform was 0.008 CFU/cm², the average abundance of the Staphylococcus aureus was 0.425 CFU/cm², the maximum value was 195 CFU/smartphone. Many studies have reported that the majority of people, including infant’s parents, do not clean their smartphones. Therefore, good personal hygiene ought to be sought in development of smartphones and accessories.
[Supported by grants from KRF.]

B075

Impact of Ocean Acidification on Microbial Community and Its Function – Metagenomic Analysis in a Marine Mesocosm Experiment

Min-Jung Kwak1,2, Byung Kwon Kim3, Soon-Kyeong Kwon4, Kitack Lee3, Kyoungsoon Shin3, and Jihyun F. Kim2*
1Biosystems and Bioengineering Program, School of Science, University of Science and Technology(UST), 2Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 3Pohang University of Science and Technology, 4South Sea Research Institute, Korea Institute of Ocean Science and Technology

According to the reports from the Intergovernmental Panel on Climate Change, the concentration of atmospheric CO₂ will rise up to 1,000 ppm and the ocean pH will decrease 0.3 units due to dissolved CO₂. To anticipate the possible influence of the ocean acidification to the marine ecosystem, we performed a time-series comparative whole metagenomic analysis of the marine microbial communities between two CO₂ conditions (380 ppm and 1200 ppm) in a mesocosm experiment. In both conditions, Gammaproteobacteria, Alphaproteobacteria, and Flavobacteria were dominant bacterial phyla, and Bacillariophata and Chrysophyceae were dominant eukaryotes in the beginning. At the late stages, the bacterial community shifted into an Alphaproteobacteria-dominant structure, but the proportion of Flavobacteria was still high in elevated CO₂. At 380 ppm CO₂, Dinophyceae were dominant during the late stages, but their dominance did not appear at 1200 ppm CO₂. Moreover, there were notable changes in gene complements according to the CO₂ concentrations and time course. Details on microbe and gene dynamics will be presented.
[Financial support from the National Research Foundation (grant no. NRF-2011-0017670)]
C001

Antiviral Properties of Probiotic Mixtures against Rotavirus in the Rat

Jae Eun Park, Do Kyung Lee, Min Ji Kim, Kyung Tae Kim, and Nam Joo Ha
1College of Pharmacy, Sahmyook University, 2Department of Chemistry, Sahmyook University

We evaluated the anti-rotaviral activities of probiotic mixtures in a Sprague-Dawley rat. Litters of 12 pups per dam were randomly assigned to four groups; placebo, phosphate buffered saline (PBS), and two probiotic mixtures (PRO-1 and 2). All groups were inoculated with rotavirus at dose of 8 log plaque forming units per animal at 5 days old. After inoculation, PRO-1 and 2 groups were orally administered probiotic mixtures 1 or 2, respectively, at a dose of 8 log colony forming units once daily for 4 days from the day of inoculation, respectively. It was found that the weights of small intestines were greater in the PRO-1 and 2 groups than in either of the control groups. Villi were shortened and villous epithelial necrosis was exhibited by rotavirus infected rats, but these morphological changes were not observed in PRO-1 and 2 treated rats. Real time-quantitative PCR assay showed that critical threshold values were higher for PRO-1 and 2 and fecal samples than for those of the control groups. Also, the mRNA transcript levels of rotavirus in small intestinal epithelial cells were lower in the PRO-1 and 2 groups. [Supported by grants from Sahmyook University Research Fund (2012).]

C002

Probiotics for the Treatment of Viral Gastroenteritis in Children: A Randomized, Double-blind, Placebo-controlled Trial

Do Kyung Lee, Jae Eun Park, Min Ji Kim, Kyung Tae Kim, Jae Ku Seo, Ji Hyuk Lee, and Nam Joo Ha
1College of Pharmacy, Sahmyook University, 2Department of Chemistry, Sahmyook University

We evaluated the efficacy of probiotics for the treatment of acute viral gastroenteritis in children and against rotavirus in vitro. The antiviral activities of probiotic isolates on rotavirus infection were investigated in the Vero cell line using a plaque reduction assay. Of the tested probiotic strains, Bifidobacterium longum isolated from an infant showed the second-highest inhibitory effect and Lactobacillus acidophilus showed the second-highest inhibitory effect. These probiotics were chosen for further clinical trials. Twenty-nine pediatric patients who presented with symptoms of viral gastroenteritis were enrolled in a double-blind trial and randomly assigned at admission to receive six probiotic strains (B. longum, B. lactis, L. acidophilus, L. rhamnosus, L. plantarum, and Pediococcus pentosaceus) at a dose of 9 log colony forming units or a comparable placebo twice daily orally for 1 week. These probiotics significantly shortened the duration of diarrhea as compared with a placebo (6.1 ± 0.5 vs 7.2 ± 1.9, P = 0.030). We suggest that these probiotics may be a useful for the treatment of rotavirus gastroenteritis or as an alternative therapy. [Supported by grants from Sahmyook University Research Fund (2012).]

C003

Violacein from Novel Pseudoduganella Strain and Its Application to Kill Staphylococcus aureus

SeongYeol Choi and Robert J. Mitchell
Ulsan National Institute of Science and Technology

Lactic acid bacteria (LAB) may inhibit growth of spoilage and pathogenic microorganisms. The antimicrobial LAB strains could be used for the alternative to antibiotics. Among several hundred strains isolated from various sources, ten isolates showed over 10 mm inhibition zone in the agar diffusion test against all the pathogens examined, such as Escherichia coli, Clostridium perfringens, Listeria monocytogenes, Staphylococcus aureus, Salmonella typhimurium. These LAB strains with highest antibacterial activity were identified as Lactobacillus sp., Bifidobacterium sp., Pediosoccus sp. according to their 16S sequences. The characteristics of the lactic acid bacterial strains with particular functions such as antiviral activity, adherent ability to enterocyte, tolerances towards gastric juice, bile, heat, and cold-dry conditions were further investigated to select strains for probiotic use. [Supported by MOTIE.]

C004

Isolation and Characterization of Lactic Acid Bacteria Inhibiting Harmful Pathogens

Younghoon Lim, Youri Jang, Yungoh Shin, Youngsung Lim, Jinsoo Ham, Eunsu Go, and Keun Kim
Department of Bioscience and Biotechnology, The University of Suwon

Harmful Pathogens

Isolation and Characterization of Lactic Acid Bacteria Inhibiting Harmful Pathogens

Younghoon Lim, Youri Jang, Yungoh Shin, Youngsung Lim, Jinsoo Ham, Eunsu Go, and Keun Kim
Department of Bioscience and Biotechnology, The University of Suwon

Lactic acid bacteria (LAB) may inhibit growth of spoilage and pathogenic microorganisms. The antimicrobial LAB strains could be used for the alternative to antibiotics. Among several hundred strains isolated from various sources, ten isolates showed over 10 mm inhibition zone in the agar diffusion test against all the pathogens examined, such as Escherichia coli, Clostridium perfringens, Listeria monocytogenes, Staphylococcus aureus, Salmonella typhimurium. These LAB strains with highest antibacterial activity were identified as Lactobacillus sp., Bifidobacterium sp., Pediosoccus sp. according to their 16S sequences. The characteristics of the lactic acid bacterial strains with particular functions such as antiviral activity, adherent ability to enterocyte, tolerances towards gastric juice, bile, heat, and cold-dry conditions were further investigated to select strains for probiotic use. [Supported by MOTIE.]
An Antagonistic Bacterium Bacillus amyloliquefaciens KB3 Isolated from Feces of Allomyrina dichotoma Tertiary Larvae Promotes Growth of Tomato and Pepper Seedlings

Hyo-Song Nam, Young Cheol Kim, Joan-Seong Park, Sun-Am Kim, and Bong-Jun Oh
1Bio Control Research Institute, 2Institute of Environmentally-Friendly Agriculture, Chonnam National University

A total of 1,000 bacterial strains were isolated from feces of Allomyrina dichotoma tertiary larva. Among them, 190 strains were pre-screened for having potential antagonistic activity against plant pathogenic fungi, Botrytis cinerea and Rhizoctonia solani, and for having biosurfactant activity. The strain showing strong antifungal activity was named Bacillus amyloliquefaciens KB3 by morphological and biochemical properties as well as phylogenetic analysis with 16S rRNA sequences. The cultures of KB3 strain were effective in promoting shoot and root length, and biomass of tomato and pepper seedlings under gnotobiotic conditions compared to the control. Treatments with the cell-free culture supernatant (CFS), a suspension of KB3 cells in distilled water (KB3D), indole extracts, and lipopeptide extracts from KB3 cultures increased shoot and root growth, and biomass of tomato seedling. But no plant growth promotion was observed with treatment of a suspension of heat-killed KB3 in distilled water (KKB3D). By HPLC analysis, the presence of the auxin, indole-3-acetic acid, was detected from KB3 cultures. These results indicate that KB3 has an ability of promoting growth in plants.

Characterization of Staphylococcus haemolyticus L62 Lipase Immobilized on Amin-functionalized Magnetic Nanoparticles

Ki Ppeum Lee and Hyung Kwoun Kim
The Department of Biotechnology, The Catholic University of Korea

Staphylococcus haemolyticus L62 lipase has been immobilized onto amine-functionalized nanoparticle (AMP) by covalent cross-linking with glutaraldehyde. The physicochemical properties of the immobilized L62 AMP were evaluated by electron microscopy. Magnetic property measurement system, and Zeta potential system. It was verified that the magnetic nanoparticles aggregated to form about 1.6 μm size complex and displayed saturation magnetic value was 25.56 emu/g. The L62-AMP was investigated by studying the effect of temperature and pH on the activity and stability. In addition, its substrate specificities toward various synthetic p-nitrophenyl esters and natural oils were characterized. The L62-AMP showed an enhanced activity at high temperatures and at wide pH range, while it showed similar substrate specificity with free lipase. This L62-AMP could be recovered rapidly with external magnet and maintained above 90% of residual activity until 4-times of recovery.

Biochemical Characterization of L-Asparaginase in NaCl-tolerant Staphylococcus sp. OJ82 Isolated from Korean Fermented Seafood

Sangwon Han and Wojun Park
Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University

L-asparaginase from Gram-positive bacterial species has been poorly explored. SoAsn was expressed in Escherichia coli BL21(DE3) with an estimated molecular mass of about 37.5 kDa by SDS-PAGE. Consistent with asparaginases in Gram-negative bacteria, our size exclusion chromatography demonstrated that SoAsn was a homodimer. We verified that SoAsn has different kinetics, cofactor requirement, and NaCl-tolerant from those of EcAsn. Interestingly, SoAsn retained its activity more than 60% under 2 M NaCl, but the activity of EcAsn was reduced to be 48%. Taken together, SoAsn has different kinetics, cofactor requirement, and NaCl-tolerant from those of EcAsn.

This work was supported by Next-Generation BioGreen21 Program (PJ0082082013), Rural Development Administration, Republic of Korea.
C009

Linoleic Acid: A Potent Compound in *Withania somnifera* Inhibits Virulence Properties and Composition of *Streptococcus mutans* Biofilms

Santosh Pandit, Mi Ah KIM, and Jae Gyu Jeon
Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University

This study investigated the role of polyunsaturated fatty acids present in *Withania somnifera* to show effect against virulence properties of *S. mutans* biofilms. Chemical characterization of hexane fraction (HF) was carried out by GC/MS which showed palmitic acid (PA), linoleic acid (LA) and oleic acid (OA) as major compounds. Effects of LA, OA, PA, sodium fluoride (NaF) and HF were tested against the acidogenic, acidic and EPS formation ability of *S. mutans* biofilm cells. 100 µg/ml of each agent showed effect against the acidogenic ability of biofilm cells whereas HF, LA and OA showed strong inhibitory potential against the acidogenic effect and EPS formation by biofilm cells. Mainly HF, LA, OA and NaF inhibited dry weight and water insoluble polysaccharide after twice daily 10 min treatment. Confocal images and COMSTAT analysis after twice daily treatment revealed that perfect inhibition of EPS of *S. mutans* biofilm by HF, OA, LA and NaF. Thus, these results suggest that LA might be the effective agents to reduce virulence properties of biofilm followed by the inhibition of dental caries.

C010

Strategy for Screening Metagenomic Resources for Novel Multifunctional Cellulolytic Enzymes Using a Robotic High-Throughput Screening System and Its Characterization

Kyong-Cheol Ko, YunJoon Han, Dae-Eun Cheong, Jong Hyun Choi, and Jae Jun Song
BioRefinery Research Center, Korea Research Institute of Bioscience and Biotechnology

There have been no screens for exocellulase owing to assay protocol limitations, the high cost of substrates, and low activity of exocellulase compared with endocellulase. This new HTS system enabled activity verification of more than 10^3 clones per day. We were able to obtain four exocellulase clones from about 30,000 metagenomic fosmid clones that had previously been prepared from sweet potato field soil microbes and rumen fluid. This powerful approach could be effectively applied to screen various metagenomic resources for new enzymes. The celEx-SF301, celEx-SF309, celEx-BR12, and celEx-BR15 revealed four ORFs predicted to encode proteins with amino acid sequence homologies to Glycoside hydrolase of Candidatus Koribacter versatilis Ellin345, β-galactosidase of Granulicella tundricola MPXACTX9, Family 5 glycosyl hydrolase of Prevotella ruminicola 23, and cellulase of *Streptomyces hygroscopicus* ATCC 53653, respectively. Based on these findings, we believe that celulases are efficient multifunctional enzymes that may prove useful for biotechnological applications.

C011

Characteristics of Mulberry Wine Using Traditional Fermentation Microorganism

Hae Hoon Yoon, Kyo Seo Chae, Rak Ho Son, and Ji Hye Jung
Gochang Black Raspberry Research Institute

We investigated domestically made mulberry wine by using traditional fermentation microorganism and also observed its fermentative characteristics and antioxidant activity. *S. cerevisiae* B is traditional fermentation microorganism isolated from domestically grown *Rubus occidentalis* and not produce biogenic amines. Each *S. cerevisiae* B and Fermivin was inoculated into mulberry juice up to 1×10^6 CFU/ml/kg and it was incubated at 25°C for 8 days. Final fermentation products of mulberry juice from *S. cerevisiae* B presented 16.12% of alcohol, 10.1°Bx of sugar, and 4.38 g/L of acidity and final fermentation products from Fermivin presented 15.18% of alcohol, 11.1°Bx of sugar and 7.01 g/L of acidity. The content of total phenolic compounds of *S. cerevisiae* B (1901.69±10.25 mg/ml) observed higher than Fermivin (1901.69±17.38 mg/ml) and DPPH & ABTS radical scavenging activity showed similar figure on *S. cerevisiae* B and Fermivin. On the basis of all results, the possibility of industrial utilization of traditional fermentation microorganisms was confirmed by excellence on fermentation ability and antioxidant activity.

[Supported by the MOTIE, KIAT and HIRPE]

C012

Isolation and Characterization of Novel Genes Related with Calcium Carbonate Precipitation of *Paenibacillus polymyxa* E681 by Transposon-insertional Mutagenesis

Sung-Jin Park, Ki-Ho Park, and Se-Youl Ghim
School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), and Institute for Microorganisms, Kyungpook National University

This study shows the isolation and characterization of mini-Tn10 insertion mutants derived from the calcium carbonate forming bacterium *Paenibacillus polymyxa* E681. We identified five transposon mutants showing an increased calcium carbonate precipitation on B4 solid medium. These five mutants were further characterized by quantitative test of calcium carbonate precipitation and pH increase. In the results, calcium precipitation of mutant strains was observed in 10 days after, but the precipitation of wild type E681 was not observed in same inoculation period. Among them, mutant 6-15 strain showed a higher increased pH than that of wild type E681, was finally selected. DNA fragments flanking the transposon insertion in five mutants were cloned and sequenced.
A Novel CO-Dependent Transcriptional Regulator and Enhanced \(\text{H}_2 \) Production by an Engineered \textit{Thermococcus onnurineus N1}

Min-Sik Kim\(^1\), Ae Ran Choi\(^2\), Seong Hyuk Lee\(^2\), Jeong Ho Jeon\(^1\), Hae-Jung Lim\(^1\), Hae-Chang Jung\(^2\), Tae-Jun Yang\(^1\), Hwan Yoon\(^1\), Tae Wan Kim\(^1\), Hyun Sook Lee\(^{1,2}\), and Sung Gyun Kang\(^1\)

\(^1\)Department of Marine Biotechnology Korea Institute of Ocean Science and Technology, \(^2\)University of Science and Technology Daejeon, \(^3\)Department of Biology, California State University, Fresno, California, USA

Genomic analysis suggested the existence of a CO-dependent transcriptional regulator composed of the CorQ with a V4R domain and the CorR with a DNA-binding domain of LTR family in a carboxydotrophic hydrogenogenic \textit{Thermococcus onnurineus N1}. CorQR homology were identified in three other Thermococcus strains and a Candidatus Korarchaeum cryptofilum OP8. Using the mutant strains with deletion of corQ or corR, it was demonstrated that CorQR serve as a positive transcriptional regulator for expression of a gene cluster composed of a carbon monoxide dehydrogenase (CODH), a hydrogenase and a transcriptional regulator composed of the CorQ with a V4R domain. The mutant strain, MC02, with overexpression of corQR showed 2 to 7-fold higher transcripts and 2 to 4-fold higher proteins from the CODH gene cluster than the wild-type strain. The overexpression of the transcriptional regulator resulted in a 4-fold increase in \(\text{H}_2 \) production in a bioreactor culture compared to the wild-type strain. To the best of our knowledge, the engineered strain exhibited the highest \(\text{H}_2 \) production rate of 171 mmol/L/h and specific \(\text{H}_2 \) production rate of 237 mmol/g/h among CO-dependent \(\text{H}_2 \)-producing microbes studied to date.

C014

In vitro Evaluation of Antibacterial Activity of Plant Extracts against Clostridial Necrotic Enteritis Strains

Jae Young Oh\(^1\), Kwang Jae Lee\(^2\), Jae Hee Roh\(^1\), Wei Bai\(^1\), Min Kang\(^1\), Se Yeon Cha\(^1\), Hee Jong Song\(^1\), and Hyung Kwan Jang\(^1\)

\(^1\)Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine & Korea Zoozosis Research Institute, Chonbuk National University, \(^2\)Gangwon Agricultural Research and Extension Services

Clostridium \(\text{perfringens} \) generate a variety of economically significant diseases as the causative agent of necrotic enteritis in poultry. This study was to evaluate the \textit{in vitro} antibacterial activity of the plant extracts to prevent the clostridial necrotic enteritis from broiler chickens. Thirty wild plants were prepared by ethanol extraction method. Antimicrobial susceptibility testing was conducted by agar dilution methods. Two (\textit{Fraxinus rhynchophylla Hance} and \textit{Geranium koreanum Kom.}) of the 30 plant extracts showed excellent antibacterial activity against \textit{C. perfringens} by modified spot-on-lawn method. The MIC values of \textit{F. rhynchophylla Hance} and \textit{G. koreanum Kom.} against strains were ranged from 128 to 256 \(\mu \text{g/ml} \) and 32 to 128 \(\mu \text{g/ml} \), respectively. The MBC values of two extracts were ranged from 1,024 to 2,048 \(\mu \text{g/ml} \) and 256 to 1,024 \(\mu \text{g/ml} \), respectively. The geometric mean of MBC against strains was 3-fold dilution higher than those of MIC. \textit{F. rhynchophylla Hance} and \textit{G. koreanum Kom.} showed outstanding antimicrobial activity against clostridial necrotic enteritis strains.

[Supported by grants from Ministry for Food, Agriculture, Forestry, and Fisheries, Korea (No. 311007-3)]

C015

Anaerobic Biodegradation of Sulfamethoxazole by Human Intestinal Bacteria \textit{Eubacterium limosum ATCC 8486}

Jiyoung Park, Hyeun Lee, and Hor-Gil Hur

School of Environmental Science and Engineering, Gwangju Institute of Science and Technology

Sulfamethoxazole (SMX) is one of the most commonly applied sulfonamide antibiotics. The widespread use and disposal of SMX have become a serious concern due to the potential antibacterial resistances. Hence, the effort to remediate SMX in environments has been increasing. In this study, we demonstrated SMX biodegradation by \textit{Eubacterium limosum} which is human intestinal microbe. When 100 \(\mu \text{g} \) SMX and \(E. \) \textit{limosum} were added into BHI media, about 80% of SMX was degraded within 7 days. Furthermore, three assumed metabolites were produced from SMX. Based on QTOF-LC/MS analysis, mass of the major unknown chemical compounds were 172, 210 and 244, respectively. This result suggest that SMX can be metabolized by \(E. \) \textit{limosum} in human intestine and the staple concern with SMX biodegradation by this intestinal bacteria is the behavior of its metabolites in our body. This is the first report that individual bacteria could be related to SMX biodegradation under anaerobic conditions. For further work, identification of those metabolites would be accomplished to know their effect in our body.

[This work was supported by the NRF of Korea (NRF- 2010-0029224) grant.]

C016

Establishment of Improved Methods for Survivability of Freeze-dried \textit{Vibrio} Pathogens in Long-term Preservation

Hyun Bae Kang\(^1\), Mi-hee Kim\(^2\), Na-Ri Shin\(^1\), Soonyoung Han\(^3\), and Kwang-Jun Lee

\(^1\)Pathogen Resource TF, Center for Infectious Diseases, National Institute of Health, Korea Centers for Disease Control & Prevention, \(^2\)Center for Infectious Diseases, National Institute of Health, Korea Centers for Disease Control & Prevention

A wide range of bacteria is preserved with skim milk as a protectant in culture collection. However, \textit{Vibrio} often fail to preservation in this way, resulting in loss of them. The aim of this study is therefore to search an effective protectant for \textit{Vibrio} preservation and investigate its protective mechanism. The respective culture of \textit{V. vulnificus}, \textit{V. parahaemolyticus}, and \textit{V. cholerae} at the exponential stage was suspended in skim milk and/or inositol solution as a protectant, and aliquoted in ampoules. After frozen and dried at -80\(^\circ\)C under vacuum, the ampoules were stored for 2 weeks at 37\(^\circ\)C for accelerated test. Freeze-dried bacteria was observed under the electronic microscope and their viability was determined by flow cytometry and colony count methods. The data from three species commonly showed the greatest viability when cultured in 3%NaCl-LB broth after stored with 5% inositol alone and this phenomenon was consistently observed to three non-pathogenic \textit{Vibrio} species in the same condition. Therefore, our results suggest that 5%inositol could be a good candidate as a cryo- and lyo-protectant for \textit{Vibrio} pathogens and 3%NaCl-LB positively helps them to reactivate and proliferate.
C018

The Application of O3 and Plasma to Bakanae Disease Control

Min Ho Kang¹, Anchalee Pengkit², Dae Hoon Park³, Hyo Won Choi³, Dong Bum Shin⁴, Eun Ha Choi⁴, Han Sup Uhm⁴, and Gyungsoon Park⁴

¹Plasma Bioscience Research Center, Kwangwoon University; ²Department of Crop Environment, National Institute of Crop Science; ³Department of Crop Life Safety, National Academy of Agricultural Science, ⁴Department of Food Science and Biotechnology, Kyungpook National University

Selective sterilization by plasma is one of the current issues in plasma bioscience. Inactivation of microbes associated with foods and host organisms requires non-toxicity to foods and hosts. The objective of our study is to examine the potential of plasma and O3 for selectively inactivating fungal pathogens infecting seed rice. For this, we first investigated the feasibility of using O3 and plasma generated by arc discharge in water to inactivate *Fusarium fujikuroi*, a fungus causing rice bakanae disease which now becomes a problem in Korea. When fungal spores (1.2 × 10^10) in DI water were exposed to O3 gas, germination was also observed in water after a 10 min treatment with arc discharge plasma. Surface of spores was severely wrinkled in the treatment with ozone whereas many spores were crushed in the treatment with arc plasma. Less fungal growth was observed on seed rice after treatment with ozone or arc plasma.

This work was supported by grants from NRF funded by the Korean government (MSIP) (2010-0027963, 2013R1A1A3011245) and also by RDA, Republic of Korea (PJ009891).

C019

Production of Nitric Oxide Using a Microwave Plasma Torch and Its Role in the Development of Neurospora crassa

Naresh Kumar, Young Ho Na, Min Ho Kang, Eun Ha Choi, Han Sup Uhm, and Gyungsoon Park

Plasma Bioscience Research Center, Kwangwoon University

Nitric oxide (NO) is known as a signalling molecule that regulate gene expression, mediate immune response and inflammation, and mediate tissue differentiation and organ development. The analytical theory indicates that the nitrogen monoxide density is nearly proportional to the oxygen molecular density and that the high-temperature flame is an effective means of generating nitrogen monoxide. In the study, we have measured the concentration of nitrogen monoxide produced by using different level of the oxygen input in units of cubic centimetre per minute. We applied nitric oxide produced from a nitrogen torch operated at a microwave power of 400W to fungal spores in saline and then examined the germination and sporulation. Our results demonstrated that the number of spores and the expression level of sporulation related genes such as acon-2, acon-3, acon-4 and acon-10 were elevated after the treatment with nitric oxide generated by using 400 sccm (standard cc per minute) O2 flow.

[Supported by the National Foundation of Korea (NRF), (2010-0027963 and 2013R1A1A3011245).]

C020

Changes in the Yeast Flora during Alcohol Fermentation of Korean Persimmons

Yu Mi Na, Jun Su Choi, and Heui Dong Park

Department of Food Science and Biotechnology, Kyungpook National University

This study was carried out to investigate the changes in the yeast flora during fermentation of Korean persimmon wine. Alcohol fermentation was carried out by inoculation of *S. cerevisiae* Fermivin and *S. cerevisiae* EC1118 cells. Persimmon juices prepared by filtration of crushed persimmon were adjusted to 24 °Brix with sucrose before inoculation of yeast cells. During the fermentation, physicochemical and microbiological changes were monitored and 20 yeasts each isolated at the various stages were analyzed by PCR-RFLP for 16 days of fermentation period. Sugar content were 10~13.4 °Brix and alcohol content were 8.8~12.8% after fermentation which were dependent upon the yeast strains. pH and total acid content were 3.9~4.1 and 0.3~0.4% during the fermentation of persimmon wine. Total 400 yeasts isolated during the fermentation were analyzed by PCR-RFLP. Internal transcribed spacer (ITS) region of the isolated yeasts was amplified by ITS1 and ITS4 primers and then, cut with restriction enzyme *Hae* III and *Hin f* I, which were resolve in the 1.5% agarose gel.

Keywords: PCR-RFLP, persimmon, Indigenous yeast
Effects of a *Hanseniaspora uvarum* Isolated from Korean Grapes on the Quality of Wine Fermented Using Campbell Early Grape Must

Jeong Lee, Su Jin Kim, Won Suk Choi, Min A Kim, and Heui Dong Park

1Department of Food Science and Biotechnology, Kyungpook National University, 2Department of Fermentation Biotechnology, Kyungpook National University

Grapes of Campbell Early cultivar, the major Korean domestic grape variety, contain low sugar and high acid contents. Wines fermented using Campbell Early grapes, in general, are weak in color and flavor, and contain undesirable flavor of fox aroma. In this study, it was found that *Hanseniaspora uvarum* is the major wild yeast in Korean grapes. Total 105 *H. uvarum* strains were isolated from Campbell Early (Sangju, Dansan, Yeongcheon, organic), MBA (Yeongcheon) and improved wild grapes (Dansan). When they were tested for alcohol and flavor production in a small scale grape juice fermentation. Several *H. uvarum* strains were selected based on the alcohol and flavor production in wine. And, their fermentation characteristics were analyzed using Campbell Early grape must.

Keywords: *Hanseniaspora uvarum*, Campbell Early, flavor

Biodiversity of Wild Yeasts Isolated from Korean Honey Based on the rDNA PCR-RFLP and Sequences

Su Jin Kim, Jeong Lee, Young Gil Na, and Heui Dong Park

1Department of Food Science and Biotechnology, Kyungpook National University, 2Department of Fermentation Biotechnology, Kyungpook National University

Wild yeasts were isolated from various Korean honeys and characterized by molecular techniques. Eighty yeast colonies each were isolated from four different honey samples such as multi-floral, black locust, chestnut and jujube tree honeys on the YPD plate containing sodium propionate. Diversity of the isolates was studied by the restriction fragment length polymorphism (RFLP) of PCR products amplified by using ITS1 and ITS4 primers. PCR-RFLP resulted that the isolates from each honey samples can be divided into 2-3 groups. When, typical strains of the group were selected and identified by the phylogenetic analysis, major yeasts were different from one honey sample another. Total three genera and five species were *Zygosaccharomyces rouxii*, *Z. siamensis*, *Zygosaccharomyces mellis*, *Siameella bombicola* and *Candida maquilae*. Among the strains, *Z. siamensis* were the most abundant yeast in the Korean honey especially in jujube tree (64/125 isolates) and chestnut honeys (45/96 isolates)

Keywords: Honey yeast identification, PCR-RFLP, 5.8S-ITS region

Analysis of the Antimicrobial Effects of Non-thermal Plasma on Fungal Spores in Ionic Solutions

Min Ho Kang, Young June Hong, Althi Pankaji, Geon Bo Sim, Geon Joon Lee, Kamonporn Panpong, Gi Chung Kwon, Eun Ha Choi, Han Seop Uhm, and Gyunghoon Park

Plasma Bioscience Research Center, Kwangwoon University

Microenvironments surrounding microorganisms often modulate the effects of various anti-microbial agents. Increasing number of studies show that sterilization efficiency of plasma varies depending on the background environment surrounding microorganisms. In this study, we investigated the influence of NaCl in background media on anti-microbial effects of plasma using a model eukaryotic microbe, *Neurospora crassa* (filamentous fungus). Our data revealed that the presence of NaCl in the background solutions attenuated the deleterious effect of plasma on germination, internal structure, and genomic DNA of fungal spores. The protective effects of NaCl were not explained exclusively by pH, osmotic stability, or the level of reactive species in the solution. The presence of ions reduced plasma toxicity, which might be due to a reduced access of reactive species to fungal spores, and fungal spores were inactivated by plasma in a background fluid of non-ionic osmotolytes in spite of the low level of reactive species.

[Supported by grants from the Korea government (MSIP) (2010-0027963, NRF-2013R1A1A3011245).]

Building a Platform Technique for Rapid and Sensitive Detection of NADPH in Various Samples

Sung-Hwan You, Sun-Tae Kim, Won-Jung Kim, and Geun-Joong Kim

1Department of Biological Sciences, College of Natural Science, Chonnam National University, 2Medisensor, Daegu Technopark R&D Center

Intracellular redox and energetic status play a crucial role in cardiovascular diseases and metabolic disorders. The physiological status of reducing agents, such as NADPH and NADH, is required for the activity of antioxidant system. For these reasons, an accurate measurement of reducing and/or oxidizing cofactors enables clinical diagnosis of preanalytical phase. Although various methods have been used for this purpose, these are the high costs of experiment and large instrument requiring processes, also not suitable for rapid routine use. Thus, developing a miniaturized and economical device for the sensitive, specific and rapid determination of cofactors is highly desired. Here we present a fluorometric platform technique for the quantitative detection of NADPH. The system suggested here circumvents many issues of previous methods, because this system simply measured an enhanced fluorescence of NADPH by interaction only with mBFP (a metagename-derived NADPH-dependent blue fluorescence protein). Using this platform technique, we can specifically measure the target analyte in complex samples derived from whole cells including blood, saliva, urine and environmental samples.
Expression Analysis of Rice Pathogenesis-related Proteins Involved in Stress Response and Endophytic Colonization Properties of gfp-tagged Bacillus subtilis CB-R05

Sang Hye Ji, Mayank Anand Gururani, and Se-Chul Chun
1Department of Molecular Biotechnology, Konkuk University, 2Subtropical Horticulture Research Institute, Faculty of Biotechnology, Jeju National University

Bacillus subtilis CB-R05, possessing antagonistic effects against several fungal pathogens is a diazotrophic plant-growth promoting bacteria marked with the gfp gene. To confirm the expression level of the PR proteins in rice inoculated with CB-R05, the expressions of four PR proteins (PR2, PR6, PR15 and PR16) were examined in this study, in the rice leaves treated with wounding stress over a time period. The results revealed that the PR proteins were generally more strongly expressed in the rice leaves inoculated with CB-R05 compared with the untreated control. The marked gfp-tagged CB-R05 strain was inoculated onto the rice seedlings under axenic conditions. Under the confocal laser scanning microscope (CLSM), the gfp-tagged CB-R05 bacterial cells were observed to penetrate the rhizoplane, especially in the elongation and differentiation zones of the rice roots and colonize the root intracellular. The CB-R05 population in the rice root rhizosphere was also monitored. These results show a very widespread colonization of the CB-R05 in the rice rhizosphere. Further attempts are under way to investigate the competition between the CB-R05 bacteria and the fungal pathogen in vivo.

Antagonistic Activity of Potent Probiotic Lactobacillus Strain against Acne Pathogens

Kii-Sun Myoung, Soo-A Kim, Jae-Hun Sim, and Sung-Sik Jang
R&B Center, Korea Yakult Co.

Makgeolli is a Korean traditional alcoholic beverage fermented using steamed wheat and rice. In this study, we collected local makgeolli samples, and then isolated and lactic acid bacteria (LAB). Makgeolli contained 10^3–10^4 CFU/ml of yeast and 10^3–10^5 CFU/ml of LAB on average. Lactobacillus paracasei subsp. paracasei HY7301 was also isolated from a makgeolli manufactured in Gyeonggi area. In this study, we investigated antagonistic activity of L. paracasei HY7301 against Propionibacterium acnes causing acne vulgaris. The culture supernatant of L. paracasei HY7301 inhibited growth of P. acnes virulent strains by about 80–90%. Also the growth of P. acnes was restrained by cocultivation with L. paracasei HY7301. These results suggest that L. paracasei HY7301 can be a useful probiotic microorganism for prevention acne vulgaris.

[Supported by grants from iPET]

Cloning, Overexpression and Characterization of a Novel β-Galactosidase from Leuconostoc mesenteroides J18 Isolated from Kimchi

Mohammad Mizanur Rahman and Chang-Jun Cha
Department of Systems Biotechnology, Chung-Ang University

The complete genome sequence analysis of Leuconostoc mesenteroides J18 revealed several β-galactosidase genes in this strain. A gene encoding protein (YP_001742949) of glycosyl hydrodase family with 478 amino acid residues was annotated to be β-glucosidase/6-phospho-β-glucosidase/β-galactosidase. To characterize this protein, the gene was PCR-amplified, cloned into E.coli DH5α, and overexpressed in the expression host E. coli BL21 (DE3) using pET28α (+) vector under the control of T7 promoter. The recombinant protein was overexpressed at 20°C and the crude enzyme was able to hydrolyze 4-nitrophenyl-β-D-galactopyranoside with a specific activity of 1.7 U/mg. No hydrolysis was observed with the substrate 4-nitrophenyl-β-D-glucopyranoside, suggesting that the recombinant enzyme possesses β-galactosidase activity. The recombinant protein was purified by Ni^{2+}-NTA affinity chromatography and produced a single band on SDS-PAGE with an approximate molecular weight of 55 kDa. Functional characterization of the enzyme is now in progress, since it did not show a significant amino acid sequence identity with other functionally characterized β-galactosidases.

Isolation of Acetic acid Bacteria for the Production of Traditional Vinegar from Korean Wine and Their Properties

Myeo Seon Ryu, Jun Heo, SaeBom Jeon, Do Yeon Jeong, and Tai-Boong Uhm
1Department of Biological Sciences, Chungbuk National University, 2Sunchang Research Center for Fermentation Microbes (SRCM), 3Institute for Radiation Technology, Chungbuk National University

Although industrial fermentation of vinegar has been well established, scientifically little has been known about traditional vinegar fermented from Korean wine. We tried to isolate acetic acid-producing strains from 26 brands of unrefined rice wine (makgeolli) produced by local microbreweries, which could reproduce flavors of traditional vinegar. To keep the high yield and preservation of vinegar, we selected 12 strains of acetic acid bacteria with excellent resistance against the toxicity of ethanol and sulfite. All of them grew well even in the presence of 350 mg/L of potassium metabisulfite used as a preservative. In spite of survival at the concentration of 20% (v/v) ethanol added as substrate, they produced vinegar optimally with production yields ranging from 9 to 47% at the concentration of 10% ethanol. As results of bacterial identification by16S rRNA sequencing, they belong to Acetobacter cerevisiae, A. tropicalis, A. pasteurianus, or A. indonesiensis, which are generally known as acetic acid-producers.

[This work was supported by the Ministry of Agriculture Food And Rural Affairs & Sunchang County.]
C. Applied Microbiology

C029

Isolation of Bacillus subtilis Strains Suitable for the Fermentation of Soybean Product

SaeBom Jeon1, MyeongSeon Ryu1, Heo Jun1, Do Yeon Jeong2, and Tai-Boong Uhm1,2

1Department of Biological Sciences, Chonbuk National University, 2Sunchang Research Center for Fermentation Microbes (SRCM), 3Institute for Radiation Technology, Chonbuk National University

Some of Bacillus species play a key role in the fermentation of soybean products by producing a large amount of extracellular proteases. Through primary screening, we have isolated 65 Bacillus strains from 62 samples of traditionally fermented soybean products according to the selection criteria of Bacillus strains. The criteria for the selection include (1) antimicrobial activities against pathogens including Bacillus cereus, (2) no production of biogenic amines and degradation activities toward them, and (3) high production of extracellular proteases and amylases. Among them, we examined the strains that produce conjugate linoleic acid (CLA), which is marketed as a dietary supplement on the basis of health benefits, and then identified them using comparative analysis of 16S rRNA sequences. As a result, we could get 10 strains of Bacillus subtilis with production of CLA concentration above 250 ppm. [This research was supported by High value-added Food Technology Development Program from Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea (No. 313037-3)].

C030

Screening of Bacterial Strains Which Convert Major Ginsenoside Rb1 to Minors

Chunsik Kim, Mingoo Kim, Dong-Jin Park, and Chang-Jin Kim

Microbial Resource Center, Korea Institute of Bioscience and Biotechnology

Codonopsis lanceolata is a folk medicinal plant in Asian countries, and it has bioactive compounds, ginsenosides, which are members of saponins. Many researchers have performed experiments towards converting major ginsenosides to the more active minor ginsenosides, like F2, Rg3, Rb2, and C-K. Ginseng contains a small percentage of these expensive minor ginsenosides. In the present work, for bio-conversion of ginsenoside Rb1, we isolated 16S rRNA sequence) and significantly transformed ginsenoside Rb1 to F2 and C-K. [This research was supported by a grant NRF-2006-08790 funded by Ministry of Science, ICT and Future Planning of Korean Government.]

C031

Isolation of Aspergillus oryzae Strains Suitable for the Fermentation of Soybean Products and Their Properties

Jun Heo1, SaeBom Jeon1, MyeongSeon Ryu1, DoYeon Jeong2, and Tai-Boong Uhm1,2

1Department of Biological Sciences, Chonbuk National University, 2Sunchang Research Center for Fermentation Microbes (SRCM), 3Institute for Radiation Technology, Chonbuk National University

Fungal species are major microbial sources to produce fermented soybean products, some of which excrete extracellular proteases and amylases that play a key role in fermenting and ageing process. Nevertheless, there have not been qualified mold strains universally applicable to soybean fermentation until now. We have isolated 158 mold strains from 94 brands of traditionally fermented soybean products and Korean traditional rice wine starters (Nurik), and then identified them with morphological characteristics and with comparative analysis of base sequences of internal transcribed spacer (ITS) and 28S rRNA region. As a result, we could get 31 strains of Aspergillus oryzae with no production of allatoxins and finally selected 3 strains among them after examining the excretion ability of extracellular amylases and proteases. We also compared the enzymatic properties of the strains between different amylases using kinetic analysis by high performance liquid chromatography (HPLC). [This work was supported by the Sunchang Country (high value-added) Food Technology Development Program from Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea (No. 311036-3)].

C032

Effect of L. acidophilus NS1 or L. fermentum NS2 on Plasma Cholesterol Level in Diet-induced Obese Mice

Minyu Song, Sooyeon Song, and Sejong Oh

Division of Animal Science, Chonnam National University

Reductions of plasma total and LDL cholesterol are major factor to decrease the risk of cardiovascular diseases. The objective of this study was to investigate whether Lactobacillus acidophilus NS1 or L. fermentum NS2 effectively reduces plasma cholesterol level in mice fed high-fat diet. In animal study, seven-week-old male C57BL/6 mice were fed with a normal diet (ND), a high-fat diet (HFD) or a HFD with L. acidophilus NS1 or L. fermentum NS2 (ca. 108 cfu/ml) for 10 weeks. Total cholesterol and LDL cholesterol levels were significantly lower in mice fed with a HFD with L. acidophilus NS1 or L. fermentum NS2 than in those fed HFD. Expressions of SREBP2 and LDLR in the liver were dramatically reduced in mice fed HFD as compared to those of mice fed ND. These results suggest that the oral administration of L. acidophilus increased the expressions of SREBP2 and LDLR in the liver which were inhibited by high-fat intake, leading to a decrease in plasma cholesterol level. L. acidophilus NS1 could be used as probiotics for cholesterol-lowering dairy products and the improvement of hyperlipidemia and hepatic lipid metabolism.
Change of Growth Ratio and Expression of Inductive Proteins in *Lactobacillus plantarum* L-67 under Cold Stress

Soyeon Song, Minyu Song, and Sejong Oh

Division of Animal Science, Chonnam National University

The physiological status of the cell and other environmental factors such as pH, salts and temperature may affect the mechanism of stress resistance. We report the survival of *Lactobacillus plantarum* L67 after freeze-thaw cycles, the expression levels of the *csp* genes (*cspC, cspL* and *cspP*) and ATPase activity in response to cold stress. As a result, only 56% of *L. plantarum* L67 cells without cold stress survived after four consecutive freeze-thaw cycles. However, 78% of *L. plantarum* L67 cells survived after the incubation temperature was downshifted to 5°C for 6 h under freeze-thaw conditions. In qRT-PCR and proteomic analysis, quantification of transcript levels of *cspP* gene was increased after reduction of the incubation temperature to 5°C. And 12 expressions of proteins were identified. This result indicates that exposing *L. plantarum* cells to low temperatures helps the cells to survive through subsequent freeze-thaw processes. Moreover, it may represent a further example of mechanisms for stress responses in *Lactobacillus plantarum*.
Academic Units of Life Science, Dongguk University, 2Department of Cognitive-Neuroscience Engineering, Pusan National University, 3Department of Cogn-Mechanotronics Engineering, Pusan National University

Hypoxia is a prevalent feature of solid tumors. Over-expression of HIF-1α, a transcription factor responsive to hypoxia, is frequently observed in aggressive tumors. Down-regulation of HIF-1α by virotherapy can thus be a good candidate strategy to treat these tumors. Herein we found that oncolytic H-1 parvovirus decreases protein levels of HIF-1α in pancreatic cancer cells under CoCl₂ or hypoxia. Down-regulation of HIF-1α by infection of H-1 virus is regulated by proteasome-mediated pathway. Suppression of VHL or enforced expression of UCP failed to prohibit down-regulation of HIF-1α mediated by H-1 viral infection. Furthermore, suppression of RACK1 by siRNA did not inhibit H-1 viral infection-mediated decrease of HIF-1α. Although down-regulation of HIF-1α was observed under H-1 viral infection, higher levels of HIF-1α provided resistance of apoptosis to H-1 viral infection. We found that combined treatment with H-1 virus and YC-1, an inhibitor of HIF-1α, enhances apoptosis of pancreatic cancer cells compared to treatment with H-1 virus or YC-1 alone. Accordingly, we propose that H-1 virus may be used together with YC-1 as a potential therapeutic agent against aggressive tumors.

D002 Activation of the Phosphatidylinositol 3-Kinase-AKT Pathway by Kaposi’s Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 2

Yejin Kim and Taegun Seo*
Departments of Life Science, Dongguk University-Seoul

Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) causes Kaposi’s Sarcoma, a cancer primarily founded in AIDS patients. KSHV expresses four viral interferon regulatory factors (vIRF1-4). According to the previous study, vIRF2, encoded in K11.1 and K11, participates in caspase-3 mediated inactivation by interferon regulatory factor 3, thus vIRF2 acts as potent antagonist in the caspase-3 activity. Here we demonstrate that vIRF2 triggers phosphatidylinositol-3 kinase (PI3K) pathway, and AKT activation is followed. This activation comes from the induction of AKT phosphorylation on Threonine 308 but not on Serine 473. We also found that vIRF2 deregulates the transactivation activity of the forkhead box protein 3A (FoxO3A), FKHR transcription factor family member which play an important role in apoptosis. vIRF2 also inhibits FoxO3A mediated caspase-3 activity. Additionally, we found that vIRF2 inhibits extracellular signal regulate kinase (ERK) pathway. Our results suggest that KSHV vIRF2 activates PI3K-AKT pathway and inhibits ERK.

D003 Leucine Biosynthesis Is Required for Iron Homeostasis and Virulence in Cryptococcus neoformans

Eunsoo Do¹, Guangnan Hu¹, Debora Oliveira², Melissa Caza³, James Kronstad¹, and Won Hee Jung⁴*
¹Department of Biotechnology, Chung-Ang University, ²The Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada

Amino acid biosynthesis that is absent in mammals is considered an attractive target of antifungal treatment. Isopropylmalate dehydrogenase (Leu1) is an iron-sulfur cluster protein, required for leucine biosynthesis in Saccharomyces cerevisiae. Moreover, our previous transcriptome data showed that the expression of LEU1 is regulated by iron availability in Cryptococcus neoformans. In this study, we aimed to characterize a role of leucine biosynthesis in iron homeostasis and virulence of the C. neoformans. We found that deletion of LEU1 caused the cells to become leucine auxotroph and that intracellular iron levels were significantly distorted in the leu1 mutant. The leu1 mutants also displayed increased susceptibility to oxidative stress and cell wall/membrane disturbing agents, as well as attenuated virulence. The mutant lacking the beta-isopropylmalate dehydrogenase gene (LEU2), which encodes an enzyme catalyzed in subsequent step of leucine biosynthesis, showed not only similar phenotypes to the leu1 mutant but attenuated virulence. Overall, our results suggest that leucine biosynthesis is required for iron homeostasis and virulence in C. neoformans. [Supported by awards from NRF.]

D004 Synergistic Effects of Cinnamomum camphora Leaves Extract against Clinical Isolated Methicillin-Resistant Staphylococcus aureus

Mi-Rae Choi, Eun-Sil Ko, Kyung-Min Choi, and Jeong-Dan Cha* Institute of JinAn Red Ginseng

Methicillin-resistant Staphylococcus aureus (MRSA) has been emerging worldwide as one of the most important hospital and community pathogens. Therefore, new agents are needed to treat MRSA associated infections. Cinnamomum camphora (C. camphora) is a plant of family Lauraceae, and grown Jeju island in South Korea. In this study, antibacterial activities of Cinnamomum camphora leaves extract (CCE) were investigated in combination with antibiotics against clinical isolates of MRSA. The results showed that CCE was determined with MIC and MBC values ranging from 0.625 to 0.31 and 0.625 to 0.31 mg/ml, oxacillin from 0.5 to 1024 and 1 to 1024 μg/ml, ampicillin from 1.25 to 64 and 2.5 to 64 μg/ml. The combination of CCE with oxacillin or/and ampicillin were synergistic effect against all tested MRSA. This study suggests that CCE reduced the MIC's and MBCs of antibiotics, that CCE in combination with antibiotics could lead to the development of new combination of antibiotics against MRSA infection. [This research was supported by Basic Science Research Program through the NRF funded by the MKE-R0001028] Keywords: Cinnamomum camphora, MRSA, Antimicrobial, Synergistic
viR3 and vPK Encoded by Kaposi’s Sarcoma-Associated Herpesvirus Inhibit T-Cell Factor-dependent Transcription via Different Pathway

Seho Cha and Taegun Seo

Departments of Life Science, Dongguk University-Seoul

KSHV is associated with KS, PEL and MCD. Many studies revealed that host and viral factors interacts with each other. Wnt signaling have been shown that it has functional roles for oncogenesis in the dysregulated condition. Moreover, beta-catenin, a downstream of Wnt signal pathway, promotes TCF-dependent transcription producing cell cycle- and cancer-associated cellular factors, which contributes to cell proliferation and tumorogenesis. Here, we identified two viral factors, viR3 and vPK, which regulate TCF-dependent transcription. viR3 significantly inhibits TCF-dependent transcription in a dose-dependent manner. CBP-interaction motifs of viR3 are important for the inhibition of transcription activity. Our results show that vPK also inhibits TCF-dependent transcription in a dose-dependent manner. In the presence of vPK expression, interaction between beta-catenin and TCF4 was decreased. Although further study is required for finding detailed mechanisms, this study suggests that KSHV regulates host systems through several different pathways.

[Supported by grant from NRF and Bio-industry Technology Development Program, Ministry for Food, Agriculture, Forestry and Fisheries]

Comparative Evaluation of the Liquid Culture System (BacT/Alert) and Löwenstein-Jensen (L-J) Medium for the Detection of Mycobacterium tuberculosis (M. tb) from Sputum Specimens

Bo Young Jeon, Ji Ro Kim, Sang Nae Cho, and Seung Cheol Kim

1Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, 2Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, 3Department of Microbiology and Institute for Immunology and Immunological Disease, Yonsei University College of Medicine

This study was to compare the recovery of M. tb from sputum specimens of M. tb patient using the liquid culture system and L-J medium. 304 sputum specimens were processed for detection of AFB; 210 specimens were AFB smear positive, and 94 were AFB smear negative. In smear-positive specimens, detection rates were 90.0% and 94.3% on L-J medium and on liquid culture system, respectively. Two hundred eighteen isolates were recovered by at least 1 culture medium, and almost all were identified as M. tb and only one isolate was identified as M. abscessus. There was good concordance between culture results obtained on both culture media with an agreement of 94.8%. In the drug susceptibility test, there was good concordance between culture results obtained on both. There was good concordance between results of drug susceptibility using the two methods with an agreement of 97.7% for RIF, respectively. These results indicate that the liquid culture system (Culture/Drug Susceptibility Test) is more efficient and faster than L-J medium to diagnose M. tb.

[This research was supported from NRF (No. NRF-2013R1A1A2059687).]

Synergetic Effect of Oleanolic Acid on Aminoglycoside Antibiotics against Acinetobacter baumannii

Bora Shin and Woojun Park

Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University

Oleanolic acid (OA), a natural pentacyclic triterpenoid, has hepatoprotective, antitumor and weak anti-HIV, HCV activities. OA appeared to decrease motility and generate free radicals in A. baumannii. Fractional inhibitory concentration (FIC) measurement demonstrated that OA has synergetic effect only with aminoglycoside-antibiotics. Other antibiotics (ampicillin, rifampicin, norfloxacin, and tetracycline) have additive effect with OA. Our microarray and qRT-PCR confirmed that ATP synthesis, cell membrane permeability, glycosyltransferase, peptidoglycan-related and phage-related genes and DNA repair genes were up-regulated under OA. Deletion of highly induced genes: adk, encoding an adenylate kinase and des6, encoding a linoleoyl-CoA desaturase, increased FIC showing that adk and des6 genes contributed to synergistic effect of OA with aminoglycosides. Fluorescence-labeled gentamycin and 8-anilino-1-naphthalenesulfonic acid probe tests suggested that those genes (adk and des6) are involved in change of membrane permeability. Taken together, our data showed that the OA boosts up aminoglycoside uptake by changing membrane permeability in A. baumannii.

Development of Culture-Enhancing Medium Containing Culture-Promoting Ingredients for Mycobacterium tuberculosis Culture

Bo Young Jeon, Ji Ro Kim, Sang Nae Cho, and Seung Cheol Kim

1Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, 2Department of Microbiology and Institute for Immunology and Immunological Disease, Yonsei University College of Medicine

In this study, we optimized the production process of culture-promoting ingredients from M. sp1 and produced culture-enhancing medium for M. tb. Then the medium were evaluated in Liquid culture system using M. tb. Optimization of the production process of culture-promoting ingredients from M. sp1 by adding lysosyme or glycine to the culture and disrupting the harvested cells with sonicator or French press. Quantification of protein in the whole cell extract prepared from M. sp1 to estimate the concentration of culture-promoting ingredients. Production of growth-enhancing media by adding 0, 0.2, 0.4, 1, 2 mg culture-promoting ingredients to 7H9 or Liquid culture btl. Growth analysis of M. tb on culture-enhancing medium (7H10) by CFU at various day (0–14 days). Evaluation of culture-enhancing medium using Liquid culture system. Determination of the TTPD of M. tb using Liquid culture system. Protocol standardization for production of culture-enhancing medium. Description of experimental procedures for optimized production of culture-promoting ingredients and culture-enhancing medium for M. tb. The TTPD was advanced by 21%.

[This research was supported from NRF (No. NRF-2013R1A1A2059687).]
Antibiotic, Antibiofilm Activities and Cell Selectivity of the NRC-16 Peptide Derived from witch Flounder, Glyptocephalus cynoglossus

Hyo Mi Han1,2 and Yoonkyung Park1,2
1Research Center for Proteinous Materials (RCPM), Chosun University, 2Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University

In this work, we extended the search for the activity of peptide that showed antibacterial activity on clinically isolated bacterial cells and bacterial biofilm. We found that synthetic peptide NRC-16 displays antimicrobial activity and is not sensitive to salt during its bactericidal activity. Interestingly, this peptide also led to significant inhibition of biofilm formation at a concentration of 4-16 μM. NRC-16 peptide is able to block biofilm formation at concentrations just above its minimum inhibitory concentration while conventional antibiotics did not inhibit the biofilm formation except ciprofloxacin and piperacillin. It did not cause significant lysis of human RBC, and is not cytotoxic to HaCaT cells and RAW264.7 cells, thereby indicating its selective antimicrobial activity. In addition, the peptide's binding and permeation activities were assessed by tryptophan fluorescence, calcein leakage and circular dichroism using model mammalian membranes composed of phosphatidylcholine (PC), PC/cholesterol (CH) and PC/sphingomyelin (SM). These experiments confirmed that NRC-16 does not interact with any of the liposomes but the control peptide melittin did.

Antibiotic, Synergistic Effects and Antibiofilm Properties of Chimeric Peptides against MR Acinetobacter baumannii Strains

Myeong-Sun Kim1 and Yoonkyung Park1,2
1Research Center for Proteinous Materials (RCPM), Chosun University, 2Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University

The increasing prevalence of drug-resistant pathogens highlights the need to identify novel antibiotics. The antibacterial activities, synergistic effects, and antibiotic properties of the four chimeric AMPs were tested against Acinetobacter baumannii, an emerging Gram-negative, nosocomial, drug-resistant pathogen. Nineteen A. baumannii strains resistant to ampicillin, cefotaxime, ciprofloxacin, tobramycin, and erythromycin were isolated at a hospital from patients with cholelithiasis. All four peptides exhibited significant antibacterial effects (MIC = 3.12 to 12.5 μM) against all 19 strains, whereas five commercial antibiotics showed little or no activity against the same pathogens. The peptides also exhibited an ability to prevent biofilm formation, which was not seen with cefotaxime, ciprofloxacin, or erythromycin, though polymyxin also inhibited biofilm formation. Collectively, our findings indicate that the AMPs tested have no cytotoxicity but possess potent antibacterial and antibiofilm activities and may act synergistically with commercial antibiotics.

Structural Analysis of Pseudomonas aeruginosa Flagellin, FliC

Wan Soek Song and Sung-il Yoon
Department of Systems Immunology and Institute of Antibody Research, College of Biomedical Science, Kangwon National University

Flagellin is a structural protein that polymerizes into bacterial flagellar filament. Flagellin from Salmonella species contain D0, D1, D2, and D3 domains, and have been extensively studied. The conserved D0 and D1 domains mediate filament assembly and targeted by innate immune receptors, including Toll-like receptor 5 (TLR5), whereas the variable D2 and D3 domains have been demonstrated not to be required for flagellar formation. To reveal the role of flagellin from other species in filament assembly and immune recognition, we have determined the crystal structure of the D1-D2 domains of Pseudomonas aeruginosa flagellin (paFliC) at 2.1 A resolution. The paFliC D1 domain is structurally similar to Salmonella flagellin and provided a major TLR5 binding site. In contrast, the D2 domain has a unique structure that has not been found in other flagellins. Our structure-based modeling study on the paFliC filament suggests that, unexpectedly, the D2 domain contributes to filament formation potentially by interacting with the D1 domain from other subunits. In the model, the D2 domain was exposed to solution, suggesting that the D2 domain could play an important role in immunogenicity.

A HPA3P2 Peptide with Antibacterial Activity without Cytotoxicity against MDRPA-infected Mice

Joong-Kook Lee1 and Yoonkyung Park1,2
1Research Center for Proteinous Materials (RCPM), Chosun University, 2Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University

An earlier study indicated that HPA3, an analog of HP (2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1, forms large pores and shows considerable cytotoxicity. However, HPA3P, in which a proline (Pro) is substituted for glutamic acid (Glu) at position 9 of HPA3, shows markedly less cytotoxicity. Unfortunately, HPA3P is not an effective antibacterial agent in vivo. We therefore designed a helix-PXXP-helix structure (HPA3P2), in which Pro was substituted for the Glu and phenylalanine (Phe) at positions 9 and 12 of HPA3, yielding a molecule with a flexible central hinge. As compared to HPA3P, HPA3P2 exhibited dramatically increased antibacterial activity in vivo. The changes in HPA3 behavior with the introduction of Pro likely reflects alterations of the mechanism of action: i) HPA3 forms pores in the bacterial cell membranes, ii) HPA3 permeates the cell membranes and binds to intracellular RNA and DNA, and iii) HPA3P2 acts on the outer cellular membrane component LPS. Collectively, these results suggest HPA3P2 has the potential to be an effective antibiotic for use against multidrug-resistant bacterial strains.
Antimicrobial and Anti-inflammatory Effects of Cecropin A(1-8)-Magainin2(1-12) Hybrid Peptide Analog P5 against Malassezia furfur Infection in Human Keratinocytes

Sunhyo Ryu1, Peter I Song2, and Yoonkyung Park3,4
1Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA, 2Research Center for Proteinous Materials (RCFM), Chosun University, 3Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University

The lipophilic fungus Malassezia furfur is a commensal microbe associated with several chronic diseases such as pityriasis versicolor, folliculitis, and seborrheic dermatitis. Because M. furfur-related diseases are difficult to treat and require prolonged use of medications, the treatment for M. furfur-related skin diseases is supposed to gain control over M. furfur growth and the inflammation associated with it, as well as to prevent secondary infections. In this study, we investigated the antifungal and anti-inflammatory effects of cecropin A(1-8)-magainin 2 (1-12) hybrid peptide analog P5 on M. furfur. The minimal inhibitory concentration of P5 against M. furfur was 0.39 μM, making it 3-4 times more potent than commonly used antifungal agents such as ketoconazole (1.5 μM) or iraconazole (1.14 μM). P5 efficiently inhibited the expression of IL-8 and Toll-like receptor 2 in M. furfur-infected human keratinocytes without eukaryotic cytotoxicity at its fungicidal concentration. P5 significantly downregulated NF-κB activation and intracellular calcium fluctuation, which are closely related with enhanced responses of keratinocyte inflammation induced by M. furfur infection.

Characterization of Adenylate Kinase in S. pneumoniae

Truc Thanh Luong1, Trung Thanh Thach2, Sangho Lee3, Sukhneung Pyo4, and Dong-Kwon Rhee1
1School of Pharmacy, Sungkyunkwan University, 2Department of Biological Sciences, Sungkyunkwan University

Streptococcus pneumoniae (pneumococcus) infection claims 1.6 million deaths per year worldwide. Adenylate kinases (AdKs) constitute a major family of enzymes to regulate cellular ATP level; thus it plays a role in energy homeostasis of bacteria. However, it remains poorly understood about AdK characterization, localization and its function in pneumococcal diseases. Here we show that AdK from S. pneumoniae (SpAdK) is highly conserved among various strains and could generate bacterial intracellular ATP. The functional position of SpAdK was determined using point-mutations and adenylate kinase assay. Furthermore, essential role of adenylate kinase in pneumococcal normal growth was identified. On the other hand, SpAdK contains a conserved cell-wall anchored LPXTG motif and trans-locates to localize on pneumococcal cell-wall and extracellular environment. Taken together, our study revealed a functional activity of S. pneumoniae adenylate kinase in ATP generation and bacterial growth, and characterize its localization in the bacteria.

Upregulation of ATF3 Stimulates Production of Cytokine during Streptococcus pneumoniae Infection

Cuong Thach Nguyen, Sukhneung Pyo, and Dong-Kwon Rhee1
School of Pharmacy, Sungkyunkwan University

Gram-negative and Gram-positive bacterial infections elicit significantly different host immune responses. However, the underlying mechanisms are not yet fully explored. ATF3 is a key repressor of cytokine expression observed in Gram-negative infections. This study reveals that ATF3 regulates innate immunity positively upon pneumococcus infection by enhancing TNF-α, IL-1β, and IFN-γ expression and modulating bacterial clearance. Therefore, ATF3 may represent a key differentiating factor between host immune responses to Gram-negative and Gram-positive infections.

Ssd1 Functions Downstream of Cbk1 to Regulate Hyphal Morphogenesis in Candida albicans

Hye-Jeong Lee, Ah Ruem Kim, Heebum Yang, and Jeong-Yoon Kim1
Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University

The NDR kinase Cbk1 regulates morphogenesis and polarized cell growth in yeast. However, it is poorly understood how Cbk1 regulates hyphal morphogenesis in Candida albicans. Recently, the mRNA binding protein Ssd1 was found to be a substrate of Cbk1 in Saccharomyces cerevisiae. In this study, we investigated the roles of Ssd1 in the hyphal growth of C. albicans. We found that C. albicans Ssd1 (CaSsd1) has a consensus motif for phosphorylation by Cbk1, and deletion of CaSSD1 partially recovered the hyphal growth of Cacbk1Δ/Cacbk1Δ, which suggests that CaCbk1 negatively regulates the activity of CaSsd1 during hyphal growth in C. albicans. Furthermore, in vitro host cell invasion assay revealed that deletion of CaSSD1 also recovered the ability of Cacbk1Δ/Cacbk1Δ to invade host cells. Taken together, this study reveals that the proper regulation of CaSsd1 by CaCbk1 is prerequisite for the normal cell morphogenesis and host cell invasion of C. albicans.

[2013R1A2A2A01014664]
D017

Evaluation of Transcriptional Responses of Apoptosis Pathway Related Genes in Rock Bream (Oplegnathus fasciatus) Infected with Megalocytivirus (Family Iridoviridae)

Myung-Hee Jung, Chamilani Nikapitiya, Myung-Joo Oh, and Sung-Ju Jung

1Department of Aquatic Medicine, Chonnam National University, 2Aquatic Animal Hospital, Chonnam National University

Rock bream iridovirus (RBIV), which is a member of the Megalocytivirus genus, causes severe mass mortalities in rock bream (Oplegnathus fasciatus) in Korea. In this study, we assessed apoptosis-related gene expression patterns in RBIV infected rock bream in high and low mortality conditions. In the both groups, significantly high levels of perforin, granzyme, Fas ligand and caspase 9 expression were observed in the kidney at several sampling points until 30 days post infection (dpi). Basal expression levels of Fas and caspases 8, 9 and 3 were observed accompanied by heavy viral loads. Inhibitor of apoptosis 1 (IAP1) significantly higher IAP1 expression was observed at 10 d (2.2-fold), 20 d (3.6-fold) and 22 dpi (2.0-fold) in low mortality group. In summary, perforin- and granzyme-related apoptosis initiation signals were activated; however, the Fas-induced apoptosis pathway did not efficiently respond. Up-regulated IAP1 in RBIV infected rock bream, which exhibited inhibited apoptotic responses in RBIV infected fish.

D018

Postantibiotic Effects and Postantibiotic Sub-MIC Effects of Chlorhexidine on Streptococcus gordonii

Min Suck You and Si Young Lee

Department of Microbiology and Immunology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University

Chlorhexidine is one of the most widely used biocides in antiseptic products. Postantibiotic effect (PAE) is defined as the length of time that bacterial growth is suppressed following brief exposure to an antibiotic. In this study, PAE, postantibiotic sub-MIC (PASME) and sub MIC effects (SME) of chlorhexidine on Streptococcus gordonii was investigated. The PAE was induced by 10x MIC of chlorhexidine for 5 min and chlorhexidine was eliminated by washing. The PASME were studied by addition of 0.1, 0.2 and 0.3x MICs during the postantibiotic phase of the bacteria, and the SME was studied by exposing bacteria to chlorhexidine at the sub MIC only. The mean PAE was 0.6 h, and the mean PASMEs were 0.7 h (0.1x MIC), 1.5 h (0.2x MIC), 2.7 h (0.3x MIC), and the mean SMEs were 0.1 h (0.1x MIC), 0.4 h (0.2x MIC), 0.9 h (0.3x MIC). The present study illustrates the existence of PAE, PA-SME and SME for chlorhexidine against S. gordonii, thereby extending the pharmacodynamics advantages of chlorhexidine.

D019

ihvC Mutant Is Potential Candidate Virulence Factor of Streptococcus pneumoniae

GyuLee Kim, Sukneung Pyo, and DongKwon Rhee

School of Pharmacy, Sungkyunkwan University

Streptococcus pneumoniae is responsible for significant morbidity and mortality worldwide. It causes a variety of life-threatening infections such as pneumonia. Preliminary microarray data had shown 7 fold increases in expression level of ihvC pneumococcal gene during wild type pneumococcal strain D39 infection to A549 cells. ihvC is keto-acid reductoisomerase that involved in biosynthesis of Branched Chain Amino Acid (BCAA) which is consisting of isoleucine, leucine, and valine. This work aimed to construct a deletion mutant and determine its growth rate, cytotoxicity, and in vivo survival rate after intranasal infection. The growth curve of the ihvC mutant showed comparable growth rate of D39, however, during stationary phase, it showed decreased level of growth especially in the presence of serum. Mice infected with the ihvC mutant showed higher survival rate than that of the wild type. The biosynthesis of BCAA was frequently identified in studies of pathogenesis. Taken together these results suggest that, ihvC associated with BCAA generation could play an important role in curbing pathogens of the respiratory tract and might be a potent candidate virulence factor.

D020

Macrophages Play a Key Role in the Protection by Streptococcus pneumoniae pep27 Mutant Vaccine

Seung Han Seon, Sang-Yoon Choi, David E. Briles, Sukneung Pyo, and Dong-Kwon Rhee

1School of Pharmacy, Sungkyunkwan University, 2Department of Microbiology, University of Alabama at Birmingham

Streptococcus pneumoniae is responsible for high mortality worldwide. Because of several problems of current pneumococcal vaccines, like serotype shifts, a new type of vaccine is needed. In previous study, i.n. immunization of the pep27 mutant showed protection from heterologous lethal challenge. To elucidate the underlying mechanism, humoral and cellular responses in immunized and control groups were compared. Although the level of IgG in the immunized group was increased, there was no passive-immunity. Moreover, when CD4+ and CD8+ T cells of immunized mice were depleted, followed by lethal challenge, the mice did not show mortality. However, BALF from the immunized mice showed higher level of IFN-γ when exposed to D39. Phagocytic activities of BM-derived macrophages from the immunized mice were increased when exposed to D39 in vitro as well. In addition, FACS showed spleen-derived monocytes from the immunized mice differentiated much rapidly into macrophages than those from the control. Overall, these results suggested that IFN-γ-activated macrophages, but not T and B cells, could be important for the protection from lethal infection after i.n. immunization with the pep27 mutant.
Extended Longevity and Robust Early-stage Development of Caenorhabditis elegans by a Soil Microbe, Lysinibacillus sphaericus
Junhyeok Go1, Kang-Mu Lee1, Yongjin Park1, and Sang Sun Yoon2,3
1Department of Microbiology and Immunology, 2Brain Korea 21 PLUS Project for Medical Science, 3Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine

Caenorhabditis elegans, originally isolated from soil, is a nematode used in host-microbe interaction research. While human pathogenic bacteria have been actively studied in C. elegans, no bacterial species that provides beneficial effects on C. elegans has been reported. Here, we tested several bacterial soil isolates and further characterized the effects of Lysinibacillus sphaericus on C. elegans growth-related phenotypes. Worms fed with L. sphaericus lived significantly longer than those growing with E. coli OP50. Juvenile-stage growth was also highly stimulated by L. sphaericus. In addition, significantly elevated fertilization was observed in worms fed with L. sphaericus. Furthermore, growth with L. sphaericus resulted in the production of larger numbers of progeny than the growth with OP50. Worms grown with L. sphaericus were highly resistant to oxidative and osmotic stress. Microarray analysis demonstrated that genes encoding cuticle collagen were highly upregulated in L. sphaericus-fed worms, supporting our findings with regard to enhanced resistance and rapid development. Together, our results reveal a novel mode of growth that involves healthy aging of nematodes.

Effect of Sub-Minimal Inhibitory Concentration Antibiotics on Morphology of Oral Gram Positive Bacteria
Ye Won Kwon and Si Young Lee
Department of Microbiology and Immunology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University

Sub-minimal inhibitory concentration (MIC) of antibiotics have been reported to affect bacterial morphology. We examined the morphological change of oral gram positive bacteria after treatment with sub-MIC antibiotic. Actinomyces naeslundii, Actinomyces odontolyticus, Streptococcus gordonii, Streptococcus mutans and Lactobacillus acidophilus were used in this study. A. naeslundii was observed decreased length with penicillin and amoxicillin. A. odontolyticus showed decreased length with doxycycline and tetracycline. S. gordonii was observed increased length with Penicillin and amoxicillin. S. mutans was observed increased length with penicillin and amoxicillin but observed increased chain of bacteria with doxycycline and tetracycline. L. acidophilus was observed decreased length and thick after incubation with amoxicillin and penicillin whereas, observed decreased length and thin with doxycycline and tetracycline.

Identification of Non-Streptococcal Organisms from Human Dental Plaque Grown on the Streptococcus-selective Medium Mitis-salivarius Agar
Yeon-Hee Kim and Si Young Lee
Department of Microbiology and Immunology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University

Mitis-salivarius (MS) agar has been used in microbial epidemiological studies because oral streptococci can be selectively grown on this medium. In this study, we identified non-streptococcal organisms grown on MS agar plates by polymerase chain reaction (PCR) amplification and sequencing of the 16S ribosomal RNA (rRNA) gene. Eighty bacterial colonies on MS plates were isolated from plaque samples, and bacterial identification was achieved with the rapid API-20 Strep system and mini API reader. The bacterial colonies identified as non-streptococci by the API system were selected for further identification. The 16S rRNA gene was amplified by PCR and verified using DNA sequencing analysis for identification. Among the 11 isolated non-streptococcal strains, 7 strains were identified as Actinomyces naeslundii and 4 strains were identified as Actinomyces oris using Blastn. In this study, we showed that some oral Actinomyces species can grow on Streptococcus-selective MS agar plates.

Comparison of Identification Methods for α-Hemolytic Streptococci by 16S rRNA Gene Sequencing and Rapid ID 32 Strep
Yeon-Hee Kim and Si Young Lee
Department of Microbiology and Immunology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University

Recently, it has been reported that agreement of identification of α-hemolytic streptococci by API 20 Strep with identification by 16S rRNA gene sequencing was only 26% by species and 63% by streptococcal group. Rapid ID 32 Strep test was carried out according to the manufacturers’ instructions. The 16S rRNA gene was amplified and 16S rRNA gene sequences were subjected to BLAST analysis. The Rapid ID 32 Strep correctly identified 80% by species and 87% by streptococcal group. This led to better success with identification at the group level than at the species level. Rapid ID 32 Strep was failing to correctly identify any of the three S. cristatus, one S. australis and one S. tigurinus isolates.

[This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0025532).]
D. Immunology and Microbial Pathogenesis

DO25

Effect of Sub-Minimal Inhibitory Concentration Antibiotics on Morphology of Oral Periodontal Pathogens

Ye Won Kwon and Si Young Lee*

Department of Microbiology and Immunology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University

Minimal inhibitory concentration (MIC) is the lowest concentration of an antibiotic that inhibits the visible growth of a microorganism. Sub-MIC of antibiotics may result in morphological alterations, biochemical and physiological changes in bacteria. We examined morphological changes of oral periodontal pathogens after treatment with sub-MIC antibiotics. *Fusobacterium nucleatum*, *Propionibacterium gingivalis* and *Aggregatibacter actinomycetemcomitans* were used in this study. The MIC for amoxicillin, penicillin, doxycycline, tetracycline and metronidazole were determined by broth dilution method. The length of *P. gingivalis* and *A. actinomycetemcomitans* were increased after incubation with penicillin, amoxicillin and metronidazole. *F. nucleatum* showed increased length after incubation with all of sub-MIC antibiotics used in this study. In this study, we observed that sub-MIC antibiotics can affect the morphology of oral periodontal pathogens.

[This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0025532).]

DO26

Complete Genome Sequence of Viral Hemorrhagic Septicemia Virus (VHSV) Isolated from an Olive Flounder in Korea

Jong-Oh Kim, Wi-Sik Kim, Si-Woo Kim, Toyohiko Nishizawa, and Myung-Joo Oh

Department of Aquatic Medicine, Chonnam National University

Viral hemorrhagic septicemia virus (VHSV) is a seriously problematic pathogen in olive flounder (*Paralichthys olivaceus*) aquaculture farms in Korea. The entire genome size of VHSV isolate FYeosu05 was 11,168 bp including all coding regions and intergenic sequences. The genome consisted of 6 ORFs arranged in the order 3’-N-P-M-G-NV-L-5’, which is the same order found in other fish rhabdoviruses. It showed over 96% of identity with Genogroup I (99% with JF00Eh1 and KJ2008; 97% with KR11600; 96% with MB3GL) and 86% with all other Genogroup strains. Among all the VHSV proteins, RNA Polymerase (L) protein was the highest conserved protein (over 96% identities) while non-irvin (NV) protein was the most divergent protein that showed 72 – 100% identities. It shows a putative polyadenylation motif (AGAT(T/A) GAAAAA(A)), which signals to generate poly (A) tail to the 3’ end of mRNA and is followed by -GGCAC- nucleotide which is a putative transcription start signal. The 5’ and 3’ untranslated regions (UTR) are 54 and 101 nucleotides, respectively. This genome sequence will be useful for virus diagnostic and comparative analysis with other genotype virus.

DO27

Genetic Positioning of Aquabirnavirus Isolates from Cultured Japanese Eel Anguilla japonica in Korea

Wi-Sik Kim, Jong-Oh Kim, Sang-Mu Ko, Ye-Seul Ko, and Myung-Joo Oh*

Department of Aquatic Medicine, Chonnam National University

Aquabirnavirus is an epidemic virus in Japanese eel (*Anguilla japonica*) farms in Korea, although its origin is unclear. In the present study, nucleotide sequences of the VP2/NS junction region of nine Korean aquabirnaviruses from cultured eel in various areas of Korea during 2000-2009 were analyzed to evaluate their genetic relatedness to worldwide isolates. The nucleotide sequences showed more than 94.2% identity among the nine Korean eel isolates, 71.2% identity among 16 Korean isolates from freshwater and marine fish, and 71.1% identity among 25 worldwide isolates. All nine isolates in this study were phylogenetically classified into genogroup II including isolates from Denmark, Spain, Taiwan and Japan, and were discrete from salmonid and marine fish isolates (genogroup I and VII) in Korea. These results suggest that the Korean eel isolates have most likely been introduced from outside the country and not from coastal areas of Korea.

DO28

Conformation of CRISPR-associated Csn2 DNA-binding Ring Is Regulated by Millimolar Concentration of Ca$^{2+}$ Ion

Ki Hyun Nam1,2, Yujie Chen1,2, Lois Pollack2, and Allong Ke3

1Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; 2Pohang Accelerator Laboratory, Pohang University of Science and Technology, 3School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA

CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) and cas (CRISPR-associated) genes form a microbial RNA-based immune defense against the invading nucleic acids. We previously reported the crystal structure of the CRISPR-associated Csn2 protein, an essential protein for new spacer acquisition in Type II-A CRISPR system, and showed that Csn2 assembles into a tetrameric ring structure to slide ds-DNA nonspecifically in a Ca$^{2+}$-dependent manner. Here we show that the two sets of Ca$^{2+}$ binding sites in the E. faecalis Csn2 tetramer, the four Ca1 sites are occupied at nanomolar Ca$^{2+}$ concentration, whereas the four Ca2 sites are occupied at ~1.5 mM range. We use crystal structures and small angle X-ray scattering methods to show that dissociation of Ca$^{2+}$ from Ca2 sites alters the Csn2 ring conformation, rearranges the DNA-binding surface, and narrows the inner diameter of the ring, resulting in the loss of ds-DNA-binding activity. The influx of extracellular Ca$^{2+}$ in turn switches on the DNA-binding function of Csn2 to assist the acquisition of new spacers into the CRISPR locus.
Reversion of Mucoid Pseudomonas aeruginosa to Nonmucoid Form by Sulfate Ion

Kyung Bae Min1,2, Kang Mu Lee1, and Sang Sun Yoon12*
1Department of Microbiology and Immunology, 2Brain Korea 21 PLUS Project for Medical, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine

Alginate overproducing mucoid Pseudomonas aeruginosa, responsible for chronic airway infections in cystic fibrosis (CF) patients, is resistant to antibiotics and immune clearance. Performing a Phenotype Microarray, sulfate was identified as a alginate suppressing molecule. When a mucoid strain CM21 and additional mucoid isolates were grown with 5% sodium sulfate, decreased levels of alginate were produced. Alginate suppression was also induced by other sulfate salts. Furthermore, bacterial cell shape was altered in CM21, but not in PA01, a wild type strain suggesting that sulfate-stimulated cell shape change is associated with suppression of the alginate operon. Finally, a CM21 ΔabaR mutant continued to produce alginate and maintained rod shape when grown with sulfate. These results suggest a potential involvement of LPS biosynthesis in the sulfate-induced reversion to nonmucoid phenotype. Together, this study proposes a novel strategy that can be potentially applied to treat infections of mucoid P. aeruginosa.

Solvum nigrum L Extract for Viral Hemorrhagic Septicaemia Virus (VHSV) Replication in Fathead Minnow (FHM) Cell Line

Han-Kook Yang1,2, Satheeshra Avunj3, Young Bae Ryu1, and Sung-Ju Jung1,2*
1Department of Aquatic Medicine, Chonnam National University, 2Aquatic Animal Hospital, Chonnam National University, 3Central Institute of Brackish water Aquaculture, Chennai, India, 4Eco-Friendly Biomaterial Research Center and AI Control Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology

Viral hemorrhagic septicaemia (VHS) causes severe mass mortalities in aquaculture industry between 8-15℃. We assessed inhibition ability of Solanum nigrum L extract against VHSV replication in FHM cell line. FHM cell line incubated with media containing VHSV (10⁵ TCID₅₀/ml) at 15℃ for 6 h. At post incubation, 0.5, 1, and 2 µg/ml of the extract were treated to each well. Inhibition ability was calculated at 1d and 2d as follows: Inhibition rate (%) = (pfu/ml in positive control – pfu/ml in treatment) × 100. In the experiment, inhibition rate at 1 d and 2 d of the samples treated with S. nigrum L extract at 0.5, 1, and 2 µg/ml were 90.9/62.6%, 39.4/33.6% and 27.2/28.9%, respectively. Repeated experiment showed similar results and inhibition rates were 78.5/68.7%, 35.7/27.0% and 14.2/27.9%, respectively for the respective time points. The data indicates that 0.5 µg/ml could highly inhibit viral replication. Although, effect of the extract for virus replication in fish remains unclear, data clearly demonstrated the inhibition of VHSV replication by S. nigrum L extract in vitro and possibility in developing preventive measure against VHSV using the extract.

Effect of Low Water Temperature on Immune Response of Olive Flounder (Paralichthys olivaceus) Vaccine Containing Adjuvants, against Viral Haemorrhagic Septicaemia (VHS)

Je-Won Ryu1,2, Kyung Kim1,2, and Sung-Ju Jung1,2*
1Department of Aquatic Medicine, Chonnam National University, 2Aquatic Animal Hospital, Chonnam National University

Water temperature affects teleost fish (poikilotherms) immunity. It is difficult to develop specific immunity at low water temperature. In vaccine studies, it is important to know the optimum water temperature range that fish obtain protective immunity. We investigated the suitable water temperature that obtain protective immunity in VHS infected olive flounder using squalene (5%) and aluminum hydroxide (0.5%) containing inactivated VHS vaccine. Vaccinated fish reared at 10, 13, 15 and 20℃ and challenged with VHS virus (VHSV) (10⁵ TCID₅₀/fish) at 10, 20, 30 and 40 days post vaccination (dpv) at 15℃ and calculated the relative percent survival (RPS). Similar to 20℃, low water temperatures (10, 13 and 15℃) showed protective immunity. RPS for fish group vaccinated at 15℃ was 58, 93, 87 and 93% (10, 20, 30 and 40 dpv, respectively) and obtained high protection. Comparatively high protection (42/50, 64/79, 53/33 and 80%/87%) observed at 10/13℃ groups showing protective immunity. Results indicate that vaccinated fish can induce protection against VHS in various water temperatures (even low water temperature at 10-15℃), and can provide protection to control disease outbreaks.

LuxR Type Regulator AbaR is Essential for Acinetobacter baumannii Biofilm Formation and Motility

Man Hwan Oh1, Hyeran Park1, Chul Hee Choi2, and Kyudong Han1
1Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 2Department of Microbiology and Research Institute for Medical Sciences, College of Medicine, Chungnam National University

Quorum sensing is a cell to cell communication system that coordinates gene expression in many bacterial species. Acinetobacter baumannii utilizes N-(3-hydroxydodecanoyl)-l-homoserine lactone (OH-DDHL), and a putative LuxR type receptor, AbaR, for quorum sensing. In the present study, functions of AbaR were assessed by the construction of an isogenic mutant and by evaluating its phenotype change in biofilm formation and motility. The disruption of abaR resulted in a significant decrease in biofilm formation. Especially, the abaR mutant was unable to form a biofilm at the air-liquid interface. Introduction of abaR in trans complemented the defects. Moreover, the diameter of the swimming area of the abaR mutant was substantially decreased compared to that of the wild type. Complementation of the abaR mutant by introduction of recombinant abaR recovered the reduced motility. These results indicated that AbaR plays important roles in A. baumannii biofilm formation and motility.
D033

Vibrio anguillarum Infection in Rainbow Trout (Oncorhynchus mykiss) during Seawater Adaption

Si-Woo Kim, Jong-Oh Kim, Wi-Sik Kim, and Myung-Joo Oh

Department of Aquaculture Medicine, Chonnam National University

We examined the cause of a disease outbreak in rainbow trout (*Oncorhynchus mykiss*), which were adapting to a seawater in an aquaculture farm in Jeju on April, 2013. Most of the diseased fish showed an severe ulcer on the skin. Although no parasites, fungi or viruses were isolated from diseased fish, over 200 same type of bacterial colonies were isolated from spleen, kidney and liver. Nucleotide sequences of the 16S rDNA gene of the bacterium in our study showed 100% identity with *Vibrio anguillarum*. This study is the first report of rainbow trout disease during sea adaption in Korea.

D034

In Vitro System to Investigate the Gastrin Expression by Helicobacter pylori

Kuda Singappulige Niluka Darshani Gunawardhana and Jeong-Heon Cha

Yonsei University College of Dentistry, Department of Oral Biology

Helicobacter pylori is a major contributor for gastric cancers and *H. pylori* induced hypergastrinemia was postulated to be a major risk factor for the development of gastric cancer. As gastrin hormone regulates gastric acid secretion, it is important to find out the mechanism which *H. pylori* uses to regulate acid secretion. Our purpose is to establish an in vitro system to examine the gastrin promoter induction by *H. pylori*. Human gastrin promoter-luciferase reporter construct was made by cloning 240 bp of gastrin promoter into pGL3 basic vector. This construct was stably transfected into AGS cells with co-transfection of pCDNA3 to select with G418. After stimulate the stably transfected AGS cells with G27, *H. pylori* WT and its isogenic mutants, luciferase activity was measured. AGS cells stably transfected with Gastrin-Luciferase construct showed higher luciferase activity with wild type and CagA deficient *H. pylori* while *H. pylori* lacking entire cagPAI showed reduced promoter induction. Several stably transfected AGS cell clones were examined to exclude the clone specific effect. This system can be used to examine the mechanism of gastrin expression by *H. pylori*.

D035

Comparison of Immune Response Elicited by Gamma Irradiated and Chemically Killed Pneumococcal Whole Cell Vaccine

A Yeung Jang, Ji Hae Choi, Sangyong Lim, Dong Ho Kim, and Ho Seong Seo

Research Division for Biotechnology, Korea Atomic Energy Research Institute

Streptococcus pneumoniae is one of the leading causes of death in humans. In spite of the high degree of effectiveness of pneumococcal conjugate vaccine, recent research have reported an increase in the rate of disease caused by non-vaccine serotypes. Pneumococcal whole cell vaccine (WCV) is expected to confer protection against a wide variety of serotypes. Thus, we investigated the efficacy of irradiated WCV as compared to chemical WCV. Pneumococcal WCV were prepared by treating gamma-irradiation or formalin and immunized intranasally to CD1 mice. Although irradiated WCV increased anti-streptococcal IgM in serum similar level to chemical WCV, it elicited significantly higher level of anti-streptococcal IgG in serum and IgA in BAL fluid than chemical WCV. Moreover, when vaccinated mice were inoculated intraperitoneal with a lethal dose of *S. pneumonia* TIGR4, 60% mice were survived after 48 hours by irradiated WCV vaccination, but all mice were dead in the group of PBS or chemical WCV vaccination. These findings suggest that irradiated WCV elicit effective IgG antibody that protects pneumococcal infection and may be valuable to develop an ideal serotype independent vaccine.

D036

A Potential Trade-Off between Multi-Drug Resistance Phenotype and ROS Stress Response in Pseudomonas aeruginosa

Hae Lin Lee and Sang Sun Yoon

Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine

Bactericidal antibiotics were known to utilize different mechanisms to kill bacteria until 2007. The newly suggested idea was that different classes of antibiotics universally induce formation of hydroxyl radicals via Fenton reaction, damaging DNA, lipids and proteins, which results in cell death. While the idea is still controversial, it could be a possible explanation why bacteria rapidly become Multi-Drug Resistance (MDR) strains once starting to gain resistance. To see if each MDR *P. aeruginosa* strains have distinct ROS stress response abilities, initial screening of 8 clinical samples was performed. From the screening, 75% of samples showed varying levels of decreased ROS stress responses compare to that in PAO1. To increase the validity in our study, clinical sample size was raised to 38, including samples from the initial screening. Not all samples showed dampened ROS stress responses. Also, the level of ROS stress responses varied among the samples. While the results suggest some possibility of correlation between MDR phenotype and ROS stress responses, further investigation is required to firmly conclude.

[Supported by BK21 Plus project for Medical Science.]
D037

Nuclear Targeting of Urease Subunit A of Helicobacter pylori Induces Hummingbird Phenotype in Human Gastric Epithelial Cells

Sang Sun Yoon

Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine

Urease subunit A (UreA) of Helicobacter pylori targets in the nuclei of COS-7 cells through nuclear localization signals. This study was investigated whether UreA of *H. pylori* targeted in the nuclei of gastric epithelial cells and subsequently induced host cell pathology. Immunohistochecmical analysis showed that UreA was detected in gastric epithelial cells of *H. pylori*-positive specimen. *H. pylori* secreted outer membrane vesicles (OMVs) and UreA was translocated into AGS cells treated with OMVs. Similar to nuclear targeting of GFP-tagged UreA in COS-7 cells, GFP-tagged UreA, rUreA, and UreA in the OMVs could target in the nuclei of AGS cells. Nuclear targeting of rUreA did not induce cell death, but resulted in morphological changes of AGS cells, such as cellular spreading and elongation, so called hummingbird phenotype. Nevertheless, AGS cells treated with rUreA induced a hummingbird phenotype. Nuclear targeting of UreA differentially regulated 102 morphogenesis-related genes. In conclusion, nuclear targeting of *H. pylori* UreA induces a morphological change and regulates morphogenesis-related genes in gastric epithelial cells.

D038

Loop-mediated Isothermal Amplification of runA Gene Leads to Rapid and Naked-eye Detection of Vancomycin-Resistant Enterococcus Infection

Jung Hea Lee1, So Hyun Jun2, Seung Chul Baik3, and Je Chul Lee4

1Department of Microbiology, Kyungpook National University School of Medicine, 2Department of Microbiology, Gyeongsang National University School of Medicine

Vancomycin-resistant enterococcus (VRE) is one of the leading causes of nosocomial infection at intensive care unit (ICU). We studied a distinctive DNA amplification assay. Loop mediated isothermal amplification (LAMP) as rapid diagnosis tool for VRE. LAMP is a progressive diagnosis method notable for its technical simplicity, speed and the ease of detection. The use of Bst DNA polymerase allows the target gene amplification at a constant temperature. LAMP products can be confirmed with the turbidity of magnesium pyrophosphate, by-product of LAMP. We targeted the major and transposable vancomycin-resistant gene, vanA for the LAMP assay. VRE vanA-LAMP drew a great result on 62°C for 1 hr. At minimum detectable DNA concentration and reaction time test, VRE vanA-LAMP could detect 80pg and run even in 40min. The sensitivity and specificity of VRE vanA-LAMP were verified by testing 39 clinical specimens and comparing the data with phenotype test and PCR assay. We expect rapid diagnosis to prescribe suitable antibiotics for VRE diagnosis with LAMP. [Supported by BK21 PLUS project for medical science]

D039

The Effect of Altered Gut Microbiota Composition on Defense against Vibrio cholerae Infection in Adult Mice

Yujin Yoon1, Mi Young Yoon1, and Sang Sun Yoon2,3*

1Department of Microbiology and Immunology, 2Brain Korea 21 PLUS Project for Medical Science, 3Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine

Many attempts have been made to establish intestinal infection models using adult mouse, no clear explanation has been proposed why intestinal infection by *Vibrio cholerae* does not occur with human-like symptoms. The role of gut microbiota in successful defense against enteric infections has been long considered. In this study, we hypothesized that mice with altered gut microbiota population by various antibiotics may exhibit differential capabilities to respond to intestinal infections by *V. cholera*. A broad spectrum antibiotics, streptomyacin and ampicillin, or narrow spectrum antibiotics, vancomycin and clindamycin, were orally administrated to each Balb/c mice to induce changes in gut microbiota population. The murine models were infected with *V. cholerae* N16961. The fecal samples of mice were collected before infection and the mice were sacrificed after 24hours later. Quantitative real-time PCR and gut microbiota community analyses were performed to provide a comprehensive view of how gut microbe ecosystem affects against the *V. cholerae* infection. Our study will elucidate a previously undescribed role of commensal gut microbes in defense against enteric infections.

D040

Microbiological Evaluation of Broiler Chickens from Slaughterhouses in South Korea

Haein Jeang, Min Kuk, Ahran Lee, Hanseong Kim, and Soo-Ki Kim

Department of Animal Science and Technology, Konkuk University

The objective of present study was to evaluate the microbiological quality of broiler meat from slaughterhouses in South Korea. Between February 2014 and March 2014, a total of 120 whole chickens were collected from six slaughterhouses (20 samples each) located in different provinces. Chicken carcasses were rinsed with buffered peptone water with gentle shaking for 1 min to ensure even distribution. The rinsate solution (1 ml) and 10-fold serial dilutions were inoculated onto AC and EC petrifilm for 18hr. Colonies was biochemically confirmed by Vitek 2 assay. Enumeration of aerobic bacteria and *E. coli* from the 120 chicken carcasses showed growth ranging from 2.11 log CFU/ml to 4.56 log CFU/ml and 1.00 log CFU/ml to 3.62 log CFU/ml, respectively. A total of 11 Salmonella-positive samples from 120 carcass rinses were identified. The results of this nation-wide survey provide useful information of the microbiological safety of broiler chickens consumed in South Korea. [Supported by Golden Seed Project, MAFFA]
Acanthamoeba is a protozoan pathogen that can cause a blinding keratitis and a fatal granulomatous encephalitis, however the pathogenic mechanisms of these organisms remain incompletely understood. To obtain Acanthamoeba lacking MBP, carbohydrate selection method was employed. Briefly, Acanthamoeba trophozoites (2×10^7 amoebae) were treated with 10 ml of methyl-a-D-mannopyranoside (in-Man; 100 mM final conc.) and flasks incubated for an additional 24 h. Acanthamoeba were treated with mannose for 20 cycles. For the phagocytic analysis, following the co-incubation with amoebae and bacteria, the supernatants were removed and gentamicin was added to kill any remaining extracellular bacteria. Interestingly, MBP mutant exhibited significantly decreased extracellular proteolytic activities compared with the wild type.

Adenovirus (ADV) cause acute respiratory tract infections and are often associated with increased rates of hospitalization and death, particularly in infants and young children. The aim of this study was to analyze the clinical features and molecular phylogeny of ADV isolated in Busan, from January 2010 to November 2013. Total of 3,230 specimens (throat swabs) were collected from influenza-like illness patients and patients with acute respiratory tract. Multiplex real-time RT-PCR (mRT-PCR) was performed to detect eight respiratory viruses [rhinovirus, adenovirus, respiratory syncytial virus, human coronavirus, human metapneumovirus, human bocavirus, parainfluenza virus and influenza virus] and detected 1,485 (46.0%) cases. Among 1,485 positive specimens, 257 (8.0%) cases were ADV. Serotypic distributions of isolated ADV was analyzed by sequencing of hexon gene. ADV was identified seven different serotypes (1–6, 8), revealing a high similarity among the isolates (~97%). The predominant types were type 1 in 2011, type 3 and 4 in 2012, type 3 in 2013, respectively. ADV type 3 was major causative type during outbreaks in 2013. [Supported by grants from KNII]

Quorum-sensing (QS) is a process of bacterial cell-to-cell communication involving the signaling molecules called autoinducers. Bacteria can utilize several different types of signal cues, which include Acyl-homoserine lactones (AHLs), autoinducing oligopeptides (AIPs), cyclic dipeptides, such as 2,5-diketopiperazines (DKPs), cholera autoinducer-1 (CAI-1), furanosyl diesters (AI-2) and diffusible signaling factors (DSFs). In this study, we performed the purification and identification of family of diketopiperazines (DKPs) from cell-free supernatants of E. coli SE15 isolated from indwelling catheter. Based on the analysis of TLC and GC/MS, we confirmed one of the DKPs (cyclo-(Leu-Pro)) in supernatant of E. coli SE15. Our results showed that E. coli SE15 could produce cyclo-(Leu-Pro) as QS signal molecule. Furthermore, are analysis how this molecule modulate AHL-mediated quorum sensing in E. coli SE15 and also with other quorum sensing bacteria.
Evaluation of Protective Immunity and Immunogenicity of a Killed Whole-cell Cholera Vaccine Containing Cholera Toxin B Subunit in a Murine Pneumonia Model
Seok-Seong Kang1, Jae Seung Yang2, Kyoung Whun Kim1, Cheol-Hee Yun1, Jan Holmgren3, Ceci Czerkynska1, and Seung Hyun Han4
1Department of Oral Microbiology and Immunology, DRI, and BK21 Program, School of Dentistry, Seoul National University, 2Laboratory Sciences Division, International Vaccine Institute, 3Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, 4Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden

Although oral vaccines against cholera have been licensed, the assessment of protective immunity has been hindered due to the lack of appropriate animal models. In this study, we demonstrated a murine pneumonia model induced by intranasal administration with Vibrio cholerae. Bacterial components of V. cholerae, but not cholera toxin, induced lethal and acute pneumonia with massive inflammation. Intranasal immunization with Dukoral®, a commercial cholera vaccine comprised of killed whole bacteria and recombinant cholera B subunit (rCTB), increased both mucosal and systemic antibody responses as well as protection against the infection. Although rCTB-free Dukoral and rCTB alone partially protected against the infection, reconstitution of rCTB-free Dukoral with rCTB restored full protection. Parenteral immunization with Dukoral® provoked strong systemic antibody responses, but not mucosal antibody responses as well as protection against the infection. Taken together, anti-bacterial and anti-toxic immunities are required for the protection against V. cholerae-induced pneumonia and this murine pulmonary model is useful for pre-clinical assessment of candidate cholera vaccines.

Anthriliate and Indole have Influence on Enhancement of Biofilm Formation in P. aeruginosa
Soo-Kyoung Kim, Ha-Young Park, Xihui Li, and Joon-Hee Lee1
College of Pharmacy, Pusan National University

Indole has been reported to enhance the biofilm formation of P. aeruginosa. The enhancement of biofilm formation by indole was QS-independent and none of QS regulators were activated by indole. Instead, a QS-related regulator, AntR was significantly activated by indole. We investigated the anthranilate effect on the biofilm formation of P. aeruginosa. Interestingly, anthranilate enhanced the biofilm formation at early stage of biofilm development by augmenting the initial attachment of cells, but it destabilized the biofilm structure at later stage, like flat biofilm. Distinctively, indole structured robust biofilm and accelerated the biofilm development, advancing the dispersion. Co-treatment of anthranilate and indole activated AntR additively and also enhanced the biofilm formation additively at early stage. But at later stage, the biofilm enhancement by indole was dampened by anthranilate effect. The anthranilate effect on the biofilm formation was QS-independent, since the QS mutant still showed the enhanced attachment at early stage and flattening the biofilm structure at later stage in the presence of anthranilate.

Development of a Reverse Transcription-PCR Assay for Specific Detection of Maedi-Visna Virus
Sang Eun Han1, Seung Hee Jeong1, Woon Young Go2, and In Seop Kim1
1Department of Biological Sciences and Biotechnology, Hannam University, 2BioPS Co. Ltd

Although many kinds of sheep are sensitive to Maedi-Visna Virus (MVV), there is no official case of infection so far in South Korea. Recently a sheep-breeding rises rapidly as sheep receive attention as a health supplement food. Although the threat for MVV is increasing, there is no commercial detection kit for MVV in Korea. Therefore it is necessary to develop a specific detection kit for MVV. MVV is a small ruminant lentivirus belonging to the Retroviridae family. MVV affects the lungs, the central nervous system and other organs and is usually transmitted via pulmonary aerosols,colostrum or semen. We developed a reverse transcription-PCR assay to detect MVV. Specificity, Sensitivity, limit of detection (LOD), and robustness of the method were validated according to European Directorate for the Quality of Medicine (EDQM) and International Conference of Harmonisation (ICH) guidelines. The established conventional PCR assay was validated to be very specific to MVV, reproducible, and robust.

Development of a Reverse Transcription-PCR Assay for Specific Detection of Parainfluenza Virus Type 5
Na Gyeong Noh1, Ju Ri Kim1, Jin Chul Youn1, Jae II Lee2, and In Seop Kim1
1Department of Biological Sciences and Biotechnology, Hannam University, 2BioPS Co. Ltd

Parainfluenza virus 5 (PIV5) is an important cause of acute respiratory infection and predominantly affect infants and young children. PIV5 have been associated with a variety of upper and lower respiratory syndromes including rhinitis, otitis, laryngotracheobronchitis or croup, bronchiolitis, and pneumonia as well as asymptomatic infections. Therefore rapid and accurate diagnostic method with a high degree of specificity is very important. PIV type 5 is a member of the Paramyxoviridae and have a single stranded negative sense RNA genome. We developed a reverse transcription-PCR method to detect PIV5. Specificity, sensitivity, limit of detection (LOD), and robustness of the method were validated according to European Directorate for the Quality of Medicine (EDQM) and International Conference of Harmonisation (ICH) guidelines. The established conventional PCR assay was validated to be very specific to PIV5, reproducible, and robust.

[This work is financially supported by the Ministry of Education through the fostering project of Capstone Design and Industry-University Fusion Laboratory]
D049

Bacterial Lipoproteins-mediated Bone Destruction through the Induction of Osteoclast Differentiation and Activation

Jiseon Kim, Jihyun Yang, Ok-Jin Park, Seok-Seong Kang, Woo-Shin Kim, Kenji Kurakawa, Cheol-Hyei Yun, Hong-Hee Kim, Bok Lu Je Lee, and Seung Hyun Han

1Department of Oral Microbiology and Immunology, DRI, and BK21 Program, School of Dentistry, Seoul National University; 2Department of Cell and Developmental Biology, DRI, and BK21 Program, School of Dentistry, Seoul National University; 3Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University; 4Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University

Bacterial components can cause inflammatory bone diseases accompanied by the bone destruction due to excess generation of osteoclasts. In this study, we investigated the role of lipoproteins in bacteria-induced bone destruction using _Staphylococcus aureus_ and synthetic lipopeptides. Formaldehyde-inactivated _S. aureus_ or the synthetic lipopeptides induced severe bone loss in the femurs of mice after i.p. administration and in a calvarial bone implantation model, while the lipoprotein-deficient _S. aureus_ did not show such effects. Mechanism studies further identified three action mechanisms for the lipopeptide-induced osteoclast differentiation and bone resorption via (i) enhancement of osteoclast differentiation through Toll-like receptor 2 and MyD88-dependent signaling pathways, (ii) induction of pro-inflammatory cytokines, TNF-α and IL-6, and (iii) up-regulation of RANKL expression with down-regulation of osteoprotegerin expression in osteoblasts. Taken together, these results suggest that lipoprotein might be an important bacterial component responsible for bone destruction during bacterial infections through augmentation of osteoclast differentiation and activation.

D051

Inhibitory Effect of _Lactobacillus plantarum_ Lipoteichoic Acid on _Staphylococcus aureus_ Biofilm Formation

Ki Bum Ahn, Cheol-Hyei Yun, and Seung Hyun Han

1Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University; 2Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University

Biofilm is an aggregate of microorganisms in which cells adhere to biological or non-biological surfaces and is responsible for various infectious diseases. Although many _Lactobacillus_ strains have been known to inhibit biofilm formation of pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit the formation of bacterial biofilm are not clearly understood. Here, we demonstrate that _L. plantarum_ lipoteichoic acid (Lp.LTA) inhibits the biofilm formation of various pathogenic bacteria including _Staphylococcus aureus_ without affecting bacterial growth. Lp.LTA inhibited expression of _ica_ operon responsible for the production of _poly-N-acetylglucosamine_ (PNAG), which is required for the biofilm development of _S. aureus_. Furthermore, we found that D-alanine is an essential component of Lp.LTA to inhibit the biofilm formation of _S. aureus_. These findings indicate that Lp.LTA is critical molecule in _L. plantarum_ to inhibit biofilm formation of pathogens.

D050

Caspase-1 Dependent IL-1β Secretion in Macrophages by _Enterococcus faecalis_

Ha-Hymn Yang, Hye-Kyoun Jung, Young-Jung Jung, and Bong-Kyu Choi

Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University

Enterococcus faecalis is a Gram-positive bacterium and causes various diseases using its virulence factors. Inflammasome is a component of innate immune system. It triggers caspase-1 activation, which induces maturation of proinflammatory cytokines such as interleukin-1 beta (IL-1β) and IL-18, and a proinflammatory cell death pyroptosis. Inflammasome can be activated by pathogen-associated molecular patterns and damage-associated molecular patterns. In this study, we investigated inflammasome activation in macrophages after infection of _E. faecalis_. We found by using immunoblotting, real-time RT-PCR and ELISA that _E. faecalis_ efficiently induced both IL-1β transcription and caspase-1 activation. We performed LDH-cytotoxicity assay and PI staining to determine cell death. LDH was released from the _E. faecalis_-infected macrophages to the extracellular space. Which was inhibited by caspase-1 inhibitors. _E. faecalis_-infected macrophages dose-dependently released ATP. Based on these results, we conclude that _E. faecalis_ induced inflammasome activation in THP-1 macrophages, possibly via NLRP3.

D052

Loop-mediated Isothermal Amplification for Detecting _Neisseria meningitidis_ in Cerebrospinal Fluid

Eun Jin Kim, Dokyung Lee, Se Hoon Moon, Chan Hee Lee, Joon Gyu Lee, and Dong Wook Kim

Department of Pharmacy, College of Pharmacy, Hanyang University

A novel nucleic acid amplification technique, loop-mediated isothermal amplification (LAMP), was studied to assess its suitability for detecting _Neisseria meningitidis_ (N.m) in CSF. The LAMP assay was evaluated using a set of 269 randomly selected CSF specimens from children with suspected meningitis collected between 1998 and 2002 in Vietnam, China and Korea. The primer specificity was validated using 14 _N.m_ (serogroup A, B, C, D, 29-E, W-135, X, Y and Z) strains and 15 non- _N.m_ species. The LAMP method proved to be more sensitive than previously described polymerase chain reaction (PCR) methods when using CSF samples. Within 60 minutes, the assay could detect 10 or more copies of purified _N.m_ DNA with a sensitivity ~ 1,000 times greater than conventional PCR. In this set of tested CSF specimens, PCR showed a sensitivity of 85.7% and a specificity of 100% relative to the LAMP assay. These results suggest that LAMP is a sensitive and accurate means of diagnosing _N.m_ infection in CSF. Prospective clinical-epidemiologic studies are now in development to evaluate the utility of _N. m_ LAMP for the clinical diagnosis of invasive meningococcal disease in children and adults.
D053

Clinical Evaluation of a Loop-mediated Isothermal Amplification (LAMP) Assay for Detecting Mycobacterium tuberculosis in Sputum

Eun Jin Kim, Se Hoon Moon, Dokyung Lee, Chan Hee Lee, Joon Gyu Lee, and Dong Wook Kim

Department of Pharmacy, College of Pharmacy, Hanyang University

Tuberculosis (TB) is an infectious disease that is caused by *M. tuberculosis* complex and still remained one of the leading causes of death from infectious diseases in the world. Culture confirmation of *Mycobacterium tuberculosis* takes at least six weeks and other diagnostic methods often give false results, therefore, new diagnostic technique should be developed to control tuberculosis disease effectively. A sensitive and efficient loop-mediated isothermal amplification (LAMP) assay targeting *hspX* was established for diagnosis of *M. tuberculosis* more rapidly and accurately in this study. The sensitivity of TB *hspX* LAMP was 1,000 times better than that of TB *hspX* PCR. For the clinical evaluation, culture confirmation, PCR, and LAMP assay were applied to 303 sputum specimens. PCR assay targeting *hspX* showed no positive results among the sputum specimens. Therefore, the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of TB *hspX* LAMP were calculated 71.1%, 98.8%, 91.4% and 95.1%, respectively in comparison with TB culture as the gold standard for diagnosis of *M. tuberculosis*.

D054

CTX Phages in *Vibrio cholerae* O1

Eun Jin Kim, Chan Hee Lee, Dokyung Lee, Se Hoon Moon, Joon Gyu Lee, and Dong Wook Kim

Department of Pharmacy, College of Pharmacy, Hanyang University

A global population change in *Vibrio cholerae* O1 in the last century, from the classical biotype to El Tor biotype was recognized as an unusual characteristic of *V. cholerae*. Another population change is ongoing within the El Tor biotype strains. The prototype El Tor strains that produced biotype-specific cholera toxin are now being replaced by atypical El Tor variant harboring classical cholera toxin. The binding subunit of the CT (CTB) is encoded by ctxB and the CTBs of the two phases vary by two amino acids (39th and 68th) out of the full 125 amino acid protein. Atypical El Tor variants, El Tor strains producing classical cholera toxin were first recognized in 2006 and a number of atypical El Tor variants have since been reported. In this study, we analyzed full sequence of CTX phages of *V. cholerae* O1 strains, including the classical biotype strains, prototype El Tor biotype strains, Atypical El Tor variants, and US Gulf Coast Strains. The DNA sequence analysis shows that the CTX phages in the atypical El Tor variants are mosaic of pre-existing phages.

D055

Isolation and Identification of Carbapenem-resistant *Enterobacteriaceae* Isolates from Korean Carriers

So Yeon Kim1, Sang-Yeop Shin2, and Kwan Soo Ko2

1Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 2Korea Medical Institute

A total of 300 individual carrier samples were collected in October 2013. The isolation and identification of carbapenem-resistant *Enterobacteriaceae* (CRE) were performed by two-step process. First, the carrier samples are plated on LB agar medium in the presence of imipenem 4 mg/L, and then suspected colonies are plated on MacConkey agar selective medium in the presence of imipenem 4 mg/L for selection of gram-negative organisms. The isolated CRE were identified by 16S rRNA gene analysis. *In vitro* antimicrobial susceptibility testing was performed, and PCR assay was done for detection of metallo-β-lactamase (MBL) genes. As a result, twelve CRE isolates were identified; *Stenotrophomonas maltophilia* (4 isolates), *Morganella morganii* (2 isolates), *Halomonas hamiltonii* (2 isolates), *Proteus mirabilis* (2 isolates), *Proteus vulgaris* (1 isolate), *Enterobacter ludwigii* (1 isolate), and *Pseudomonas aeruginosa* (1 isolate). Most of CRE isolates were resistant to polymyxins, cephalosporins, and aminoglycosides. No MBL genes were detected. In this study, we identified CRE in Korean carrier samples. Diverse species of CRE isolates was notable.

D056

Molecular Epidemiological Characterization of Enterovirus 71 Isolated in Busan

Dong Ju Park, So Hyun Park, Sang Kee Min, and Kyung Soon Cho

Division of Virology, Busan Metropolitan City Institute of Public Health and Environment

Enterovirus 71 (EV-71) is responsible for frequent large-scale outbreaks of hand, foot, and mouth disease (HFMD), herpangina, and severe neurological complications such as encephalitis, aseptic meningitis, and even death. This study was performed to investigate epidemiological characteristics and diversities of EV-71 isolated from 2011 to 2013 in Busan. A total of 2,978 specimens were collected from children and screened for the isolation of enterovirus by cell culture and real-time RT-PCR. 458 positive specimens (15.4%) were identified with enterovirus infections and 50 positive isolates out of them were EV-71. Most of EV-71 isolates were from children's specimen under 10 years old and 26 isolates (52%) were 01 years old. The positive rates of EV-71 were 1.7% and 2.0% in CSF and stool samples, respectively. Aseptic meningitis was the most common clinical manifestation (46%), herpangina (4%), and HFMD disease (4%). The 22 VP1 gene sequences of EV-71 were 98–100% homologous with that of the Human Enterovirus 71 (HEV71) isolate H11-23-KOR. The result of phylogenetic analysis of EV-71 isolates based on VP1 gene showed that most of them were classified into subgenotype C4a.
DO58

Prevalence and Characterization of Food-borne Bacteria Isolated from Diarrhea Patients in Busan

Yon Young Park, Eunhee Park, Sunhee Park, Inyeong Hwang, Gyunghye Sung, Miok Lee, Hyeyoung Park, and Younghee Kwon

Microbiology Division, Busan Metropolitan City Institute of Public Health and Environment, Department of Microbiology and Immunology, Yonsei University College of Medicine

We investigated food-borne bacteria of ten from diarrhea patients for EnterNet surveillance project. The diarrhea stool specimens were collected from diarrhea patients in cooperation five hospitals of Busan.

We isolated 165 causing bacteria from 1,197 stool and the prevalence of isolation was 13.8%. A total 165 strains were isolated, showing multi drug resistance and the isolates resistant to the antibiotics were 1 strain. [Supported by grants from KNIH]
Stimulation of Gammaherpesviral Production by Genipin

Myoung Ki Son, Eun Hyun Ryu, and Hyo Jeung Kang
College of Pharmacy, Research Institute of Pharmaceutical Sciences, and Institute for Microorganisms, Kyungpook National University

Genipin is an aglycone derived from an iridoid glycoside called geniposide. Genipin is an excellent natural cross-linker for protein, collagen, gelatin, and chitosan cross-linking. We investigated if genipin would be one of anti-gammaherpesviral agents using in vitro iSLK-BAC16 and SNU-719 infection systems. Genipin increased not only intracellular and extracellular genome copy numbers of KSHV by 2-fold yet decrease KSHV extracellular copy number, whereas it increase EBV extracellular copy number by two fold yet decrease KSHV extracellular copy number. RT-qPCR assay revealed that the genipin could stimulate KSHV lytic gene induction while iSLK-BAC16 and SNU-719 cells. Taken above results together, these studies proposed that chalcone compounds including genipin and quercetin have specificity in antiviral activities against EBV and KSHV, respectively.

Induction of Gammaherpesvirus Lytic Replication by Chalcone

Songyee Baek, Minjung Lee, Eun-ju Yang, Hán Lee, Hyosun Cho, Gi-Ho Sung, Kyung-Sik Song, Hyojeung Kang
College of Pharmacy, Research Institute of Pharmaceutical Sciences, and Institute for Microorganisms, Kyungpook National University

Isoliquiritigenin is a licorice-derived chalcone which plays a role of potent positive allosteric modulator for GABA-A benzodiazepine receptor. The ionotropic GABA-A receptor protein complex is also the molecular target of the benzodiazepine class of tranquilizer drugs. Isoliquiritigenin decrease gammaherpesvirus extracellular copy number by 2-fold to EBV. Whereas it increase KSHV extracellular copy number by seven fold to KSHV. On the other hand, quercetin gently decrease both gammaherpesvirus intracellular copy number, whereas it increase EBV extracellular copy number by two fold yet decrease KSHV extracellular copy number. RT-qPCR assay revealed that the isoliquiritigenin vigorously activated EBV and KSHV lytic gene induction while it moderately induced the gammaherpesviral latent gene expression. In addition, we investigated physiological effects of isoliquiritigenin and quercetin on iSLK-BAC16 and SNU-719 cells. Taken above results together, these studies proposed that chalcone compounds including isoliquiritigenin and quercetin have specificity in antiviral activities against EBV and KSHV, respectively.
E001

Transcriptome Analysis of Pikromycin-producing Strain *Streptomyces venezuelae* ATCC15439

Jieun Kim, Yeonbum Kim, Ji-sun Yoo, and Jung-Hye Roe*
School of Biological Sciences, Seoul National University

Streptomyces are well known organisms as producers of antibiotics and have a complex cell cycle. Secondary metabolite production shares components with that of the sporulation process. Unlike *Streptomyces coelicolor*, *S. venezuelae* is a useful system for secondary metabolite engineering and differentiation study by having benefits from rapid growth rate and sporulation in liquid culture. We focus on the role of sigma factors and their regulation of secondary metabolite biosynthesis in *S. venezuelae*. We analyzed transcriptome using RNA sequencing in *S. venezuelae* and *S. coelicolor* in various growth phases under liquid culture condition. The expression of genes related to bioactive compounds production and differentiation in *S. venezuelae* was correlated with growth phase. *S. coelicolor* shows no differentiation-related gene expression, however, the secondary metabolite gene clusters are activated under this condition. In stationary phase, sigma factors and sporulation factors of *S. venezuelae* were differently expressed in comparison to those of *S. coelicolor* cultured in liquid media, especially sigD and sigG which are related to sporulation.

[Supported by ISIB of Global Frontier Project]

E002

Differential Roles of Isa1 and Isa2 in Fe-S Cluster Assembly and Iron Regulation in *Schizosaccharomyces pombe*

Youngdae Seo, Kyung-Chang Lee, Soo-Jin Jung, and Jung-Hye Roe
School of Biological Sciences, Seoul National University

The process of forming Fe-S clusters involves scaffold proteins that form transient Fe-S clusters and carrier proteins that transfer Fe-S to specific apo-targets. The role of carrier proteins (Isa1 and Isa2) that are homologues of *IscA*, an A-type carrier in *E. coli*, was examined in *S. pombe*. Unlike in *S. cerevisiae*, each of the isa1* and isa2* gene is essential for the growth of *S. pombe*. Repression of isa1 or isa2 expression caused growth defect in EMM media. Although Isa1 and Isa2 are similar in sequence, multi-copy isa2 did not restore growth defect of isa1 mutant and vice versa. In both conditional mutants, the activity of aconitase and succinate dehydrogenase was decreased under aerobic growth condition. Under anaerobic condition however, only isa1 mutant showed defect in succinate dehydrogenase activity. Additionally, the expression of an iron uptake gene (fis1+) was induced in isa1 mutant. Even though the activities of mitochondrial Fe-S enzymes were affected in both mutants, only Isa1 was involved in iron homeostatic regulation. These results demonstrate that Isa1 and Isa2 perform differentiated roles in supporting Fe-S enzymes and iron-homeostatic gene regulation.

E003

Crystal Structure of C-terminal Effector Domain of VncR

Sang-Sang Park1, Sangho Lee2, and Dong-kwon Rhee*
1School of Pharmacy, Sungkyunkwan University, 2Department of Biological Sciences, Sungkyunkwan University

VncR is the response regulator component of the VncRS two-component signal transduction system (TCS) of infectious pathogen *Streptococcus pneumoniae*. VncRS associates with regulation of bacterial autolysis and antibiotic resistance such as vancomycin. VncR contains two different functional domains, N-terminal receiver domain and C-terminal effector domain. Here, we investigated VncR DNA binding domain (VncR_b) structure using crystallization approach. Crystalization was performed using the micro-batch method. The crystals diffracted to a 1.964 Å resolution and belonged to space group P2_12_1. The crystal unit-cell parameters a=25.71, b=52.97, c=60.61 Å. The structure of VncR_b has helix-turn-helix motif, it is similar to the other response regulator proteins, for example, PhoB of *E. coli*. Determination of the VncR_b structure will provide insights into the mechanisms of VncR binding to the target DNA.

E004

Molecular Analysis of the Medium-Chain-Length Polyhydroxyalkanoate Depolymerase Gene from *Variovorax* sp. DSH and Characterization of the Gene Product

Hyun Wook Kim, Keum Mi Kim, and Young Ha Rhee*
Department of Microbiology, Chungnam National University

An extracellular medium-chain-length polyhydroxyalkanoate (MCL-PHA) depolymerase gene (phaZDSH) was cloned from the genomic DNA of *Variovorax* sp. DSH. The phaZDSH gene was found to be 837 bp with a deduced protein of 278 amino acids. The amino acid sequence had at least 68% homology to the known MCL-PHA depolymerases from *Pseudomonas* strains and consist of three domains in the sequential order; signal peptide, an N-terminal substrate binding domain, and a catalytic domain. The phaZDSH gene was expressed in *Escherichia coli* and the gene product was purified and biochemically characterized. The enzyme consisted of a monomeric subunit having a molecular mass of 27.9 kDa as determined by SDS-PAGE. The maximum activity of the enzyme was observed at pH 8.5 and 45°C. Its hydrolyzing activity was significantly sensitive to PMSF, EDTA, N-bromosuccinimide, and nonionic detergents. The highly significant homology of the deduced amino acid sequence of PhaZDSH with those of the known *Pseudomonas* MCL-PHA depolymerases and several characteristics that are common among these enzymes strongly suggest the possibility of horizontal transfer of the MCL-PHA depolymerase gene in bacterial strains.
A Role of Cps35/Swd2 in the Regulation of COMPASS Activity for the Trimethylation of Histone H3K4 Depending on Ubiquitinated Histone H2B

Shinae Park, Yu-Kyung An, Jueun Kim, and Jung-Shin Lee
Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University

Ubiquitinated Histone H2B

The histones in the eukaryotic chromatin are highly modified with many diverse post-translational modifications. These modifications can influence each other to regulate transcription and other processes. One of the best-known histone crosstalks is that H2BK123 should be mono-ubiquitinated for higher level of H3K4 trimethylation (me3). Cps35/Swd2 within Set1 complex (called COMPASS) was originally thought to connect H2B ubiquitination (H2Bub) and H3K4 methylation. Recently, one group reported that a truncated form of Set1 (762-Set1) can methylate histone H3K4, even though there is no interaction of Cps35/Swd2. However, we reported the mislocalization of the H3K4me3 by 762-Set1. We used ChiP-seq approach and then concluded that the H3K4me3 by 762-Set1 occurred not in promoter-proximal region correctly but also in gene bodies and intergenic region. This result suggests that Cps35/Swd2 interacting H2Bub machinery could play a role in focusing H3K4me3 to the correct location. Our communoprecipitation data also showed Cps35/Swd2 interacts with Rad6 and some components of Pafl complex. So we suggest a model in which the H2Bub machinery could function as a prerequisite for H3K4me3.

Butyryl-CoA Dehydrogenase Has an Electron Bifurcating Role for Energy Conservation in Acetogen, Eubacterium limosum KIST612

Jiyeong Jeong1, Johannes Bertsch2, In-Geol Choi1, Yeongeun Kim1, Volker Müller3, and In Seop Chang4
1School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 2Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 3Max-von-Lavue-Str. 9, 60438 Frankfurt, Germany, 4Computational and Synthetic Biology Laboratory, College of Life Sciences and Biotechnology, Korea University

Eubacterium limosum KIST612 is a strict anaerobic, Gram-positive, acetogen that uses synthesis gas as carbon and energy source via the WL pathway. The products are acetate and butyrate. Butyrate production is via acetocetyl-, hydroxybutyryl- and crotonyl-CoA. Crononyl-CoA reduction in Clostridia was recently shown to be energy conserving via coupled ferredoxin (Fd) reduction and subsequent Nar/H+-motive Fd oxidation. Genome mining of KIST612 showed the presence of two genes encoding electron transferring flavoprotein (EtfAB) next to butyryl-CoA dehydrogenase (Bcd). It was assumed that Bcd of KIST612 may use EtfAB to transfer electrons to ferredoxin (Fd) which reduces Fd at the expense of NADH oxidation with crotonyl-CoA reduction, and this mechanism is contribute to energy metabolism of KIST612.

Antioxidant Effect of Lactic Acid Bacteria-Fermented Ginseng Extracts (FGE)

In Ock Lee and Sae Hun Kim
Division of Food Bioscience and Technology, Korea University

The effect of lactic acid bacteria-fermented ginseng extract (FGE) on physiological activities was evaluated. Ginseng extract (GE) were inoculated with five strain of LAB (1.0 × 10^8 CFU/ml) and incubated at 37°C for 72 h. Among 5 kinds of LAB, two substrains of Lactobacillus salivarius E4191, Lactobacillus johnsonii OCS41 were selected based on their dose dependent stimulation of the growth of LAB in the presence of ginseng and changes in pH, acidity and viable cell counts during fermentation was examined. E4191 specifically was found to show the best growth on 7% GE and reached nearly 10.4 × 10^8 CFU/ml after 24 h of fermentation and pH was significantly lowered from 7.00 to 4.31. Antioxidant activity of GE and FGE was also analyzed by DPPH radical scavenging activity assay. E4191 - FGE showed an 82.6% inhibition of DPPH radical at a concentration of 3.00%. GE showed a 63% inhibition of DPPH radical at the same concentration. These results suggest that FGE could be used as an active ingredient for health functional food.

Inhibitory Activity of Lactobacilli on Calcineurin mRNA Expression of Human Fibroblast-like Synovial Cells

Jamin Lim and Sae Hun Kim
School of Life Sciences and Biotechnology, Korea University

Calcineurin is a calcium-dependent serine-threonine phosphatase. It stimulates the growth and differentiation of T cells in immune system. When calcium level in cytoplasm is increased, overexpressed Calcineurin induces the production of other cytokines and it relates to autoimmune. Lactobacilli are known to have nutritional functions and positive effects to human health. Some Lactobacillus species have shown effects on modulating inflammatory cytokines. In this study, inhibitions of Calcineurin levels using Lactobacilli in the MH7A rheumatoid synovial cell were demonstrated. 20 strains of Heat-killed Lactobacillus were pre-treated to MH7A Cells, then Polyinosinic-polycytidylic acid (PolyI:C) and Lipopolysaccharide (LPS) were added to cells to induce Calcineurin. mRNA levels of Calcineurin were expressed by using RT-PCR. Lactobacillus brevis KY21 and Lactobacillus rhamnosus GG have the potential in further researches in treatment for overexpressed Calcineurin.
Inhibitory Effect of *Gleditsia sinensis* Thorn Extract and Fermentation on Lipopolysaccharide-induced Interleukin-8 in Intestinal Epithelial Cells

Na Hyun Park and Sae Hun Kim
School of Life Sciences and Biotechnology, Korea University

Probiotics are live microorganisms, which have been shown to exert beneficial effects on human health, including inflammatory bowel disease. Recently, probiotic bacteria are incorporated into beverages in the hope of producing functional beverages. *Gleditsia sinensis* is one of the most common medicinal herbs in Asia. Its thorns have demonstrated their pharmacological activity, particularly in anti-inflammatory properties. The objective of this study was to determine the inhibitory effect of probiotic bacteria and *Gleditsia sinensis* thorn (GST) extract on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines in the human intestinal epithelial cell line HT-29. We expected that GST extract and fermentation showed inhibitory effect on LPS-induced IL-8 mRNA expression and protein from HT-29 cells. Results from the present study demonstrated that GST extract and fermentation containing *Lactobacillus brevis* KY 21 could contribute to protective effect on human intestinal epithelial cells.

Leucine Aminopeptidase (LAP) of *Aspergillus sojae* Isolated from Fermentation Products

Dae-Hoo Kim, Kyung Min Kim, Byung-Serk Hur, and Inhyung Lee
1Department of Bio and Fermentation Convergence Technology, Korea University, 2Sempio Fermentation Research Center

Leucine aminopeptidase (LAP) is exopeptidase, which removes the N-terminal L-leucine from peptide substrates. LAP is one of the most interesting enzymes in fermentation industry because it plays an important role in the flavor development of soybean-fermented foods. We collected total 34 *A. sojae* isolated from various fermentation products and analyzed their LAP activity profile for the further studies on the regulation of LAP activity. Because Aspergillus section Flavi is often misidentified due to their phylogenetic similarity, we re-identify them at morphological and molecular genetic levels. About 9 strains were reclassified to other species. The LAP activities were measured at various levels ranging from 0.02 to 0.2 U/g biomass and 0.2 to 2.0 U/mg crude proteins. These *A. sojae* strains showing various LAP activities will be further analyzed to understand the underlying mechanism on the differences in LAP activities.

[Supported by grants from “World class 300 project (Project No. A2013-0391)” of the Ministry of Trade, Industry and Energy, Republic of Korea.]

UDP-glucose 4-epimerase (GaIE) catalyzes the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal), which is a pivotal step in the Lebior pathway for galactose metabolism. Although GaIEs are widely distributed in Bacteria and Eukaryotes, there is little information on hyperthermophilic GaIE. Herein we cloned and overexpressed the TM0509 gene from *Thermotoga maritima*. The recombinant protein was purified to homogeneity by nickel-affinity chromatography followed by size-exclusion chromatography. The recombinant TMGaIE could reversibly catalyze the epimerization of UDP-Gal and UDP-Glu in the presence of NAD₃ at elevated temperatures. The apparent optimal temperature and pH for epimerization activity were 85°C and pH 7.0, respectively. In addition, we determined not only the crystal structure of TMGaIE at 1.9 Å resolution, but also the co-crystal structure of TMGaIE with UDP-Glu at 2.0 Å resolution. These biochemical and structural data showed that TM0509 is an UDP-galactose 4-epimerase involved in galactose metabolism, which is the first detailed characterization of a thermostable GaIE from hyperthermophilic bacterium. [Supported by a grant from IPET]
E013
The Stability of pVHL is Regulated by the Interaction between Hepatitis B Virus X Protein and VBP1
Ji Ae Kim, Hanwoon Park, Sung-min Kang, Samyoung Ju, Inho Kang, and Jeong Keun Ahn
Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University

Von Hippel-Lindau protein (pVHL) is a tumor suppressor protein which is associated with multiple benign and malignant tumors. pVHL regulates proteasomal degradation of the hypoxia-inducible factor-1α (HIF-1α). HIF-1α plays several roles in oxygen homeostasis and tumorigenesis. It has been reported that von Hippel-Lindau binding protein 1 (VBP1) interacts with pVHL. It is possible that VBP1 may influence the stability of pVHL, since VBP1 is known as a molecular chaperone. Hepatitis B virus (HBV) is one of the most important human pathogen for various liver disease. Among HBV proteins, hepatitis B virus X protein (HBx) is a viral oncoprotein associated with liver carcinogenesis. By using yeast two-hybrid system, we selected several possible cellular partners of HBx including VBP1. Here we tested the regulatory effect of HBx on the stability of pVHL through its interaction with VBP1. We found that VBP1 stabilizes pVHL by suppressing the ubiquitination of pVHL. In addition, HBx decreases the level of pVHL by blocking the stabilizing activity of VBP1 on pVHL. Taken together, HBx regulates a tumor suppressor pVHL through VBP1 suggesting a new possible mechanism for tumorigenesis by HBx.

E014
The Effect of Oxygen in Nitric Oxide-mediated Branched-chain Amino Acid Auxotrophy of Salmonella
Yoon Mee Park and Iel Soo Bang
Department of Microbiology and Immunology, Chosun University School of Dentistry

Nitric oxide has been known to cause amino acid auxotrophy in Salmonella Typhimurium. Branched-chain amino acids (BCAAs) play major roles in bacterial recovery from amino acid auxotrophy under nitrosative stress, implying that some enzymes for BCAA biosynthesis are vulnerable to NO. LeuCD and IlvD are essential enzymes for BCAA biosynthesis and possess NO-targetable Fe-S clusters, so that their inactivation has been implicated as a cause of NO-mediated BCAA auxotrophy. In this study, we examined their roles in NO resistance under different oxygen tensions by using leuCD and ilvD mutants constructed in hmp1 mutant Salmonella deficient in NO-detoxifying enzyme flavohemoglobin. The NO-caused growth arrest of mutants leuCD hmp, ilvD hmp, and leuCD ilvD hmp was relieved by supplementation with the combination of BCAA under aerobic cultures, whereas it was not under semiaerobic or anaerobic cultures. Data suggest that NO inactivates key enzymes of BCAA biosynthesis whose damage can be overcome by supplying end-products, but it can further inactivate enzymes functioning beyond their known roles in BCAA biosynthesis under oxygen-limited conditions.
[Supported by NRF grant (2008-0062283)]

E015
Structural Insights into Conserved L-Arabinose Metabolic Enzymes Reveal the Substrate Binding Site of a Thermophilic L-Arabinose Isomerase
Yong-Jik Lee1, Sang-Jae Lee2, Seong-Bo Kim3, Sang Jun Lee4, Sung Haeng Lee5, and Dong-Woo Lee5
1School of Applied Biosciences, Kyungpook National University, 2Department of Bio-Food Materials, Silla University, 3CJ Foods R & D, CJ Cheiljedang Corporation, 4Infection & Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, 5Department of Cellular and Molecular Medicine, Chosun University School of Medicine

Structural genomics demonstrates that despite low levels of structural similarity of proteins comprising a metabolic pathway, their substrate binding regions are likely to be conserved. Herein based on the 3D-structures of the α/β-fold proteins involved in the ara operon, we attempted to predict the substrate binding residues of thermophilic Geobacillus stearothermophilus L-arabinose isomerase (GSAI) with no 3D-structure available. Comparison of the structures of L-arabinose catabolic enzymes revealed a conserved feature to form the substrate-binding modules, which can be extended to predict the substrate binding site of GSAI (i.e., D195, E261 and E333). Moreover, these data implicated that proteins in the L-arabinose metabolic pathway might retain their substrate binding niches as the modular structure through conserved molecular evolution even with totally different structural scaffolds.
[This work was supported by a grant 311042-05-1-HD120 from the Korea Institute of Planning & Evaluation for Technology (IPET) funded by the Ministry for Food, Agriculture, Forestry and Fisheries to Dr. Dong-Woo Lee, and by research funds from Chosun University (2008) to Dr. Sung Haeng Lee.]

E016
Biochemical and Structural Characterization of a Thermophilic L-Arabinose Isomerase from Geobacillus kaustophilus
Yong-Jik Lee1, Jin Myung Choi2, Sun-Mi Shin3, Sang-Jae Lee2, Han-Seung Lee2, Sang Jun Lee4, Sung Haeng Lee5, and Dong-Woo Lee5
1School of Applied Biosciences, Kyungpook National University, 2Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 3Department of Bio-Food Materials, Silla University, 4Infection & Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology

Thermophilic L-Arabinose isomerase (Al), that catalyzes the interconversion of L-arabinose to L-ribulose, can also isomerize D-galactose to D-tagatose as a natural sugar substitute. Unlike mesophilic Alis, thermophilic Alis showed the distinct metal dependence for catalytic activity and thermostability at elevated temperatures. However, it still remains unclear how thermophilic Alis showed different substrate preferences and metal requirements at molecular levels. Herein we presented the first crystal structures of the apo and holo forms of a thermophilic Al from Geobacillus kaustophilus (GKAi) by X-ray crystallography to 2.40 and 2.30 Å, respectively. In comparison with the crystal structures of Escherichia coli Al as a mesophilic counterpart, the GKAi structures revealed conserved structural features for substrate and metal binding, except for subtle interactions of a few polar residues with water molecules near the substrate binding region. Our comparative analysis provides a versatile strategy to engineer the promiscuity of substrate specificity for sugar isomerases as well as thermostability for mechanistic studies and industrial applications.
[Supported by a grant from iPET]
E017

Vibrio vulnificus HPr Stimulates Pyruvate Kinase A Activity to Protect Cells against H$_2$O$_2$ Stress

Hey Min Kim1, Young-Ha Park1, and Yeong-Jae Seok1,2

1Department of Biological Sciences and Institute of Microbiology, Seoul National University; 2Department of Biophysics and Chemical Biology, Seoul National University

The bacterial phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS) consists of two general energy-coupling proteins (enzyme I and HPr) and several sugar-specific enzyme IIIs. In addition to the phosphorylation-coupled transport of sugars, the PTS components participate in many physiological processes. In this study, we have identified pyruvate kinase A (PykA) as a binding partner of HPr in *V. vulnificus*, which is an opportunistic human pathogen. The interaction between HPr and PykA was strictly dependent on the presence of inorganic phosphate and only unphosphorylated HPr interacted with PykA. Domain swapping experiments between PykA and its *E. coli* ortholog revealed a requirement for the C-terminal domain of PykA for specific interaction with HPr. Unphosphorylated, but not phosphorylated, HPr decreased the Km of PykA for PEP about 4 fold without affecting Vmax. A *pykA* mutant became more susceptible to H$_2$O$_2$ than wild-type *V. vulnificus* and this sensitivity was completely rescued by the addition of pyruvate to the culture medium. Based on these data, our data suggest that PykA plays an important role in H$_2$O$_2$ stress response in the presence of PTS sugars.

E018

Regulation of Flagellar Motility by the PTS in Vibrio vulnificus

Soyoung Park1, Chang-Ro Lee2, and Yeong-Jae Seok1,7

1Department of Biophysics and Chemical Biology, Seoul National University; 2Department of Biological Sciences, Myongji University; 7Department of Biological Sciences and Institute of Microbiology, Seoul National University

Vibrio vulnificus is an opportunistic human pathogen that causes food-borne diseases such as gastroenteritis and primary septicemia, and its single polar flagellum-based motility is one of the potential virulence factors. Notably, it has been reported that glucose prevents the synthesis of flagella and hence swimming motility in some bacteria. Glucose is transported through the phosphoenolpyruvate: sugar phosphotransferase system (PTS) in most bacteria. The components of the PTS have multiple physiological roles as well as catalysis of the transport and accompanying phosphorylation of numerous PTS sugars. Here, we show that the dephosphorylated form of enzyme IIA of the glucose PTS, but not its phospho-form, interacts with a hypothetical protein (henceforth called Protein X) in *V. vulnificus*. A deletion mutation in protein X resulted in loss of flagellum synthesis and reduced expression of several flagellar genes, indicating that Protein X is essential for the flagellar motility. Taken together, we suggest that the interaction between enzyme IIA11,12 and Protein X regulates the flagellar motility by sensing glucose in *V. vulnificus*.

E019

Hypocholesterolemic and Anti-thrombotic Effect of Fermented Mailard Reaction Products (MRPs) by Probiotic *Lactobacillus* Strains

Mi Ri Park, Hyuck Sun Kwon, and Sae Hun Kim

Division of Food Bioscience and Technology, College of Life Science and Biotechnology, Korea University

The Maillard reaction is a complex reaction that occurs between carbonyl and amine groups of milk protein and lactose and its product have been called Mailard reaction products (MRPs). Probiotic *Lactobacillus* can readily utilize and hydrolyze MRPs via proteolysis. In this study, hypocholesterolemic and anti-thrombotic effect of MRPs, fermented by LAB, has been measured. Using selected strains, mailard reaction products (MRPs) was fermented and then focused on evaluating the protective effect against cardiovascular diseases (CVD), especially atherosclerosis. Cholesterol reduction activity of probiotic strains and fermented MRPs were done by colorimetric assay. Cholesterol reduction rate of fermented cMRPs (casein derivated MRPs) by *Lactobacillus casei* MF27 and *Lactobacillus fermentum* MB50 will have been measured. And anti-thrombotic effects of fermented wMRPs (whey protein concentrate (WPC) derivated MRPs) using spectrophotometric assay. For identify the effect of hydrolysis of MRPs during fermentation, degree of hydrolysis were measured using OPA-method.
F001

Integration Helper Plasmid Mediated One-Step Inactivation in Escherichia coli

Chen Woo Song and Sang Yup Lee
Metabolic and Biomolecular Engineering Laboratory (MBEL), Department of Chemical and Biomedical Engineering, Korea Advanced Institute of Science and Technology

We developed an integrated helper plasmid-based gene manipulation system for more efficient and rapid engineering of *Escherichia coli*. The integrated helper plasmid, pCW611, contains two recombinases which are expressed in reverse direction by two independent inducible systems. The main advantage of this system is that the time and effort required can be significantly reduced because the iterative transformation of the helper plasmid and curing steps are not required. We could delete one target gene in 3 days by using pCW611. To verify the usefulness of this gene manipulation system, the deletion experiments were performed for knocking out four target genes individually (*adhE*, *sfcA*, *frdABCD*, and *ackA*) and two genes simultaneously for two cases (*adhE-aspA* and *sfcA-aspA*). Also, sequential deletion of four target genes (*fumB*, *iclR*, *fumA*, and *fumC*) was successfully performed for the construction of fumaric acid producing strain.

[Development of systems metabolic engineering platform technologies for biorefineries; NRF-2012-C1AAA001-201251/A2A2926556 (funded by the Ministry of Education, Science and Technology)]

F002

Roles of the VeA-dependent Proteins Identified by Proteome Analysis in Aspergillus nidulans

Joo-Yeon Lim, Bo-Ri Jeong, Yu-Kyung Choi, Jun-Ho Kook, Eun-Hye Kang, and Hee-Moon Park
Department of Microbiology & Molecular Biology, Chungnam National University

In *Aspergillus nidulans*, VeA is a key regulator involved in light-sensitive control of differentiation. Our previous proteomic analysis using VeA-deletion mutant revealed 12 VeA-dependent proteins, VdpA–VdpJ, of which expression level was affected by VeA. To examine the function, genes for Vdps were individually disrupted. Phenytopin analysis was performed in vegetative growth, asexual and sexual development. Among the vdp-deletion mutants tested, the strains lacking VdpA or VdpJ revealed various developmental defects. The VdpA has a survival factor-like domain of yeast. Strain lacking the VdpA showed defective phenotypes: reduced radial growth, small mycelia balls with hyper-branching, frequent septation, reduced spore production and abnormality in asexual and sexual organ. The VdpJ is known as a hypothetical protein. Strain lacking the VdpJ showed reduced growth on minimal medium and arginine auxotrophy. Since sexual development is affected by the amount and type of carbon source, we are examining sexual development of the mutant on variable media, including 3% glucose, 2% Lactose and 2% glycerol as carbon source.

[Supported by grants from NRF]

F003

Molecular Characterization of Hydrogen Peroxide-Sensing OxyR Regulon in Acinetobacter oleivorans DR1

Youjung Cho and Woonjun Park
Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University

A Diesel-degrading *Acinetobacter oleivorans* DR1 has annotated OxyR homolog (AOLE_14380) which has two conserved cysteine residues. Four catalases are present in the genome of DR1. Alignment of OxyR-binding regions from *P. aeruginosa* and *E. coli* with promoters of 4 catalases identified putative OxyR-binding site upstream of two catalases. qRT-PCR analysis under H2O2 demonstrated that expression of those catalases (AOLE_09800 and AOLE_11770) were 7 and 5 fold increased, respectively. Proteomics was conducted to investigate the effect of H2O2 on whole protein expression level. Our result has shown that 54 proteins were differentially expressed after 1hr in response to 1 mM H2O2. Among them, up-regulated 18 proteins were identified by MALDI-TOF MS. Functional classification of these proteins showed a relationship with oxidative stress, energy production and conversion, nucleotide transport and metabolism. Interestingly, the most overexpressed protein was peroxiredoxin (Prx) which belongs to typical 2-Cys Prx class. Currently, characterization of differently expressed proteins along with EMSAs using purified OxyR is under investigation.

F004

Isolation of Genes Involved in mRNA Export by Complementation of Synthetic Lethal Mutants in Fission Yeast

Hyun Joo Lee, Eun-Jin Koh, and Jin Ho Yoon
School of Biological Sciences and Chemistry, Basic Science Research Institute, Sungshin Women’s University

The Nab2 is known as a poly(A)+ RNA binding protein that modulates poly-A tail length. The Nab2 interacts with Yra1, Sub2 and Mex67 which function as mRNA export and thus, it also support mRNA export process by shuttling between nucleus and cytoplasm. In fission yeast *Schizosaccharomyces pombe*, the nab2 null mutant is not essential for cell growth and mRNA export but over-expression causes a severe mRNA accumulation in the nucleus. In order to further study, we isolated mutants that show synthetic lethality with the nab2 (SLnab2). By using these mutants, we have searched for genes that could potentially have overlapping or complementary function with nab2. From SLnab2 transformants with DNA library, we selected plasmids that rescue the growth defect in the presence of thiouamine. Isolation and sequence analysis of the plasmids revealed 4 genes, *nah2*, *rmn1*, *uap56* and *SPCC1442.04c*. From among these, we focused on *SPCC1442.04c* gene. The *SPCC1442.04c* null mutant shows no growth defect but wild type strains overexpressing *SPCC1442.04c* gene show severe growth retardation and poly(A)+ RNA accumulation phenotype in the nucleus.

[Supported by grants from NRF]
LAMMER Kinase-mediated Regulation of MBF Activity for Cell Cycle Progression in Fission Yeast

Jae-Min Lee, Ki Bum Park, Je Hoon Kim, Won Hwa Kang, and Hye-Moon Park
Department of Microbiology & Molecular Biology, Chungnam National University

Our previous study with LAMMER-kinase (Lkh1) deletion mutant displays several phenotypes, which may be related to the cell size control and cell-cycle progression. Microarray analysis of the lkh1 deletion mutant revealed that the expression of various classes of genes were affected by the lkh1 deletion. Among those up-regulated genes by the lkh1 deletion, only four were identified as the genes related to the cell cycle. Interestingly, these genes are regulated by MBF (Mtn1) cell cycle box binding factor, a transcription factor that regulates cell-cycle genes in G1/S phase. Quantitative RT-PCR of transcripts revealed that Lkh1 may be associated with negative feedback regulators of MBF because MBF-dependent genes are up-regulated in lkh1 deletion mutant. Pull-down assay, kinase assay and PMF suggested that Lkh1 phosphorylates threonine 40/41 residues in Yox1 of negative feedback regulator of MBF. Experiments to see the effects of Lkh1-dependent Yox1 phosphorylation on the assembly MBF components are under investigation and the results will be discussed.

The Unique Roles of Ire1 in Bisexual and Unisexual Mating in Cryptococcus neoformans

Kwang-Woo Jung and Yong-Sun Bahn
Department of Biotechnology, Yonsei University

Mating is an essential biological process for producing genetically diverse offspring, which contributes to the increased fitness of certain species in its environmental niches. Previously we have shown that the unfolded protein response pathway, comprising the Ire1 kinase/endonuclease and its downstream transcription factor Hxl1, governs ER stress response and its physiological impacts of the drug on fungal metabolism remain elusive. In this study, we performed the DNA microarray-based transcriptome analysis to identify KR-72 responsive genes and employed reverse genetics approaches to characterize their functions in Cryptococcus neoformans, which causes fatal meningocencephalitis in humans.

The Antifungal Mode of Action of a 13-(4-isopropylbenzyl)berberine Derivative, KR-72

Hyojjong Kwon, Soohyun Bang, Suyeon Cha, Hyun Sook Hwang, Ki Duk Park, Sung Uk Kim, and Yong-Sun Bahn
1Department of Biotechnology, Yonsei University, 2Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology

Although many antifungal drugs have been developed, a limited drugs are clinically available because of the similarity between fungi and mammalian cells. Therefore, Amphotericin B and the azole compounds remain the mainstream antifungal drugs despite their serious side effects and high efficacy. Recently a 13-(4-isopropylbenzyl)berberine derivative (named KR-72) was synthesized and examined for antifungal activities against various human pathogenic fungi. The synthesized compound exhibited remarkably enhanced antifungal activity than berberine and berberrubine. Regardless of the potent antifungal activity of KR-72, its mode of action and the physiological impacts of the drug on fungal metabolism remain elusive. In this study, we performed the DNA microarray-based transcriptome analysis to identify KR-72 responsive genes and employed reverse genetics approaches to characterize their functions in Cryptococcus neoformans, which causes fatal meningocencephalitis in humans.

[This work was supported by the Korea Technology & Information Promotion Agency (S2059210) and in part by the National Research Foundation of Korea Grants (No. 2010-0029117) from MEST.]

The Antifungal Mode of Action of a 13-(4-isopropylbenzyl)berberine Derivative, KR-72

Hyojjong Kwon, Soohyun Bang, Suyeon Cha, Hyun Sook Hwang, Ki Duk Park, Sung Uk Kim, and Yong-Sun Bahn
1Department of Biotechnology, Yonsei University, 2Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology

Although many antifungal drugs have been developed, a limited drugs are clinically available because of the similarity between fungi and mammalian cells. Therefore, Amphotericin B and the azole compounds remain the mainstream antifungal drugs despite their serious side effects and high efficacy. Recently a 13-(4-isopropylbenzyl)berberine derivative (named KR-72) was synthesized and examined for antifungal activities against various human pathogenic fungi. The synthesized compound exhibited remarkably enhanced antifungal activity than berberine and berberrubine. Regardless of the potent antifungal activity of KR-72, its mode of action and the physiological impacts of the drug on fungal metabolism remain elusive. In this study, we performed the DNA microarray-based transcriptome analysis to identify KR-72 responsive genes and employed reverse genetics approaches to characterize their functions in Cryptococcus neoformans, which causes fatal meningocencephalitis in humans.

[This work was supported by the Korea Technology & Information Promotion Agency (S2059210) and in part by the National Research Foundation of Korea Grants (No. 2010-0029117) from MEST.]
Regulation of an Acidic Laccase Promoter of

Coprinellus congregatus in Two Different Fungi

Ye Eun Yoo and Hyung Tae Choi
Molecular Microbiology Lab, Department of Biochemistry, Kangwon National University

When Coprinellus congregatus was transferred to acidic pH (pH 4.0-4.5), a laccase (acidic laccase) was synthesized and secreted into the culture supernatant. We have cloned the genomic and cDNA genes and confirmed its expression under acidic conditions. However, the regulation of expression has not determined yet. In order to analyze its regulation mechanism, a reporter gene should be used instead of the laccase gene itself. We have constructed an expression vectors of the acidic laccase promoter (lac2 promoter) of with GFP using pHARGEM7-1 and pPICZB vectors, and these were introduced into C. congregatus and P. pastoris in order to determine the regulation mechanism of the lac2 promoter. We will report the expression pattern of the lac2 promoter under acidic and oxidative conditions in two different fungi.

Ultramicroscopic Structural Changes of Plant Pathogenic Fungi by Fungal Chitinase Treatment

Ki Sun Kwon, Tae Young Woo, and Hyyoung Tae Choi
Molecular Microbiology Lab, Department of Biochemistry, Kangwon National University

Two different chitinases, Chil and Chil2, are expressed during the whole life cycle and mushroom autolyzing phase in Coprinellus congregatus, respectively. We have cloned two cDNA genes and constructed the expression vectors using the pPICZ vector. These vectors were introduced into Pichia pastoris and both Chil and Chil2 were successfully expressed by methanol induction. We have determined their biochemical characteristics of both Chil and Chil2. We have found that these chitinases had good inhibition activities against human pathogenic yeasts (Candida albicans and Cryptococcus neoformans) and plant pathogenic fungi (Alternaria alternata, Fusarium graminearum and Trichoderma harzianum).

We will report their hydrolyzing patterns (endochitinase or exochitinase) against colloidal chitin. We will also examine the growth inhibition mechanism against several plant pathogenic fungi, such as F. graminearum and T. harzianum using the TEM and SEM.

Nuclear Localization of NsdD is Affected by Various Genetic and Environmental Factors in Aspergillus nidulans

Lee-Han Kim, Ki-Hong Park, and Dong-Min Han
Division of Life Science, Wonkwang University

NsdD, the GATA type transcription factor, which controls sexual development of Aspergillus nidulans has a nuclear localization sequence (NLS) just upstream of C4 zinc finger domain. The sGFP gene fused onto N-terminus of nsdD ORF was used to transform the nsdD deletion mutant and the green fluorescence was tracked by confocal laser microscope. The NsdD was found to be localized in nuclei 16 h after germination. Missense mutations in NLS inhibited the NsdD from entering nuclei indicating that the NLS play a critical role in nuclear localization of NsdD. The mutation could not complement the nsdD deletion mutation and also could not repress the nxa4 transcription, which suggested that nuclear localization of NsdD is important for the regulatory function of NsdD in development. The IndB and IndD known to bind to zinc finger of NsdD also inhibited NsdD from entering nuclei when they were over-expressed. Zinc finger mutation to which Inds could not bind did not affect the entrance of NsdD to nuclei. The result implies that the binding of IndB and IndD to NsdD zinc finger inactivates the NLS function, which results in failure of decision of sexual development.

Genetic Incorporation of p-Azido-L-phenylalanine in Escherichia coli

Ju-Eon Oh1,2 and Jungchan Park1,2
1Department of Bioscience and Biotechnology, 2Protein Research Center for Bio-industry, Hankuk University Foreign Studies

Site-specific incorporation of unnatural amino acids (SSIUAs) into proteins is a promising method to generate novel proteins with expanded biological, chemical, or physical properties and can be achieved in vivo by expression of an orthogonal pair of suppressor tRNA and engineered aminoacyl-tRNA synthetase (ARS) that specifically ligates an unnatural amino acid to the suppressor tRNA. Using an orthogonal pair of Saccharomyces cerevisiae TyrRS and an expanded genetic code in E.coli. All the clones showed higher chloramphenicol resistance and β-galactosidase activity in the presence of AzPhe that were generated by amber suppression of CAT amber and lacZ amber genes, respectively. Incorporation of AzPhe was also analysed by an immunoblot assay and used for protein modification of site-specific labeling of a fluorophore. This additional genetic incorporation of AzPhe can be used in diverse modifications of protein. [Supported by GRRC grant]
Identification of Catalase in a Gamma-radiation Resistant Bacterium Hymenobacter swuensis

Sun Wook Jeong1, Jong Hyun Jung1, Myung Kyum Kim2, and Sang Yong Lim3
1Research Division for Biotechnology, Korea Atomic Energy Research Institute, 2Department of Bio & Environmental Technology, College of Natural Science, Seoul Women’s University

Hymenobacter swuensis, a gamma-radiation resistant bacterium, is isolated from mountain soil in South Korea and newly classified as a novel species within genus Hymenobacter. The complete genome sequence indicated that H. swuensis consists of one chromosome with three plasmids (pHsw1, pHsw2, and pHsw3). The genome sequence indicated that H. swuensis includes a unique 2’-hydroxy-carotenoid (2’-hydroxylexanthin) and four catalase genes, which protect cells from damage caused by oxidative stress. Catalase assay using native polyacrylamide gel electrophoresis from the cell extracts resulted in three catalase activity bands, which were designated Cat1 to Cat3. Of these, Cat2 showed higher levels of catalase activity. Furthermore, cell survival assay showed that H. swuensis is highly resistant to H2O2 compared with E. coli. These data suggest that a unique carotenoid and strong catalase activity contribute to the oxidative stress resistance of H. swuensis.

Identification and Characterization of the High Temperature Response Genes by Comparative Transcriptome Analysis Using sch9Δ Mutant in Cryptococcus neoformans

Dong-Hoon Yang1, Kwang-Woo Jung1, Jong-Won Lee1, Min-Hee Song1, Anna Floyd2, Joseph Hilman3,4, and Yong-Sun Bahn6
1Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University, 2Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA, 3Departments of Medicine, Duke University Medical Center, Durham, NC, USA, 4Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA

Adaptation to the host physiological temperature is one of the crucial virulence factors for Cryptococcus neoformans. The Sch9 protein kinase plays negative roles in thermotolerance of C. neoformans, but its regulatory mechanism remains elusive. In this study we performed comparative transcriptome analysis between the wild type and sch9Δ mutant during temperature shifting from 25°C to 37°C or 40°C. A global scale of remodeling in gene expression profiles was observed in the wild type strain during temperature shifting from 25°C to 37°C. The expression levels of the genes encoding chaperones, heat shock proteins, or the ergosterol biosynthesis proteins were differentially regulated by temperature shifting. Notably, expression of HSF1 (Heat Shock Factor1) was reduced during temperature adaptation in wild type, whereas reduction of HSF1 was delayed in sch9Δ mutant. This study elucidates the regulatory mechanism of Sch9 in thermotolerance as well as provides further insight into the regulatory mechanism of thermotolerance in C. neoformans through a genome-scale identification of the Sch9-dependent genes. [Supported by grants from NRF]

Genome-Wide Synthetic Lethal Screen of NatB N-Terminal Acetylase in Saccharomyces cerevisiae

Kang-Eun Lee, Jeong-Mok Kim, and Cheol-Sang Hwang
Department of Life Sciences, Pohang University of Science and Technology

The N-terminal acetylty NatB complex is composed of catalytic subunit Naa20 (Nat3) and an auxiliary subunit Naa25 (Mdm20) in Saccharomyces cerevisiae. For defining cellular function and basic mechanism of the NatB, we used a Synthetic Genetic Array (SGA) and screened genes that are essential for cell growth in the absence of Naa20. Through Genome-wide synthetic lethal screen of Naa20, we found that Vps15 (a serine/threonine protein kinase for vacuolar protein sortin), Gas5 (1,3-beta-glucanosyltransferase for cell wall maintenance) and Gga1 (a Golgi-localized protein for trafficking) are related to NatB. The present study indicated that the NatB is involved in the vacuolar protein sorting, cell wall maintenance and Golgi protein trafficking. [This work was supported by grants from the Korea healthcare technology R&D Project, Ministry of Health & Welfare (HI11C1279).]
Identification and Characterization of the QseBC Two-Component System of a Rumen Bacterium

Eun-Gyeong Lee, Doo-Byoung Oh, and Ohsuk Kwon

Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Korea Research Institute of Bioscience and Biotechnology

Two-component signal transduction systems, which consist of a membrane bound sensor kinase and a response regulator, are highly conserved in nature and mediate adaptive responses to a variety of environmental changes. In this study, we identified and characterized the quorum sensing QseBC two-component signal transduction system of *M. succiniciproducens*. The purified N-terminally truncated QseC which was deleted for its transmembrane domain was able to autophosphorylate and transphosphorylate QseB, demonstrating that these two proteins are a functional sensor kinase and a response regulator, respectively. In an attempt to identify the target operons regulated by QseBC system, we investigated the genome-wide transcriptome profiles of *M. succiniciproducens* in response to overexpression of QseB response regulator by using a whole genome DNA microarray. The up- or down-regulated genes by at least two-fold upon overexpression of QseB were chosen as the putative targets and further analyzed by electrophoretic mobility shift assay and reporter gene fusion expression.

Regulation of Stress Responses by Two-Component System in *H. polymorpha*

Sang-Yoon Kim, Doo-Byoung Oh, and Ohsuk Kwon

Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology

The thermotolerant methylotrophic yeast *Hansenula polymorpha* is an attractive model organism for diverse fundamental studies, such as the genetic control of methanol metabolism, peroxisome biogenesis, nitrate assimilation, and resistance to heavy metals and oxidative stress. Here, to understand the regulatory mechanisms governing the osmotic or oxidative stress responses of *H. polymorpha*, we investigated roles of representative signaling and regulatory proteins. The hybrid histidine sensor kinases Sln1 and Nik1, a histidine-containing phosphotransfer protein Ypd1, response regulator proteins Skn7 and Ssk1, high osmolarity glycerol pathway regulator Hog1, and oxidative stress response regulator Yap1 were functionally characterized by mutant construction, growth phenotype comparison, protein overexpression, in vitro protein phosphorylation, and comparative transcriptome analysis. Our results indicate that the Skn7/Nik1-Ypd1-Skn7/Ssk2 two-component signal transduction pathway plays critical role in oxidative, osmotic, and cell wall stress responses in *H. polymorpha*.

[Supported by the Intelligent Synthetic Biology Global Frontier Program, and the Next-Generation BioGreen 21 Program.]
G001
Overexpression of Antisense RNA against the Phosphotransbutyrylase Gene in Clostridium beijerinckii NCIMB 8052
Chan Woo Song, Dong In Kim, Sol Choi, Jae Won Jung, and Sang Yup Lee
Metabolic and Biomolecular Engineering Laboratory (MBEL), Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology

Clostridium beijerinckii NCIMB 8052 is capable of producing 1-butanol through its acetone-butanol-ethanol fermentation. 1-Butanol is a chemical of interest as an advanced biofuel, and for industrial production this organism should be engineered to possess increased butanol yield and titer. Since organic acids and pH are key factors for 1-butanol biosynthesis, it is needed to study the physiology of C. beijerinckii strains in which the acid biosynthetic fluxes are altered. In the present study, we designed various types of antisense RNA for in vivo downregulation of C. beijerinckii phosphotransbutyrylase (pbt) gene and examined the knock-down efficiencies.

This work was supported by the Advanced Biomass R&D Center of Korea (ABC-2011-0028386) through the Global Frontier Research Program of the Ministry of Science, ICT and Future Planning (MSIP). Further supports by BioFuelChem, EEWS program of KAIIST, and the World Class University program (R32-2008-000-10142-0) of the MEST are appreciated.

G002
Rational Design of Metabolic Pathway for the Production of Fumaric Acid
Chan Woo Song, Dong In Kim, Sol Choi, Jae Won Jung, and Sang Yup Lee
Metabolic and Biomolecular Engineering Laboratory (MBEL), Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology

In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. Firstly, the iclR and three known fumarase genes (fumA, fumB and fumC) were deleted to accumulate fumaric acid. The resulting strain was able to produce 1.45 g/L of fumaric acid from 15 g/L of glucose in flask culture. This base strain was further engineered by plasmid-based overexpression of the native ppc gene, encoding phosphoenolpyruvate carboxylase (PPC), based on in-silico aided prediction strategy, which resulted in the production of 4.09 g/L of fumaric acid. And then, the arcA, ptaG, and aspA genes were sequentially deleted to reinforce the flux to fumaric acid. The native promoter of the galP gene was replaced with the strong trc promoter to increase glucose uptake rate and fumaric acid productivity. Finally, 29.2 g/L of fumaric acid was produced by fed-batch fermentation.

Development of systems metabolic engineering platform technologies for biorefineries; NRF-2012-C1AAA001-2012M1A2A2026556) funded by the Ministry of Education, Science and Technology.

G003
Gamma-butyrolactone Production by Chemical and Biological Method
Won Jun Kim, Sol Choi, Hyun Uk Kim, and Sang Yup Lee
Metabolic and Biomolecular Engineering Laboratory (MBEL), Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology

γ-Butyrolactone (GBL) is an important four carbon (C4) chemical, which has a wide range of industrial applications. GBL can be produced by acid treatment of 4-hydroxybutyric acid (4-HB), which is a derivative of succinic acid. Heterologous metabolic pathways were designed in succinic acid overproducing M. succiniciproducens LPK7 by the introduction of heterologous genes that encode succinyl-CoA synthetase, CoA-dependent succinate semialdehyde dehydrogenase, and either 4-hydroxybutyrate dehydrogenase in LPK7 (p354CD) or succinate semialdehyde reductase in LPK7 (p3SYCD). Fed-batch cultures of LPK7 (p354CD) and LPK7 (p3SYCD) resulted in the production of 6.37 and 6.34 g/L of 4-HB, respectively. Finally, GBL was produced by acid treatment of the 4-HB obtained from the fermentation broth. This study demonstrates that 4-HB can be produced by the metabolically engineered M. succiniciproducens.

This work was supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries from the Ministry of Science, ICT and Future Planning (MSIP) through the National Research Foundation (NRF) of Korea (NRF-2012-C1AAA001-2012M1A2A2026556).

G004
Identification of Flux-coupled Genes for the Improved Simulation Accuracy of Flux Balance Analysis
Won Jun Kim, Hyun Uk Kim, and Sang Yup Lee
Metabolic and Biomolecular Engineering Laboratory (MBEL), Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology

A competitive advantage of flux balance analysis (FBA) using genome-scale metabolic network models is to use various numerical constraints to improve its simulation accuracy. In this regard, namely flux-coupled genes (FCGs) were searched: genes with expression levels changing in accordance with their flux values as the environmental condition changes. Seven most consistent FCGs (i.e., gnd, pflB, ppe, sdhB, sdhD, sucA, and zwf) were identified from the comparative analysis of transcriptome and 13C-flux data of Escherichia coli at five different dilution rates during its chemostat cultivations. Accuracy of FBA with FCGs was then compared with conventional simulation approaches (e.g. FBA without FCGs and MOMA). FBA with FCGs is straightforward to operate due to the relative easiness of obtaining transcriptional information.

This work was supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (NRF-2012-C1AAA001-2012M1A2A2026556) and by the Bio & Medical Technology Development Program (2012048758) from the Ministry of Science, ICT and Future Planning (MSIP) through the National Research Foundation of Korea.

www.msk.or.kr | 239
Metabolic Engineering of Clostridium acetobutylicum for Enhanced Production of Butyric Acid by Switching to Acidogenic from Biphasic Fermentation

Junho Bang1, Yu-Sin Jang2, and Sang Yup Lee1,3,7
1Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), Korea Advanced Institute of Science and Technology, 2Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems, 3Department of Bio and Brain Engineering and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology

C. acetobutylicum has been considered an attractive platform-host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. In this study, pta and ctfB genes were knocked-out to block acetic acid production with protection of butyric acid re-uptake in C. acetobutylicum. pta-ctfB deficient C. acetobutylicum CEK2 was assessed for its potential as a butyric acid-producer in fermentations with four controlled pH-values at 5.0, 5.5, 6.0, and 6.4. Furthermore, the CEK2 strain was further engineered by knocking-out adhE1 to prevent solvent-production. The simultaneous deletion of pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid-production.

[This work was supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries from the Ministry of Science, ICT and Future Planning (NRF) of Korea (NRF-2012-C1AA001-2012M1A2A2026556).]

Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Metabolic Engineering

Junho Bang1, Jung Eun Yang1, Yong Jun Choi2, Seung Hwan Lee1, Si Jae Park1, and Sang Yup Lee1,3,7
1Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST, 2Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology, 3Department of Environmental Engineering and Energy, Myongji University, 1Department of Bio and Brain Engineering, Department of Biological Sciences, BioProcess Engineering Research Center, and Bioinformatics Research Center

Polyhydroxyalkanoates (PHAs) are bio-based polyesters accumulated in many bacteria. Among PHA copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (3HB-co-3HV) is one of the important copolymers. So far, for the production of 3HB-co-3HV, adding of second auxiliary carbon source was needed. However, due to the toxicity of auxiliary carbon source, it is hard to maintain the balance between cell growth and 3HB-co-3HV) production. Thus, we developed the E. coli can stably synthesize 3HB-CoA and 3HV-CoA in controlled ratio from glucose without feeding of exogenous auxiliary carbon source by metabolic engineering.

[This work was supported by the Technology Development Program to Solve Climate Changes from National Research Foundation of Korea (Development of systems metabolic engineering platform technologies for biorefineries; NRF-2012-C1AA001-2012M1A2A2026556) and Intelligent Synthetic Biology Center (2011-0031963) of Korea through the Global Frontier Research Program of the Ministry of Education, Science and Technology (MEST). Further supports by the World Class University program (R32-2008-000-10142-0) of the MEST are appreciated]
Production of Polyhydroxyalkanoates (PHAs) Containing 2-Hydroxybutyrate (2HB) by Metabolic Engineered *Escherichia coli*

Junho Bang, Min Kyung Kim, Si Jae Park, Seung Hwan Lee, Bong Keun Song, and Sang Yup Lee

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology; Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology

PHAs are polymers that have the properties of biodegradability, biocompatibility. *E. coli* strain was metabolically engineered to synthesize PHAs containing 2-hydroxybutyrate (2HB) monomer from glucose. PHAs consisted of 2HB, 3HB, and a small fraction of lactate were synthesized. Also, heterologous metabolic pathway supplying 2HB from glucose was constructed via the citramalate pathway. Recombinant *E. coli* expressing the phaC1437, pce540, cimA5.7, leuBCD genes with the *L. lactis* II 1403 panE gene produced PHAs consisting of 2HB, 3HB, and a small fraction of lactate by varying the 3HB concentration in RM medium.

This work was supported by the Technology Development Program to Solve Climate Changes (systems metabolic engineering for biorefineries) from the Ministry of Education, Science and Technology (MEST) through the National Research Foundation of Korea (NRF-2012-C1AAA001-2012M1A2A2026556) and by the Intelligent Synthetic Biology Center (2011-0031963) through the Global Frontier Research Program of the MEST. Further supports by the World Class University program (R32-2008-000-10142-0) of the MEST and by the R&D Program of MKE/KEIT (10032001) and KRICT are appreciated.

Au Particle-on-Wire SERS Sensor for the Identification of Multiple Pathogenic Bacteria

Seung Min Yoo, Taeyeon Kang, Bongsoo Kim, and Sang Yup Lee

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology

Pathogenic bacterial infections are life-threatening, with high morbidity and mortality, but diagnostic methods for these pathogens still remain a challenge for simple, sensitive, specific and multiplex detection. Surface-enhanced Raman scattering (SERS) has been considered as an attractive method for label-free multiplex DNA detection because of its single molecule level sensitivity, molecular specificity, and insensitivity to quenching. Here, we developed a SERS-based Au particle-on-wire system for the identification of pathogenic bacteria. The system operates by the self-assembly of Au NPs onto Au nanowire in the presence of target DNAs, providing reproducible SERS signals. A pattern formed by multiple Au nanowire sensors provides positional address and identification for each sensor. By using this system, multiplex sensing of target DNAs was possible in a quantitative manner with a detection limit of 10 pM. Target DNAs from reference bacteria and clinical isolates were successfully identified by this sensor system.

Supported by grant from World Class University Program of MEST

Synthetic Regulatory Small RNA for Fine-Tuning Gene Expression in *Escherichia coli*

Seung Min Yoo, Dookyun Na, and Sang Yup Lee

Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology

Optimized modulation of metabolic fluxes through the control of gene expression is one of the key challenges in metabolic engineering. Here, we developed rational design principles for synthetic regulatory small RNAs (sRNAs) for adjustable expression control. We then expanded our method to create a system utilizing synthetic sRNAs as a portable and conditional chromosomal gene controller, and engineered *Escherichia coli* to produce tyrosine and cadaverine as a model. An engineered *E. coli* strain capable of producing 21.9 g/L of tyrosine was developed by combinatorial knockdown experiments on various candidate genes in 14 different strains using respective synthetic sRNAs. As another example, this strategy was applied to an already metabolically engineered strain producing cadaverine by applying a library of 130 synthetic sRNAs. The feasibility of using synthetic sRNAs to modulate gene expression holds great promise in next-generation metabolic engineering and synthetic biology applications.

Supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries from MSIP through NRF of Korea

Bacillus licheniformis Isolated from Korean Traditional Food Resources Induces the Host Immune Response in *Caenorhabditis elegans*

Ju Hee Heo, Seong-Yeop Jeong, Su-Ji Jeong, Hee-Jong Yang, Do-Yeon Jeong, and Younghoon Kim

Sunchang Research Center for Fermentation Microbes, Department of Animal Science, Chonbuk National University

Here, we investigated whether probiotic bacteria *B. licheniformis* strains isolated from Korean traditional food resources in the Institute of Sunchang Fermented Soybean Products, induce the immune response of *C. elegans* as surrogate host model. Initially, we found that twenty-four probiotic *Bacillus licheniformis* strongly produced antimicrobial bacteriocins against various foodborne pathogens including *B. cereus* and *Staphylococcus aureus*. Next we explored if bacteriocin-producing *B. licheniformis* can augment the *C. elegans* defense response to *S. aureus*. First, we evaluated that *B. licheniformis* strains are not harmful to *C. elegans* in vivo host. And then, worms were pre-conditioned by transferring young adult worms to *B. licheniformis* lawns for 24 h and then transferring to *S. aureus* RN6630 using solid killing assays with fer-15; fem-1 worms.
G013

Screening of an Enantioselective Epoxide Hydrolase from Marine Microorganisms

Jung-Hee Woo, Hae-Ju Kim, and Nyun-Ho Park
Gyeongbuk Institute for Marine Bio-Industry (GIMB)

Enantipure epoxides and vicinal diols are versatile synthetic intermediates for the preparation of enantiopure bioactive compounds. One of the most promising ways for preparing such chiral synthons under environmentally gentle conditions is the enantioselective hydrolysis of racemic epoxides using cofactor-independent epoxide hydrolase (EHase; EC 3.3.2.3). EHases are ubiquitous enzymes that have been isolated from a wide variety of sources such bacteria, yeast, fungi, insect, plant and mammalian. To screen strains producing an EHase which hydrolyzes (R)- or (S)-epoxide preferentially, 4 strains of bacteria isolated from marine sediments and seaweed primarily by the capability of living on styrene oxide were tested for EHase activity using gas chromatography (GC). Among those, one strain was selected by enantioselective hydrolysis of styrene oxide, confirmed by GC. The EHase from one strain preferentially hydrolysed the (R)-epoxide of styrene oxide, with a value of 99.9% ee (enantiomeric excess).

[This work was supported by GIMB in-House R&D Program and the bioresources in this study were provided from Marine & Extreme Biosources Collection.]

G015

Isolation of Biogenic Amines Non-producing Saccharomyces cerevisiae for Manufacturing Mulberry Wine

Hee-Jong Yang, Su-Ji Jeong, Seong-Yeop Jeong, Ju-Hee Heo, and Do-Youn Jeong
Sunchang Research Center for Fermentation Microbes (SRCM)

Mulberry fruit, commonly called Oddi in Korea, recently has been used for manufacturing wine, fruit juice, and jam. According to traditional Oriental medicine, mulberry fruits can protect against liver and kidney damage, strengthen the joints, improve sight, premature graying of hair, nourish the yin and blood, and have anti-aging effects. In the present study, we isolated the S. cerevisiae BA33 as biogenic amines non-producing strain for manufacturing the mulberry wine from mulberry fruit juice, and then investigated the morphological characteristics, biogenic amine producing ability, and alcohol fermenting ability, and resistance of alcohol, glucose and sulfur dioxide. We isolated biogenic amine non-producing yeast BA33. Using the 18S rRNA sequencing and API kit, BA33 was confirmed Saccharomyces cerevisiae. Nextly, BA33 was produced alcohol of 12.333%, and confirmed resistance of alcohol, glucose and sulfur dioxide. Finally, BA33 strain was confirmed to be the useful yeast which can be used for the manufacturing the mulberry wine.

[Supported by grants from "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ00990032014)"
RDA.]

G014

Production and Characterization of a Sialoglycoconjugate Binding Lectin Derived from a Mushroom

Seonghun Kim
Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology

Sialic acids are a family of nine carbon α-keto aldonic acids, which are occupied at the non-reducing end of glycoconjugate, but the diversity of sialoglycoconjugate is one of huddle to detect the carbohydrate moiety in glycoconjugates. Lectins with carbohydrate binding specificity are powerful tools to detect glycoconjugates. To study the functional analysis of a sialic acid specific binding lectin from a mushroom, the lectin-coding gene was expressed in the methylotrophic yeast Pichia pastoris and in Escherichia coli. Approximately a few milligram of recombinant lectin was purified per liter medium. Lectin blot analysis with ConA-lectin and endoglycosidase treatment revealed that the yeast produced lectin was partly N-glycosylated and the lectin polypeptide contains N-glycans which is the most yeast abundant high-mannose structures. Glycan binding analysis showed that the recombinant lectin interacts with fetuin containing both N-Ο-linked sialoglycoconjugates. A mushroom lectin will be used as a powerful tool to detect sialic acid binding specificity compared with other glycan-binding lectins.

[Supported by the grant (No. PJ009783), Rural Development Administration, KOREA]

G016

Statistical Optimization of Culture Medium Biogenic Amines Non-producing Saccharomyces cerevisiae for Manufacturing Mulberry Wine

Hee-Jong Yang, Su-Ji Jeong, Seong-Yeop Jeong, Ju-Hee Heo, and Do-Youn Jeong
Sunchang Research Center for Fermentation Microbes (SRCM)

Mulberry fruit, commonly called Oddi in Korea, recently has been used for manufacturing wine, fruit juice, and jam. Based on preliminary study, we investigated cell growth, and optimization of culture medium compositions for improving the dried cell weight in S. cerevisiae BA33 using response surface methodology as statistically method. RSM was used central composite design, and molasses having ability of industrial application was used as carbon source. Through the statistically analysis, we obtained the optimum values were: molasses 20.0% (w/v), peptone 3% (w/v), and yeast extract 2.17% (w/v). Result of model verification, we confirmed about three-fold improvement of the dried cell weight from 7.81±0.1217 g/L to 22.1033±0.2915 when compared to the dried cell weight using basalYPD medium. Finally, we were manufactured mulberry wine using the selected strains BA33, and produced 17.73% alcohol. BA33 strain was confirmed to be the useful yeast which can be used for the manufacturing the mulberry wine.

[Supported by grants from "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ00990032014)"
RDA.]
Statistical Optimization of Culture medium Biogenic Amines Non-producing Saccharomyces cerevisiae for Manufacturing Rubus coreanus (Black raspberries) Wine

Su-Il Jeong, Hee-Jong Yang, Seong-Youp Jeong, Ju-Hee Heo, and Do-Youn Jeong*
Sunchang Research Center for Fermentation Microbes (SRCM)

Black raspberry are of significant interest because they contain high levels of anthocyanins. Based on preliminary study, we investigated cell growth, and optimization of culture medium compositions for improving the dried cell weight in S. cerevisiae BA29 using response surface methodology as statistically method. RSM was used central composite design, and molasses having ability of industrial application was used as carbon source. Through the statistically analysis, we obtained the optimum values were: molasses 20.0% (w/v), peptone 3% (w/v), and yeast extract 4% (w/v). Result of model verification, we confirmed about three-fold improvement of the dried cell weight from 8.6±0.0808 g/L to 20.9167±0.7925 when compared to the dried cell weight using basal YPD medium. Finally, we were manufactured mulberry wine using the selected strains BA33, and produced 20.33% alcohol. BA29 strain was confirmed to be the useful yeast which can be used for the manufacturing the black raspberry wine.

[Supported by grants from "Cooperative Research Program for Agriculture Science &Technology Development (Project No. PJ00990032014)" RDA.]
G021

Shotgun Membrane Phosphoproteomic Analysis of Cyanobacteria

Dong-Gi Lee1, Joseph Kwon1, Keun Sik Baik1, and Jong-Soon Choi2*

1Division of Life Science, Korea Basic Science Institute, 2Graduate School of Analytical Science and Technology, Chungnam National University

In the present study, we attempted to enrich the cyanobacterial membrane and determine the phosphorylation sites of the membrane proteins. Total cyanobacterial membranes were separated on SDS-PAGE gel and phosphoprotein-stained gel bands were subjected to in-gel trypsin digestion. Phosphorylation sites of resultant peptides were determined by assigning the neutral loss of [M-H2PO4] on serine, threonine, and tyrosine residues by using FT-ICR MS. As an initial application, 111 proteins and 33 phosphoproteins were identified in which contained 11 integral membrane proteins. Four unknown phosphoproteins with transmembrane helices were proposed to be membrane migration or transporter on the basis of functional information by BLASTP search. Overall neighboring hydrophobic amino acids were rich around pSer and pThr whereas hydrophilic amino acids were the highest at -1 position around pTyr. The global membrane phosphoproteomic analysis will provide the insight of fundamental regulation process and the comprehensive understanding for the functional phosphoprotein network of cyanobacteria.

[This work was supported by the grants from Korea Basic Science Institute (D34403).]

G022

Engineered Pichia pastoris for Bioethanol Production by Synergistic Lignocellulosic Degradation Activity by Xylanase and Cellulase

Sang Kyu Shin, Jeong Eun Hyeon, Dea Hee Kang, Hee Eun Kang, Ji Soo Yoon, and Sung Ok Han

Department of Biotechnology, Korea University

The utilization of lignocellulosic feedstocks for production of ethanol demand on cellulose and hemicellulos. In this study, *Pichia pastoris* is used for ethanol production by degrading of xylan and cellulose. *P. pastoris* was engineered for expression of recombinant scaffolding protein (mCebpA), xylanase (XynB) and chimeric endoglucanase (cCelE). The mCebpA, XynB and cCelE with gene coding for the secretion signal sequence of the a-mating factor were highly expressed in the yeast *P. pastoris* under the control of the ADH2-Promoter, which is activated under O2 limitation. The enzyme complexes via assembled cohesin-dokiner interaction increase the activity against the biomass substrate compared the corresponding wild type *P. pastoris*. Ethanol production of recombinant *P. pastoris* was 1.4-folds higher than that of wild type X-33. This means is what we successully symbiotically produce ethanol from cellulose and xylan by enzyme complexes. Based on these results, this recombinant *P. pastoris* is suitable for next generation biofuel production systems.

[This work was supported by the New & Renewable Energy Technology Development Program of KETEP grant funded by the MKE (No.20113010090040)]

G023

Why We Focus on NPP-specific Polyene Glycosyltransferase in Pseudonocardia autotrophica?

Min-Kyung Kim, Mi-Jin Lee, Hye-Jin Kim, and Eung-Soo Kim

Department of Biological Engineering, Inha University

Polyene macrolide antibiotics such as nystatin and amphotericin B produced by actinomycetes are clinically potent antifungal drugs to treat systematic fungal infection, yet limited in application due to severe toxicity and low solubility. In this reason, we need to develop new polyene-based antibiotics with improved properties. Previously, we discovered a novel polyene compound named NPP (Nystatin-like Pseudonocardia Polyene) that is consist of aglycone identical to nystatin and unique di-sugar moiety, mycosaminyl-(1→4)-N-acetylgalactosamine in rare actinomycetes, *Pseudonocardia autotrophica*. Compared with nystatin which bears a mono sugar moiety, NPP has 300-fold higher water solubility and 10-fold reduced toxicity to human. These results were caused by second sugar of NPP and that is why we focus on NPP-specific glycosyltransferase. To identify the glycosylation mechanism of NPP biosynthesis, we analyzed its whole genome sequence and found the putative NPP-unique glycosyltransferase genes. Furthermore we performed the targeted gene disruption, complementation of the target genes. The more detailed results will be discussed.

[This work is supported by grants PJ009522 from RDA.]

G024

** Biosynthesis of cis,cis-Muconic Acid in *E. coli* through the Codon-optimized Synthetic Gene Expressions**

Ji-soo Song1, Ji-yeon Kim1, Ji-yeon Kim1, Si-sun Choi1, Sun ok Park2, Sang Joung Kim1, Gea-Taek Chun4, Sanggyong Kim1, and Eung-Soo Kim1*

1Department of Biological Engineering, Inha University, 2STR Biotech Co., Ltd., 3Department of Molecular Bio-science, Kangwon National University, 4Korea Institute of Industrial Technology

Adipic acid is primarily used as a precursor for the synthesis of nylon, lubricants, and plastic. It is mainly produced in chemical processes from petrochemicals like benzene. Because of depleting petroleum reserve, recurring crisis and heavy environmental impact, it is necessary to develop various biotechnological production processes which would provide alternative approaches. Here we describe the engineered *Escherichia coli* strain harboring the synthetic foreign pathways involved in *cis,cis*-muconic acid (CCM) biosynthesis, which can be chemically dehydrogenated to adipic acid. The synthetic pathway consists of three *E. coli* codon-optimized genes encoding heterologous microbial enzymes such as 3-dehydroshikimate dehydratase, protocatechuate acid decarboxylase, and catechol 1,2-dioxygenase. The engineered *E. coli* strain produced a significant amount of CCM in the liquid culture, implying that this strategy paves the way for the microbial synthetic biotechnology for the industrial production of CCM.

[This work was supported by the Technology Innovation Program (10043985, Development of bio-muconic acid production process) funded By the Ministry of Trade, industry & Energy (MI, Korea)]
G025 Immunobilization of Hyperthermophilic Archean Thermococcus onnurineus NA1 on Amine-coated Silica Material for H2 Production

Seung Seob Bae1,2, Hyun Sook Lee1,2, Jung-Hyun Lee1,2, Sung Gyun Kang1,2, Jeong Geol Na1, and Tae Wan Kim1,2
1Department of Marine Biotechnology, University of Science and Technology, Korea Institute of Ocean Science and Technology, Korea Institute of Energy Research

Hyperthermophilic archeon, Thermococcus onnurineus NA1 has high potential for H2 production on carbon monoxide, sodium formate and starch. For H2 production using immobilization of T. onnurineus NA1, celite and porous silica beads as supporting materials were investigated to adsorb cells of this strain. Experimental results of adsorption test and scanning electron microscopy showed that amine-coated porous silica beads are favorable for adsorbing cells of T. onnurineus NA1. In repeated batch on sodium formate, immobilized T. onnurineus NA1 on the support showed the stability and reproducibility for H2 production. From this study, it was demonstrated that T. onnurineus NA1 can be simply immobilized by adsorption using amine-coated porous silica beads and H2 production using immobilized T. onnurineus NA1 was feasible. [Supported by grants from KIOST in-house program (PE99212) and the Development of Biohydrogen Production Technology Using the Hyperthermophilic Archean program of the Ministry of Oceans and Fisheries in the Republic of South Korea.]

G026 High-throughput Retrieval of Sequence-verified DNA for Genome-scale Engineering

Taehoon Ryu1, Howon Lee1, Hyoky Kim2, Sungsk Kim1, Hyunung Lee2, and Sungnoon Kwon1,2,3,4
1Department of Electrical Engineering and Computer Science, Seoul National University, 2Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University

De novo gene synthesis has provided powerful tools to study novel genes in microbiology and utilize them for producing valuable bio-functional materials. Moreover, recent gene progressions in gene synthesis, for example, chemically synthesized genome that controls heterologous bacterial host, pave the way to efficiently engineer molecular pathway in genome-scale. Generally, the de novo construction of gene consists of two steps: high-fidelity DNA oligonucleotide (oligo) synthesis followed by assembly of oligos. In spite of matured technologies for assembling oligos or larger gene fragments, methods for obtaining high-fidelity oligos rest on 1990’s technologies – solid-phase DNA synthesis on controlled-pore glass substrate, cloning in microbe and Sanger sequencing. Thus, the high cost precursor preparation process hinders genome-scale de novo gene construction. Here, we present high-throughput sequence-verified DNA synthesis technology for next-generation gene and genome synthesis. By using microarray-derived oligos and massively parallel sequencing, we prescreen sub-million molecular clones at once. After identifying error-free clones, we retrieve them with laser-based DNA extraction system, which enables the retrieval of 2,000 error-free clones in a single day. As demonstration of its scalability, we synthesize 4,345 high-fidelity 120 bp DNA that can be assembled to 200 protein-coding genes at a single run. [This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (NRF-2012-0009555)].

G027 Isolation and Identification of Probiotic Bacterial Species from Korean Yellow Loess Agricultural Soils

Jae Gyeong Lee1, Kathiravan Mathur Nataratjan2, Geun Ho Gim2, and Si Wouk Kim2
1Department of Energy Convergence, Chosun University, 2Department of Environmental Engineering, Chosun University

In the present study, we isolated an aerobic probiotic bacterial species from Korean Agricultural Yellow Loess Soil. A serially diluted soil samples were spread on M17 agar plate and incubated at 30°C under aerobic condition for 2 days. After incubation, one bacterial isolates was found to be the aerobic probiotic bacteria and identified through Gram positive, and catalase negative. The 16S rRNA sequence was performed to construct phylogenetic tree. From the phylogenetic relations the isolate was identified as Lactobacillus marinus. This bacterial isolate was used to find out antibacterial and antifungal activity phytopathogens. From experimental results, the L. marinus showed highest antibacterial activity against MRSA, E. coli, S. aureus, Listeria monocytogenes. On the other hand, the antifungal activity was also showed high activity against C. glaucaspariaides, F. culmorum, A. alternata, F. oxysporum, and S. sclerotiorum. Therefore, from this study it was revealed the probiotic bacterial isolate has potent antibacterial and antifungal activity and also this isolate have beneficial aspects in agricultural sector.

G028 Isolation and Identification of Novel Chitinase Producing Bacterial Species from Yellow Loess Agricultural Soils

Jong Min Kim1,2, Kathiravan Mathur Nataratjan1,2, Hae Gwang Jung1,2, Min Sik Kim1, and Si Wouk Kim2
1Department of Energy Convergence, Chosun University, 2Department of Environmental Engineering, Chosun University

Recently, bacterial chitinase has received much attention towards agriculture sector for biocontrol of phytopathogenic fungal species. In the present study, 40 bacterial isolates were screened for chitinolytic activity and on the basis of chitin hydrolysis zone. Initially, isolation of chitinase producing bacterial sps., was performed using 0.5% swollen chitin enriched media. The chitinase producing bacteria was screened with clear zone appearance in chitin agar plates. Among bacterial isolates, 6 bacteria were found to be the highest zone of clearance (>30 mm) was selected for further studies. The bacterial species were identified by biochemical tests and 16S rRNA, eubacterial and chA. From the experimental results, we found 4 Bacillus sp., and 2 Serratia sp. The selected bacterial isolates were used to find out the antifungal activity against various phytopathogenic fungi. In the concluding remarks, all 6 selected isolates showed effective antifungal activity against plant pathogenic fungal sps. Therefore, it may be applicable to field condition against plant pathogenic fungi which is the major problem for agricultural food production.
G029
Characterization of Bacteriocin Produced by Lactobacillus plantarum SY222 Isolated from Jeotgal
Seong-Yeop Jeong, Ju-Hee Heo, Hee-Jong Yang, Su-Ji Jeong, and Do-Youn Jeong*
Sanchung Research Center for Fermentation Microbes (SRCM)
LAB having antibacterial activity against Bacillus cereus KCTC 3624 was isolated from Jeotgal using a MRS selective plate. Strain SY222 finally selected was identified as Lactobacillus plantarum based on sugar fermentation pattern test using API 50 CHL system. Also, the 16S rDNA sequence of strain SY222 showed 99% identity to that of reference strain of L. plantarum. The bacteriocin exhibited inhibitory activity against the food pathogen, Escherichia coli CFT073 ATCC 700928, Bacillus cereus KCTC 3624, Staphylococcus aureus KCTC 1928, Salmonella Enterica KCTC 1925, Salmonella Enterica KCTC 1926, Shigella flexneri KCTC 2517, Shigella sonnei KCTC 2518 and Staphylococcus epidermidis KCTC 3958. Antibacterial activity of the bacteriocin was completely disappeared by proteinase K, which indicates its proteinous nature. The bacteriocin was inactivated by protease such as trypsin, chymotrypsin, subtilisin, α-amyrase, pepsin. The bacteriocin was fully stable at 121°C for 60 min. Solvents such as chloroform, ethanol, acetone, acetonitrile, hexane, isopropanol did not effect on the activity. The molecular weight of bacteriocin was estimated to be about 1.5 kDa by Tricine-SDS-PAGE.

G030
Characterization of a Bacteriocin Produced by Leuconostoc mesenteroides SY111 Isolated from Vegetable Kimchi
Seong-Yeop Jeong, Ju-Hee Heo, Hee-Jong Yang, Su-Ji Jeong, and Do-Youn Jeong
Sanchung Research Center for Fermentation Microbes (SRCM)
Bacteriocin-producing Lactic acid bacterium having antagonistic activity against Bacillus cereus, was isolated from Kimchi, was identified as Leuconostoc mesenteroides based on the basis of transmission electron microscope, carbohydrate fermentation reactions were recorded by using API 50 CHL test, 16S rDNA sequencing analysis and a phylogenetic tree and named as Leu. mesenteroides SY111. The activities of various enzymes were investigated using the API 20 ZYM system, was observed in Leucine arylamidase, Valine arylamidase, Crystine arylamidase, β-Glucuronidase, β-glucosidase and N-acetylβ-glucosaminidase. The bacteriocin also showed a relatively broad spectrum of activity against non-pathogenic and bacteriocin exhibited inhibitory activity against the food pathogen, Bacillus cereus, Salmonella enterica, and Micrococcus luteus. The antimicrobial substance retained activity after exposure to 121 for 30 min or pH 3.0~12.0. Solvents such as acetone, chloroform, ethanol, isopropanol, acetonitrile, and methanol had little effect on bacteriocin activity. The molecular weight of bacteriocin was estimated to be about 3.2 kDa by Tricine-SDS-PAGE.

G031
Evaluation of a Highly Efficient Reporting System Employing a Directed-Evolved β-Glucosidase
Ho-Dong Lim, So-Young Han, and Geun-Joong Kim*
Department of Biological Sciences, Chonnam National University
As a part of synthetic biology, reporter genes can be widely used to detect or probe the expression of a gene of interest, especially when the target gene is poorly expressed and thus produced proteins that could not detect obviously by a typical technique. The second and more valuable aspects of employing reporter systems are able to quantify the level of expression of a gene by comparing with a readily identified product. Thus, a lot of reporter systems have been developed and expected to be further proliferating. Typically, the successfully implemented reporting techniques are closely linked with fluorescent sensors mainly derived from GFP. However, it needs the time-consuming maturation step of fluorophore and prerequisites for exposing the samples or clones to toxic UV to excite the fluorophore. Here, we present a highly efficient reporting system using a versatile β-glucosidase. This system produces a sensitive and reproducible colored or fluorescent signal according to the incubated substrate supplemented, allowing it to be detected and quantified. The fusion ability of this reporter could broaden the range of application more practically. [Supported by grants from NRF]

G032
A Constructed Genetic Circuit Using Antisense RNA for the Screening of AHL Degradase
Won-Ji Park*, Sang-Soo Han†, Sung-Hwan You†, Hak-Sung Kim‡, and Geun-Joong Kim*
1Department of Biological Sciences, College of Natural Science, Chonnam National University, 2Department of Biological Sciences, Korea Advanced Institute of Science and Technology
As recognized generally, bacterial resistances to antibiotics have become a serious medical problems and thus many efforts are being made to develop antibiotic alternatives. A possible alternative for the treatment of bacterial infections is a kind of chemical reagents or enzymes blocking bacterial communication. In fact, it has been recently reported that quorum quenching enzymes like AiiA significantly attenuate the infectivity of bacterial pathogens and biofilm formation. Therefore, an efficient method to screen these quorum-quenching enzymes from biological resources is promising and thus highly needed. Here, we suggest an artificial genetic circuit as a screening tool for the detection of active clone expressing AiiA among clones in a highly reproducible manner. By using this circuit, we could screen the mutant AiiA with improved activity from directed-mutagenesis pool.
Displaying Specific Affinity Ligand on the Surface of Minicells Using Anchoring Proteins

Jin-Young Lee1, Hyun Hong1, So-Ra Shin1, Jung-Joon Min1, and Geun-Joong Kim1
1Department of Biological Sciences, Chonnam National University, 2Department of Nuclear Medicine, Chonnam National University Hwasun Hospital

In recent decades the idea that a drug delivery system using bacterial minicells or similar nano-carriers for tumor targeting have been attempted and evaluated further potential for practical applications. In most cases of these studies, cancer cell-specific antibody was used as a targeting ligand by conjugation to the surface of delivery vehicles. These systems, however, the tedious process of coupling antibody with some specific receptor on the surface of minicells is prerequisite for targeting cancer. There is also a problem that the targeting efficiency was highly fluctuated depending on the conjugation process. Here we developed bioengineered minicells that could target cancer cells by functional display of anti-HER2 affibody and anti-EGFR repebody on the bacterial surface. Among the various anchoring systems, we used an autotransporter proteins (OmpC) and ice nucleation proteins (INP). The surface display and localization of both OmpC-affibody (repebody) and InaV-affibody (repebody) was demonstrated by western blot analysis. Further analyses of targeting effects using FACS provided some promising results for practical applications when compared to that of minicells (NC).

A Genetic Circuit Designed to Express Continuously the Gene Encoding a Drug Protein In Vivo by Positive Feedback Loop

Eun-Bin Lee1, Sa-Young Min1, Kwang-Soo Kim2, Hyun-E Choy1, and Geun-Joong Kim1
1Department of Biological Sciences, Chonnam National University, 2Department of Microbiology, Chonnam National University Medical School

The rational and model-guided construction of biological parts enables us pave a new way to develop therapeutic platforms. Here we present a novel genetic circuit strategy that is designed to induce the continuous expression of anti-leukemia drug by using the ligand-independent activity of a transcription factor. For this purpose, we first constructed an artificial, but functional, transcription factor (AraC) by rational design, which was no longer needed an inducer to bind to its own promoter P_BAD. Then we established a novel circuit that operated by self-positive feedback activity of AraC. This system could generate target gene transcription persistently when the initial expression of AraC is triggered. Additionally, directed evolution of AraC increased the sensitivity of the feedback loops, providing a more promising system that was protractedly activated during repeated batch of cell culture. This type of a synthetic circuit could facilitate the delivery of drugs into the target cells in favorable condition because it eventually set the stage for expression of drugs from memorizing cells by auto-activating transcription factor.

Fermentation and Quality Characteristics of Cheonggukjang Fermented with Bacillus Strains

Ju Hee Heo, Seong-Yeop Jeong, Hesjong Yang, Su Ji Jeong, and Do Youn Jeong
Sunchang Research Center for Fermentation Microbes (SRCM)

The object of this study was to improve the quality of Cheonggukjang with new starter, Bacillus stains. 9 kinds of strains were prepared by applying the Chungkookjang fermentation was for 48 h at 37 degrees. Soybean produced by each strain component analysis of the general quality (Moisture content, pH, Salinity, nitrogen content, free amino acid) attributes such as flavor and enzyme activity were examined. The enzymatic activities were analyzed with clear zone test. Antioxidant activity was also measured and compared. Using strain exhibited very different characteristics.

Comparative Genomics and Parallel Evolution Reveals Toxicity-Circumventing Mechanisms from Membrane Protein Overexpression

Soon-Kyeong Kwon1, Seong Keun Kim2*, Dae-Hee Lee2, and Ji Hyun F. Kim
1Department of Systems Biology, Yonsei University, Korea Research Institute of Bioscience and Biotechnology
2These authors contributed equally to this work

Membrane proteins constitute up to 30% of the total proteins in a cell, and play important roles in metabolism. Though overexpression of membrane proteins is pivotal for the studies of biochemical, structural, and functional aspects, it is considered a major bottleneck due to their toxicity to the host cell and other complications. To uncover the genetic background of toxicity-escape mechanism of Escherichia coli C41(DE3) and C43(DE3) derived from the common protein expression host BL21(DE3), we sequenced their genomes. Comparative genome analysis with their ancestral strain revealed various genetic changes. In other efforts, a series of evolved E. coli mutants producing membrane proteins were generated and mutation hotspots were identified. Through these combinatorial approaches, we found genetic changes linked to the reduction of cell toxicity caused by overexpression of membrane proteins. These results shed light on understanding the factors that contribute to overcoming the toxicity during membrane-protein overexpression, and could be applied to the development of a better expression system.

[Financial support from the Global Frontier Program for Intelligent Synthetic Biology]
In Silico Structural and Functional Characterization of Cellulases

Joshua SungWoo Yang and Jihyun F. Kim
Department of Systems Biology, Yonsei University

Cellulose is an abundant renewable organic resource with a great deal of potential for high-value products useful in biotech industry and agriculture. Cellulases belong to glycoside hydrolases (GHs), which hydrolyze the glycosidic bond between two saccharide groups or between a carbohydrate moiety and a noncarbohydrate one. Previous classification schemes have been based on substrate specificities of an enzyme, but the same protein family fold may harbor several types of specificities. In this study, we identified and characterized 9,095 cellulases from 715 species (Eukaryota: 258, Bacteria: 432, Archaea: 24, and Virus: 1) by a robust computational approach. Enzymatic function of GHs usually was found to occupy more than half of the length of a cellulase sequence, located at the N-linked region. Some of them have been shown in many of the carbohydrate binding modules and other protein domains, such as dockerin, on O-linked glycosylated residues. Phylogenetic analyses indicated the non-monophyletic distribution of cellulases and that many GH domains may have undergone horizontal gene transfer. The Ω loop on the surface of cellulases has shown to be highly conserved at its base.

A Rapid Antimicrobial Susceptibility Test based on Single Cell Morphological Analysis

Yong-Gyun Jung1, Jongil Cho2, Eun Keun Kim1,2, Minchul Lee1, Jeongheon Yoo1 and Sunghoon Kwon1,2,3*
1Research Institute, QuantaMatrix Inc., 2Department of Electrical Engineering and Computer Science, Seoul National University, 3Inter-university Semiconductor Research Center (ISRC)

The rapid antibiotic susceptibility test (RAST) is desperately needed in clinical area for fast and proper antibiotic administration. The traditional AST cannot cope with urgent cases of bacterial infection and antibiotic resistance owing to relatively long test time. Even though many new methods have been tried, they are not practiced in the clinic. As a significant breakthrough, we suggest a novel AST method called Single Cell Morphological Analysis (SCMA) to determine antimicrobial susceptibility by analyzing and categorizing morphological changes of single cell in various antimicrobial conditions. When four CLSI standard strains and 189 clinical samples including Extended-spectrum β-lactamase (ESBL) E. coli and K. pneumoniae, IRPA, MRSA and VRE from hospitals were tested with SCMA, the AST results were obtained only in 3–4 hours showing 93.3% categorical agreement and 6.2% minor, 0.4% major and 0.5% very major discrepancies to satisfy the recommendation of FDA. SCMA offers a rapid and accurate AST results as an available method.

Pharmacodynamics of Marbofloxacin against Actinobacillus pleuropneumoniae

Jeong Woo Kang1, Mi An1, Hae Chul Park, Yang Ho Jang, Byung Jae So, and Kwang Jick Lee*
Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency (QIA)

The purpose of this study was to investigate in vitro the pharmacodynamics of marbofloxacin against 20 Actinobacillus pleuropneumoniae (APP) strains. Broth microdilution testing was used to determine the Minimum Inhibitory Concentration (MIC) and minimum bactericidal concentration (MBC) and multi-step resistance selection range were 0.00391-32 μg/ml. For time-kill experiments, colony counts were determined by plating each diluted sample onto plate count agar and an integrated pharmacokinetic/pharmacodynamics area measure (log ratio area) was applied to all cfu data. The range of MIC and MBC were 0.03152-1 and 0.0625-8 μg/ml, respectively. Furthermore, we will discuss in terms of ex vivo time killing study against APP strains in detail.
Establishment of Washing Method for Accurate Transduction Assay and a Novel Transduction Peptide from a DNA-binding Protein in Blumeria graminis

Jeong-Min Seo and Il-Hoan Oh
The Catholic University of Korea, School of Medicine

Recently, research on peptide drugs as anticancer therapy agents or vaccine components has been increasing importance. Concomitantly, intracellular delivery using cell-penetrating peptides (CPPs) has received major attention as a novel function. Over twenty years, hundreds of different peptide sequences have been described within the CPP classification. However, since the strong tendency of cationic CPPs to associate with the plasma membrane leads to an over-estimation of cellular uptake, establishment of the washing method is important for the accurate assessment. In this study, we set up the washing method for measurement of the transduction and found a novel CPP from a DNA binding protein in Blumeria graminis, which is a fungus that causes powdery mildew on grasses, including cereals such as barley powdery mildew and corn mildew. The basic reside rich peptide from the partial region of the protein had the potential to have cell-penetrating ability. The details will be presented in the meeting.

[Supported by grants from NRF]

Genome Sequences of Vancomycin-producing Strains of Amycolatopsis orientalis

Hyun Ju Kim1,2, Dong-Woo Lee1, Haeyoung Jeong1,2, Si-Kyu Lim1, and Sang Jun Lee1
1Biosystems & Bioengineering Program, University of Science and Technology, 2Infection and Immunity Research Center, Korea Research Institute Bioscience & Biotechnology

Vancomycin, a natural glycopeptide antibiotic produced by the soil bacterium Amycolatopsis orientalis, is world-wide used for the treatment of serious infections by Gram-positive bacteria that are resistant to other antibiotics. Recent synthetic biology approaches combined with genome engineering will enable us to obtain high yields of the antibiotic production. Toward this end, we determined the genome sequences of four Amycolatopsis sp. strains (DSM 40040, DSM 43388, DSM 46075, and KCTC 9412) using the Next-Generation Sequencing (NGS). The comparative genome analysis of these four strains reveals several glycopeptide antibiotic synthetic modules and host-resistant genes, reflecting their distinct cellular physiologies and different production yields for vancomycin. In addition, average nucleotide identity and whole-genome alignment analyses based on these genome sequences provide evolutionary relationships in Amycolatopsis strains. Therefore, this study provides us the molecular basis of the biosynthesis of antibiotics, which is of great importance for the large-scale industrial production of vancomycin.

[This study was supported by the Small and Medium Business Administration]

Growth Phase-Dependent Roles of Sir2 in Oxidative Stress Resistance and Chronological Lifespan in Yeast

Woo Kyu Kang1, Yeong Hyeock Kim1, Byoung-Soo Kim2, and Jeong-Yoon Kim1
1Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 2Department of Physiology, College of Korean Medicine, Daejeon University

Silent Information Regulator 2 (Sir2), a conserved NAD+-dependent histone deacetylase, has been implicated as one of the key factors in regulating stress response and longevity. Here, we report that the role of Sir2 in oxidative stress resistance and chronological lifespan is dependent on growth phase in yeast. In exponential phase, sir2A cells were more resistant to H2O2 stress and had a longer chronological lifespan than wild type. By contrast, in post-diauxic phase, sir2A cells were less resistant to H2O2 stress and had a shorter chronological lifespan than wild type cells. Similarly, the expression of antioxidant genes, which are essential to cope with oxidative stress, was regulated by Sir2 in a growth phase-dependent manner. Collectively, our findings highlight the importance of the metabolic state of the cell in determining whether Sir2 can protect against or accelerate cellular aging of yeast.

[Supported by grants from Korean Government (NRF-2010-0013086) and Ministry of Trade, Industry and Energy (R0001989)]

Mortality Due to Megalocytivirus in Rock Bream (Oplegnathus fasciatus) can be Controlled by Regulation of Water Temperature and Survivors Obtain Protective Immune

Myung-Hwa Jung1,2, Chamilani Nikapitiya1, Myung-Joo Oh1, and Sung-Ju Jung1
1Department of Aquaculture Medicine, Chonnam National University, 2Aquatic Animal Hospital, Chonnam National University

Repeated outbreak of rock bream iridovirus (RBIV) disease in summer causes huge losses to aquaculture industry especially to rock bream (Oplegnathus fasciatus). Rock bream injected with RBIV at fixed water temperatures (29, 26, 23 and 20°C) had 100% mortality. However, all fish survived at 17°C until 100 days post infection (dpi). In water temperature shifting experiment, mortality rates of rock bream exposed to virus for 2 d, 4 d and 7 dpi at 23/26°C before reduced to 17°C were 26.6/73.2%, 66.6/100% and 93.4/100%, respectively until 100 dpi. Survived fish transferred to 26°C at 100 dpi did not show any disease signs with low virus copy (below 105). In other experimental set shifting of water temperature, by lowering the water temperature from 23°C to 17°C at 4 dpi, all fish were survived. High survival rates of fish on re-infection of RBIV indicating that protective immunity and exhibit possibility in developing a long term preventive measure against RBIV. In this study, we confirmed that RBIV mortality highly correlates with water temperature in rock bream.
Analysis of the Status of Resources for Characterization of Pathogens and Standardization in Informative Database Registered in Bio-bank Network

Yong Gon Cho1, Hye Soo Lee1, Myung Je Cho2, Woo Kon Lee2, Yoo Chul Lee2, Won Kil Lee3, Soonyoung Han2, and Kwang–Jun Lee7

1Department of Laboratory Medicine, Chonbuk National University Medical School, 2Department of Microbiology, Gyeongsang National University School of Medicine, 3Department of Microbiology, Kyungpook National University School of Medicine, 7Department of Laboratory Medicine, Kyungpook National University School of Medicine, National Culture Collection for Pathogens (NCCP), Korea Centers for Disease Control & Prevention

The purpose of this study is to suggest the plan for the efficient registration and management of pathogen resources by establishing the information standards and code system and to seek to customize the regional branch of National Culture Collection of Pathogens (NCCP) for collecting the variety of resources, with the results of the analysis to resources status in each regional branch. We have performed an analysis for estimating a status of pathogen resources registered in NCCP and its regions and made codes for specimens, resources and antimicrobial agents. We have identified the status of pathogen resources which we had in all biobanks and analysed the antimicrobial pattern of major pathogens, the sequencing information of 16S rRNA of them, so recognised the intraspecific diversity between regions. And also, we made codes for specimens, pathogens, and antimicrobials. The collecting system with 3 regional banks should be maintained as well as present. 3 groups including Gram-positive cocci, Gram-negative Enterobacteriaceae, and Gram-negative non-fermenters are the best categorization for characterizing the collecting system to get and manage a variety of resources.

The Tumor Protection of Human Papillomavirus E6/E7 DNA Vaccine

Yoonki Heo, Yeondong Cho, Yongdae Gwon, Hae Soo Lee, Kihoon Park, Hyojung Choi, Yuyeon Jang, Heejung Lee, and Yong Bong Kim

Department of Animal Biotechnology, Konkuk University

Previously, we developed human endogenous retrovirus envelope protein-coated non-replicating recombinant baculovirus (AcHERV) for a human papillomavirus (HPV) 16/18 DNA vaccine nanocarrier. Because HPV E6 and E7 are promising tumor antigens in HPV related cervical cancer, we constructed AcHERV-E6/E7. To improve the immunogenicity of E6/E7 gene product, E6/E7 gene was synthesized with codon optimization and fused with sorting signal of the lysosomal-associated membrane protein LAMP-1. AcHERV-(opti)E6/E7LAMP-1 treated group showed retardation of tumor growth. AcHERV-(opti)E6/E7LAMP-1 treated group showed the anti-tumor effect. These DNA vaccine generate the highest number cytokine secreting of E6 or E7 specific splenocytes. These results indicate that fusion of LAMP-1 to an E6/E7 gene enhance the potency of HPV DNA vaccine against cervical cancer.

The Protective Efficacy of a Human Endogenous Retrovirus Envelope-Coated, Nonreplicable, Baculovirus-Based Hemagglutin DNA Baculoviral Vector Expressing H1N1 HA DNA Transgene Vaccine against Pandemic Influenza H1N1 2009

Yongdae Gwon1, Jeongki Kim1, Jaeyoo Choi1, Yeondong Cho1, Yoonki Heo1, Kihoon Park1, Yuyeon Jang1, Haryoung Poo2, and Yongdong Kim1

1Department of Bio-industrial Technologies, Konkuk University, 2Systemic Proteomics Research Center, Korea Research Institute Bioscience & Biotechnology

Influenza viruses cause respiratory disease in humans and animals with high morbidity and mortality rates. In this study, we constructed novel baculovirus-based vaccine (AcHERV-sH1N1 HA) using baculovirus expression system, a recombinant baculovirus bearing HA gene of A/Influenza H1N1 2009. For vaccine efficacy test, C57BL/6 mice and BALB/C mice were injected intramuscularly with 2×107 particles of the AcHERV-sH1N1 HA, with two boosts at 2-week intervals. Whole killed influenza vaccine (Greenflu® 2 µg, GREENCROSS) was used as a control. AcHERV-sH1N1 HA immune group induced high level of hemagglutination response (HA) with Greenflu®. And for challenge test, mice were intranasally and intraperitoneally with H1N1 virus (A/California/04). Day 6 post-challenge, 100% of BALB/C mice immunized with the commercial vaccine or AcHERV-sH1N1 HA survived. In contrast, C57BL/6 mice immunized with AcHERV-sH1N1 HA or the commercial vaccine showed 60% and 70% survival respectively.

Trivalent Human Papillomavirus (16,18,58) DNA Vaccines Encapsulated in Single Non-replicable Baculovirus Nano-carriers

Hansam Cho1, Jae-hee–Jung Lee1, Yeondong Cho1, Yoonki Heo1, Yongdae Gwon1, Kihoon Park1, Mi–Gyeong Kim1, Ju–kyoong Oh1, and Young Bong Kim1

1Department of Bioindustrial Technologies, Konkuk University, 2Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University

We constructed a multivalent human papillomavirus (HPV 16, 18, and 58) DNA Vaccines. We compared vaccine efficacy of the bivalent and trivalent AcHERV vaccines with AcHERV-HPV16/18L1 and AcHERV-HPV18/16L1, bivalent AcHERV vaccines showed similar level of immunity against HPV-16/18. Bivalent AcHERV-HPV16/18L1 and AcHERV-HPV18/16L1 showed similarly high levels of humoral and cellular immunity. In challenge test, both bivalent vaccines showed perfect protection against HPV16 and 18 pseudotyped viruses. Based on the retained immunogenicity of bivalent AcHERV vaccines, we constructed a trivalent AcHERV DNA vaccine encoding HPV 16/18/58L1 genes (AcHERV-HPV16/18/58L1). Trivalent AcHERV vaccine also showed high levels of humoral and cellular immunity and sterile protection against HPV16, 18, and 58 PVs challenge. Therefore, trivalent AcHERV-HPV16/18/58L1 is expected as a potential prophylactic and therapeutic DNA vaccine against HPV16, 18, and 58.
Sublingual Immunization of Trivalent Human Papillomavirus DNA Encapsidated in Nonreplicable Baculoviral Vaccine

Jae-Sung Lee, Bo Ra Kwon, In Sun Park, Ju Kim, Mi Hee Kim, and Kang Yeol Yu
1Department of Bio-industrial Technologies, Konkuk University, 2Kolon Life Science, 3Research Institute of Pharmaceutical Sciences, Seoul National University

We developed human endogenous retrovirus envelope protein-coated non-replicating recombinant baculovirus (AcHERV) for a multivalent human papillomavirus (HPV) DNA nanocarrier. In this study, we generated an AcHERV-based trivalent DNA vaccine against HPV type 16, 18, and 58 (AcHERV-Trivalent) and tested vaccine efficacy of HPV 16, 18, and 58 following intramuscular or sublingual immunization without adjuvant. The both Immunization of trivalent vaccine induced IgG and IgA antibodies, neutralizing antibodies, IL-4, IFN-γ, and protection against challenge of HPV pseudoviruses. Serum IgG, IL-4, and neutralizing antibody responses of sublingual immunization were similar in intramuscular immunization. Vaginal IgA responses of sublingual immunization were superior to intramuscular immunization. Furthermore, all vaccinated groups by intramuscular or sublingual with trivalent vaccine showed perfect protection against genital challenge with HPV 16, HPV18, and HPV58 pseudoviruses. These results suggest that vaccine against HPV trivalent vaccine and the potential of sublingual immunization as an efficient vaccination strategy for inducing mucosal immune responses.
[Supported by grants from MAFRA]

Granulocyte Macrophage Colony Stimulating Factor-Salmonella typhimurium Flagellin 2 Fusion Adjuvant for Foot-and-mouth Disease Vaccine

Yu Yeon Jang, Yong-Dae Gwon, Yoon-Ki Heo, Hansam Cho, Yeondong Cho, and Se Hyun Kim
Department of Bio-industrial Technologies, Konkuk University

GM-CSF is produced by a variety of cell types including T cells, macrophages, endothelial cells upon receiving immune stimuli. Salmonella typhimurium Flagellin 2 (STF2) activates TLR5-mediated innate immune signaling pathways and induces inflammatory responses through the APCs. In this study, we investigated the effects of 2A-linked GMCSF-STF2 (GMCSF-STF2) as an adjuvant on the immune responses of commercial FMD vaccine (O Manisa, A Malaysia97, Asia 1 shamir strain). We constructed a recombinant baculovirus based GMCSF-STF2 fusion encoding adjuvant (Ac-ieI-PERVB-GMCSF-STF2). BLAb/c Mice were immunized two times with 2×10^7 FU of Ac-ieI-PERVB-GMCSF-STF2 at 2-week intervals. Immunized mice sera were collected and the immunological effects of the Ac-ieI-PERVB-GMCSF-STF2 were determined by ELISA, T-cell proliferation assay, and IFN-γ. The data revealed that GMCSF-STF2 fusion as an adjuvant of FMD vaccine could stimulate both humoral and cell-mediated immune response. Interestingly, GMCSF-STF2 fusion showed much better adjuvant effects than that of FMD vaccine only. In conclusions, STF2 and GM-CSF could be useful for potential adjuvant for FMD vaccine.
[Supported by grants from KHT]

Anti-Hypercholesterolemic Effects of Lactobacillus plantarum JB PML-16

Bo Ra Kwon, In Sun Park, Ju Kim, Mi Hee Kim, and Kang Yeol Yu
Jeonju Biomaterials Institute

Probiotics are viable microorganisms that exhibit beneficial effects on the health of the host when they are ingested. In this study, lactic acid bacteria were isolated from fermented soy bean sauce and showed the high capacity for Ornithine synthesis and Conjugated linoleic acid (CLA) conversion. As a result of these screening, 5 isolates were selected and we investigated their probiotics activities, such as anti-hypercholesterolemic effects. JB PML-16 identified as Lactobacillus plantarum showed bile salt hydrolase (BSH) activity and the cholesterol-lowering activity. It was able to deconjugate bile salts and remove cholesterol in vitro. Also, It was a potent inhibitor in HMG-CoA reductase inhibition assay. These results indicated an effect of reducing cholesterol, as well as inhibiting cholesterol biosynthesis. The above results suggest that Lactobacillus plantarum JB PML-16 may be a good probiotics and can be developed functional food materials for reducing cholesterol.
This research was support by the Regional Specialized Technology Convergence R&D Program funded by the Ministry of Trade, Industry and Energy.

AcHERV-mGMCSF as an Effective Molecular Adjuvant for Influenza Vaccine

Hyo-Jung Choi, Yong-Dae Gwon, Yoon-Ki Heo, Yeon-Dong Cho, Ki-Hoon Park, Kang-Chang Kim, and Young-Bong Kim
Department of Bio-industrial Technologies, Konkuk University

Egg based killed influenza vaccine, Greenflu®, showed an important role for preventing pandemic transmission. To enhance the immune efficacy, we constructed murine GM-CSF gene delivering recombinant baculovirus (AcHERV-mGMCSF) as an adjuvant. To evaluate GM-CSF effect in influenza vaccine, mice were vaccinated by single intramuscular injection with 1×10^7 FFU of Ac-ieI-PERVB-GMCSF-STF2 at 2-week intervals. Immunized mice sera were collected and the immunological effects of the Ac-ieI-PERVB-GMCSF-STF2 were determined by ELISA, T-cell proliferation assay, and IFN-γ. The group which was immunized by 0.2 µg of Greenflu® with AcHERV-mGMCSF showed higher level of IgG titers than that of only immunized with 0.2 µg of Greenflu®. Also, in HAI assay showed same patterns. Mice were challenged with influenza A/California/04/2009 virus at 3 weeks after vaccination. In the AcHERV-mGMCSF group, it showed significant protection against lethality and weight loss than control group. These data demonstrate that AcHERV-mGMCSF can be effective molecular adjuvant for influenza vaccine.
[Supported by influenza vaccine from GREEN CROSS, Korea]
HO14

Analysis of Food Components and Microorganisms in *Nelumbo nucifera* Leaf Sugar Broth

Dongju Hwang, Jongsuk Lee, Shruti Shukla, Haykuhi Charchoglyan, Juyeon Park, Gibaek Lee, Xinjie Song, and Myunghee Kim

Department of Food Science and Technology, Yeungnam University

Lotus farming in Korea has a long history, and recent studies of lotus leaf (*Nelumbo nucifera*) have shown various beneficial effects on human health. In order to identify food components and microorganisms associated with lotus leaf sugar broth, Lotus leaves were fermented in 5% Brix sugar broth over a period of 6 months. As results of analysis, the contents of crude protein, crude fat, ash, moisture, soluble sugars and amino acids indicated that the lotus leaves fermented broth contained rich sources of moisture 69.91%, crude protein 15.93%, crude fat 0.98% and ash 2.24%. The sucrose concentrations were changed from 2.5% to 0.07%, while concentrations of glucose and fructose were changed from 0.4% to 1.32% and 1.39%, respectively. For the amino acids, alanine 14.07% and 1.94% and arginine 27.81% and 0.07%, while concentrations of glucose and fructose were changed from 3% to 2.5% and 0.07%, while concentrations of glucose and fructose were changed from 0.4% to 1.32% and 1.39%, respectively. For the amino acids, alanine 27.81 µg/ml, valin 13.22 µg/ml and γ-amino-butyric acid 25.85 µg/ml were analyzed in lotus leaf sugar broth. For the microbial population, two species of yeast were isolated using appropriate isolation medium. Based on API kit and 18S rRNA sequencing, *Saccharomyces cerevisiae* and *Candida sphaerica* were identified from initial stage of fermentation, and *Saccharomyces cerevisiae* was dominated at the end of fermentation.

[Supported by a research grant from Vericoma Com.]
Imported Cases of *Theileria equi* Infection in Quarantine Facilities in South Korea

Ju-Yeon You1, Moon-Jung Cho1, Min-Soo Kang2, Young-Ha Kim3, Jee-Woo Lee1, and Soo-Jeong Kye2

1Infectious Diseases Inspection Division, Seoul Regional Office, Animal and Plant Quarantine Agency. 2Avian Diseases Division, Animal and Plant Quarantine Agency. 3Bacterial Diseases Division, Animal and Plant Quarantine Agency

Two equine herds originating from the United States (US) and China were held in quarantine facilities in South Korea. In the serodiagnosis of equine piroplasmosis, four horses showed positive reactivity. Subsequent analyses resulted in diagnosis of the apicomplexan protozoan, *Theileria equi*, infection. Confirmatory tests included a complement fixation test, an indirect fluorescent assay, *T. equi*-specific nested PCR, and analysis of the target sequence in the 18S rRNA gene. A common phylogenetic origin was discovered between the parasites identified in each case, and known isolates of *T. equi* circulating in the US and China. The infected horses were euthanized according to the relevant quarantine regulations. [This study was supported financially by a research grant (Project no. N-1542103-2013-15-01) funded by the Animal and Plant Quarantine Agency.]

Multiplex PCR for Species-Specific Detection of the Opportunistic Human Fungal Pathogens

Mee-Hyang Jeon1, Kwang-Yong Song2, Seung-Won Lee3, and Suhn-Kee Chae1

1Department of Biochemistry and Center for Fungal Pathogenesis, Paichai University. 2NeoProbe. 3SeqGenesis

The human pathogenic fungi *A. fumigatus*, *C. albicans*, and *C. neoformans* cause various diseases including aspergillosis and meningitis especially in immunocompromised patients. For rapid detection of these pathogens with PCR, species-specific DNA primers were generated by performing all-to-all blast with the program Blastn and the public primer design program Eprimer3 for identifying specific regions at each genome of ten species including 7 *Aspergillus*, 1 *Candida*, and 2 *Cryptococcus*. PCR was performed with selected primer pairs on genomic DNA from 13 species of *Aspergillus*, 2 species of *Trichoderma*, *Penicillium chrysogenum*, *Candida albicans*, and *Cryptococcus neoformans*. The AFS1-AFSR1, CASF1-CASR1, and CNSF1-CNSR1 primer pairs in PCR exhibited species-specific DNA fragment for *A. fumigatus*, *C. albicans*, and *C. neoformans*, respectively. Furthermore, Multiplex PCR by these primer sets within a single tube produced amplicons of 0.7, 0.5, 0.2 kb specific to *A. fumigatus*, *C. albicans*, and *C. neoformans*, respectively. [Supported by Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2014. (No.C0115558)]

Development of RT-PCR and Nested PCR Assay for the Detection of Non-reported Five Seed-transmitted Viruses in Quarantine

Siwon Lee1, Su Jeong Park1, Ji Hye Kim1, Bo-Ram Lee1, Jin-Young Lee1, Weon Hwa Jheong1, Hyen-Mi Chung1, Weon Hwa Jheong1, and Yong-Gil Shin2

1Water Supply & Sewerage Research Division, National Institute of Environmental Research. 2Plant Quarantine Technology Center, Animal and Plant Quarantine Agency. 3Incheon International Airport Regional Office, Animal and Plant Quarantine Agency

Seed-transmitted viruses regarding quarantine are the most problematic plant diseases in crop seed industry. In this study, non-reported five seed-transmitted viruses [*Andean potato latent virus* (*APLV*), *Cherry rasp leaf virus* (*CRLV*), *Pellergantium zonate spot virus* (*PZSV*), *Spinach latent virus* (*SpLV*) and *White clover mosaic virus* (*WCMV*)] that have not previously been studied for PCR diagnostic system in Korean quarantine were targeted for the detection. For successful virus detection, we employed a diagnostic technique based on reverse transcription polymerase chain reaction (RT-PCR) and nested polymerase chain reaction (nested PCR) methods. Two RT-PCR primer sets for each virus were finally selected for the diagnosis. Nested primer sets developed in the present study were shown to be highly sensitive in detection and verification of the target viruses. Overall, RT-PCR and nested PCR were proven to be a useful diagnostic technique for the detection of *APLV*, *CRLV*, *PZSV*, *SpLV*, and *WCMV* in quarantine.

Survey of Microbial Contamination of Tomatoes at Farms in Korea

A-Ra Jo1, Won-I Kim2, Se-Ri Kim1, Song Hee Ryu1, Kyoung Ah Lee1, Ki-Woong Nam1, Yohan Yoon1, Deok-Hoon Yoon1, So-Yong Oh1, Mun Haeng Lee1, Jae-Gee Ryu1, and Hwang-Yong Kim3

1Microbial Safety Team, Department of Crop Life Safety, National Academy of Agricultural Science, RDA. 2Research Institute of International Agriculture, Agriculture and Technology Information, Hankyong National University. 3Department of Food & Nutrition, College of Human Ecology, Soosungun Women’s University. 4Buyeo Tomato Experiment Station, Chungnam Agricultural Research and Extension Services

This study investigated and evaluated contamination levels of bacteria on tomatoes at farms stage to evaluate potential hazards associated with fresh tomatoes. A total of 170 samples, 90 samples from 5 sampling sites from 18 farms and 80 samples from 1 sampling site from 4 farms every month for four months, were analyzed to enumerate aerobic bacterial counts, coliforms, *E. coli*, *Bacillus cereus*, *Staphylococcus aureus*, *Escherichia coli*, *E. coli* O157:H7, *Salmonella spp.* and *Listeria monocytogenes*. Aerobic bacterial counts ranged from 0.48 to 6.15 Log CFU/g, with the lowest and the highest bacterial cell counts recorded for *A. cereus* and *S. aureus*, respectively. Thirty five percent of the samples from the *E. coli* contained more than 2 Log CFU/g. Six samples (6.6%) of 90 samples contained *B. cereus* less than 1 Log CFU/g. In addition, the contamination level of indicator bacteria and *B. cereus* in tomatoes were higher on March than on April, May and June (*P < 0.05*). *S. aureus, E. coli, E. coli O157:H7, Salmonella spp.* and *L. monocytogenes* were not detected in the tomato samples.
To evaluate microbiological safety of Korean leek and producing environment, a total of 153 samples were collected from 3 Korean leek farms located in Yangju, Gyeonggi province. The collected samples were analyzed on sanitary indicator microorganisms (Aerobic plate count, coliform count, *Escherichia coli* and foodborne pathogens (*Escherichia coli* O157:H7, *Salmonella* spp., *Staphylococcus aureus*, *Listeria monocytogenes*, *Bacillus cereus*). According to results, the numbers of APC, coliform, and *B. cereus* of soil were 5.47–6.32 log CFU/g, 1.16–2.10 log CFU/g, and 4.17–4.23 log CFU/g, those of Korean leek during cultivation were 5.79–6.59 log CFU/g, 1.43–3.69 log CFU/g, and 2.50–2.76 log CFU/g, respectively. The number of APC from packing table, knife, chapping board, and hands in good hygienic farm was lower than those in poor hygienic farm by 1.15–2.33 log CFU/100 cm². *E. coli* was detected from soil, water, Korean leek and *S. aureus* was also detected from chapping board, hands, Korean leek. However, *E. coli* O157:H7, *Salmonella* spp., and *L. monocytogenes* were not detected. These data suggested that risk management system should be introduced to the Korean leek farms.

Prevalence of Sanitary Indicator Bacteria in Dropwort (*Oenanthe javanica*) Cultivation Farms in Korea

Yeon Rok Kim, Kyoung Ah Lee, Se-Ri Kim, Won-II Kim, Song Hee Ryu, Jae-Gee Ryu, and Hwang-Yong Kim

Microbial Safety Team, Department of Agri-Food Safety, National Academy of Agricultural Science, Rural Development Administration

This investigation was conducted to analyze microbial hazards of dropwort (*Oenanthe javanica*) farms. Samples including cultivation and postharvest environments, personal hygiene (hands) and plants (raw materials, after trimming, and after washing) were collected from three different locations (eight dropwort farms) in Korea. As a results, total aerobic bacteria in cultivation and postharvest environments were detected at the levels of 0.33–6.50, 0.44–5.90, and 1.40–3.97 log CFU/100 cm², ml and coliform were detected at the levels of 0.33–3.37, 0.90–3.74, and 0.10–1.18 log CFU/100 cm², ml. *E. coli* were not detected by quantitative test, however, positive reaction in several environment factors (soil, water, and cutter) were detected by qualitative test. Especially, total aerobic count and coliform in hand showed higher than cultivation and postharvest environments. In plants, total aerobic bacteria and coliform in after washing showed similar to before processing in all farms. These results suggested that cultivation and postharvest environment and personal hygiene should be managed to reduce the microbial contamination in dropwort farms.
Korea Environmental Microorganisms Bank

Yong Jin Kim and Sang Seob Lee
Kyonggi University

Korea Environmental Microorganisms Bank (KEMB) has been established as a microbial and genetic resource center for environmental industries. The KEMB plays an essential role as follows: ① the collection and conservation of native environmental microorganisms and genetic resources, ② the construction of systematic management system for effective conservation and application of microbiological resources for environmental industries, ③ the provision fundamental data for ecosystem research and microbial classification, and ④ the development of biological treatment system for bioremediation of environmental pollutant and ecosystem restoration. There are about 14,000 strains of bacteria collected from environments, at this time. These collections are classified in accordance with scientific and functional characteristics, respectively. It is considered to promote academic and industrial activities by supplying basic materials for research and industrial applications, which accomplish the ecological recovery through constructing eco-friendly bioremediation system by supplying basic microbial resources.

Center for Fungal Genetic Resources (CFGR): Housing Plant Pathogenic Fungi for Educational and Research Purposes

Yeo Kyoung Yoon and Yong-Hwan Lee
Center for Fungal Genetic Resources, Seoul National University

Fungi are eukaryotic organisms, growing in a wide range of habitats. Fungi are significantly important in a variety of ways. They play an essential role in the decomposition of organic matter. They have been used as a source of food, and agents for fermentation of food products and for the production of various antibiotics and enzymes that are used in a field of research, industry, medicine, etc. In contrary, impact of many fungi on animals and plants is economically and socially detrimental. For example, Magnaporthe oryzae causes the most destructive disease, "rice blast". Annual yield loss of rice by rice blast is equivalent to rice that could feed about 60 million people. The Center for Fungal Genetic Resources (CFGR) was established to collect, maintain and distribute genetic resources mainly from plant pathogenic fungi, which are important for both educational and research purposes. This will contribute to development of new strategies for management of crop diseases and of new components for improvement of our lives. CFGR possesses important fungal species; a total of 42,000 isolates from 54 species of fungi including 20,902 T-DNA transformants of rice blast fungus and anthracnose fungus. In addition to the biological materials, CFGR has developed user-friendly databases to maintain genetic information of fungal stocks and help to solve questions about fungal pathogenicity, population genetics, development, and evolution. Also, CFGR seeks strategies for sustainable and scientific plant quarantine to better protect our ecosystem from invasive microorganisms.

Korean Metagenome Bank for Exploiting Microbial Diversity

Jung-Hoon Yoon
Department of Food Science and Biotechnology, Sungkyunkwan University

Microorganisms have played important roles in biotechnology and biopharmaceutical industry for long times. The recent use of molecular ecological methods and environmental DNA (eDNA) has changed our knowledge of microbial diversity dramatically and provided rapid access to genes of yet-uncultured microorganisms. Application of molecular ecological studies has shown that the majority (99%) of microorganisms present in the nature are under uncultivation. Many attempts to improve the recovery of microorganisms and their genes from the environmental samples have recently been achieved. Metagenomic approach that recovers the environmental DNA without the limitations of culture-dependent methods and constructs DNA libraries in suitable cloning vectors and host strains have been utilized for retrieving novel and useful genes. Korean Metagenome Bank (KMGB), a member of Korea National Research Resource center (KNRRC), has opened with the goal for the collection and distribution of metagenome (eDNA) and metagenomic library. The aims of the Korean Metagenome Bank are to contribute to the development of biotechnology by providing the metagenomic resources into various researches and to perform a national mission for maintaining the metagenomes as future biological resources.

Bank of Waterborne Virus

Soon-Young Paik
Department of Microbiology, College of Medicine, The Catholic University of Korea

The purpose of this bank is collecting and storing various waterborne virus isolates provoking severe infections in animal and human. This bank collects research information on various viruses and provides this information when it is needed. We provide various waterborne viruses, genomes and host cells to hospitals, universities, research institutes, and government institutes in the country as well as abroad. We also provide the identification services of waterborne viruses and the research data through on-line. Finally, it contributes to progress biological science and to improve public health.

www.msk.or.kr

H. Others
H029

Bacteriophage Bank

KyoungEun Cha and **Heejoon Myung**
Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies

Bacteriophages are viruses growing on bacterial hosts. They are antagonistic to bacteria and first reported by Frederick Twort and Felix d’Herelle in 1915 and 1917, respectively. They are found in sea, air, land and even foods. It is assumed that 10^{19} to 10^{20} phages exist on earth and they play a role in maintaining biological balance. Recently, new applications for phages are increasingly reported. As they are a part of useful biological resources, there are increasing demands for securing these resources. In response to these demands, the bacteriophage bank was established in 2010. The bank collects phages from environments as well as from working groups worldwide. Currently, 600 different phages are stocked. The host bacteria include *E. coli*, Salmonella enteritidis, *Pseudomonas aeruginosa*, *Listeria monocytogenes*, *Acinetobacter*, *Campylobacter jejuni*, *Enterococcus faecium*, *Enterococcus faecalis*, *Cronobacter sakazakii*, *Seratia marcescens* and *Staphylococcus aureus*. The number of stock is growing continuously. The bank also serves as a distributor for the collected phages. (www.phagebank.or.kr)

H030

Korea Collection for Oral Microbiology

Joong-Ki Kook, Soon-Nang Park, Yun Kong Lim, Mi-Hwa Choi, and **Eojin Jo**
Department of Oral Biochemistry, School of Dentistry, Chosun University

It has been known that about 700 species of oral bacteria inhabit the human oral cavity. Of them, 350 species have been cultured. The oral bacteria are the major causative agents of systemic diseases such as cardiovascular diseases as well as oral diseases, periodontitis and dental caries. However, the causative bacterial species for oral diseases have not been known because the dental diseases are occurred by the multiple infections. In addition, the prevalence of the oral bacterial species is different by the geographic location of the host and individual. It is very important to obtain the oral bacteria from Koreans for pathogenesis studies related to oral infectious diseases. The purpose of Korean Collection for Oral Microbiology is to obtain the oral clinical strains and their genetic resources, such as 16S rDNA, species-specific PCR or qRT-PCR primers, and genome sequences, for offering them to the researchers.

H031

Korea Bank for Pathogenic Viruses

Ki-Joon Song
Korea Bank for Pathogenic Viruses

Korea Bank for Pathogenic Viruses (KBPV) has been established in 2005 as a repository agent for the collection, management and distribution of the various pathogenic viruses that are essential to use for researches in biomedical sciences. The Institution operates in collaboration with The Institute for Viral Disease at Department of Microbiology, College of Medicine, Korea University, founded in 1973. The bank has unique viral collections such as Hantaan, Seoul, Muju, Soochong, and imjin the etiologic agents of hemorrhagic fever with renal syndrome. To date, total of more than 43,000 materials (~100,000 vials) from human and animal have been collected and maintained. We have provided a highly collaborative environment for researchers in various fields by providing valuable viral resources including consulting service. We also provide the educational program related to pathogenic viruses including biosafety training. Requestors of such agents are required to register with KBPV and to supply details of their laboratory facilities and safety management. More details about KBPV can be found at ; http://kbpv.knrrc.or.kr

H032

Plant Virus GenBank

Ki Hyun Ryu
Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women’s University

Plant Virus GenBank (PVGB) is a nonprofit semi-governmental organization, one of the Korea National Research Resources Collections (KNRRC) for special research materials Banks program financially supported by the Ministry of Education, Science & Technology (MEST), dedicated to collection, identification, characterization, preservation, research development, distribution and deposition of plant virus research biomaterials established since 1999. PVGB is one of substructure of Korea National Microbiological Research Resources Collections (KNMRRC). PVGB retains a number of accessions and a wide range of collections of Plant Virus Biomaterials useful for Plant Virology and Biotech-related research areas. PVGB has been recognized as a member of World Federation for Culture Collection & World Data Center for Microorganisms (WFCC-WDCM) and ISBER since April of 2001 and June of 2007, respectively. Main objectives and contents of PVGB can be categorized as 7 topics as follow : collection and development of Plant Virus Research Biomaterials such as infectious plant virus culture, plant viral cDNA clone, plant virus antiserum, biologically active full-length cDNA clone, viral cDNA library, virus-induced plant cDNA library, and diagnostic primers, preservation of Plant Virus Research Biomaterials, Distribution of Plant Virus Research Biomaterials to worldwide researchers to support their research fields and Safe Deposit from virologists, Development of New Plant Virology Techniques, i.e., molecular taxonomy of plant viruses, infectious cDNA clones, molecular indexing of virus variation, screening of virus resistance, virus-resistant transgenic plants, and risk assessment for living modified (LM) virus and LM plant systems, collection and support of Research Information.
Lichens are symbiotic organisms composed of a fungus (mycobiont) and an alga (photobiont). They produce characteristic secondary metabolites, lichen substances, which seldom occur in other organisms. Lichen and their metabolites have many biological activities. In spite of the wide spectrum of biological activities shown by the lichens, they have long been neglected by mycologists and overlooked by agrochemical industry because of its slow growth in nature and difficulties in the artificial cultivation of organisms. Use of lichen-forming fungi can overcome the disadvantage of natural lichen extracts for industrialization of their metabolites because of their much faster growth and larger production of the metabolites in culture than the natural thalli. Korean Lichen and Allied Bioresources Center focuses on isolation, maintenance and distribution of lichen bioreources to research groups in universities, national institutes and industrial sectors. It also screens their biological activities, and investigates cultural conditions for large production of lichen substances. Chemical library of some lichens extracts is also available from the center.

Korea Marine Microalgal Culture Center
Sung Bum Hur
Department of Marine Bio-materials and Aquaculture, Pukyong National University

Today microalgae are widely used in research and as educational materials. They are also commercialized in the industries of food, animal feed and environment. Microalgae exhibit a promising potential to be converted into pharmaceutical products and bio-fuel energy. For this reason, there are active, ongoing researches on microalgae with tremendous expectations of scientists. The Korea Marine Microalgal Culture Center (KMMCC) was established with a financial support from National Research Foundation of Korea in 1995. The collection of microalgae has been increasing continuously since 1995, and its number has reached to about 2,100 strains in 2013. The collection mainly consists of marine strains (80%) which are mostly isolated from Korean waters (96%). The major classes of the strains are Bacillariophyceae (54%), Chlorophyceae (18%), Dinophyceae (9%), Cyanophyceae (5%), Prasinophyceae (4%), Eustigmatophyceae (3%), Haptophyceae (2%), etc. With respect to identification of the strains, about 97% and 56% of them are identified at the level of species and genus, respectively. In addition, 3% are still unidentified, and about 51% of the strains are under axenic state. The culture strains of the KMMCC are introduced regarding their metabolites which have many biological activities. In spite of the wide spectrum of biological activities shown by the microalgae, they have long been neglected by mycologists and overlooked by agrochemical industry because of its slow growth in nature and difficulties in the artificial cultivation of organisms. Use of microalgae-forming fungi can overcome the disadvantage of natural microalgal extracts for industrialization of their metabolites because of their much faster growth and larger production of the metabolites in culture than the natural thalli. Korean Lichen and Allied Bioresources Center focuses on isolation, maintenance and distribution of lichen bioreources to research groups in universities, national institutes and industrial sectors. It also screens their biological activities, and investigates cultural conditions for large production of lichen substances. Chemical library of some lichens extracts is also available from the center.

Culture Collection of Antimicrobical Resistant Microbes
Eunju Shin, Hyunjin Hong, Hakmi Lee, Minyoung Lee, and Yeonhee Lee
Culture Collection of Antimicrobical Resistant Microbes, Department of Biology, Seoul Women’s University

Today, the increasing clinical abuse of antimicrobials in people and animals, led to a high rate of occurrence of resistant microbes. In addition, drug resistance is easily transferred from one resistant species to another related one in many ways, thereby complicating the issue. Therefore, treatment for disease caused by antimicrobial resistant microbes has emerged as a critical issue worldwide, and development of new drugs that inhibit resistant microbes has become an urgent issue of research. As the issue should be dealt across clinical research, regulation, and pharmaceutical development, communication and cooperation between researchers among these areas are necessary. Since Culture Collection of Antimicrobical Resistant Microbes was established in 1999, CCARM has been played a role as a connector among various research fields by providing the antimicrobial resistant microbes with known mechanism and information. CCARM collects, keeps, and preserves the resistant microbes in a systemic manner for constant supply of certified microbes and share the information with researchers in various fields. CCARM has a collection of over 20,000 strains of bacteria and yeast from 87 genera and provides various information including international meeting, newest information related to resistance via homepage and newsletter. CCARM is now increasing the interaction and collaboration between culture collections through national and international network as a member of Clinical Laboratory Standards Institute since 2000, World Federation for Culture Collection & World Data Center for Microorganisms since 2003, International Society of Biological and Environmental Repositories since 2007, Korea National Research Resource Center since 2008, and Biological Repositories since 2009.

Helicobacter pylori Korean Type Culture Collection (HpKTCC) Collects and Distributes Clinical Isolates of H. pylori
Department of Microbiology, Gyeongsang National University School of Medicine, Helicobacter pylori Korean Type Culture Collection, Gyeongsang National University School of Medicine

H. pylori that colonizes only in human gastric mucosa is one of the most common human pathogens and is the main cause of gastritis, peptic ulcer, and gastric cancer. Despite the clinical and commercial importance of H. pylori, many researchers have been blocked to investigate the diagnosis, treatment, and prevention of H. pylori infections because of difficulty in obtaining H. pylori isolates from patients. We have collected and characterized H. pylori isolates obtained from worldwide areas to allow researchers to access a variety of characterized H. pylori isolates. Characterized H. pylori isolates. H. pylori KTCC contributes to promote the study for the diagnosis, treatment, and prevention of H. pylori infections by providing fundamental research materials to investigators.

Helicobacter pylori Korean Type Culture Collection (HpKTCC) Collects and Distributes Clinical Isolates of H. pylori
Department of Microbiology, Gyeongsang National University School of Medicine, Helicobacter pylori Korean Type Culture Collection, Gyeongsang National University School of Medicine

H. pylori that colonizes only in human gastric mucosa is one of the most common human pathogens and is the main cause of gastritis, peptic ulcer, and gastric cancer. Despite the clinical and commercial importance of H. pylori, many researchers have been blocked to investigate the diagnosis, treatment, and prevention of H. pylori infections because of difficulty in obtaining H. pylori isolates from patients. We have collected and characterized H. pylori isolates obtained from worldwide areas to allow researchers to access a variety of characterized H. pylori isolates. Characterized H. pylori isolates. H. pylori KTCC contributes to promote the study for the diagnosis, treatment, and prevention of H. pylori infections by providing fundamental research materials to investigators.
The 3rd Microbiology Research Festival for High School Students

Sponsored by R&D Center Maeil Dairies Co., Ltd.
철세균을 이용한 토양박테리아의 생장을 저해하는 박테리오파지의 억제효과에 대하여

양준용
중산고등학교
담당교사: 이슬아

연수기와 하수구에서 철환원세균(iron-reducing bacteria, 철환원세균, 편의상 철세균으로 부르기로 함)인 철세균을 분리 동정하고 토양내 존재하는 토양박테리아를 파괴하는 용균성 박테리오파지를 토양으로부터 분리하였다. 토양박테리아가 분리된 용균성 박테리오파지에 의해 생성이 억제되는 반면 유해세균인 대장균의 경우에는 토양에서 용균성 박테리오파지에 의한 생장억제가 토양박테리아에 비해 상대적으로 낮고, 이로 인해 용균성 박테리오파지가 토양에 유입되면 토양박테리아가 사멸하고 그 결과 대장균이 빠르게 증식하게 된다. 박테리오파지는 철산화물이 부착된 토양박테리아에게는 접근을 하지 못하는 것으로 알려져 있는데, 철산화물의 경우 Fe^{3+}을 Fe^{2+}로 환원하는 철세균의 존재로 Fe^{2+}의 양이 증가하면 토양내 토양박테리아의 수가 용균성 박테리오파지에 의해 감소하는 것을 막을 수 있으며, 이로인해 발생하는 식물의 생장저하를 개선할 수 있다는 사실을 알게 되었다.
기후 변화에 따른 토양의 온도변화가 항생제 내성 박테리아의 토양번식에 미치는 영향

장서현
세종과학고등학교
담당교사: 김대준

토양을 15가지 온도변화 조건으로 8주간 온도변화를 실시하고 토양을 분석한 결과, 식물에게 공급하는 질소공급원의 제공자인 토양박테리아의 함량이 급격하게 감소한 것을 확인 할 수 있었으며, 이로 인해 유기물의 함량이 감소하지 않으며 이것은 식물에게 공급할 질소공급원의 고통을 의미한다. 또한 15가지 온도 변화조건을 거친 토양에서는 항생제 hygromycin (20μg/ml)에 내성을 가지는 대장균의 경우 토양박테리아의 생장이 억제되는 대신 토양 내 번식이 증가하여 토양을 오염시키는 것을 확인하였다. 이를 해결하기 위해 실험을 통해 항생효과가 입증된 백년초 추출물을 토양에 투입하고 15가지 온도 변화 조건 중 가장 심각한 변화를 보였던 2,6,10의 온도변화조건을 실시한 결과, 항생제 내성 대장균의 성장이 억제되고 토양박테리아의 성장이 정상적으로 회복 되었으며, 유기물이 분해도 정상적으로 일어나 식물의 성장이 정상적으로 회복되는 것을 확인 할 수 있었다. 또한 온도 변화를 겪고 항생제 내성 박테리아로 오염된 토양에서 자란 식물은 항생제 내성 대장균으로 식물이 심각하게 오염되지만, 백년초 추출물을 투여한 토양에서는 항생제 내성 대장균에 의한 오염이 거의 사라지는 것을 확인 할 수 있었다.
효모를 이용한 돌외 및 10종 천연물의 수명 및 노화에 미치는 영향 및 관련 기전 분석

김재현
개포고등학교
담당교사: 양기중

수명 연장은 노화를 억제하거나 노화에 역행하도록 하여 수명을 늘리는 것으로 줄기 세포, 분자 수준의 세포 복구 기술 등이 연구되고 있으며, 또 다른 방법에서는 자연에 존재하는 다양한 천연물을 수명 연장에 활용하려는 연구가 있다. 이에 본 연구에서는 수명 연장의 가능성이 제기된 돌외 및 10종의 천연 추출물을 전방 생물 중 단순한 효모를 이용하여 각각의 천연 추출물이 효모의 성장 및 수명 연장에 도움을 주는지 알아보고, 각각 천연 추출물들이 열, 산화, UV, 영양분 부족 등 각종 스트레스에 대한 세포보호 기능을 통해 그 기전을 알아보고자 하였다. 연구 결과 백수오, 돌외 등의 일부 천연 추출물은 효모의 수명 연장에 도움을 주었다. 또한 백수오는 산화 스트레스, 영양분 부족 환경에서 세포보호 효과가 있었던 반면에 돌외는 열 스트레스 환경에서 세포보호 효과가 있었다. 본 연구결과를 토대로 효모가 수명 연장 및 각종 스트레스를 통한 수명 연장 관련 연구에 유용한 모델임을 알 수 있었다. 또한 천연 추출물이 효모의 생명 연장에 대한 공통 기전을 규명할 수는 없었지만, 천연 추출물 별로 서로 다른 다양한 기전이 있을 가능성을 확인할 수 있었다. 향후 본 연구 는 효모를 이용한 여러 가지 수명 및 노화 기전 연구 및 여러 가지 후보 물질에 대한 가능성을 검증에 도움을 줄 수 있을 것으로 기대된다.
유분 환경에 따른 *Houttuynia cordata*의
Propionibacterium acnes 생장 억제 효과 탐구

김원휘, 송민호
서울과학고등학교
담당교사: 안주현

*Proptionibacterium acnes (P. acnes)*는 피부에 존재하는 미생물 중 하나로 혐기성이며, 여드름과 관련있는 것으로 알려진 맘테리아이다. 여성초라고도 부르는 *Houttuynia cordata (H. cordata)*는 여드름 등의 발생 주인인 *P. acnes*의 억제에 효과적으로 알려져 있다. 본 탐구에서는 이 사실들에 착안하여 일반 환경과 유분환경에서 *P. acnes*의 생장을 비교하고, 나아가 *H. cordata*의 *P. acnes* 생장 억제 효과를 비교해보고자 하였다. 실험은 배지에 균과 돈지(lard)를 섞어서 도말하는 방법과 배지를 만들 때 돈지를 첨가한 후 균을 배양하는 방법을 모두 시행하여 최대한 사람의 피지(sebum)와 비슷한 유분 환경을 조성하여 진행하였다. 또한 균을 돈지와 섞어서 도말한 경우와 균만 도말한 경우 모두 paper disc method를 사용해 *H. cordata*에 의한 생장 억제 효과를 비교하였다. 결과적으로 모든 균 농도에서 돈지가 없을 때에 비해 유분이 존재할 때 colony의 개수와 총 면적 이 넓게 나타났고, 이로부터 *P. acnes*가 유분환경에서 잘 생장한다는 것을 확인할 수 있었다. paper disc method를 이용한 *H. cordata* 추출물의 *P. acnes*의 생장억제효과 실험에서는 배양시 사용한 균주의 회색 비율 에 관계없이 돈지의 사용 유무에 따라 각각 배지에서 생육 저지환의 크기가 비슷하게 나타났고, 돈지를 섞은 배지에서 생육 저지환의 크기가 더 작게 나타나는 것으로 나타났다.
후추의 피페리딘 성분의 박테리아의 면역 저하 반응유도에 의한 유해 박테리아(항생제 내성 대장균)의 억제 방안

이동근
신도림고등학교
담당교사: 정영일

후추에 들어 있는 여러 성분 중, 피페리딘의 경우는 전체 함량의 0.2~0.7%를 차지하는 물질이다. 후추가 가지고 있는 대표적인 항균물질인 피페린이며 피페린의 항균효과에 대하여서는 많은 연구 결과들이 발표 되었지만 본 실험은 피페린 다음으로 후추에 존재하는 성분인 피페리딘에 대하여 주목하였는데, 항생제 내성을 가지는 대장균의 경우에 살균과 철이 결합되면 생장이 억제된다는 결과를 얻을 수 있었고 이를 바탕으로 실험을 실시한 결과 점은 후추의 납알을 40°C로 중탕 가열하여 추출한 피페리딘의 투여는 항생제 내성 대장균의 토양내 증식을 억제할 수 있으며, 그 이유는 항생제 내성의 근간이 되는 plasmid DNA의 구조적 변화를 일으켜 분열 증식한 항생제 내성 박테리아가 점점 항생제 내성을 얻어가게 되는 것을 확인할 수 있었고 이를 바탕으로 실험을 통해 확인할 수 있었다. 이는 plasmid DNA를 제한효소로 절단하는 실험을 통해 확인할 수 있었으며, 마지막으로 항생제 내성 대장균을 피페리딘 추출물로 처리한 결과 처리 횟수가 증가함수록 항생제에 대한 내성이 감소하는 것으로 보아 피페리딘이 항생제 내성 세균이 항생제 내성을 감소시키고 항생제내성의 습득을 억제하는 효과가 있음을 확인할 수 있었다.
폐식용유가 토양에 존재하는 토양박테리아와 유해세균의 증식에 미치는 영향에 대하여

박지연
동덕여자고등학교
담당교사:허경순

폐식용유의 탄화수소계열의 물질은 생물학적 독성을 가지는 것뿐만 아니라 토양에 유입된 경우 토양의 유기물을 분해하고 물질 순환을 촉진하는 토양박테리아의 성장을 억제하며, 토양에 존재하는 미생물인 효모와 유산균의 생장에도 악영향을 끼친다는 사실을 확인 할 수 있었다. 구체적으로 살펴보면 가정에서 일반적으로 사용하는 콩기름과 올리브유의 경우 가열 횟수가 증가하면 벤조피렌의 함량이 급격하게 증가하며, 이는 식당에서 사용한 폐식용유의 벤조피렌의 농도와 비슷한 수준임을 알 수 있다. 또한 산도도 급격하게 증가하며, 과산화물의 증가도 벤조피렌의 함량의 증가와 비슷한 수준의 증가를 보인다. 이로 인해 발생하는 문제점은 토양에 존재하는 유익한 미생물群(토양박테리아, 효모, 유산균)의 성장은 유해물질의 증가와 더불어 그 수가 감소하지만, 유해세균인 대장균의 경우 생장의 억제가 유익한 미생물群보다 심각하지 않으며, 오히려 향생제에 노출된 경우 향생제에 내성을 가지는 속도가 빨라지는 것을 확인 할 수 있었다. 토양내 유산균의 경우 토양에 존재하는 유산균은 토양의 산성도를 조절하는 등 필수적인 역할을 하는 박테리아다. 토양 유산균은 정상적인 토양에서 상당히 많은 양이 존재하고 있음을 알 수 있다 그러나 식당에서 사용한 폐식용유를 토양에 투입한 결과 유산균의 함량이 급격하게 줄었음을 확인 할 수 있었다. 또한 토양에 유입된 폐식용유는 환경학적 스트레스를 유발하여 식물의 성장을 억제하는 현상을 확인 할 수 있었다. 폐식용유가 토양에 유입되며, 토양박테리아를 비롯한 유익한 미생물群의 성장을 억제하고, 이로 인해 식물이 생장이 억제된다는 사실과, 향생제 내성균의 증가와 결합하면, 식용작물의 향생제 내성균의 오염이 발생할 가능성이 높아진다는 추론이 가능한 실험결과를 얻을 수 있었다.
세포벽을 손상시킨 토양박테리아를 이용한 토양의 방사성 스트론튬의 제거방안

조지원
은광여자고등학교
담당교사: 김두이

스트론튬(Sr-88)이 90mM의 농도로 토양이나 식물의 성장이 가능한 0.7% 아가로스젤에 투여되면 식물이 스트론튬(Sr-88)을 흡수해 성장이 억제되고 뿌리의 발달이 저해되어 결국 식물이 말라 죽게 된다. 또한 토양 내의 토양박테리아의 수도 급감하게 되어 토양에서의 경우 식물의 성장이 억제되는 것을 촉진한다. 스트론튬(Sr-88)이 포함된 토양에 시화호토양에서 채취된 토양박테리아 5,6을 competent cell' 제조 방법을 이용하여 세포벽에 구조적 변화를 일으켜 투여하면 세포벽의 표면에 스트론툼(Sr-88)이 흡착되어 식물에 흡수되는 것을 억제하여 결과적으로 스트론툼(Sr-88)의 독성을 제거할 수 있다. 이는 토양에 존재하는 다른 토양박테리아의 경우에도 같은 효과를 보이는 것을 확인 할 수 있었다. 분자유전학적 고찰이 가능한 예기장대를 이용하여 예기장대에 증감속이 흡수될 경우 발생한 변화를 증가하는 HMA4 유전자의 검사를 통해 competent cell' 제조 방법으로 처리된 시화호토양박테리아 5,6번의 투입이 식물이 스트론툼(Sr-88)의 흡수를 억제 할 수 있음을 확인 할 수 있었다. 또한 토양에 스트론툼(Sr-88)이 포함되어 있는지에 대한 여부를 확인하기 위해 스트론툼(Sr-88)이 고농도로 존재하는 토양에서 생성하는 토양박테리아를 분리 동정하였고 이를 이용하여 토양 내 스트론툼(Sr-88)의 존재여부를 파악할 수 있는 방안을 마련하였다.
저염 환경에 적합한 유산균 선발 및 이를 이용한 저염 김치 생산

심지호
배재고등학교
담당교사: 배소영

본 연구는 이미 발효된 김치의 유산균을 이용하여 부작용 없는 안전한 저염 김치의 개발을 위해 진행 되어졌다. 여섯 개의 컵에 발효 전 김치를 나누어 담는다. 염도를 기준으로 실험군을 나누는데, 평소 김치 담글 때의 50%, 75%, 100%의 염도로 김치를 각각 담근다. 발효를 진행시키기 전 종가집 김치의 김치 국물을 여섯 개의 컵 중 염도가 다른 세 컵에 김치 국물을 투입한다. 실험군들의 pH는 발효 후 증가되었고 특히 50%의 저염 김치는 급격하게 증가한다. 김치 국물의 흡광도는 김치 국물을 발효 전 참가하였던 실험군이 무첨가군보다 높은 수치를 나타냈다. 각 실험군은 총 5가지 다른 종류로 구분되며, 김치 세균은 A부터 E로 명명하였다. 김치 국물의 점가는 김치 세균의 다양성을 증가시킬 수 있고 경쟁을 강화시킨다. 김치 세균 A는 5~6%의 염도에서 가장 높은 활성을 보였다. 김치 세균 B는 5~6%에서 높은 활성을 보였고 C는 4%에서 높은 활성을 보였다. 김치 국물에서 유산균을 추출하여 동정한 결과 김치 세균은 Bacillus Subtilis, Bacillus tequilensis, Lactobacillus sakei 임을 밝혀낼 수 있었다. Bacillus Subtilis는 다른 두 유산균과는 다르게 염도 감소에 매우 높은 효과를 나타냈다. 유산균에 의한 염도 감소 효과의 과정을 알기 위해 흡수성 수지로 실험이 한 결과 나트륨 이온을 균 내로 흡수하여 염도를 감소시키는 것으로 결론을 내리게 되었다. 결론적으로 유산균을 선별하고 조절함을 통해 김치 발효의 속도를 조절할 수 있고 저염김치 개발의 가능성을 높일 수 있었다.
This study is conducted to better understand how each kind of sugar affects bacteria and their antibiotic sensitivity. *S. aureus* cultured in 1% aspartame solution or in 0.13% oligosaccharide solution, and *S. typhimurium* in 1% sucrose solution obtained sensitive trait to ampicillin 1x, kanamycin 10x and ampicillin 1x, respectively. Certain concentration of sugar strengthened *S. aureus* and *S. typhimurium* sensitivity to antibiotics; however, resistibility as well. Three out of five colon bacteria of guinea pig and two out of three colon bacteria found in mouse became sensitive after they were cultured in oligosaccharide solution. Moreover, the experiment was conducted to investigate how the yeast and bacteria break down different types of sugar. Yeast utilized sucrose and saccharine the most while the bacteria used fructose the most frequently. In conclusion, antibiotic sensitivity obtaining ability of bacteria by being exposed to sugar symbolizes that the reaction of human bodies can be more sensitive to environmental chemicals due to sugar ingestion.
다양한 식품군의 섭취에 따른 햄스터 장내 세균의 분포 변화

이현정
은광여자고등학교
담당교사: 김두이

본 연구는 음식물의 종류에 따라 장내세균의 패턴이 어떻게 변하는지를 살펴보고, 특히 당을 섭취했을 때의 장내세균의 변화를 알아보기 위해 실시하였다. 먼저, 3대 영양소인 탄수화물, 단백질, 지방을 비롯하여 야채, 당류 등에 속하는 13종의 식품군을 나누어 각 식품군마다 3마리씩의 햄스터를 배치한 후 3일간 음식물을 공급하였다. 이 후 장내 세균을 NA 배지와 MRS 배지에 발현하도록 하여 일반세균과 유산균의 발생을 관찰하였고, 이를 클로로니의 외형적 특성을 기준으로 분류한 후 분리 배양하여 16S rRNA 분석방법으로 유전자 염기서열을 확인하여 세균의 종류를 동정하였다. 탄수화물만을 먹인 그룹에서는 주로 대장균이 자랐고, 지방음료 그룹에서는 주로 대장균과 브리코리스 레티스균이 자랐다. 단백질을 먹인 그룹에서는 주로 바실루스 세레우스와 대장균이 자랐으며, 액상과당인 물엿을 먹인 그룹에서는 햄스터 한 마리에서 급성폐렴을 일으킬 수 있는 클래피엘라 뉴모니에가 배양되었으며, 실험 종료 후 수일 안에 세 마리 모두 사망하였다. 이에 물엿과 설탕, 포도당 등 당류를 각 세 마리의 생쥐에게 급여하면서 장내세균을 비교한 결과 설탕을 섭취한 그룹은 대조군과 세균의 종류나 증식량의 차이가 없었으나, 물엿과 올리고당을 섭취한 그룹 생쥐의 장내세균은 종류와 수가 모두 증가하고, 유산균은 감소하였다. 결론적으로 한 가지 식품군을 과도하게 섭취하면 장내세균의 균형이 깨지고 당류의 경우에는 물엿과 올리고당의 섭취가 장내세균의 패턴에 미치는 영향이 크다는 것을 알 수 있었다.
비타민 C의 세포증식 억제 효과를 이용한 박테리아의 항생제 내성발생의 감소방안 및 원리의 규명

방민정, 박나현
민족사관고등학교
담당교사: 나종욱

대장균을 배양하는 과정에서 비타민 1%의 용액을 처리하면 대장균의 생장이 억제되고, 비타민 0.1%의 농도를 처리하면 대장균의 생장이 촉진되는 것처럼 보이지만, 항생제에 대한 내성을 가지게 되는 속도가 줄어 든다는 결과를 확인 할 수 있었다. 이는 매우 중요한 결과로, 항생제 내성을 가지는 세균의 메커니즘에 대한 변화를 유도해 항생제 내성의 습득을 늦추 수 있는 중요한 단서가 된다. 이 현상의 증명을 위해 비타민 0.1%의 농도로 처리된 대장균은 대장균내의 과산화수소 농도가 증가하며, 이는 과산화수소를 분해하는 카탈라아제의 파괴로 인한 현상임을 알이다. 이에 따라 대장균의 카탈라아제를 생성하는 유전자인 katE 유전자의 발현을 통해서도 항생제 내성을 가지게 되는 plasmid DNA가 손상을 입게 되어 항생제 내성을 가지게 되는 속도가 느려지는 현상에 대해 상세한 입증이 가능했다.
Molecular Analysis of Microbial Community in Anaerobic Digesters Treating Food Wastewater

하성욱, 오경민, 이한비, 조정익
포항동성고등학교
지도교사: 김홍권

This study is aimed to investigate the methanogenic communities in anaerobic digesters treating food wastewater for promoting successful operation of long-term anaerobic process.

Hypothesis
Previously, analysis of anaerobic digestion has primarily relied upon qualitative or semi-quantitative methods such as clone libraries, molecular fingerprinting and nucleic acid hybridization. While these methods represent advancement over culture based characterization, they can only give a limited insight into the quantitative population dynamics that are important for the performance of anaerobic digesters. For the reason, culture-independent analysis for the microbial quantification like quantitative polymerase chain reaction(qPCR) and qualitative analysis using denaturing gel gradient electrophoresis(DGGE) based on 16S rRNA sequence will provide underpinnings for the improvement of anaerobic process performance.

Procedure
Samples taken at each steady state were analyzed to evaluate the process performance. Anaerobic sludge, which was collected from a local municipal wastewater treatment plant, was seeded, and raw food wastewater was also collected from the same facility.

Total DNA of the steady-state samples was extracted in duplicate. The 16S rRNA gene copy numbers of two hydrogenotrophic methanogen orders, *Metnanobacteriales*(MBT) and *Methanomicrobisles*(MMB) and one acetaticlatic methanogen order, *Methanosarcinales*(MSL) were quantified using real-time PCR.

For DGGE analysis, the DNA samples from an acidogenesis bioreactor were used. The V3 to V5 region of 16S rRNA genes in the extracted DNA was amplified using PCR with a set of universal bacterial primers, BAC 228F with a 40-bp GC-clamp (5′-CGCCC GCCGC GCGCG GCGGG CGGGG CGGGG GCACG GGGGG-3′) and BAC 805R.

Observations/data/results
For the qualitative analysis of methanogens, 16 bands were observed. In the seed and the methanogenic digesters, seven and fourteen bands were detected, respectively. All detected bands were identified to be 9 known methanogenic species.

For the quantitative analysis of methanogens, MSL was dominant at 34days of seed. Therefore it was probably due to the food waste like kimchi including high salinity. After 32days, MSL was rapidly decreased over time as acetic acid depleted. In acid fermentation tank, MSL rapidly increased at 45 days. Meanwhile, MMB was observed continuously throughout the entire process. Therefore, to induce MMB proliferation would be one of the key to promote successful long-term operation.
식물 영양제가 토양 속 미생물에 미치는 영향

임나현, 최은진
부산과학고등학교
담당교사: 정미선

본 연구에서는 식물 영양제가 식물뿐만 아니라 토양 미생물에게 미치는 영향을 알아보고자 하였다. 이를 위해 각기 다른 3종류의 영양제가 식물의 생장과 토양에 미치는 영향, 토양미생물의 분포에 미치는 영향, 미생물이 식물의 생장에 미치는 영향에 대해 알아보았다. 이에 대한 결과는 다음과 같다.

먼저, 식초 계란 영양제는 뿌리에 좋은 효과를 보였다. 식초 영양제 투여 후 개체 수의 증가를 보였던 토양 미생물은 종 분석 결과 Bacillus subtilis strain 16-5G으로 추정되었으며 이를 크@RequestParam과 함께 수경재배에 처치 했을 때, 식물의 생장에 약간의 도움을 주었다. 하지만 대체적으로 식물의 생장에는 큰 효과를 보이지 못하였다.

앰플 영양제는 토양 미생물의 수를 증가시켜 미생물이 식물의 생장에 긍정적인 영향을 미쳤다. 앰플 영양제를 투여했을 때 분포에 가장 큰 변화를 보였던 종은 Bacillus subtilis strain ML102B로 추정되며, 이를 크@RequestParam과 함께 수경재배 하였을 때 식물의 잎과 뿌리의 생장에 긍정적인 영향을 미쳤다. 이 미생물을 새로운 식물 영양제에 사용한다면 기존의 식물 영양제를 개선할 수 있을 것이다.

미생물 효소 영양제는 잎 생장에는 많은 영향을 주진 않았지만 뿌리 생장에는 좋은 효과를 보였으며 영양제에 포함된 미생물 몇 종을 수경재배 하였을 때 좋은 효과를 보였다. 이 미생물들은 영양제 투여 후 토양에서 우점 중으로 나타나지 않았지만 수경재배에서 긍정적인 영향을 준 것으로 보아 효소 영양제 미생물들이 Bacillus megaterium strain BJ51, Pseudomonas reinekei strain SN8의 다른 미생물과 상호작용 시 더 높은 효과를 내었다고 해석하였다.
어병성 세균에 대한 노무라입깃해파리 추출물의 항균 활성 및 야식업에서의 응용 가능성 탐구

김대희, 서보인, 이형진, 임승진
전북과학고등학교
지도교사: 박주현

국립수산과학원의 최근 3년간 표본조사 결과, 해파리로 인한 어업 피해액은 연간 760억원∼2,290억원으로 추산된다. 그 중 노무라 입깃 해파리는 정확한 원인파악이 불명한 상태에서 개체수가 급격히 증가하여 수산물 어획과정의 커다란 장애물로 등장하였다. 한 개체의 최대무게(습중량)가 200kg에 달하는 특징으로 인해 그물 등 어구파손, 어류-해파리 혼란으로 인한 상품성 저하 등 그 피해의 양상 및 범위 또한 다양하다.

한편, 해파리는 그 개체수가 많고 크기 또한 거대하기 때문에 피해저감과 더불어 이들의 수거 및 처리로 인한 경제적 손실이 발생한다. 이러한 손실을 최소화하기 위해 최근 해파리를 폐기하는 대신 유효자원화 하는 연구가 진행되고 있다. 이에 따라 본 연구는 국내 인근 해안에서 폐기되는 해파리에서 항균 활성을 갖는 물질을 샅출하여 또 다른 자원으로써의 가능성을 재조명한다.

류결절증, 저수온기 비브리오 병, 선화병 등의 야식업에서 물고기 집단폐사를 야기하는 위와 같은 어병을 독성이 있어 버려지는 해파리에서 추출한 천연 항균활성물질을 통해 해결하는 것이 본 연구의 최종 목표이다.
제주도에 자생하는 블루베리인 ‘삼동열매’의 항균 실험

공윤성, 강민철, 강병준, 김민우
남주고등학교
지도교사·강영철

제주도에 자생하는 삼동나무에 열리는 삼동열매에 대한 관심을 가지게 된 후 기존의 여러 연구 자료들을 검색해 보게 되었다. 연구 자료들을 통해 삼동열매는 눈의 피로회복 및 혈액 정화의 효능이 있다는 점을 알게 되었다. 하지만 이러한 자료에서 찾을 수 없었던 식중독균에 대한 항균효과에 대하여 의문이 들었다. 최근 식 중독의 위험성에 대한 신문 기사를 자주 접하게 된 결과 이번 탐구에 있어서 흔히 다양한 효능을 지닌 삼동열매에 어떠한 효능이 있지 않을까 하는 생각에 삼동열매 속과 삼동열매 엑기스로 항균실험을 진행하였다. 우리는 삼동 속과 삼동열매 엑기스의 항균효과를 알아보고자 식중독균인 Bacillus균과 Listeria 균을 배지에 배양하여 음성대조군으로 15% 에탄올, 양성대조군으로 항생제를 지정하여 탐구를 진행하였다. 이번 탐구를 통해 삼동엑기스에 항균효과가 있음을 알게 되었고, 이 효능이 제주도의 삼동열매가 세계적으로 유명한 블루베리와 같이 세계적인 식품이 되는 밀바탕이 될 것을 기대한다.
조릿대의 항균효과에 관한 연구

원호빈, 허성호, 고기범, 이원형
남주고등학교
지도교사: 강영철

조릿대는 제주도에서 흔하게 볼 수 있는 식물 중 하나다. 몇 년 전부터 제주조릿대 신산업창출사업으로 시작해 지금은 제주조릿대 RIS사업단으로 제주조릿대를 홍보, 가공 및 판매를 하고 있다. 이 사업단 홈페이지를 들어가 보면 제주조릿대의 효능에 관한 자료들이 있는데, 그 자료들을 보면서 항비만, 항산화, 항염활성 등의 효능이 조릿대에 있다는 것을 알 수 있었다. 그러나 그 홈페이지를 찾아봐도 제주조릿대의 항균효과에 관한 논문이나 자료는 찾아볼 수 없었다. 그래서 우리는 조릿대의 항균효과가 있는지 찾아보고자 한다.

우리는 우선 조릿대가 항균효과를 나타낼 경우 사람들이 쉽게 접할 수 있도록 입욕제라는 실용화방안을 정하고 실험에 임하였다. 조릿대의 항균효과를 알아보기 위해 온도와 시간을 달리해서 조릿대 추출물 4세트를 만들었고, 이것으로 항균효과 실험을 진행했다. 그 결과 우리가 실험에 사용했던 칸디다 알비칸스(Candida albicans)에 대해 4세트 모두 항균효과가 나타나지 않거나 미미한 수준이었다. 비록, 우리가 실험했던 방법으로는 항균효과가 나타나지 않았지만 우리가 여러 논문을 찾아본 결과 항균효과가 나타났다는 결과들이 있던 것으로 왔을 때 다른 방법을 이용한다면 긍정적인 결과를 볼 수 있을 것이라고 생각된다.
한라봉과 보리누룩 발효액의 아토피 및 여러 세균에 대한 항균 연구

정유준, 김태완, 강준우, 강용원
남주고등학교
담당교사·강영철

곰팡이 편 한라봉과 누룩을 섞어서 발효액을 만들어 문제성 피부(아토피)에 적용시키는 것은 옛날부터 내려오던 민간요법이다. 하지만 민간 요법이라는 것이 효과가 검증된 것이 아니기 때문에 우리는 실험을 통해서 민간 요법의 효능을 검증해보고, 어느 정도의 발효기간이 가장 큰 효과를 나타내는지 보고자 하였다.

우리는 한라봉 - 보리누룩 발효액의 최적 발효조건을 알아보기 위해서 발효기간을 조작변인으로 설정하고 3종류의 균주를 설정시켰다. 균주 배양의 과정에서 Propionibacterium acnes (여드름균), Escherichia coli (대장균)은 배양에 실패해서 실험에 적용할 수 없었고 Staphylococcus aureus (황색포도상구균)은 배양에 성공해서 항균효과를 실험했지만 황색포도상구균에서는 한라봉 - 보리누룩 발효액의 항균효과가 검출되지 않았다. 하지만 아토피는 포도상구균 외에도 여러가지 복합적인 요인이 작용하므로 한라봉 - 보리누룩 발효액이 다른 아토피 유발요인에 효과가 있을 수도 있으며 추가 연구가 필요하다.
Pseudomonas elodea의 부산물(by-product; biopolymer)인 Gellan gum의 점성의 조절을 통한 강도의 변화 탐구

이준우, 윤예린, 김민정, 박종웅
하나고등학교
지도교사: 김민정

햄스터 비만 억제에 영향을 미치는 유산균 효과 고찰

은영범
민족사관고등학교
담당교사: 조진호

햄스터 중에서 눈에 띄는 비만 체형인 햄스터의 배설물로부터 세균을 배양했다. 비만 햄스터들의 장내 미생물의 패턴은 크게 3가지 그룹으로 나눌 수 있었다. 유산균도 많은 그룹A, 유산균이 적고 노란 콜로니가 눈에 띄게 많은 그룹B, 유산균이 적고 노란 콜로니가 별로 눈에 띄지 않는 그룹C로 나눌 수 있었다.

주변에서 흔히 섭취할 수 있는 유산균에 의한 비만 억제 효과를 관찰하기 위해, 유산균양이 적은 그룹B와 C를 중심으로 김치와 유산균 음료로부터 분리한 유산균 5가지 종류를 균주별로 1가지씩 선택적으로 섭취하게 하여 비만과 장내 미생물의 변화를 관찰하였다.

대부분의 햄스터들에게서 유산균의 양이 급증한 것이 관찰되었으며, 특히 김치로부터 분리한 Lactococcus lactis가 가장 뛰어난 비만 억제 효과를 보였다. 또한 많은 그룹B에서 노란 콜로니들이 사라지는 등 LB배지에서 많은 세균총의 변화를 관찰할 수 있었다.
적송(Pinus resinosa)과 리기다소나무(Pinus rigida)의 내생균에 대한 소나무잡종(Bursaphelenchus xylophilus)의 섭식 특성 비교

윤지용, 임영천
경기과학고등학교
담당교사:이재구

본 연구는 적송(Pinus densiflora)과 리기다소나무(Pinus rigida)에서 내생균을 분리 배양하여, 두 수종에 서 식하는 내생균의 소나무잡종(Bursaphelenchus xylophilus)에 대한 피식성의 차이를 비교하였다. 소나무잡종은 소나무류에서 가생하는 선형동물로, 리기다소나무는 소나무잡종에 일정 수준의 내성이 있으나, 적송 등 다른 소나무류의 식물은 소나무잡종에 감염되면 소나무잡종병을 보이며 2년 내에 고사한다. 소나무잡종은 소나무의 내생균을 섭식하기 때문에 연구자들은 리기다소나무와 다른 소나무류 식물이 보이는 내성의 차이가 내생균 군집 분포의 차이에 기인한다고 가정하였다. 적송과 리기다소나무의 샘플을 표면살균하고 WA 배지에서 배양하는 과정을 거쳐 군을 분리하였다. 분리된 군은 PDA 배지에서 배양 후 소나무잡종을 접종하였으며, 일정 기간이 지난 뒤 소나무잡종의 밀도 변화를 관찰하였다. 실험 결과 리기다소나무에서는 12종, 적송에서 6종의 내생균이 분리되었다. 군류의 종류에 따라 소나무잡종은 섭식 행동에서 큰 차이를 보였으며, 적송에 비해 리기다소나무로부터 소나무잡종이 섭식하지 못하는 내생균이 많이 분리되었다.
해양 미생물(미세조류)의 방제효과 탐구

이유미, 박수진
강화여자고등학교
담당교사: 박선미

우리는 해양 미생물을 이용한 방제 효과에 대하여 탐구 하였다. 우리의 실험은 기름 유출사고를 보고 해양미생물이 방제능력을 가지고 있지 않을까 하는 생각에서 시작하게 되었다. 그래서 해양 미생물을 바닷물과 같은 염도의 소금물에서 휘발유, 벤젠, 톨루엔을 넣어서 일정 시간마다 VOC측정기를 이용하여 값을 측정하며 오염도가 얼마나 줄어드는지를 관찰하였다. 한 실험마다 기간은 8일로 잡고 24시간마다 동일한 시간에 정기적으로 측정하였으며 같은 조건에서의 대조군과 효모를 설정하여 측정값을 비교하였다. 우리는 미생물의 방제 효과를 탐구함과 동시에 우리 생활에서의 미생물이 얼마나 유용하게 사용될 수 있는지에 대하여 탐구해 보기로 하였다.
미생물을 이용한 과다면역반응의 억제

손지우, 양정은, 김혜성
hana고등학교
담당교사: 김민정

기생충은 알레르기를 억제한다는 연구 결과도 있지만, 부작용을 잘 일으키므로 세균에 의한 알레르기 치료가능성을 알아보려 했다. 개울, 공기, 김치, 헬스터 배설물 등에서 채집하거나 구입한 18가지 세균에 대해 비만세포(Mast cell) 발과립화 억제효과를 관찰했다.

HMC-1 cell에 A23187 처리 후, 각각 18가지 세균으로 처리했다. 조사한 18종류의 세균추출물 10ul와 100ul에서 모두 비만세포의 발과립을 억제한 세균은 3가지였으며 Pseudomonas sp., Bacillus subtilis, Pseudomonas mosselii로 확인되었다.

선별된 3가지 세균을 처리한 상태에서 비만세포의 발과립현상으로 방출된 허스타민을 정량분석한 결과 Pseudomonas sp., Bacillus subtilis의 2종에 대하여 tryptase 분비저해 효과가 관찰되었으며, 특히 Pseudomonas sp.의 경우 눈에 띄는 현저한 감소효과를 나타내었다. 시료준비과정에서 고온고압살균과정을 거쳤기 때문에 Pseudomonas sp.제내에 있는, 열에 강한 화학물질이 아토피와 같은 자가면역질환 치료제로 쓰일 것으로 기대된다.
Norovirus에 대한 Propolis의 억제 효과 측정

최서현, 노정석
하나고등학교
담당교사: 김세진

Norovirus는 Caliciviridae 과에 속하며 Single-Strand RNA 바이러스로 작정이 약 27~40 nm의 작은 구형 바이러스이다. 최근 전 세계적으로 발생하는 식중독 사례의 주요 원인체이며, 단체 급식 등 집단 피해 사례에서 Norovirus가 원인 병원체로 확인되면서 대규모 집단 발병에 대한 예방 대책이 시급하지만, 현재까지 Norovirus에 대한 백신이 개발되어 있지 않아 이에 대한 연구가 활발히 진행되고 있다.

프로폴리스는 벌이 나무, 꽃 등의 식물로부터 얻은 beewax와 resin을 그들의 타액과 혼합하여 만든 물질이며, raw 프로폴리스에는 resins (40-55%), beewaxs and fatty acids(20-35%), essential oils (about 10%), pollen (about 5%)의 주요 구성성분과 이외 무기질, 비타민, 당 등을 포함하고 있다. 여러 민간요법에서 사용되던 프로폴리스는 최근 influenza virus, HIV, adenovirus, herpes simplex virus등 antivirus 활성도 보고되고 있으나, norovirus에 대한 프로폴리스의 활성은 보고되어 있지 않다. 따라서, 본 연구에서는 프로폴리스가 norovirus에 대한 새로운 항바이러스 활성이 있는 치료소재로서의 가능성이 있는지 알아보고자 한다.

본 연구에서는 Norovirus의 surrogate로서 Murine Norovirus(MNV-1)와 Feline Calicivirus(FCV-F9)를 사용하였고, 이에 대한 host cell로 RAW264.7 cell 및 Crandell feline kidney(CRFK) cell을 각각 사용하였다. 두 cell은 Dulbecco's Modified Eagle's Medium (DMEM)을 기반 배지로 하여 37°C 5% CO2 incubator에서 배양하였다. 실험에 사용된 프로폴리스는 (주) 서울 프로폴리스에서 sample 4개를 받아 사용하였으며, 이중 3개는 에탄올 추출물, 나머지 1개는 3개의 에탄올 추출물 중 1개 sample에서 에탄올을 제거하여 다시 물에 녹여 수용성으로 만들었다. 이들 sample는 아르헨티나, 국가, 중국으로 각각 다르며, 총 flavonoid 함량이 각각 에탄올 추출물은 2%, 수용성 추출물은 1%이 되도록 희석하여 사용하였다.

각 프로폴리스 sample에 대한 항바이러스 활성 실험에 앞서, host cell 자체에 세포독성이 있는지 체크하기 위해 시간별, 농도별로 MTT assay를 실시하였다. 그 결과, RAW264.7 cell의 경우, 0.1%에서 48시간 처리했을 때 프로폴리스를 처리하지 않은 control과 비교하여 cell viability가 8.26%로 이 농도이상에서는 독성이 있는 것으로 나타났으며, 0.01% 이하 농도에서는 48시간까지 모두 90%의 cell viability를 보였다. CRFK cell의 경우, 역시 0.1%에서 48h 처리했을 때 20.14%로 세포독성이 관찰되었으나, 0.01% 이하 농도에서는 모두 90%이상의 cell
viability를 보였다.

항바이러스 활성을 체크하기위한 Plaque assay를 진행하기에 앞서, 프로폴리스 sample을 국산 2% 에탄올 추출물, 중국산 1% 수용성 추출물로 축소하고, 에тан올 용액을 날리기 위한 동결건조과정을 진행하였다.

이후, 세포독성이 나타나지 않는 0.01% 이하의 프로폴리스농도에서 Norovirus와 Sample을 미리 반응하여 cell에 첨가하는 Pre-treatment와 Norovirus와 Sample을 동시에 cell에 첨가하는 Co-treatment, 두 가지 방식을 이용해 Plaque assay를 진행하였다. 기대와 달리 Norovirus를 프로폴리스가 경향성 있게 억제한다는 결과가 나오지는 않았지만, 이는 Sample처리 방식에 따른 차이나 0.01%농도 이하에서의 농도 구획의 문제 등의 가능성이 있기 때문에 농도를 저 세분화 시키거나, Sample을 처리를 다르게 해 본다면 경향성 있게 활성을 띄는 농도를 찾을 수 있을 것으로 기대된다.
탄소결핍 배지를 활용한 Pseudomonas 계열 세균의 폴리머 분해 탐구

고승우
청심국제고등학교
담당교사: 이근정

하천이나 호수 일대에서 채취한 토양과 물 시료로부터 PET (polyethylene terephthalic acid) 및 단위체인 terephthalic acid를 분해하는 세균을 찾고자 하였다. terephthalic acid를 탄소원으로 하는 한천배지에서 자라는 세균들을 동정하였는데, 이들은 Pseudomonas fluorescens, Acinetobacter kyonggiensis, Acinetobacter sp., Uncultured Acinetobacter sp., Pseudomonas sp., Streptomyces gardneri, Acinetobacter sp., Microbacterium sp. 였다. 이 중 Pseudomonas sp. KJF11-6는 terephthalic acid가 첨가된 액체배지에서도 잘 성장하였는데, 이를 오염물질 제거 등에 활용할 수 있을 것이다.
일반렌즈에 비해 컬러렌즈에 세균이 더 쉽게 부착되는 이유 연구

이동일
개포고등학교
담당교사: 유경숙

목적: 컬러렌즈 사용이 증가함에 따라 그로 인한 세균감염도 증가 추세이다. 그러나 왜 일반렌즈에 비해 컬러렌즈의 감염이 더 잘 발생되는지에 대한 연구는 아직 되어있지 않다. 본 연구는 렌즈표면의 특성을 중심으로 세균감염을 잘 일으키는 이유에 대해 연구하였다.

방법: 하이드로겔 재질의 컬러렌즈와 일반렌즈를 대상으로 하였다. 각 렌즈의 표면 거칠기를 원자력현미경으로 분석하였고, Pseudomonas aeruginosa를 24시간까지 렌즈에 접촉시킨 후 표면에 부착된 세균을 분리・배양하였다. 또한 두 종류의 렌즈를 사람이 실제 착용한 뒤, 렌즈에 붙은 세균정도를 세균배양을 통해 확인하였다.

결과: 원자력현미경으로 렌즈 표면을 분석한 결과, 일반렌즈에 비하여 미용컬러렌즈의 거칠기가 유의하게 증가되어 있었고, 세균유액에 담갔던 렌즈의 세균을 분리, 배양, 관찰한 결과 컬러렌즈에 세균이 더 많이 붙는 것을 확인하였다. 혼미로운 것은, 1시간만 배양해도 컬러렌즈에서의 세균부착이 의미 있게 증가하였다. 실제 사람에게 착용된 렌즈를 배양한 결과 일반렌즈와 달리 컬러렌즈는 착용시간에 따라 세균부착이 증가하는 것을 확인하였다.

결론: 본 연구는 컬러렌즈의 표면 거칠기가 증가되어 세균부착이 일반렌즈에 비해 쉽게 일어나며 이로 인한 세균감염이 증가될 가능성을 객관적으로 밝혔다.
 최근 세계적으로 미세먼지의 영향이 매우 커지고 사람들의 대부분이 대기오염 상태 변화에 관심이 집중되고 있다. 이처럼 대기오염의 심각성이 높아지면서 우리는 주변의 대기의 오염도와 대기 속 미생물 종류의 상관관계에 대해 궁금증이 생겼다. 대기의 오염성분의 변화에 따라 대기에 분포하는 미생물의 종류도 영향을 받을 것이라는 가정 하에 강우 시에 대기 중의 미생물이 빗방울 또는 눈 안에 갇힐 것이라고 예상하였다. 그래서 비 또는 눈이 내리기 전과 비 또는 눈이 내린 후의 대기 미생물을 공기 중에 고체 배지에 노출시키는 방법으로 포집을 하고, 강수 시에는 멸균시킨 집기병으로 빗방울 또는 눈을 포집한다. 우리는 본 실험에서 크게 강우 전과 강수 시, 강수 후의 미생물을 분리한 뒤 그 날의 대기오염의 상태와 미생물의 종류를 비교해 보고자 한다.
There are a variety of products such as wet wipes used in everyday life. However, they could contain toxic chemicals. Therefore, question has been raised about if wet wipe has adverse effects on our aquatic ecosystem and human health. To answer this question, ecotoxicity tests were conducted on water extracts of wet wipes using microtox bioassay. Results were compared to *Daphnia magna*, phytoplankton and Japanese medaka (*Orizias latipes*) which are widely used for evaluating aquatic ecotoxicity. Microtox bioassay may be a good candidate for pre-screening the environmental toxicities of water pollutants, since the testing method with microtox bacteria was relatively easier and more economic than other bioassays. To determine the toxicity effect of human health by wet wipes, human lung cells was treated with effluent of wet wipes (EWWs) for 24 hours. EWWs led to reduction of cell viability with morphological change. However, comet analysis showed that treatment of cells with EWWs did not increase DNA damage.
광합성미생물을 이용한 음식물 쓰레기의 효율적 처리 방안 탐구

곽근진, 이호연, 서치범, 진세원
초당고등학교
담당교사: 김유미

본 연구는 Rhodobacter sp.를 음식물쓰레기에 사용했을 때 Rhodobacter sp.가 가진 효과들이 성공적으로 발현되어 음식물쓰레기의 효율적, 천환경적 처리 및 퇴비화를 도울 수 있는지 여부에 대한 탐구이다. 실험에서 광합성미생물로는 Rhodobacter sp.를 사용하였다. 광합성미생물의 악취제거효과를 알아보기 위해 관련 강한 사람들에게 직접 냄새를 맡도록 하는 직접 관능법과 플라스틱 시험관에 암모니아수를 넣고 Rhodobacter sp.를 중류수와의 비율을 달리하여 넣은 암모늄 이온의 감소량을 측정하는 방법을 사용하였다. 또한 Lactobacillus casei와 Escherichia coli를 이용하여 Rhodobacter sp.의 발효균 활성화 및 부패균 비활성화 능력을 확인하였다. 스티로폼 상자 두 개에 홀과 음식물쓰레기를 넣은 후 실험군에만 Rhodobacter sp.을 넣은 뒤 온도를 측정하여 Rhodobacter sp.이 음식물쓰레기의 퇴비화 속도에 미치는 영향을 탐구하였다. 연구 결과 Rhodobacter sp.이 중류수에서의 자연적인 암모늄이온의 증발량보다 더 많은 양의 암모늄이온을 제거한다는 것을 알 수 있었다. Rhodobacter sp.은 발효균의 중심을 활성화시키며, 부패균의 중심을 미약하게나마 억제한다. Rhodobacter sp.은 퇴비화속도를 향상시킨다는 것을 본 연구를 통해 확인할 수 있다. 이러한 Rhodobacter sp.의 특징으로 인해 Rhodobacter sp.은 음식물쓰레기의 효율적 처리를 위하여 효과적으로 사용할 수 있으며, 실제 처리과정에서 본 연구를 통해 확인한 효과들뿐만 아니라 다른 여러 미생물과의 긍정적 상호작용을 기대할 수 있어 음식물쓰레기로 인한 경제적 환경적 피해를 줄이는 일에 크게 기여할 수 있을 것이다.
야생초가 치아 바이오필름 형성억제에 어떻게 이용될 수 있는지를 알아보기 위해 연구를 진행하였다. 영양소(10% 펩톤, 10% 포도당, 오일)를 달리해서 치 Chairs를 때에 비해 빠르게, 길경, 구절초 추출액을 처리한 경우는 세균 생성이 현저하게 감소한 것을 알 수 있었다. XTT Assay에서 10% 포도당과 추출액을 1:1로 섞어 배양액으로 사용한 경우에 비해 야생초 추출액만을 배양액으로 넣어준 경우가 흡광도 수치가 낮게 측정되어 항생 효과를 보이는 물질이 있음을 확인되었다. 야생초 추출액에 대한 Paper Disc 실험을 통해 모두 항생 효과를 보인다는 것을 알 수 있었다. 또한 탄닌으로 추정되는 성분이 확인되었으며 길경에서 탄닌 추정 물질에 대한 농도가 특별히 높게 나타났다. 길경은 모두 높은 항생효과를 보여 치약이나 가글 제제 합성을 위한 재료로 사용될 수 있는 가능성을 보였다.
Nitrogenous manure, which has been used to boost a yield since early 20 century, is pointed as a crucial reason of the environmental pollution such as eutrophication. Not only does it occur the rapid difference of species but also vigorous side-effect to human lives. To solve this matter, many of researchers and institutes have studied to invent new type of manure that is not harmful to nature.

PGPR (Plant Growth Promoting Rhizobacteria) is root-colonizing bacteria which form symbiotic relationships with plants. PGPR can be generated through direct or indirect way so that the plant immunized from the diseases which are caused by bacteria. (PGPR can promote plant growth through direct and indirect means, and prevent plant diseases that are caused by other bacteria fungi.) It is hard to investigate, however, because the concrete mechanisms of immunizing process haven’t been well-characterized and researched.

Therefore, the present writers conducted an experiment with the aim of analyzing roll of PGPR in plant growth (especially for ornamental bulbs), and process of inducing ISR based on hypothesises : PGPR can promote plant growth, which can boost a productivity of onion and increase the average number and length of garlic’s root hair. Experiment was conducted, based on advanced scientific research on PGPR and variables of experiment are accurately controlled. The test is conducted, and data are statistically analyzed and digitized.
고초균의 영양소 분해능력을 이용한 음식물쓰레기의 분해 및 퇴비화에 관한 탐구

김재용, 김찬우, 이현우,홍준화
안법고등학교
지도교사:박보연

현대사회에서 음식물쓰레기의 문제는 심각하다. 1년에 음식물쓰레기를 처리하는데 드는 비용은 약 6000억원이나 된다. 그래서 우리는 고초균(Bacillus subtilis)을 음식물쓰레기 처리에 사용해 보기로 했다.

고초균은 벼 짭에 많이 존재한다. 우리 조상들은 예로부터 벼 짭을 많이 사용했고, 특히 벼 짭을 써서 퇴비로 주곤 했다. 그래서 우리는 음식물 쓰레기를 고초균으로 분해할 수 있는지 그리고 생성된 생성물을 퇴비로서의 효과가 있는지 실험해 보았다.
Author Index
<table>
<thead>
<tr>
<th>Author Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Ahn, Chi-Yong</td>
</tr>
<tr>
<td>Ahn, Jae-Hyung</td>
</tr>
<tr>
<td>Ahn, Jeong Keun</td>
</tr>
<tr>
<td>Ahn, Jong Seog</td>
</tr>
<tr>
<td>Ahn, Joong-Hyeon</td>
</tr>
<tr>
<td>Ahn, Ki Bum</td>
</tr>
<tr>
<td>Ahn, Tae-Seok</td>
</tr>
<tr>
<td>Ahn, Tae Seok</td>
</tr>
<tr>
<td>Amorosa, Valeriana</td>
</tr>
<tr>
<td>An, Mi</td>
</tr>
<tr>
<td>An, Yu-Kyung</td>
</tr>
<tr>
<td>Attarian, Rodgoun</td>
</tr>
<tr>
<td>Avunje, Satheesha</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Bae, Jin-Woo</td>
</tr>
<tr>
<td>Bae, Joon-Yong</td>
</tr>
<tr>
<td>Bae, Jung Eun</td>
</tr>
<tr>
<td>Bae, Kyung Sook</td>
</tr>
<tr>
<td>Bae, Seung Seob</td>
</tr>
<tr>
<td>Baek, Kiwoon</td>
</tr>
<tr>
<td>Baek, Kyunghwa</td>
</tr>
<tr>
<td>Baek, Songyee</td>
</tr>
<tr>
<td>Bahk, Jang-Jun</td>
</tr>
<tr>
<td>Bahn, Yong-Sun</td>
</tr>
<tr>
<td>Bai, Wei</td>
</tr>
<tr>
<td>Baik, Keun Sik</td>
</tr>
<tr>
<td>Baik, Sang Ho</td>
</tr>
<tr>
<td>Baik, Seung Chul</td>
</tr>
<tr>
<td>Bang, Iel Soo</td>
</tr>
<tr>
<td>Bang, Junho</td>
</tr>
<tr>
<td>Bang, Soohyun</td>
</tr>
<tr>
<td>Bang, Yoonsun</td>
</tr>
<tr>
<td>Bearson, Bradley L.</td>
</tr>
<tr>
<td>Beauchene, Nicole</td>
</tr>
<tr>
<td>Belykh, Olga I.</td>
</tr>
<tr>
<td>Benno, Yoshimi</td>
</tr>
</tbody>
</table>
Cho, Kyung Soon D043, D056, D064 Choi, Ji Hae D035
Cho, Myung Je H005, H036 Choi, Jin Myung E012, E016
Cho, Sang Nae D006, D008 Choi, Jong-Soon G021
Cho, Seonghyeon A029 Choi, Jong Hyun S9-3, C010
Cho, Suhyung YS2-3, YS2-8 Choi, Jun Su C020
Cho, Sun Ja B004 Choi, Jungil G038
Cho, Sunja B003 Choi, Ki Young YS1-9
Cho, Won Kyong B019 Choi, Kyung-Min D004
Cho, Yeon-Dong H012 Choi, Mi-Hwa H030
Cho, Yeon Dong H009 Choi, Mi-Rae D004
Cho, Yeondong H006, H007, H008, H011 Choi, Min-young B068
Cho, Yong-Joon GS-1, TW1-1 Choi, Moon-Jung H017
Cho, Yong Gon H005 Choi, Moon-Seop B015, B016
Cho, Yoo-Bok TW1-5, YS1-2, YS2-8, YS2-9 Choi, Nag-Jin S6-4
Cho, Yoobok YS2-3 Choi, Sang-Yoon D020
Cho, Youjung F003 Choi, Seon-Bin B035
Cho, Young-Cheol B036, B037 Choi, SeongYeol C003
Choe, Hanna S3-1 Choi, Si-Sun S9-4, G024
Choi, Ae Ran GS-7, C013 Choi, Sol GS-2, G002, G003, G006
Choi, Ahyoung B041 Choi, Song-Lee H021
Choi, Bong-Kyu D050 Choi, Won Suk C021
Choi, Changsun S11-4 Choi, Yong Jun G007
Choi, Chi-Won B066 Choi, Young-Cheol A011, B064
Choi, Chiwon D059 Choi, Yu-Kyung F002
Choi, Chul Hee D032 Choi, Hyun E S2-5, G034
Choi, Dong Hee B009 Chun, Gie-Taek G024
Choi, Eun Ha C017, C018, C019, C023 Chun, Se-Chul C025
Choi, Hye Jin S8-4 Chung, Chang Ho B011
Choi, Hyeon Jin D060 Chung, Hyen-Mi B069, B070, H019
Choi, Hyo-Jung H012 Chung, Woo-Hyun S14-4
Choi, Hyo Won C018 Chung, Young-Hwa D001
Choi, Hyojung H007 Chung, Young Ho B066
Choi, Hyoung-An H013 Chung, Yu-Sook GS-10
Choi, Hyoung Tae F010 Craig, Nancy L. YS1-9
Choi, Hyung-Kyoon YS2-9 Croll, Daniel PL1
Choi, Hyung Tae F009 Czerkinsky, Cecil D045
Choi, In-Geol S5-2, E006
Choi, Jaehyuk S7-1
Choi, Jaeyoo H006
Choi, Jaeyoung S7-1 Ding, Chen S7-3
Choi, Ji-young A011, B064 Do, Eunsoo PL1, D003
Donohue, Timothy J. PL2 Ha, Sung-Chul S10-1
Dwidar, Mohammed S2-4 Ham, Mi-Seon B029
Ekpeghere, Kalu Ibe B042 Hahn, Yoonsoo GS-11
Eom, Soo Hyun S10-3 Ham, Jinsol C004
Epstein, Slava S. YS2-6 Ham, Mi-Hyoun H013
Floyd, Anna F013 Han, Dong-Min F011
Fong, Jonathan J. B047 Han, Hyo Mi D009
Fong, Jonathan Julio A023 Han, Jaemin YS2-6
Fujiwara, Yoshihiro B044 Han, Ji-Hye A020, B049
Garcia-Sastre, Adolfo YS1-1 Han, Kyudong D032
Geddes, Jennifer PL1 Han, Myung-Sae B064
Ghim, Sa-Youl A015, B023, B024, Han, Sang-Hoon B068
 B025, B029, C012 Han, Sang-Soo G032
Gim, Geun Ho B034, G027 Han, Sang Eun D047
Gladkikh, Anna YS2-6 Han, Sangwon C008
Go, Eun Cho A024 Ha, Seung Hyun D045, D049, D051
Go, Eunso C004 Han, So-Young G031
Go, Junhyeok D021 Han, Song-Ih A027
Go, Woon Young D047 Han, Soonyoung C016, H005
Gong, Gyeongtaek A017 Han, Sung Ok G022
Gunawardhana, Kuda Singappulige D034 Han, Sunghun B074
 Niluka Darshani He, Song-Tao S3-4
 B065 Heijne, Gunnar von PL4
 H006, H007, H011, H012 Heo, Aram S13-1, B010
 Guo, Ruoyu G033 Heo, Ju Hee S6-4, G012, G015, G016, G017,
 B065 Heo, Jun G018, G029, G030, G035
 Gururani, Mayank Anand YS1-1, C028, C031
 C025 Heo, Yoonki H006, H007, H008, H009, H011, H012
 Gwon, Yongdae Her, Jihee A033
 H006, H007, H011, H012 Hitman, Joseph F013
 Ha, Kyoochul Ho, Phuong Thao S1-4
 B067 Holmren, Jan D045
 Ha, Nam Joo Hong, Hyun G033
 C001, C002 Hong, Hyunjin H035
 Ha, Shin-Young Hong, Minsun S8-2
 B042 Hong, Seong-Joo YS2-9
 Ha, Subin Hong, Soon Gyu S1-4, S3-1, A025, B001, B007,
 S10-3 B008, B018, B040
 Hong, Young June C023
<table>
<thead>
<tr>
<th>Author Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong, Younhee</td>
</tr>
<tr>
<td>Hu, Guanggan</td>
</tr>
<tr>
<td>Huh, Aram</td>
</tr>
<tr>
<td>Huh, Won-Ki</td>
</tr>
<tr>
<td>Hur, Hor-Gil</td>
</tr>
<tr>
<td>Hur, Jae-Seoun</td>
</tr>
<tr>
<td>Hur, Sung Bum</td>
</tr>
<tr>
<td>Hurh, Byung-Serk</td>
</tr>
<tr>
<td>Hwang, Cheol-Sang</td>
</tr>
<tr>
<td>Hwang, Chung Yeon</td>
</tr>
<tr>
<td>Hwang, Dongju</td>
</tr>
<tr>
<td>Hwang, Hyun Sook</td>
</tr>
<tr>
<td>Hwang, Inyeong</td>
</tr>
<tr>
<td>Hwang, Kyuin</td>
</tr>
<tr>
<td>Hwang, Min-Woong</td>
</tr>
<tr>
<td>Hwang, Su Jeong</td>
</tr>
<tr>
<td>Hwang, Ye-Ji</td>
</tr>
<tr>
<td>Hyeon, Jeong Eun</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Im, Gwang Hyeon</td>
</tr>
<tr>
<td>Im, Hansol</td>
</tr>
<tr>
<td>Im, Mihye</td>
</tr>
<tr>
<td>Im, Nu-Ri</td>
</tr>
<tr>
<td>Im, Seonghun</td>
</tr>
<tr>
<td>Im, Sin-Hyeg</td>
</tr>
<tr>
<td>Im, Young Jun</td>
</tr>
<tr>
<td>Imam, Saheed</td>
</tr>
<tr>
<td>Ira, Grzegorz</td>
</tr>
<tr>
<td>Ishii, Satoshi</td>
</tr>
<tr>
<td>Islam, Md. Rashedul</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Jeong, Sun Wook F014 Jung, Mun-Gu S4-1
Jeong, Yujin TW1-6 Jung, Myung-Hwa D017, H004
Jheong, Weon Hwa B069, B070, H019 Jung, Paul Eunil A023
Ji, Sang Hye C025 Jung, Soo-Jin E002
Jiang, Ping S4-2 Jung, Suk-Yul D041, D042
Jin, Hyein B074 Jung, Sung-Ju D017, D030, D031, H004
Jin, Hyun Mi B031 Jung, Sung-jun S14-3
Jin, Jong-Sik A001 Jung, Taeck-Kyung B021
Jin, Mi Ra B011 Jung, Won Hee PL1, D003
Jo, A-Ra H020 Jung, Woo Yong A038
Jo, Eojin H030 Jung, Yong-Gyun G038
Jo, Eun-Hye B068 Jung, You-Jung A025, B001
Jo, Jin Chul C007 Jung, Young-Jung D050
Jo, Seung-Hwa S6-4 Jung, Young-Sang TW2-1
Jo, Yeonhwa B019
Jo, Young-Hoon B020
Joh, Kiseong A018, A019
Joo, In-Sun S11-1 Kang, Hyung-Yeel B054, B057, B066
Joo, Sunghae S1-3 Kang, Beom Sik S10-1
Joung, Seung-Hyun S3-2 Kang, Chang Hyun S7-1
Joung, Yochan YS2-6, A018, A019, A020, B027, B049 Kang, Dea Hee G022
Kahng, Hyung-Yeel B054, B057, B066
Kang, Beom Sik S10-1
Kang, Chang Hyun S7-1
Kang, Dea Hee G022
Kang, Heeyoung A018, A019
Kang, Hae-Chang C013 Kang, Jeong Woo YS2-1, G039
Kang, Hae Gwang B034, G028 Kang, Joo Won A022
Kang, Jae Sung B018 Kang, Ju Beom B038
Kang, Jaejoon S13-1, YS2-7 Kang, Min-Soo H017
Kang, Ji Hye C011 Kang, Min C014
Kang, Ji Young S1-2, GS-11, A021, A038, B017, B039 Kang, Min Ho C018, C019, C023
Kang, Jong Hyun F014 Kang, Pil-don A011
Kang, Kwang-Hwan B013 Kang, Sang Rim D044
Kang, Kwang-Woo F006, F013 Kang, Seo-chan S7-1
Kang, Kyungyoung S7-1 Kang, Seok-Seong D045, D049
Kang, Lee Hyun H016 Kang, Sung-min E013
Kang, Man-Young B002, B035
<table>
<thead>
<tr>
<th>Author Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kang, Sung Gyun</td>
</tr>
<tr>
<td>Kang, Tae-Hwa</td>
</tr>
<tr>
<td>Kang, Taejoon</td>
</tr>
<tr>
<td>Kang, Won Hwa</td>
</tr>
<tr>
<td>Kang, Woo Kyu</td>
</tr>
<tr>
<td>Kaowinn, Sirichart</td>
</tr>
<tr>
<td>Ke, Ailong</td>
</tr>
<tr>
<td>Ki, Jang-Seu</td>
</tr>
<tr>
<td>Kikuchi, Masahiro</td>
</tr>
<tr>
<td>Kiley, Patricia</td>
</tr>
<tr>
<td>Kim, Ah Ruem</td>
</tr>
<tr>
<td>Kim, Bong-Soo</td>
</tr>
<tr>
<td>Kim, Bongsso</td>
</tr>
<tr>
<td>Kim, Byoung-Chan</td>
</tr>
<tr>
<td>Kim, Byoung-Soo</td>
</tr>
<tr>
<td>Kim, Byung-Chun</td>
</tr>
<tr>
<td>Kim, Byung-Yong</td>
</tr>
<tr>
<td>Kim, Byung Kwon</td>
</tr>
<tr>
<td>Kim, Chang-Jin</td>
</tr>
<tr>
<td>Kim, Changmu</td>
</tr>
<tr>
<td>Kim, Chunsik</td>
</tr>
<tr>
<td>Kim, Da Jeong</td>
</tr>
<tr>
<td>Kim, Dae-Hoo</td>
</tr>
<tr>
<td>Kim, Dae-Wi</td>
</tr>
<tr>
<td>Kim, Dae In</td>
</tr>
<tr>
<td>Kim, Daniel</td>
</tr>
<tr>
<td>Kim, Dayeon</td>
</tr>
<tr>
<td>Kim, Dockyu</td>
</tr>
<tr>
<td>Kim, Dong-Hyun</td>
</tr>
<tr>
<td>Kim, Dong Ho</td>
</tr>
<tr>
<td>Kim, Dong In</td>
</tr>
<tr>
<td>Kim, Dong Wook</td>
</tr>
<tr>
<td>Kim, Donghwan</td>
</tr>
<tr>
<td>Kim, Eun Jin</td>
</tr>
<tr>
<td>Kim, Eun Keun</td>
</tr>
<tr>
<td>Kim, Eung-Soo</td>
</tr>
<tr>
<td>Kim, Geun-Joong</td>
</tr>
<tr>
<td>Kim, GoHeung</td>
</tr>
<tr>
<td>Kim, Gun-Hwa</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Kim, Ji Eun Hani</td>
</tr>
<tr>
<td>Kim, Ji Hye</td>
</tr>
<tr>
<td>Kim, Ji Hyun</td>
</tr>
<tr>
<td>Kim, Ji Ro</td>
</tr>
<tr>
<td>Kim, Jieun</td>
</tr>
<tr>
<td>Kim, Ji Hyo</td>
</tr>
<tr>
<td>Kim, Jihyun F.</td>
</tr>
<tr>
<td>Kim, Jin-Bae</td>
</tr>
<tr>
<td>Kim, Jin-Nam</td>
</tr>
<tr>
<td>Kim, Jin Il</td>
</tr>
<tr>
<td>Kim, Jiseon</td>
</tr>
<tr>
<td>Kim, Jisun</td>
</tr>
<tr>
<td>Kim, Ji-yeon</td>
</tr>
<tr>
<td>Kim, Jiyeun Kate</td>
</tr>
<tr>
<td>Kim, Jong-Geol</td>
</tr>
<tr>
<td>Kim, Jong-Oh</td>
</tr>
<tr>
<td>Kim, Jong-Tae</td>
</tr>
<tr>
<td>Kim, Jong Min</td>
</tr>
<tr>
<td>Kim, Ju</td>
</tr>
<tr>
<td>Kim, Ju Ok</td>
</tr>
<tr>
<td>Kim, Ju Ri</td>
</tr>
<tr>
<td>Kim, Juun</td>
</tr>
<tr>
<td>Kim, Kang-Chang</td>
</tr>
<tr>
<td>Kim, Kang-Chon</td>
</tr>
<tr>
<td>Kim, Keum Mi</td>
</tr>
<tr>
<td>Kim, Kunho</td>
</tr>
<tr>
<td>Kim, Kwangsoo</td>
</tr>
<tr>
<td>Kim, Kwang-Soo</td>
</tr>
<tr>
<td>Kim, Kwangky</td>
</tr>
<tr>
<td>Kim, Kyoungho</td>
</tr>
<tr>
<td>Kim, Kyoung Whun</td>
</tr>
<tr>
<td>Kim, kyoyoung</td>
</tr>
<tr>
<td>Kim, Kyung</td>
</tr>
<tr>
<td>Kim, Kyung Hyun</td>
</tr>
<tr>
<td>Kim, Kyung Min</td>
</tr>
<tr>
<td>Kim, Kyung Mo</td>
</tr>
<tr>
<td>Kim, Kyung Tae</td>
</tr>
<tr>
<td>Kim, Lee-Han</td>
</tr>
<tr>
<td>Kim, Mi-Gyong</td>
</tr>
<tr>
<td>Kim, Mi-hee</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Kim, Soo-A</td>
</tr>
<tr>
<td>Kim, Soo-Ji</td>
</tr>
<tr>
<td>Kim, Soo-Jin</td>
</tr>
<tr>
<td>Kim, Soo-Ki</td>
</tr>
<tr>
<td>Kim, Soo-Kyoung</td>
</tr>
<tr>
<td>Kim, Su-Jin</td>
</tr>
<tr>
<td>Kim, Su Ji</td>
</tr>
<tr>
<td>Kim, Su Ji</td>
</tr>
<tr>
<td>Kim, Su Young</td>
</tr>
<tr>
<td>Kim, Suhyun</td>
</tr>
<tr>
<td>Kim, Sun-Am</td>
</tr>
<tr>
<td>Kim, Sun-Tae</td>
</tr>
<tr>
<td>Kim, Sun Chang</td>
</tr>
<tr>
<td>Kim, Sung Uk</td>
</tr>
<tr>
<td>Kim, Sung Sik</td>
</tr>
<tr>
<td>Kim, Tae-Su</td>
</tr>
<tr>
<td>Kim, Tae Wan</td>
</tr>
<tr>
<td>Kim, Tae Woon</td>
</tr>
<tr>
<td>Kim, Tae Yong</td>
</tr>
<tr>
<td>Kim, TaeSoo</td>
</tr>
<tr>
<td>Kim, Wi-Sik</td>
</tr>
<tr>
<td>Kim, Won-Ho</td>
</tr>
<tr>
<td>Kim, Won-II</td>
</tr>
<tr>
<td>Kim, Won-Jung</td>
</tr>
<tr>
<td>Kim, Won Jun</td>
</tr>
<tr>
<td>Kim, Wonduck</td>
</tr>
<tr>
<td>Kim, Woo-Shin</td>
</tr>
<tr>
<td>Kim, Ye Ji</td>
</tr>
<tr>
<td>Kim, Yejin</td>
</tr>
<tr>
<td>Kim, Yeong-Gil</td>
</tr>
<tr>
<td>Kim, Yeon-Hee</td>
</tr>
<tr>
<td>Kim, Yeon Rok</td>
</tr>
<tr>
<td>Kim, Yeonbun</td>
</tr>
<tr>
<td>Kim, Yeong Hyeock</td>
</tr>
<tr>
<td>Kim, Yeonggeun</td>
</tr>
<tr>
<td>Kim, Yi-Seul</td>
</tr>
<tr>
<td>Kim, Yong-Hee</td>
</tr>
<tr>
<td>Kim, Yong-jin</td>
</tr>
<tr>
<td>Kim, Yong Jin</td>
</tr>
<tr>
<td>Kim, Yong Jun</td>
</tr>
<tr>
<td>Kim, Yongbong</td>
</tr>
</tbody>
</table>
Kwon, Kae Kyoung A002, A003, A004, A034, A035, B066, H015, H016 Lee, Eun-Gyeong F017
Kwon, Ki Sun F010 Lee, Eun-Ju YS2-8
Kwon, Miye B008 Lee, Eun-Yeong B026
Kwon, Oh-Sik G020 Lee, Eun Ji D064
Kwon, Ohsuk F016, F017, F018 Lee, Geon Joon C023
Kwon, Seomun S7-1 Lee, Geun-Hye A039
Kwon, Seung-Tak B022 Lee, Gibeak H014
Kwon, Soon-Kyeong B075, G036 Lee, Hae Lin D036
Kwon, Soon-Wo A006, A012, A013, A014, A028 Lee, Hakmi H035
Kwon, Sungmoon G026, G038 Lee, Han-Seung E016
Kwon, Taeyang A026 Lee, Han D036
Kwon, Ye Won D024, D025 Lee, Hee-Jung H007, H008, H009
Kwon, Yong Min B009, B013 Lee, Heon Ju S12-1, S12-4
Kwon, Yongdae H008 Lee, Hong Kum A025, B001
Kwon, Younghee D058 Lee, Hookeun YS2-9
Kye, Soo-Geong H017 Lee, Howon G026
Lee, Eun-Gyeong F017
Lee, Ahran D040 Lee, Hye Lin D036
Lee, Bheong-Uk B015 Lee, Hyo-Jin A035
Lee, Bo-Ram YS2-3, TW1-4 Lee, Hyo Jung GS-8, A005
Lee, Bo-Ram B069, B070, F008, H019 Lee, Hyun Joo F004
Lee, Bok Luel S13-4, D049 Lee, Hyun Sook YS2-5, GS-7, C013, G025,
Lee, Bong-Joo B067 Lee, Hye Soo H005
Lee, Byung II S10-2 Lee, Hyunji C015
Lee, Chan Hee D052, D053, D054 Lee, Hyunung D026
Lee, Chang-Ro E018 Lee, Ilseob YS1-1
Lee, Chang Ho YS2-4 Lee, In Ock E007
Lee, Choul-Gyun YS2-9 Lee, Inhyung E011
Lee, Dae-Hee G036 Lee, Jae-Bong A009
Lee, Dae-Young H013 Lee, Jae-Chan A036, A037
Lee, Dayoung S7-1 Lee, Jae-Hak B048
Lee, Do Kyung C001, C002, D052, D053, D054 Lee, Jae-Sung H009
Lee, Dong-Gi G021 Lee, Jae Eun H015, H016
Lee, Dong-Hun B048, B063 Lee, Jae Gyeong B034, G027
Lee, Dong-Keun B016 Lee, Jae Il S12-2, B062, D048
Lee, Dong-Woo E012, E015, E016, H002 Lee, Jae Min F005
Lee, Eun-Bin G034 Lee, Jae Myun D038
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee, Jamin</td>
<td>E008</td>
<td>Lee, Kwang Jick</td>
<td>YS2-1, G039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jang-Won</td>
<td>F013</td>
<td>Lee, Kyoung</td>
<td>B038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Je Bong</td>
<td>C021, C022</td>
<td>Lee, Kyoung Ah</td>
<td>H020, H021, H022, H023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Je Chul</td>
<td>D037</td>
<td>Lee, Kyu-Ho</td>
<td>YS2-2, G010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jee-Woo</td>
<td>H017</td>
<td>Lee, Kyung-Chang</td>
<td>E002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Ji-Hoon</td>
<td>B067</td>
<td>Lee, Kyung-Jo</td>
<td>GS-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Ji-Young</td>
<td>YS1-4, YS1-8</td>
<td>Lee, Man-Duck</td>
<td>B065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Ji Hee</td>
<td>A016, A024</td>
<td>Lee, Mi-Ae</td>
<td>YS2-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Ji Hyuk</td>
<td>C002</td>
<td>Lee, Mi-Jin</td>
<td>G023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Ji Min</td>
<td>B031</td>
<td>Lee, Mi-Kyung</td>
<td>S7-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jin-Won</td>
<td>GS-7</td>
<td>Lee, Mi-Nan</td>
<td>B061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jin-Woo</td>
<td>B048, B063</td>
<td>Lee, Min-Ah</td>
<td>B065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jin-Young</td>
<td>G033, H019</td>
<td>Lee, Minchul</td>
<td>G038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jong-Soo</td>
<td>B014</td>
<td>Lee, Minjung</td>
<td>D063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jong Suk</td>
<td>H014</td>
<td>Lee, Minyoung</td>
<td>H035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Joo Han</td>
<td>B039</td>
<td>Lee, Miok</td>
<td>D058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Joon-Hee</td>
<td>B061, D046</td>
<td>Lee, Mun Haeng</td>
<td>H020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Joon Gyu</td>
<td>D052, D053, D054</td>
<td>Lee, Sang-Hark</td>
<td>C017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Joong-Kook</td>
<td>D012</td>
<td>Lee, Sang-Jae</td>
<td>E012, E015, E016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Joung Min</td>
<td>G001</td>
<td>Lee, Sang-seob</td>
<td>A029, A030, A031, A032, A033,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Ju-Hoon</td>
<td>S15-3</td>
<td>Lee, Minchul</td>
<td>G038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jung Shin</td>
<td>E005</td>
<td>Lee, Sang Jun</td>
<td>E012, E015, E016, H002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jung-Sook</td>
<td>A001</td>
<td>Lee, Sang Yup</td>
<td>GS-2, GS-5, F001, G001,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jung Hwa</td>
<td>D037</td>
<td>Lee, Sang Seob</td>
<td>A029, A030, A031, A032, A033,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Jung Kwan</td>
<td>S7-2</td>
<td>Lee, Sanghyo</td>
<td>D014, E003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Kalam</td>
<td>A032</td>
<td>Lee, Sangmoo</td>
<td>YS1-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Kang Eun</td>
<td>F015</td>
<td>Lee, Se Hee</td>
<td>GS-11, A021, A038, B017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Kang Mu</td>
<td>D021, D057</td>
<td>Lee, Seok-Hyun</td>
<td>B064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Kang Hyun</td>
<td>A009</td>
<td>Lee, Seong-Wook</td>
<td>YS2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Kang Mu</td>
<td>D029</td>
<td>Lee, Seong Hyuk</td>
<td>GS-7, C013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Keeloon</td>
<td>GS-6</td>
<td>Lee, Seung-Won</td>
<td>S6-4, H018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Keun Chul</td>
<td>A001</td>
<td>Lee, Seung Hwan</td>
<td>G007, G009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Ki Penum</td>
<td>C006</td>
<td>Lee, Si Young</td>
<td>D018, D022, D023, D024, D025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Kitack</td>
<td>B075</td>
<td>Lee, Siwon</td>
<td>B069, B070, H019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Kiyoung</td>
<td>A026</td>
<td>Lee, Sooin</td>
<td>TW2-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Kon Ho</td>
<td>H036</td>
<td>Lee, Su-in</td>
<td>GS-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Kui Jae</td>
<td>B055, B056</td>
<td>Lee, Sung Haeng</td>
<td>E012, E015, E016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Kwang Jun</td>
<td>C016, H005</td>
<td>Lee, Taeho</td>
<td>B005, B006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, Kwang Jae</td>
<td>C014</td>
<td>Lee, Won Kil</td>
<td>H005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lee, Woo Kon H005, H036 Min, Jung-Joon G033
Lee, Yeol Gyun D059 Min, Kyung Bae D029
Lee, Yeonhee H035 Min, Sa-Young G034
Lee, Yerim A036 Min, Sang Kee D056
Lee, Yong-Hwan S7-1, H027 Min, Ui-Gi B002
Lee, Yong-Jik E012, E015, E016 Mitchell, Robert J. S2-4, GS-12, C003
Lee, Yoo Chul H005 Moon, Ji-Young A006, A014
Lee, Yoo Kyung S1-2, B039 Moon, Saet-Byeol A031
Lee, Yookyung A039 Moon, Se Hoon D052, D053, D054
Lee, Young Ok B004 Moon, Sung-Hyun S6-4
Lee, Youngmi B045 Moon, Yeon Gyu S12-4
Lee, Yung Mi A025, B001 Moon, Yuseok S8-4
Leem, Sun Hee B066 Muhandiram, Upeksha B025, B029
Lemmer-Christenson, Kimberly C. PL2 Müller, Volker YS2-5, E006
Leng, Gang S14-1 Mun, Hye Yeon A041, A042
Li, Hong-Wei S3-4 Myers, Kevin S2-3
Li, Wen-Jun S3-4 Myoung, Kil-Sun C026
Li, Xihui B061, D046 Myung, Heejoon H029
Li, Ying YS1-9
Li, Yun S8-3
Lim, Ho-Dong G031, H013
Lim, Hyoun Soo B007 Na, Dokyun G011
Lim, Jae Kyu YS2-5, C013 Na, In Young YS1-8, D061
Lim, Jee-min A040 Na, Jeong Geol G025
Lim, Joo-Yeon F002 Na, Young Gil C022
Lim, Jun-Muk A013, A014 Na, Young Ho C019
Lim, Mi Ri A024 Na, Yu Mi C020
Lim, Sang Yong YS1-3, F014 Nah, Hee-Ju F008
Lim, Sangyong GS-9, D035 Nah, Ji-Hye S9-4
Lim, Si-Kyu H002 Nakamoto, Nobuhiro S8-3
Lim, Young Woon A023, B047 Nakayama, Hideki S2-2
Lim, Younghoon C004 Nam, Doug S2-4
Lim, Youngsung C004 Nam, Hyo-Song C005
Lim, Yun Kong H030 Nam, Ji-Hyun B073
Lo, Naysim A021 Nam, Ki-Woong B026, H020
Lu, Ling S4-2 Nam, Ki Hyun D028
Luong, Truc Thanh D014 Nam, Sung-Hee B064
Mathur Natarajan, Kathiravan G027, G028 Nam, Sung Jin S1-2
Nguyen, Cuong Thach B039
Nguyen, Phuong-Chi D015
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nguyen, Thi Thuong Thuong</td>
<td>B059</td>
<td>Paik, Soon-Young</td>
<td>H028</td>
</tr>
<tr>
<td>Nguyen, Van Khanh</td>
<td>B006</td>
<td>Pandit, Santosh</td>
<td>C009</td>
</tr>
<tr>
<td>Nguyen, Vankhanh</td>
<td>B005</td>
<td>Pang, Ignatius</td>
<td>S4-4</td>
</tr>
<tr>
<td>Nikapitiya, Chamilani</td>
<td>D017, H004</td>
<td>Pankaji, Attri</td>
<td>C023</td>
</tr>
<tr>
<td>Nishizawa, Toyohiko</td>
<td>D026</td>
<td>Parfenova, Kamonporn</td>
<td>C017, C023</td>
</tr>
<tr>
<td>Noguera, Daniel R.</td>
<td>PL2</td>
<td>Park, Byung-Woong</td>
<td>B023, B029</td>
</tr>
<tr>
<td>Noh, Hyun-Ju</td>
<td>B040</td>
<td>Park, Dae-Hoon</td>
<td>C017, C018</td>
</tr>
<tr>
<td>Noh, Hyunju</td>
<td>B007</td>
<td>Park, Dan</td>
<td>S2-3</td>
</tr>
<tr>
<td>Noh, Na Gyeong</td>
<td>D048</td>
<td>Park, Don-Hee</td>
<td>GS-9</td>
</tr>
<tr>
<td>Oh, Boung-Jun</td>
<td>C005</td>
<td>Park, Dong-Jin</td>
<td>A040, C030</td>
</tr>
<tr>
<td>Oh, Doo-Byoung</td>
<td>F016, F017, F018</td>
<td>Park, Dong Ju</td>
<td>D056</td>
</tr>
<tr>
<td>Oh, Gyeongsok</td>
<td>E010</td>
<td>Park, Doo-Sang</td>
<td>A007, A009</td>
</tr>
<tr>
<td>Oh, Hee-Mock</td>
<td>S3-2</td>
<td>Park, Edmond Changkyun</td>
<td>D059</td>
</tr>
<tr>
<td>Oh, Hye-Min</td>
<td>H021</td>
<td>Park, Eunhee</td>
<td>D058</td>
</tr>
<tr>
<td>Oh, Hyeon Hwa</td>
<td>S6-3</td>
<td>Park, Eunji</td>
<td>S1-4</td>
</tr>
<tr>
<td>Oh, Hyun-Woo</td>
<td>A009</td>
<td>Park, Gyungsoon</td>
<td>C017, C018, C019, C023</td>
</tr>
<tr>
<td>Oh, Hyun Woo</td>
<td>A007</td>
<td>Park, Ha-Young</td>
<td>D046</td>
</tr>
<tr>
<td>Oh, Il-Hoan</td>
<td>H001</td>
<td>Park, Ha Ju</td>
<td>GS-4</td>
</tr>
<tr>
<td>Oh, Jae Young</td>
<td>C014</td>
<td>Park, Hae-Chul</td>
<td>YS2-1</td>
</tr>
<tr>
<td>Oh, Jeongsu</td>
<td>S3-1</td>
<td>Park, Hae Chul</td>
<td>G039</td>
</tr>
<tr>
<td>Oh, Ji Hye</td>
<td>A004, A034</td>
<td>Park, Hanwoon</td>
<td>E013</td>
</tr>
<tr>
<td>Oh, Ju-Eon</td>
<td>F012</td>
<td>Park, Hee-Moon</td>
<td>F002, F005</td>
</tr>
<tr>
<td>Oh, Kye-Heon</td>
<td>B015, B016</td>
<td>Park, Heui Dong</td>
<td>C020, C021, C022</td>
</tr>
<tr>
<td>Oh, Kyoung-Hee</td>
<td>B036, B037</td>
<td>Park, Hyeran</td>
<td>D032</td>
</tr>
<tr>
<td>Oh, Man Hwan</td>
<td>D032</td>
<td>Park, Hyeyoung</td>
<td>D058</td>
</tr>
<tr>
<td>Oh, Myung-Hwan</td>
<td>H013</td>
<td>Park, In-Cheol</td>
<td>B058</td>
</tr>
<tr>
<td>Oh, Myung-Joo</td>
<td>D017, D026, D027, D033, H004</td>
<td>Park, In-Soon</td>
<td>A001</td>
</tr>
<tr>
<td>Oh, Sangnam</td>
<td>S6-1</td>
<td>Park, In Sun</td>
<td>H010</td>
</tr>
<tr>
<td>Oh, Sejong</td>
<td>C032, C033</td>
<td>Park, Jae Eun</td>
<td>C001, C002</td>
</tr>
<tr>
<td>Oh, Seung-Yoon</td>
<td>A023</td>
<td>Park, Jin-Sook</td>
<td>A008, A010</td>
</tr>
<tr>
<td>Oh, So-Yong</td>
<td>H020</td>
<td>Park, Jiyoung</td>
<td>C015</td>
</tr>
<tr>
<td>Oh, Soh-Young</td>
<td>B026</td>
<td>Park, Joon-Seong</td>
<td>C005</td>
</tr>
<tr>
<td>Oh, Yo-Kyoung</td>
<td>H009</td>
<td>Park, Jungchan</td>
<td>F012</td>
</tr>
<tr>
<td>Oh, You-Kwan</td>
<td>B003</td>
<td>Park, Juyeon</td>
<td>H014</td>
</tr>
<tr>
<td>Oh, Young Taek</td>
<td>D057</td>
<td>Park, Ki-Ho</td>
<td>C012</td>
</tr>
<tr>
<td>Oh, Yu-Kyoung</td>
<td>H008</td>
<td>Park, Ki-Hong</td>
<td>F011</td>
</tr>
<tr>
<td>Oliveira, Debora</td>
<td>D003</td>
<td>Park, Ki-Hoon</td>
<td>H006, H007, H008, H012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Park, Ki Bum</td>
<td>F005</td>
</tr>
<tr>
<td>Author Name</td>
<td>Index Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Ki Duk</td>
<td>F007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Kwan-Ho</td>
<td>A011, B064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Man-Seong</td>
<td>YS1-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Mee Sook</td>
<td>YS1-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Mi Ri</td>
<td>E019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Miri</td>
<td>S6-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Na Hyun</td>
<td>E009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Nyun-Ho</td>
<td>G013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Ok-Jin</td>
<td>D049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Sang-Sang</td>
<td>E003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Sehee</td>
<td>YS1-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Shinae</td>
<td>E005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Si Jae</td>
<td>G007, G009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, So Hyun</td>
<td>D056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Soo-Je</td>
<td>B014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Sook-Young</td>
<td>S7-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Soon-Jung</td>
<td>YS2-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Soon-Nang</td>
<td>H030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Soyoung</td>
<td>E018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Su Jeong</td>
<td>B069, B070, H019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Sun-Ha</td>
<td>YS1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Sun ok</td>
<td>G024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Sung-Jin</td>
<td>C012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Sunhee</td>
<td>D058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Wan-je</td>
<td>S12-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Won-Ji</td>
<td>G032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Woojun</td>
<td>S13-1, YS2-7, GS-3, B010, B012, C008, D007, F003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Yon Koung</td>
<td>D058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Yong Woo</td>
<td>S13-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Yongjin</td>
<td>D021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Yoonhee</td>
<td>E014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Yoonkyung</td>
<td>D009, D010, D012, D013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Young-Ha</td>
<td>YS1-5, E017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Young-Seuk</td>
<td>S3-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Young Kyoung</td>
<td>YS1-4, YS1-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park, Younghun</td>
<td>B005, B006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patra, Ajit Kumar</td>
<td>B044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pengkit, Anchalee</td>
<td>C018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollack, Lois</td>
<td>D028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poo, Haryoung</td>
<td>H006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portnoy, Vasiliy</td>
<td>S5-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priscu, John C</td>
<td>B008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyo, Suhkneung</td>
<td>D014, D015, D019, D020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qian, Pei-Yuan</td>
<td>PL3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qiao, Wei-Ran</td>
<td>S4-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rahman, Mohammad Mizanur</td>
<td>C027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reithinger, Johannes H.</td>
<td>S14-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhee, Dong-Kwon</td>
<td>D014, D015, D019, D020, E003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhee, Kwang-Ho</td>
<td>H036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhee, Moon-Soo</td>
<td>A039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhee, Sung-Keun</td>
<td>B002, B035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhee, Young Ha</td>
<td>E004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roe, Jung-Hye</td>
<td>YS1-2, YS2-8, E001, E002, E010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roh, Jae Hee</td>
<td>C014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roh, Seong Woon</td>
<td>S13-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rojviriya, Catleya</td>
<td>S10-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryu, Eun Hyun</td>
<td>D062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryu, Jae-Gee</td>
<td>H020, H021, H022, H023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryu, Je-Won</td>
<td>D030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryu, Ki Hyun</td>
<td>H032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryu, Myeong Seon</td>
<td>C028, C029, C031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryu, Song Hee</td>
<td>H020, H021, H022, H023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryu, Sunhyo</td>
<td>D013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryu, Taehoon</td>
<td>G026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryu, Young Bae</td>
<td>D031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saikia, Sanjay</td>
<td>PL1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarnovsky, Robert</td>
<td>YS1-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seo, Eun-Young</td>
<td>YS2-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seo, Eun Young</td>
<td>B027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seo, Ho Seong</td>
<td>D035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seo, Hyun-Seok</td>
<td>A002, A003, A004, A034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Code(s)</td>
<td>Name</td>
<td>Code(s)</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Seo, Jae Ku</td>
<td>C002</td>
<td>Song, Jae Jun</td>
<td>S9-3, C010</td>
</tr>
<tr>
<td>Seo, Jeong-Min</td>
<td>H001</td>
<td>Song, Jaekyeong</td>
<td>A012, B045, B068</td>
</tr>
<tr>
<td>Seo, Taegun</td>
<td>D002, D005</td>
<td>Song, Ji-soo</td>
<td>G024</td>
</tr>
<tr>
<td>Seo, Youngdae</td>
<td>E002</td>
<td>Song, Ki-Joon</td>
<td>H031</td>
</tr>
<tr>
<td>Seok, Yeong-Jae</td>
<td>E017, E018</td>
<td>Song, Kiwon</td>
<td>S14-1</td>
</tr>
<tr>
<td>Seon, Seung Han</td>
<td>D020</td>
<td>Song, Kwang-Yong</td>
<td>H018</td>
</tr>
<tr>
<td>Seong, Chi Nam</td>
<td>A016, A022, A024</td>
<td>Song, Kyung-Sik</td>
<td>D063</td>
</tr>
<tr>
<td>Shimamoto, Nobuo</td>
<td>S2-2</td>
<td>Song, Min-Hee</td>
<td>F013</td>
</tr>
<tr>
<td>Shin, Bora</td>
<td>D007</td>
<td>Song, Minyu</td>
<td>C032, C033</td>
</tr>
<tr>
<td>Shin, Dong Burn</td>
<td>C018</td>
<td>Song, Myeong Mi</td>
<td>B038</td>
</tr>
<tr>
<td>Shin, Eenju</td>
<td>H035</td>
<td>Song, Peter I</td>
<td>D013</td>
</tr>
<tr>
<td>Shin, Gee-Wook</td>
<td>S6-4</td>
<td>Song, Sooyeon</td>
<td>C032, C033</td>
</tr>
<tr>
<td>Shin, Hyonseok</td>
<td>YS2-9</td>
<td>Song, Wan Seok</td>
<td>S8-2, D011</td>
</tr>
<tr>
<td>Shin, Ji-Hye</td>
<td>B063</td>
<td>Song, Xinjie</td>
<td>H014</td>
</tr>
<tr>
<td>Shin, Jung-Ho</td>
<td>YS1-2</td>
<td>Song, Yong Bhum</td>
<td>TW2-3</td>
</tr>
<tr>
<td>Shin, Juyoun</td>
<td>YS1-6</td>
<td>Soper, Steven A.</td>
<td>GS-12</td>
</tr>
<tr>
<td>Shin, Kwang-Soo</td>
<td>S4-1</td>
<td>Spencer, Janelle M.</td>
<td>YS1-9</td>
</tr>
<tr>
<td>Shin, Kyoungsoon</td>
<td>B075</td>
<td>Suh, Se Won</td>
<td>S10-2</td>
</tr>
<tr>
<td>Shin, Mee-Young</td>
<td>YS2-2</td>
<td>Suk, Heejun</td>
<td>B067</td>
</tr>
<tr>
<td>Shin, Miho</td>
<td>S7-1</td>
<td>Sul, Woo Jun</td>
<td>B042</td>
</tr>
<tr>
<td>Shin, Na-Ri</td>
<td>C016</td>
<td>Sumayo, Marilyn</td>
<td>B024</td>
</tr>
<tr>
<td>Shin, Sang-Yeop</td>
<td>D055</td>
<td>Sundararaman, Aravind</td>
<td>B053</td>
</tr>
<tr>
<td>Shin, Sang Kyu</td>
<td>G022</td>
<td>Sung, Dae II</td>
<td>G019</td>
</tr>
<tr>
<td>Shin, Seyeon</td>
<td>B054, B057</td>
<td>Sung, Gi-Ho</td>
<td>D063</td>
</tr>
<tr>
<td>Shin, So-Ra</td>
<td>G033</td>
<td>Sung, Gyunghye</td>
<td>D058</td>
</tr>
<tr>
<td>Shin, Sun-Mi</td>
<td>E012, E016</td>
<td>Sung, Jung-Suk</td>
<td>B010</td>
</tr>
<tr>
<td>Shin, Yong-Gil</td>
<td>H019</td>
<td>Sung, Min-Kyung</td>
<td>TW2-3</td>
</tr>
<tr>
<td>Shin, Yungoh</td>
<td>C004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shukla, Shruti</td>
<td>H014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim, Geon-Bo</td>
<td>C017, C023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim, Jae-Hun</td>
<td>C026</td>
<td>Thach, Trung Thanh</td>
<td>D014</td>
</tr>
<tr>
<td>So, Byung Jae</td>
<td>YS2-1, G039</td>
<td>Thangaraj, Pommani</td>
<td>B065</td>
</tr>
<tr>
<td>Son, Jin-Soo</td>
<td>B029</td>
<td>Thangavelu, Boopathi</td>
<td>B065</td>
</tr>
<tr>
<td>Son, Min</td>
<td>G020</td>
<td>Thawng, Cung Nawl</td>
<td>GS-1</td>
</tr>
<tr>
<td>Son, Myoung Ki</td>
<td>D062</td>
<td>Tong, Jusen</td>
<td>S10-3</td>
</tr>
<tr>
<td>Son, Rak Ho</td>
<td>C011</td>
<td>Tong, Liang</td>
<td>S10-4</td>
</tr>
<tr>
<td>Song, Bong Keun</td>
<td>G009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Song, Chan Woo</td>
<td>GS-5, F001, G001, G002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Song, Hee Jong</td>
<td>C014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Song, Hong-Gyu</td>
<td>B020, B021, B022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Song, Jae-Young</td>
<td>H036</td>
<td>Uhm, Han Sup</td>
<td>C017, C018, C019, C023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uhm, Tai-Boong</td>
<td>S6-3, C028, C029, C031</td>
</tr>
<tr>
<td>Author Name</td>
<td>Page Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Um, Youngsoon</td>
<td>A017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unno, Tatsuya</td>
<td>B067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valiga, Mary E.</td>
<td>S8-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venkateswer Reddy, Motakatla</td>
<td>B030, B055, B056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinjé, Jan</td>
<td>S11-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vrijenhoek, Robert C.</td>
<td>S1-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wei, Hua</td>
<td>S4-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wei, Wen-Fan</td>
<td>S4-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weon, Hang-Yeon</td>
<td>A006, A012, A013, A014, A028, B045, B058, B068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whang, Kyung-Sook</td>
<td>A027, A035, A036, A037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilkins, Marc</td>
<td>S4-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Won, Yong-Jin</td>
<td>S1-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woo, Jung-Hee</td>
<td>G013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woo, Min-Woo</td>
<td>S9-4, F008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woo, Tae Young</td>
<td>F010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woo, Yeon I</td>
<td>YS2-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Dong-Hoon</td>
<td>F013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Eun-ju</td>
<td>D063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Ha-Hymn</td>
<td>D050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Hae-Min</td>
<td>B016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Han-Kook</td>
<td>D031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Hee-Jong</td>
<td>G012, G015, G016, G017, G018, G029, G030, G035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Heebum</td>
<td>D016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Heechun</td>
<td>B005, B006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Huiseon</td>
<td>S10-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Jae Seung</td>
<td>D045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Jihyun</td>
<td>D049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Joshua SungWoo</td>
<td>G037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Jung Eun</td>
<td>G007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Seung-Jo</td>
<td>B041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Sung-Hyun</td>
<td>A002, A003, A004, A034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Tae-Jun</td>
<td>C013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Yu Jin</td>
<td>YS2-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yasuo, Tarumoto</td>
<td>S12-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeom, Doo-Hwan</td>
<td>B061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeom, Se Joung</td>
<td>H024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yong, Dong Eun</td>
<td>D038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yong, Seung Cheon</td>
<td>B027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoo, Jae-hong</td>
<td>B058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoo, Jeongheon</td>
<td>G038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoo, Ji-sun</td>
<td>E001, E010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoo, Seung Min</td>
<td>TW2-4, G010, G011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoo, Ye Eun</td>
<td>F009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Deok-Hoon</td>
<td>B026, H020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Hae Hoon</td>
<td>C011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Ji Soo</td>
<td>G022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Jin Ho</td>
<td>F004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Jung-Hoon</td>
<td>H026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Mi Young</td>
<td>YS1-7, D039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Mira</td>
<td>B003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Moon Young</td>
<td>YS2-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Sang Sun</td>
<td>S13-3, YS1-7, GS-6, D021, D029, D036, D038, D039, D057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Sung-il</td>
<td>S8-2, D011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Yeo Kyoung</td>
<td>H027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Yohan</td>
<td>H020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Young-Gun</td>
<td>B050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoon, Yujin</td>
<td>YS1-7, D039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>You, Ju-Yeon</td>
<td>H017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>You, Min Suck</td>
<td>D018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>You, Sung-Hwan</td>
<td>C024, G032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Youn, Hwan</td>
<td>C013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Youn, Jin Chul</td>
<td>D048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yu, Kang Yeol</td>
<td>B011, H010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yu, Nan Hee</td>
<td>B018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yu, Won Bae</td>
<td>B065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yun, Cheol-Heui</td>
<td>D045, D049, D051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yun, Chul-Ho</td>
<td>YS1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yun, Hyungdon</td>
<td>S9-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yun, Ji-Hyun</td>
<td>S13-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yun, Sung Ho</td>
<td>B009, B066, D059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yun, Uk</td>
<td>B067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zengler, Karsten</td>
<td>S5-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, Shi-Zhu</td>
<td>S4-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, Yong-Guang</td>
<td>S3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhi, Xiao-Yang</td>
<td>S3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhong, Guo-Wei</td>
<td>S4-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zo, Young-Gun</td>
<td>B071, B072, B073, B074</td>
<td></td>
<td></td>
</tr>
<tr>
<td>강민철</td>
<td>HS-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>강병준</td>
<td>HS-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>강용원</td>
<td>HS-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>강준우</td>
<td>HS-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>고기범</td>
<td>HS-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>고승우</td>
<td>HS-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>공윤성</td>
<td>HS-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>곽근진</td>
<td>HS-28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김경린</td>
<td>HS-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김나영</td>
<td>HS-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김대희</td>
<td>HS-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김민우</td>
<td>HS-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김민정</td>
<td>HS-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김현희</td>
<td>HS-31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김재용</td>
<td>HS-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김재현</td>
<td>HS-31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김찬우</td>
<td>HS-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김채정</td>
<td>HS-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김태완</td>
<td>HS-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>김해성</td>
<td>HS-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>노정석</td>
<td>HS-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>박나현</td>
<td>HS-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>박수진</td>
<td>HS-21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>박중용</td>
<td>HS-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>박지연</td>
<td>HS-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>방민정</td>
<td>HS-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>서보인</td>
<td>HS-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>서준호</td>
<td>HS-29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>서치범</td>
<td>HS-28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>손지우</td>
<td>HS-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>송민호</td>
<td>HS-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>송인곤</td>
<td>HS-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>심지호</td>
<td>HS-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>양정은</td>
<td>HS-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>양주윤</td>
<td>HS-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>임소목</td>
<td>HS-27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>오경민</td>
<td>HS-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>원호빈</td>
<td>HS-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>위지현</td>
<td>HS-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>윤예린</td>
<td>HS-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>윤지용</td>
<td>HS-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>은영범</td>
<td>HS-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이가은</td>
<td>HS-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이동근</td>
<td>HS-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이동일</td>
<td>HS-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이원형</td>
<td>HS-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이유미</td>
<td>HS-21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이재은</td>
<td>HS-29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이준우</td>
<td>HS-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이하영</td>
<td>HS-29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이한비</td>
<td>HS-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이현우</td>
<td>HS-31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이현정</td>
<td>HS-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이형진</td>
<td>HS-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이호연</td>
<td>HS-28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>임나현</td>
<td>HS-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>임승진</td>
<td>HS-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>임영철</td>
<td>HS-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>장서현</td>
<td>HS-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>정유준</td>
<td>HS-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>정인영</td>
<td>HS-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>조수민</td>
<td>HS-27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>조정익</td>
<td>HS-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>조지원</td>
<td>HS-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>전세원</td>
<td>HS-28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>최가은</td>
<td>HS-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>최서현</td>
<td>HS-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>최은진</td>
<td>HS-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>하성욱</td>
<td>HS-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>하성호</td>
<td>HS-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>홍준화</td>
<td>HS-31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>