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ABSTRACT Images acquired by a fisheye lens camera contain geometric distortion that results in defor-

mation of the object’s shape. To correct the lens distortion, existing methods use prior information, such as

calibration patterns or lens design specifications. However, the use of a calibration pattern works only when

an input scene is a 2-D plane at a prespecified position. On the other hand, the lens design specifications can

be understood only by optical experts. To solve these problems, we present a novel image-based algorithm

that corrects the geometric distortion. The proposed algorithm consists of three stages: i) feature detection, ii)

distortion parameter estimation, and iii) selection of the optimally corrected image out of multiple corrected

candidates. The proposed method can automatically select the optimal amount of correction for a fisheye

lens distortion by analyzing characteristics of the distorted image using neither prespecified lens design

parameters nor calibration patterns. Furthermore, our method performs not only on-line correction by using

facial landmark points, but also off-line correction described in subsection III-C. As a result, the proposed

method can be applied to a virtual reality (VR) or augmented reality (AR) camera with two fisheye lenses in

a field-of-view (FOV) of 195◦, autonomous vehicle vision systems, wide-area visual surveillance systems,

and unmanned aerial vehicle (UAV) cameras.

INDEX TERMS Lens distortion correction, fisheye lens, geometric distortion, facial landmark features,

distortion parameter estimation.

I. INTRODUCTION

Recently, various vision systems have adopted a fisheye

lens1 to acquire an extended field of view (FoV) [1], [2].

This approach leverages the wide-angle lens to generate the

contents of augmented reality (AR) or virtual reality (VR),

and to improve the performance of intelligent robot vision

systems [3]–[6]. Unfortunately, the fisheye lens has a geomet-

rical distortions including tangential and barrel distortions.

In this paper, we only consider the barrel distortion since

the tangential distortion is made from the misalignment of

a sensor and lens [7]. In addition, recent research on the lens
distortion deals with the radial distortion without tangential

The associate editor coordinating the review of this manuscript and
approving it for publication was Peng Liu.

1The visual angle of a fisheye lens is close to or more than 180 degrees.

distortion [8], [9]. The barrel distortion occurs in a space-

variant manner along the radial direction, and the amount

of distortion is proportional to the distance from the optical

center [10], [11]. The eventual effect of the barrel distortion

includes deformation of the shape of an object and transfor-

mation of a straight line into a curve. For that reason, fisheye

lens-based vision systems need an appropriate method to

correct the distortion [12].

Many researchers have tried to correct fisheye lens dis-

tortion. Major approaches to estimate the distortion model

parameters are classified into three categories: i) geomet-

ric projection model-based, ii) calibration pattern-based,

and iii) image-based or feature-based methods. The geo-

metric projection model defines a relationship between the

input undistorted scene and the output distorted image [13].

The geometric projection model-based correction method
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FIGURE 1. Block diagrams of the proposed image-based algorithm to correct the fisheye lens distortion: (a) on-line correction with an input
containing facial features, (b) on-line correction with multiple images containing facial features, and (c) off-line correction using precalibration
for a general input image without facial features. ‘faceless fd ’ represents an input image containing no faces.

requires the lens design specifications and the focal length.

However, a perfect correction is not possible since the lens

parameters are not available in many practical applications.

The calibration pattern-based method uses a priori known

pattern that is distorted by the lens [14]–[16]. These methods

define the distortion ratio using the relationship between the

ideal pattern image and its distorted version. The performance

of the pattern-based correction method depends on the accu-

racy of an acquired pattern image.

For easier implementation of the pattern-based correc-

tion method, an image-based distortion parameter estimation

method was proposed by Lee et al. [17]. Lee’s method first

trains the facial landmark points (FLPs) extracted in the

undistorted image and then estimates the distortion parameter

using the extracted FLPs. The accuracy of Lee’s method

depends on the number of training images containing mean-

ingful features. An alternative method to estimate the dis-

tortion parameters was proposed by Cho et al. [18]. Cho’s

method uses the optical characteristics of the distortion,

whose amount is proportional to the distance from the optical

center along the radial direction. The major limitation of

Cho’smethod is themanual off-line processing to obtain user-

defined threshold values according to the size of an input

image.

To solve these problems, this paper presents a novel image-

based distortion parameter estimation method that selects the

optimally corrected image using features in the input dis-

torted image. Themajor contribution of the proposed research

is twofold: i) both distortion parameter estimation and opti-

mally corrected image selection processes require neither

prespecified lens parameters nor special calibration patterns,

and ii) both on-line and off-line corrections are possible.2

Fig. 1 shows a block diagrams of the proposed algorithm for

different application environments.

2If an input image contains facial features, the proposed method works
on-line. Otherwise, an off-line precalibration data can be used.

FIGURE 2. Fisheye lens projection model.

This paper is organized as follows. Section 2 summarizes

the theoretical background. Section 3 describes the facial

landmark feature extraction and distortion parameter esti-

mation methods. Section 4 presents an automatic selection

method for the optimally corrected image among multiple

iterative solutions. After experimental results are given in

section 5, section 6 concludes the paper. The convention of

terminologies used in this paper is summarized in Table 3.

II. THEORETICAL BACKGROUND

A. PROJECTION SPHERE-BASED MODELS

FOR FISHEYE LENS

The perspective projection is a theoretical foundation of most

thin-lens camera systems, a wide-angle or fisheye lens cam-

era does not follow the relationship because the projection

between the object point P and the projected point p is a

nonlinear function of the incidence angle of the object point

(θ 6= θ ′), as shown in Fig. 2.

The refracted ray by the fisheye lens makes a barrel dis-

tortion in the acquired image, in which an object shape is

deformed in the radial direction. To understand the fish-

eye lens projection model, we can use a projection sphere.

Fig. 3 intuitively demonstrates both perspective and fisheye

lens projection models using the projection sphere with the

same object and image plane. As shown in Fig. 3, the fisheye
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FIGURE 3. Orthographic projection model of fisheye lens imaging. A light
ray starting from P on the object plane comes into the center C with the
incident angle θ . If C is just a pinhole without a fisheye lens, its image is
formed at p, whose radial distance is ru, on the image plane. However,
if the ray is refracted by the fisheye lens, its virtual image is formed at p′

on the projection sphere, and its orthogonal projection onto the image
plane determines the radial distance rd .

lens projection point p′ does not follow the perspective pro-

jection scheme. More specifically, the relationship between p

and p′ in Fig. 3 is spatially variant. There are four different

projection models to describe the spatially variant relation-

ship including: i) equidistant, ii) equisolid, iii) orthographic,

and iv) stereographic models according to the projection

types [13].

Each projection model provides a relationship between

the radial distances of the undistorted and distorted points

from the center, denoted as ru and rd , respectively. Because

the angle of an incident ray θ uniquely determines ru in

the projection sphere, a function of the incident angle θ can

define the projection mapping function that determines rd .

Projection mapping functions of the four models in Fig. 3 are

defined as follows.

(a)Equidistant : rd = Fθ

(b)Equisolid : rd = 2F sin (θ/2)

(c)Orthographic : rd = F sin θ

(d)Stereographic : rd = 2F tan (θ/2) (1)

where F , θ , and rd respectively represent the focal length,

incident angle, and distance between the center and the pro-

jected point in the distorted image.

B. RATIONAL FUNCTION-BASED MODELS USING A

CALIBRATION PATTERN

Although the projection sphere-basedmodels provide an intu-

itive description of the projection, they cannot be applied to

a lens whose field of view is larger than 180 ◦. To correct the

geometric distortion due to a very wide-angle lens, a calibra-

tion pattern is used to generate the relationship between an

ideal undistorted point and the distorted point. The pattern-

based method characterizes the relationship between rd/ru
versus ru using a distortion curve as shown in Fig. 4.

The pattern-based method can generate an accurate dis-

tortion ratio only if there exist sufficiently many pairs of

FIGURE 4. Estimation of the distortion parameters using a calibration
pattern-based method: (a) a calibration pattern, (b) a projected pattern
image by a fisheye lens, and (c) a distortion curve (rd /ru versus ru).

undistorted and distorted points. Since points in the distorted

image are distributed in a limited area as shown in Fig. 4(b),

the distortion ratio over the entire image cannot be estimated.

To solve this problem, rational function-based distor-

tion models were proposed in the literature [19]–[22].

Alemán-Flores et al. established the relationship between the

distorted and undistorted points using a polynomial function

as [22]
[

xd − xc
yd − yc

]

= L(ru)

[

xu − xc
yu − yc

]

, (2)

for

L(ru) = 1 + k1r
2
d + k2r

4
d + · · · , (3)

where (xu, yu), (xd , yd ), and (xc, yc) respectively represent

the coordinates of the undistorted point, distorted point, and

image center, and

ru =

√

(xu − xc)2 + (yu − yc)2. (4)

In their original work, the undistorted point is represented

as the distorted point divided by L(ru), which is called the

division model as
[

xu − xc
yu − yc

]

=
1

L(ru)

[

xd − xc
yd − yc

]

. (5)

If we estimate the distortion parameters, {k1, k2, . . .},

the distortion point can be computed from the undistorted

point using (2).

In the rest of this paper, we use the distortion model given

in (2) of the first order, that is L(ru) = 1 + k1 r
2
d , since we

observed that the second-order or higher-order models result

in only trivial improvement. Since the modeling of a fisheye

lens is not the scope of this work, we do not further discuss

about the analysis of the accuracy of different distortion

models.
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III. AUTOMATIC DISTORTION PARAMETER ESTIMATION

IN A SINGLE DISTORTED IMAGE

This section presents an on-line automatic distortion correc-

tion algorithm based on facial features in the image without

using a prior information. More specifically, we extract FLPs

as the facial feature and estimate the distortion parameters

using the extracted FLPs in a single distorted image. Since

the distortion of a fisheye lens camera generally deforms local

regions in different manners, the deformation-robust feature

plays an important role in estimating accurate distortion

parameters. A straightforward way to detect a general-shape

object is image segmentation [23]. However, we present an

efficient method to extract facial landmark points. Among

various applications using facial features, eye-tracking is pop-

ular in the virtual reality field [24].

A. FACIAL LANDMARK POINTS (FLPS)

In the input distorted image, fd , we first detect all faces and

then extract a set of five FLPs from each face. Milborrow’s

method can accurately extract FLPs in the undistorted image

using Stacked Trimmed Active Shape Model (STASM) only

with the frontal face without occlusions [25]. To extract fea-

tures from a non-frontal face possiblywith a partial occlusion,

we used the robust multi-task deep cascaded convolutional

neural network (CNN) proposed by Zhang et al. [26].

Let NF be the number of faces, and Li, i = 1, . . . ,NF ,

the i-th set of five FLP coordinates including the left

eye (LE), right eye (RE), nose (N), left corner of the

mouth (LM), and right corner of the mouth (RM). Let piF ,

F ∈ {LE,RE,N ,LM ,RM}, be the five coordinates, then

the i-th set of FLPs and its mean coordinates are respectively

expressed as

Li = {piLE , p
i
RE , p

i
N , p

i
LM , p

i
RM }, and

µi =
1

5
(piLE + piRE + piN + piLM + piRM ). (6)

Fig. 4(c) shows that the amount of distortion is very small

in the central region of the image whereas it increases toward

the peripheral region. For this reason, we classify the FLP

sets into: i) ideal facial landmark points (IFLPs) in the central

region and ii) distorted facial landmark points (DFLPs) in

the peripheral region. Among NF FLP sets, the one with the

minimum distance to the center is selected as the IFLP set as

LI = Li∗ , for i
∗ = argmin

i∈{1,...,NF }

‖µi − C‖, (7)

where C = (xc, yc) is the geometric center of input image.

B. DISTORTION PARAMETER ESTIMATION FOR

ITERATIVE CORRECTIONS

In the peripheral region of the image, neighboring pixels

become closer to each other as shown in Fig. 4(b), and FLPs

are not the exception. Therefore, the standard deviation of a

set of FLPs decreases in the peripheral region. Based on this

conjecture, the standard deviation of a set of FLPs is a robust

measure to determine the amount of distortion.

FIGURE 5. Entire process of distorted image acquisition and its correction
under the general image correction framework: fu is an ideal undistorted

scene, fd is the distorted image acquired by a fisheye lens, and f̂u is an
estimated image by correcting the distorted image.

We iteratively estimate the corrected image using the first-

order division model in (5). At each iteration we update the

corrected image as follows

f̂u
(j+1)

=
1

1 + k (j)r (j)
2
f̂u
(j)
, for j = 0, 1, 2, . . . ,NI , (8)

where NI is the total number of iterations that satisfies a

modified convergence condition, which will be given in (13),

and the distorted image is used as the initial solution such

as f̂u
(0)

= fd . At every iteration, r (j) and k (j) are respectively

computed as

r (j) =

√

(

x̂u
(j) − x̂c

(j)
)2

+
(

ŷu
(j) − ŷc

(j)
)2
, (9)

where (x̂u
(j)
, ŷu

(j)) and (x̂c
(j)
, ŷc

(j)) respectively represent the

coordinates of the j-th iterative image point and its center.

The distortion parameter of the j-th iterative image is com-

puted as

k (j) =
1

NF − 1

∑

i 6=i∗

‖σi
(j) − σi∗

(j)‖, (10)

where σi∗ is the standard deviation of the IFLP, and σi are the

standard deviations of the DFLP sets.

C. OFF-LINE CORRECTION USING PRE-ESTIMATED

PARAMETERS

The proposed distortion correction method has an off-line

version as well as the on-line version described in the pre-

vious subsection. The off-line version can correct the barrel

distortion of a faceless input image using a set of pre-trained

distortion parameters. The detail of the off-line version is

illustrated in Fig. 1(c). Experimental results of the off-line

version will also be given in section V-D.

IV. SELECTION OF THE OPTIMALLY CORRECTED IMAGE

The proposed algorithm can be considered in the general

framework of image correction. In other words, the distorted

image is considered as a degraded version of the ideal undis-

torted scene, and the corrected image is an estimation of the

ideal scene using the image correction process, which is the

distortion correction step in this work. The image correction

framework is shown in Fig. 5. Although noise is an important

factor that degrades the image quality, the noise power esti-

mation [27] and denoising is out of the scope of this work.

In an ideal case, a corrected image should be the same as

the ideal image yielding

‖fu − f̂u‖ = 0. (11)
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However, (11) is not satisfied in practice because the lens

distortion is a spatially variant transformation, which cannot

be accurately modeled using a single image degradation oper-

ation. Instead of the image subtraction-based error function in

(11), we select an optimally corrected image among multiple

iterative solutions computed in (8). In the selection process,

we use an optical property that is robust to the geometric

distortion. More specifically, in the projection process from

the 3D world space to the 2D image plane, a straight line

bends and becomes a curve by the radial distortion of the lens.

In contrast, the correction process should make the curve as

straight as possible.

Let {f̂
(j)
u }

NI
j=1 be the set of NI iterative solutions for dis-

tortion correction using (8), we select the solution with the

fewest number of straight lines as

f̂ ∗
u = f̂ (j

∗)
u , where j∗ = min

j∈{1,...,NI }

∣

∣Sj
∣

∣ , (12)

where Sj represents a set of straight lines extracted in the j-th

corrected image, f̂
(j)
u , and | · | the number of elements in the

set.

A curve in a digital image is extracted as multiple line

segments whereas a straight line is extracted as a single or a

few line segments. Based on this observation, we assume that

a corrected image should have a smaller number of line seg-

ments than the correspondingly distorted version. To detect

line segments, we adopt the distortion-adaptive sobel filter

proposed by Frunari et al. [28]. Since existing gradient-based

line detectionmethods do not consider a geometric distortion,

it is impossible to detect lines in the peripheral region. In this

context, the distortion-adaptive sobel filter is suitable for

detecting lines in the entire image because it geometrically

calculates the gradient using both the distorted and corrected

images.

Given the j-th iterative solution, f̂
(j)
u , we first estimate the

gradient image, ∇ f̂
(j)
u . Line segments are then extracted in

the gradient image using the line segment detector (LSD)

proposed by von Gioi et al. [29]. When we select an opti-

mally corrected image using only the straight line con-

straint, lines directed toward the distortion center produce an

overcorrected result. To prevent the overcorrection problem,

the selection method given in (12) is modified as

f̂ ∗
u = f̂ (j

∗)
u , where j∗ = min

j

(

|Sj|

Dj
+ σ

(j)
L

)

, (13)

where Dj is the sum of the lengths of all the line segments in

f̂
(j)
u , σ

(j)
L is the standard deviation of the FLPs, and f̂ ∗

u is the

final optimally selected correction result image. The finally

selected image using (13) can overcome the overcorrection

problem by combining the difference in the facial landmark

points and the line information.

V. EXPERIMENTAL RESULTS

For the objective assessment of the proposed method, the per-

formance of the proposed method is compared with existing

methods. We also proposed a novel evaluation method using

FIGURE 6. A geometrically distorted image acquired by Samsung Gear
360 camera and correction results using two different methods: (a) input
distorted image, (b) corrected image using Kim’s method [15], and
(c) corrected image using the proposed method.

optical characteristics of the imaging system. The experi-

ment evaluates the performance of three different methods

including: i) calibration pattern-based in subsection V-A,

ii) FLP-based in subsection V-B, and iii) off-line, in subsec-

tion V-D, correction methods. Subsection V-C analyzes the

performance of the FLP-based correction method according

to the selected distortion parameters.

A. CALIBRATION PATTERN-BASED METHOD

In this section, the performance of the proposed method

is compared with results of using calibration pattern.

We acquired a set of test images using Samsung Gear

360 camera consisting of two fisheye lens cameras with a

FOV of 195◦. Fig. 6 shows the comparative experimental

results of Kim’s calibration pattern-based method [15] and

the proposed method. In the experiment, we estimated the

distortion parameters using the proposed method to correct

a distorted image. As shown in Fig. 6(b), Kim’s method

produces an inaccurately corrected result because of an insuf-

ficient number of calibration pattern points for the distortion

ratio estimation. However, the proposed method can correctly

remove the distortion in the image. In Figs. 6(b) and 6(c),

a region containing vertically aligned points is magnified for

comparison.

Fig. 7 demonstrates that the performance of calibration

pattern-based method is limited since calibration points exist

only near the image center and there is no information for cal-

ibration in the peripheral region.For the objective assessment,

we proposed distance ratio, which is a novel measurement

metric to evaluate the performance of correcting the geomet-

ric distortion. More specifically, we define three directional
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FIGURE 7. Distorted pattern images acquired by Samsung Gear 360 with
different distances between calibration pattern and lens: (a) 2 cm, and
(b) 1.5 cm.

TABLE 1. Performance comparison between the calibration
pattern-based method and the proposed method using the distance ratio.

distance ratios including horizontal, vertical, and diagonal

directions, respectively:

ψH =

∑

r̂H
∑

rH
, ψV =

∑

r̂V
∑

rV
, and ψD =

∑

r̂D
∑

rD
, (14)

where rH and r̂H represent the distance between two hori-

zontally adjacent points in the ideal, undistorted image and in

the corrected image, respectively. The vertical and diagonal

counterparts are also defined in the same manner as shown

in Fig. 8. Motivation for the proposed distance ratio is based

on the observation that the distance between the dots of the

distorted pattern becomes smaller than the ideal calibration

pattern.

The distortion correction result consists of three case:

i) in the ideal case, the distortion parameter (ψH , ψV , ψD) is

close to unity because (rH , rV , rD) and (r̂H , r̂V , r̂D) are same,

ii) (ψH , ψV , ψD) is larger than unity because (r̂H , r̂V , r̂D)

is larger than (rH , rV , rD) for the barrel distortion, and iii)

(ψH , ψV , ψD) is smaller than unity for the pincushion dis-

tortion. Table 1 shows the estimated distance ratios from

Figs. 6(b) and 6(c). In order to compare the exact distance

ratio, we used a front-parallel undistorted image with the

same resolution of the distorted image. As shown in Table 1,

the proposed method has all three ratios closer to unity than

the calibration pattern-based method.

B. FLP-BASED DISTORTION PARAMETER

ESTIMATION METHOD

The proposed method uses FLPs of a distorted image to esti-

mate the distortion parameter and then corrects the distortion

using the estimated distortion parameter. Fig. 9 shows that the

proposed method outperforms the existing methods in both

the minimization of overcorrection and the overall subjective

FIGURE 8. Distance gap between the ideal pattern and the distortion
correction result with weak distortion: (a) ideal pattern, and (b) distortion
correction pattern image.

image quality. More specifically, the first row in Fig. 9 shows

the input distorted image and three different correction results

using randomly chosen distortion parameters including k =

0.2, 0.26, and 0.3. The second row in Fig. 9 shows the correc-

tion results of the proposed method, including the optimally

corrected result. As shown in Fig. 9(a), the fisheye lens

distortion tends to bend a line outward along the radial direc-

tion as marked by the red arrows. However, overcorrection

makes a line bend inward along the radial direction as shown

in Fig. 9(d). It is not easy for existing methods to select the

best corrected results among Figs. 9(e)–(h).

The proposed method can automatically correct a distor-

tion by using an appropriately estimated distortion param-

eter. Moreover, it can avoid the overcorrection problem by

selecting the optimally corrected solution using the FLPs and

straight line analysis.

C. SELECTION OF THE OPTIMAL DISTORTION PARAMETER

The foundation of the proposed selection method for the

optimally corrected result is the characteristics of the fisheye

lens that transforms a line into a curve. Figs. 10 and 11 show

experimental evidence of our assumption. We chose a brick

image to evaluate the number of line segments as shown

in Fig. 10(a). If a line bends, the resulting curve is divided

45728 VOLUME 7, 2019



M. Lee et al.: Correction of Barrel Distortion in Fisheye Lens Images Using Image-Based Estimation

FIGURE 9. Distortion correction results using the division model and the proposed method: (a) input distorted image,
(b)–(d) correction results using the division model with distortion parameters k = 0.2, k = 0.26 and k = 0.3, respectively,
(e)–(g) correction results using the proposed method with different iterations steps, and (h) the optimally selected result
among the different iterations of the proposed method.

FIGURE 10. Number of line segments in a simulated fisheye lens image and corrected results: (a) ideal image, (b) distorted
image, (c) properly corrected image, (d) overcorrected image, and (e) the number of line segments in (a)–(d).

into many small line segments. For that reason, the more the

image is distorted, the larger the number of line segments that

are produced. As shown in Fig. 10(e), the properly corrected

image has fewer line segments than both the distorted and the

overcorrected images.

Fig. 11 shows the proposed iterative distortion correction

results in the first row and the number of line segments

and their average lengths for each iteration in the second

row. After each iteration, we crop the central region of the

image with the ratio 4:1 and make the best view of dis-

tortion corrected result. Fig. 11(b) shows the visually best

view of corrected result selected by the proposed method.

Figs. 11(c) and 11(d) respectively show the number of

extracted lines and scores estimated by (13) versus the

VOLUME 7, 2019 45729
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FIGURE 11. The number of line segments and the modified scores given
in (13): (a) input distorted image, (b) the optimally corrected image,
(c) the number of lines versus iteration, and (d) the modified scores
versus iteration.

iteration step, respectively. As shown in Fig. 11, theminimum

of both number of straight lines and scores appear at the 18-th

iteration.

Because the line information is a dominant factor in

selecting the optimally corrected image, the selection of an

appropriate line detection method is important. Although

Benligiray et al. recently proposed a line detection method

to correct the geometric distortion [20], they detected only

collinear lines in the real world. For this reason, the accuracy

of Benligiray’s method depends on the number of collinear

lines in the central and peripheral regions of the image.

To overcome this limitation, we detected all the straight lines

using the distortion-adaptive sobel filter. Fig. 12 shows the

line detection results using Benligiray’s and the proposed

methods. As shown in Fig. 12, the proposed method detected

more lines than Benligiray’s method. The proposed method

can successfully make bent lines (or curves) in a distorted

image straight, whereas Benligiray’s method cannot.

The proposed method is compared with Cho’s method [18]

to evaluate the accuracy of the distortion correction. Cho’s

method uses the FLPs to correct the lens distortion, whereas

the proposed method employs two features, FLPs and line

segments. For the subjective and objective evaluation of both

results, we propose a novel numerical distortionmeasurement

method. The foundation of the proposed numerical mea-

surement is that the straight line in the 3D real world has

to be straight in an undistorted image based on the optical

projection theorem. Devernay’s [30] method uses the trans-

formed information of the straight line detected in the image.

On the other hand, the proposed method selects the optimally

corrected image using the number and total length of all the

line segments.

FIGURE 12. Line detection and distortion correction results using
Benligiray’s [20] and the proposed methods: (a) input distorted image,
(b) line detection result using Benligiray’s method, (c) line detection
result using the proposed method using the distortion-adaptive sobel
filter, (d) correction result using Benligiray’s method, and (e) correction
result using the proposed method. (Best viewed in color.)

As shown in Fig. 13, the proposed method completely

removed the distortion artifact. However, in the result of

Cho’s method, the distortion remains at the joint of the ceiling

and the wall indicated by a red arrow. Cho’s method can-

not accurately correct the distortion because the FLPs are

located in the central region where the standard deviation

of the FLPs is continuously reduced during the iterations.

Hence, the iterative distortion correction process is termi-

nated because Cho’s method uses the standard deviation as

a termination condition.

Fig. 14 shows a pair of undistorted and distorted images.

A straight line in the undistorted image is transformed into an

arc in the distorted image. Each arc is characterized by two

lines as shown in Fig. 14, and their relationship is determined

as the distortion ratio, denoted as RD

RD =

(

1 −
L + γ

2H

)

× 100, (15)
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FIGURE 13. Comparative experimental results: (a) input distorted images,
(b) correction results using Cho’s method, and (c) correction results using
the proposed method.

FIGURE 14. Analysis of straight lines: (a) straight lines in the ideal,
undistorted image, and (b) tangent lines of arcs in the distorted image.

where H is the distance between the right end and left walls

in the ideal image, and L and γ respectively represent the

maximum and minimum distances between the walls in the

distorted image. In the distortion-free image, 2H is equals to

L + γ , and the distortion ratio RD becomes zero.

Table 2 compares the distortion ratio of the corrected

results using Cho’s and the proposed methods as shown

in Fig. 13. The distortion ratio of the proposed method is

smaller than Cho’smethod. The second test image has a lower

TABLE 2. Distortion ratio comparison of Fig. 13.

TABLE 3. Conventions.

distortion ratio than the first image because of different tilting

angles of the camera.

D. OFF-LINE CORRECTION METHOD

The last experiment is performed to verify that the proposed

method can be applied to various practical applications. Test

images without human faces are acquired from the real-world

scene containing multiple objects at different distances. If the

input image does not contain faces, the off-line version of

correction is performed using the pre-estimated distortion

parameters that were obtained from the on-line correction

of the same camera as shown in Fig. 13. The results of this

experiment are shown in Fig. 15(b), which demonstrates that

the proposed method successfully corrects the geometric dis-

tortion without depth parallax artifacts. The on-line version

of the correction algorithm takes a geometrically distorted

image containing human faces to estimate the distortion

parameter. On the other hand, the off-line version first cal-

ibrates the same camera using facial images prior to the main
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FIGURE 15. Correction results of distorted images with various acquisition conditions and places: (a) input distorted images and
(b) distortion correction results of (a).

processing, and then performs correction on the faceless input

image using the estimated distortion parameter. Table 3 shows

the notation conventions. When the input image does not

have a sufficient amount of illumination, a pre-processing

to enhance the contrast [31] can increase the accuracy of

distortion parameter estimation.

VI. CONCLUSIONS

We presented an automatic image-based method to correct

a barrel distortion in fisheye lens images. Despite an unpar-

alleled advantage of wide field-of-view, the practical appli-

cation of a fisheye lens camera is limited because of the

nonlinear distortion in the acquired image and complicated

preprocessing steps to correct the distortion.

The proposed correction method requires neither a priori

lens design specifications nor a special calibration pattern to

estimate the distortion parameter. It first extracts facial fea-

tures using a set of image processing algorithms to estimate

the distortion parameter. Given the parameter, the iterative

procedure generates multiple differently corrected solutions,

and then the optimally corrected solution is selected by ana-

lyzing the line segments in the image. An additional, but

practically very useful, the contribution of the proposed work

is to provide both on-line and off-line correction processes

depending on the existence of facial features in the scene.

Since the proposed method consists of only image pro-

cessing algorithms, it can make wide field-of-view imaging

systems applicable to extended application fields, including

360◦ AR or VR cameras, wide-area surveillance systems.
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