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Posterior predictive model checking (PPMC) is a Bayesian model checking method that
compares the observed data to (plausible) future observations from the posterior predictive
distribution. We propose an alternative to PPMC in the context of structural equation model-
ing, which we term the poor person’s PPMC (PP-PPMC), for the situation wherein one cannot
afford (or is unwilling) to draw samples from the full posterior. Using only by-products of like-
lihood-based estimation (maximum likelihood estimate and information matrix), the PP-PPMC
offers a natural method to handle parameter uncertainty in model fit assessment. In particu-
lar, a coupling relationship between the classical p values from the model fit chi-square test
and the predictive p values from the PP-PPMC method is carefully examined, suggesting that
PP-PPMC might offer an alternative, principled approach for model fit assessment. We also
illustrate the flexibility of the PP-PPMC approach by applying it to case-influence diagnostics.

Keywords: case influence, posterior normality, posterior predictive model checking

The posterior predictive model checking (PPMC) method is
a Bayesian model diagnostic tool for assessing the compat-
ibility of a posited model to observed data by comparing
the observed data to plausible future observations simulated
from the posterior predictive distribution. This method is
predicated on the idea that, if the model fits the data rea-
sonably well, the future plausible observations should be
“similar” to the observed data, whereas large discrepancies
should be taken as an indication of model misspecification.
In applications, similarity or discrepancy is defined (by the
researcher) in such a way that differences between a critical
aspect of the observed data and that of the model-implied
future observations can be properly measured.

The use of model-implied future observations in model–
data fit evaluations was first introduced by Guttman (1967),
and its formal definition was given by Rubin (1981, 1984),
then further elaborated by Meng (1994), and Gelman, Meng,
and Stern (1996). A good didactic discussion of the PPMC
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Color versions of one or more of the figures in the article can be found
online at www.tandfonline.com/hsem.

method in general can be found in Gelman, Carlin, Stern, and
Rubin (2003, chap. 6).

In social and behavioral science research, most of the
applications of the PPMC method can be found in the con-
text of the item response theory (IRT) models in assessing
item fit, person fit, and dimensionality (Glas & Meijer, 2003;
Hoijtink & Molenaar, 1997; Janssen, Tuerlinckx, Meulders,
& de Boeck, 2000; Levy, Mislevy, & Sinharay, 2009; Levy
& Svetina, 2011; Sinharay, Johnson, & Stern, 2006).

In factor analysis and structural equation modeling
(SEM), despite the rapid growth of Bayesian approaches
(Ansari, Jedidi, & Dube, 2002; Arminger & Muthén, 1998;
Lee, 2007; Lee, Song, & Tang, 2007; Lee & Zhu, 2000;
Palomo, Dunson, & Bollen, 2007), most previous studies
focused on Bayesian model building and parameter estima-
tion, paying relatively scant attention to the issue of model fit
appraisal and diagnostics. Scheines, Hoijtink, and Boomsma
(1999), Levy (2011), and B. Muthén and Asparouhov (2012)
are some important exceptions, illustrating key features of
Bayesian approaches to model diagnostics and assessing
data–model fit of structural equation models.

In applications of factor analysis and SEM, standard
estimation and model checking methods are based on
the method of maximum likelihood (ML). SEM software

mailto:lcai@ucla.edu
www.tandfonline.com/hsem
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programs routinely print in the output the ML point esti-
mates for the parameters and the associated standard error
estimates. The ML point estimates then replace the unknown
model parameters to yield model-implied mean vectors
and covariance matrices from which chi-square model fit
test statistics and various practical fit indexes such as root
mean square error of approximation (RMSEA), Tucker–
Lewis Index (TLI), or standardized root mean square residual
(SRMR) can be computed.

In principle, the reference distributions of these test statis-
tics and fit indexes can be developed using asymptotic
arguments (Jöreskog, 1993; Ogasawara, 2001) or with the
bootstrap (Bollen & Stine, 1993; Efron & Tibshirani, 1994).
In the practice of SEM, however, the asymptotic arguments
might not be tenable, despite their general applicability. For
instance, the form of a number of popular model fit indexes
might not be particularly amenable to asymptotic derivations
(perhaps with the exception of RMSEA). In addition, the
development of asymptotic distribution theory for any new
researcher-defined fit index would require advanced statis-
tical prowess. It is unfair to require an average SEM user
to perform such derivations. On the other hand, although
the bootstrap method might sidestep many of the inherent
issues with large-sample arguments, it remains computa-
tionally demanding because the model under investigation
must be fitted to each of the (often hundreds of) bootstrap
resamples.

Even setting practicality aside, classical likelihood-based
approaches evaluate the discrepancy between the observed
data and the hypothesized model when the unknown model
parameters are replaced by the best fitting point estimates.
The parameter estimation uncertainty, although quantifiable
in the form of asymptotic covariance matrix (inverse of
Fisher information matrix) of the ML parameter estimates,
is not accounted for in classical likelihood-based model fit
assessment. This is made explicit in the application of the
so-called parametric bootstrap method to model fit testing.
In parametric bootstrap resampling, the resamples are gen-
erated from the hypothesized model with all parameters
replaced by the sample ML estimate (see, e.g., Tollenaar
& Mooijaart, 2003). The construction of the bootstrapped
reference distribution of a fit statistic requires fitting the
hypothesized model to each bootstrap resample.

By contrast, the PPMC method is a simulation-based
model checking method, requiring neither asymptotic argu-
ments (cf. likelihood-ratio chi-square statistic) nor compu-
tationally intensive model refitting (cf. bootstrap). When
the plausible values of the data can be drawn from the
posterior predictive distribution, constructing reference dis-
tributions of any test quantity defined by the investigator
involves minimal cost. Moreover, use of the posterior pre-
dictive distribution implies that one must take into account
the entire posterior distribution of the model’s parameters,
rather than the best fitting point estimates only. As such,
the PPMC method naturally integrates parameter uncertainty

into model fit assessment (Gelman et al., 2003; Levy, 2011;
Rupp, Dey & Zumbo, 2004).

To take full advantage of the PPMC method, however,
the researcher must be able to simulate draws from the full
posterior distribution of the model parameters. If parameter
estimation is accomplished with Bayesian sampling-based
methods (e.g., Markov chain Monte Carlo [MCMC]; see,
e.g., Gilks, Richardson, & Spiegelhalter, 1996), samples
from the posterior predictive distribution can be obtained
as a by-product of the MCMC output. On the other hand,
for those who chose not to adopt Bayesian methods, are
unfamiliar with Bayesian methods, or when Bayesian meth-
ods are cumbersome, complexities remain. For example, the
choice of prior distribution on variance components can be
complicated due to its potentially large effect on subse-
quent inference (Gelman, 2006). Convergence monitoring
of MCMC often requires considerable expertise on the part
of the user, and in our view should not be fully automated
(see discussions in Cowles & Carlin, 1996; MacCallum,
Edwards, & Cai, 2012).

For high-dimensional, highly-parameterized latent vari-
able models, numerous authors advocated that one of the
critical first steps toward a sensible full Bayesian analysis
in fact lies in the use of a mode-finding method (e.g., ML)
for parameter estimation (see, e.g., Gelman et al., 2003).
Recognizing both the enormous advantages as well as the
potential complications of the Bayesian PPMC methods, and
at the same time, given the current dominance of likelihood-
based methods for parameter estimation and model fit testing
(due to both history and practicality), we pose a question
that provides the guiding motivation for this research: Can
one find a predictive model checking method for evaluating
models fitted using the method of ML?

In response to this question, we propose a poor person’s
PPMC method (PP-PPMC), which employs by-products of
ML estimation; that is, the ML parameter estimates and the
associated asymptotic error covariance matrix. This method
is termed a poor person’s PPMC because we believe that it
could provide a computationally efficient non iterative (cf.
bootstrap) mechanism to conduct predictive model checking
that directly builds parameter uncertainty into consideration
(cf. standard likelihood ratio test) for the researcher who, for
various reasons, cannot “afford to” or is not (yet) willing
to draw samples from the full posterior distribution of the
model’s parameters.

The remainder of this article is organized as follows.
First, we introduce the original PPMC method to provide
the necessary background for discussing the proposed PP-
PPMC method. Because the PP-PPMC method employs only
by-products of ML estimation, we closely examine the rela-
tionship between the classical p value under the likelihood
ratio chi-square test and the p values under the PP-PPMC
method. In subsequent sections, we apply the PP-PPMC
method to two specific cases: overall goodness-of-fit assess-
ment, and case-influence diagnostics. Using empirical and
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simulated data, we show that the proposed method can
be an effective tool for both overall model fit testing and
case-influence diagnostics. We conclude the article with dis-
cussions about practical implications of the proposed method
and future research.

POSTERIOR PREDICTIVE MODEL CHECKING

Let E be some sample space. Throughout the article we
use the notation Yobs ∈ E to represent observed data, H
the hypothesized model, and θ the d-dimensional vector of
unknown model parameters that resides in the parameter
space θ , which is a subset of the d-dimensional Cartesian
product of real numbers θ ∈ � ⊂ R

d. We use the notation
Yrep ∈ E to denote hypothetical replicated data or plausible
future observations under the hypothesized model H.

Classical Estimation and Inference for SEM

In this article we consider a general mean and covariance
structure model. Let there be p observed or manifest vari-
ables in the model. The p × 1 vector of manifest variables
y serve as indicators for a vector of q latent variables η

via a factor analytic measurement model y = τ + �η + ε,
where the unique factors in ε have zero means and covari-
ance matrix �. The relationships among the latent variables
are described by simultaneous equations η = α + Bη + ζ ,
where the disturbance terms in ζ have zero means and covari-
ance matrix �. Both � and � are functions of the parameter
vector θ . In addition, the measurement intercepts τ, the fac-
tor loadings �, the latent regression intercepts α and the
regression coefficients B are also functions of θ . Assuming
orthogonality of ζ and ε, the following mean and covariance
structure model for random vector y can be derived:

E(y) = μ(θ) = τ + �B−1
∗ α, (1)

cov(y) = �(θ) = �B−1
∗ �

(
B−1

∗
)′

�′ + �, (2)

where B∗ = Iq − B is assumed to be nonsingular, and Iq is a
q × q identity matrix.

Let p∗ = p + p(p + 1) /2 denote the number of observed
first and second moments. It is often convenient to consider
the p∗ × 1 vector of unique model-implied means and covari-
ances σ(θ) = [

μ(θ)′ , vech(�(θ))′
]′

, where vech(�) is the
half-vectorization operator that returns a vector consisting of
the p(p + 1) /2 unique elements of �.

Specification of a structural equation model H includes
the pattern and values of free and fixed elements of the
parameter matrices as well as additional restrictions on θ .
In the classical model fitting context (see, e.g., Cudeck &
Henly, 1991), it is often assumed that there exists a true
population mean vector μ0 and a true population covariance
matrix �0, and the model is referred to as correctly specified

if and only if there exists some θ0 ∈ θ such that σ(θ0) =
σ 0 = [

μ′
0, Vech(�0)

′]′. We assume that the model is locally
identified such that the p∗ × d Jacobian matrix

�(θ) = ∂σ (θ)

∂θ ′ (3)

has full column rank, at least in a neighborhood of θ0.
Assuming correct model specification, the model fit-

ting task is reduced to that of parameter estimation.
Given a random sample Yobs of size N, the sample
mean vector can be written as Ȳ = N−1 ∑N

i yobs
i , where

yobs
i denotes the ith sample observation, and the sam-

ple covariance matrix (ML estimate)1 is denoted as S =
N−1 ∑N

i=1

(
yobs

i − ȳ
)(

yobs
i − ȳ

)′
. The p∗ × 1 sample counter-

part to σ(θ) is s = [
ȳ′, vech(S)′

]′
.

Parameter estimation by the method of normal theory
ML requires the assumption of multivariate normality of the
observed variables. After some algebra, the log-likelihood
function can be written as

�
(
θ |Yobs) = �(θ |s) ∝ −N

2

{
log |�(θ)| + tr

[
�(θ)−1 S

]

+ [
ȳ − μ(θ)

]′
�(θ)−1 [ȳ − μ(θ)

]}

Under multivariate normality, the observed first and sec-
ond moments in s are sufficient statistics under model H.
Maximization of �

(
θ |Yobs

)
with respect to θ results in the

ML estimate θ̂ ∈ θ . Equivalently, one could also choose
to minimize the following maximum Wishart likelihood
(MWL) fit function:

TMWL
(
Yobs, θ

) = [
ȳ − μ(θ)

]′
�(θ)−1 [ȳ − μ(θ)

]

+ log |�(θ)| − log|S| + tr
[
�(θ)−1 S

]− p.
(4)

Let I(θ) be the (observed) information matrix. It is equal
to a half times the second derivative matrix of the MWL fit
function.

I(θ) = 1

2

∂2TMWL
(
Yobs, θ

)
∂θ∂θ ′ .

By reparameterization, we see that

NI(θ) = −∂2�
(
θ |Yobs

)
∂θ∂θ ′ = ∂σ (θ)

∂θ

∂2�
(
θ |Yobs

)
∂σ∂σ ′

∂σ (θ)

∂θ ′

= N
{
�(θ)′ �(σ )�(θ)

}
, (5)

1For simplicity we do not use the unbiased sample covariance matrix
estimate with (N - 1) as the divisor. All discussions assume large N so any
difference will be negligible.
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where �(σ ) is the information matrix of the (unstructured)
mean and covariance parameters in σ based on a multivariate
normal distribution,

�(σ ) =
(

�−1

2−1D′
p
(
�−1 ⊗ �−1

)
Dp

)
, (6)

and Dp is a p2 × p(p + 1) /2 duplication matrix (see Schott,
2005). The asymptotic distribution of

√
N(s − σ 0) is normal

(see Browne, 1984),

√
N(s − σ 0)

a∼Np∗
(
0, �−1

0

)
, (7)

under multivariate normality of the observed variables,

where the symbol
a∼ stands for “asymptotically (in N)

distributed as,” and �0 = �(σ0) .
The asymptotic distribution of the ML estimator θ̂ is given

by

√
N
(
θ̂ − θ0

)
a∼Nd(0, V0) , (8)

(see Yuan & Bentler, 2007), where the right side denotes a
multivariate normal distribution with zero means and asymp-
totic covariance matrix equal to the inverse of the infor-
mation matrix V0 = I(θ0)

−1. A consistent finite-sample
variance estimate is

V̂ =
{

NI(θ̂ )
}−1 =

{
N�(θ̂ )′�̂�(θ̂)

}−1
, (9)

where �̂ = �(s). In other words, the ML estimates are
asymptotically normally distributed with large-sample error
covariance matrix V̂.

The principle of generalized least squares (GLS) leads to
another widely used fit function for parameter estimation and
statistical inference:

TGLS
(
Yobs, θ

) = 1

2
[s − σ (θ )]′ �(s) [s − σ (θ )] , (10)

Under normality, the GLS and the MWL fit functions
lead to asymptotically equivalent solutions (Browne,
1974). It is also well known (see Browne & Arminger,
1995) that under the multivariate normal sampling
model for y, N times the minimized fit function value(

NTMWL

(
Yobs, θ̂

)
or NTGLS

(
Yobs, θ̂

))
is distributed as a

central chi-square variable with p∗−d degrees of freedom
under the null hypothesis of correct model specification
when N tends to infinity.

Basic Setup for PPMC

As mentioned earlier, the essence of PPMC is to compare the
observed data Yobs with the replicated data Yrep as opposed

to focusing on large sample tests. The hypothetical repli-
cated data can be simulated from the posterior predictive
distribution, namely the conditional distribution of the repli-
cated data Yrep given the observed data Yobs and the posited
model H, denoted as p(Yrep|Yobs, H). The general form of
the posterior predictive distribution is given as

p(Yrep
∣∣Yobs, H) =

∫
θ

p(Yrep |θ , H)p(θ
∣∣Yobs, H) dθ . (11)

Equation 11 shows that the integral defining the posterior
predictive distribution consists of two components. One is
p(Yrep |θ , H ), or the sampling distribution of the replicated
data Yrep given particular values of the model parameters
θ under model H. The other is p

(
Yobs |θ , H

)
or the poste-

rior distribution of model parameters θ under model H given
observed data Yobs. We note that p

(
Yobs |θ , H

)
quantifies

the plausible values of θ after the data have been observed.
Therefore, Equation 11 shows explicitly how the use of the
posterior predictive distribution addresses the problem of
unknown model parameters in making probabilistic state-
ments about the replicated data; it integrates out (averages
over) the unknown θ in the sampling distribution of Yrep over
its posterior distribution p

(
Yobs |θ , H

)
. As such, the entire

posterior distribution of the model’s parameters is integrated
into the model fit checking procedures.

The inferential principle of PPMC is similar to that of
classical model fit testing; that is, to locate the position
of observed data Yobs in a reference distribution. If the
model fits the data well, the observed data Yobs will not
stand out in the reference distribution. A key difference
between PPMC and classical fit testing lies in choice of the
reference distribution. Under PPMC, the posterior predictive
distribution given in (Equation 11) is used as the reference
distribution, whereas under classical testing, the sampling
distribution p(Y|θ̂ , H), with θ replaced by the ML estimate
θ̂ , provides the basis of reference distributions for model fit
hypothesis tests.

Test Quantities and p Values

To measure the degrees and manners to which the observed
Yobs and replicated data Yrep are discrepant, appropriate test
quantities should be defined (Gelman et al., 1996). A test
quantity T(Y, θ ), or measure of discrepancy, is a function of
both the data and the parameters. For example, if the over-
all fit of the hypothesized structural equation model is to be
evaluated, the test quantity could be the MWL fit function
defined in Equation 4 or the GLS fit function in Equation 10,
but treating both data and parameters as arguments.

In classical overall goodness-of-fit testing, the null
hypothesis states that the assumed model holds exactly
in the population; that is, H0 : σ0 = σ (θ0), where
σ0 = [

μ′
0, vech(�0)

′]′. Note that the composite null
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hypothesis contains unknown parameters. In the clas-
sical approach, the unknown parameters are replaced
by the ML point estimates θ̂ . The classical p val-

ues are defined as Pr
(
χ2

p∗−d > NTMWL

(
Yobs, θ̂

))
or

Pr
(
χ2

p∗−d > NTGLS

(
Yobs, θ̂

))
, where the probability is

taken over a central chi-square distribution with p∗−d
degrees of freedom. Under the null hypothesis, the only
source of random variation comes in the form of multivariate
normal sampling of the observed data.

Under the PPMC framework, potential test quantities in
Equations 4 and 10 are treated as functions of both data
Y and parameters θ . In other words, θ in TMWL(Y,θ ) is no
longer fixed at the ML estimate θ̂ , and Y is no longer only
taken to mean the observed data Yobs. When the distribution
of the test quantity is based on the joint posterior distribution
of the replicated data Yrep and θ , the distribution of T(Yrep,
θ) is usually called predictive test quantities in the Bayesian
literature.

As a direct result of using the parameter posterior
p
(
Yobs |θ , H

)
to quantify uncertainty in θ , T(Yobs, θ ), or in

other words, the test quantity with data fixed at the observed
values but θ randomly sampled from its posterior, is often
referred to as the realized test quantity in the Bayesian liter-
ature. Note that variation in T(Yobs, θ ) comes from posterior
variability of the parameters.

Under the PPMC framework, the distribution of the pre-
dictive test quantity plays the role of the reference distribu-
tion. The distribution of the realized test quantity plays the
role of the observed test statistics. Thus test quantities can be
considered as generalizations of classical test statistics.

Bayesian posterior predictive p values for the test quanti-
ties can be defined as

Bayesian p value = Pr
{
T(Yrep, θ) > T

(
Yobs, θ

) |Yobs, H
}

=
∫

ε

∫
θ

1
{
T(Yrep, θ) > T

(
Yobs, θ

)}

p (Yrep|θ , H) p
(
θ |Yobs, H

)
dθdYrep,

(12)

where 1
{
T(Yrep, θ) > T

(
Yobs, θ

)}
is an indicator function

that takes on a value of 1 if and only if the event{
T(Yrep, θ) > T

(
Yobs, θ

)}
is true. That is, the Bayesian

p value for a given test quantity T(Y, θ) is defined as the
probability that the replicated data, Yrep, are more extreme
than the observed data, Yobs, as measured by the test quan-
tity, where the probability is taken over the joint posterior
distribution of Yrep and θ .

Bayesian p values can be employed in the same man-
ner as classical p values, for rejecting the null hypothesis if
the value is less than the nominal significance level α. From
this hypothesis-testing perspective, however, the Type I error

rates of the Bayesian p value are known to be below the nom-
inal α level, resulting in conservative inferences. Theoretical
properties of the Bayesian p values are thoroughly exam-
ined in Robins, van der Vaart, and Ventura (2000) and Dahl
(2006).

Another perspective regarding the use of the Bayesian
p values, however, is that the Bayesian p value provides
a simple numerical summary of the degree of discrepancy
between the reality and the model, rather than a rigid accept–
reject decision rule. This perspective is based on a widely
accepted fundamental principle that all statistical models are
wrong to some degree (Box, 1979), and thus the more perti-
nent issue is to characterize the ways in which the assumed
model is wrong and what aspects of the model are useful
for description, prediction, and synthesis (Cudeck & Henly,
1991, p. 512). From this perspective, graphical model check-
ing has been advocated (Gelman, 2003, 2004, 2007; Gelman
et al., 1996; Stern, 2000), with the Bayesian p value serving
as a numerical summary of the model–data discrepancy.

Implementation

As shown in Equations 11 and 12, implementing the PPMC
method involves multidimensional integration, which in
most circumstances is analytically intractable. To circum-
vent analytical derivations of the posterior predictive dis-
tribution, Monte Carlo simulation methods are employed
in practice. Specifically, a composition method is used.
Note that by Equation 11, the joint posterior of Yrep

and θ can be obtained as a product: p
(
Yrep, θ |Yobs, H

) =
p(Yrep|θ , H) p

(
θ |Yobs, H

)
.

First, L sets of plausible parameters θ1, . . . ,θL are
sampled from the posterior distribution of the parameters
p
(
θ |Yobs, H

)
. For each plausible parameter vector θ �, we

draw one hypothetical replicated data set Yrep,� from the sam-
pling distribution p

(
Y|θ �, H

)
. We then have L pairs of draws

from the joint posterior distribution of Yrep and θ ; that is,

(
Yrep,�, θ �

) ∼ p
(
Yrep, θ |Yobs, H

)
, � = 1, . . . , L. (13)

With a sufficiently large number of draws, arbitrarily close
approximations to functionals of p

(
Yrep, θ |Yobs, H

)
can be

constructed with sample averages.
For example, based on these draws, we can compare the

distribution of the realized test quantities, T
(
Yobs, θ �

)
against

that of the predictive test quantities T
(
Yrep,�, θ �

)
. Creating

a scatterplot of the predictive test quantities (on the Y-axis)
against the realized test quantities (on the X-axis) provides
a convenient visual assessment of model adequacy. For cor-
rectly specified models, the points are expected to be evenly
divided along the 45-degree reference line.

The Bayesian p values defined in Equation 12 can be
approximated by counting the proportion of draws for which
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the predictive test quantity exceeds its corresponding real-
ized test quantity. That is,

Bayesian p value ≈ 1

L

L∑
�=1

1
{
T
(
Yrep,�, θ �

) ≥ T
(
Yobs, θ �

)}
.

(14)

This is equivalent to counting the proportion of points above
the 45-degree reference line in a scatterplot of the two test
quantities defined earlier.

POOR PERSON’S POSTERIOR PREDICTIVE
MODEL CHECKING

Considering the role of the posterior distribution
p
(
θ |Yobs, H

)
in the construction of the posterior pre-

dictive distribution (see Equation 11), it is not too difficult
to see that other distributions of the parameters could have
been utilized (Gelfand, 1996, p. 149). In fact, Box (1980)
suggested the use of the prior distribution, whereas Bayarri
and Berger (2000) proposed the use of the partial or condi-
tional posterior distribution. The predictive model checking
procedures based on these alternatives are now known as the
prior predictive model checking and partial (or conditional)
posterior predictive model checking method, respectively.
It has also been suggested that the cross-validation posterior
distribution, which is the posterior distribution conditional
on a subset of the observed data, can be used for predictive
model checking purposes (Geisser, 1975; Gelfand, Dey, &
Chang, 1992; Pena & Tiao, 1992). Notice that all of these
distributions can be combined into a general expression

p(Yrep|A, H) =
∫

θ

p(Yrep|θ , H)p(θ |A, H) dθ . (15)

For example, with A being an empty set, the general
expression in Equation 15 becomes the prior predictive dis-
tribution, whereas with A being the observed data Yobs, the
general expression in Equation 15 becomes the posterior
predictive distribution in Equation 11. With A equal to the
set denoted by

{
Yobs/T

(
Yobs)}, where T

(
Yobs) represents

a test statistic summarizing a characteristic of Yobs and /

is used to indicate “partialing out” T
(
Yobs

)
from Yobs, the

general expression in Equation 15 becomes the partial pos-
terior predictive distribution. Levy (2011) and others have
noted that posterior predictive, prior predictive, and partial
predictive model checking can be viewed as structurally sim-
ilar. We wish to follow this line of reasoning and suggest an
alternative that might provide a convenient framework for
predictive model checking.

In this article, we propose the use of a multivariate normal
distribution with its mean vector equal to the ML estimate
θ̂ and dispersion matrix equal to the asymptotic covariance

matrix of the ML estimate V̂ (see Equation 9). That is, we
propose that the distribution p(θ |A, H ) in Equation 15 be
replaced by the following normal distribution,

ϕd(θ) =
∣∣∣2πV̂

∣∣∣−1/2
exp

{
−1

2

(
θ − θ̂

)′
V̂

−1
(
θ − θ̂

)}
.

(16)

This proposal is based on a well-known result in the
Bayesian literature that asymptotically the contribution of
the likelihood tends to dominate in the posterior. As a conse-
quence, the shape of the posterior, to a first approximation,
converges to a multivariate normal with its mean centered
around the ML estimate and dispersion matrix equal to the
inverse of the information matrix (Gelman, 2003).

Some Theoretical Basis

The asymptotic posterior normality can be heuristically
shown by expanding the loglikelihood �(θ |Y) for fixed Y
around θ̂ in a multivariate Taylor series, to second order:

�(θ |Y) ≈ �
(
θ̂ + Y

)
+ 1

2

(
θ − θ̂

)′
⎡
⎣∂2�

(
θ̂ |Y

)
∂θ∂θ ′

⎤
⎦(θ − θ̂

)
.

(17)

Notice that the gradient vector of the log-likelihood van-
ishes in this expansion because θ̂ is a stationary point. Given
Equation 17, and using the fact that the posterior is propor-
tional to the prior p(θ) and the likelihood is exp {�(θ |Y)}, it
can be shown that

p(θ |Y ) ∝ p(θ) exp {�(θ |Y )}

≈ p(θ) exp

⎧⎨
⎩�

(
θ̂ |Y

)
+ 1

2

(
θ − θ̂

)′
⎡
⎣∂2�

(
θ̂ |Y

)
∂θ∂θ ′

⎤
⎦(θ − θ̂

)⎫⎬
⎭

∝ exp

{
−1

2

(
θ − θ̂

)′ [
NI

(
θ̂
)](

θ − θ̂
)}

= exp

{
−1

2

(
θ − θ̂

)′
V̂

−1
(
θ − θ̂

)}
. (18)

Recall that V̂ =
{

NI
(
θ̂
)}−1

(Equation 9). On the final line,

p(θ) exp
{
�
(
θ̂ |y

)}
can be absorbed into the proportionality

constant because �
(
θ̂ |y

)
is a constant that does not involve

θ and p(θ) is assumed to be diffuse (in comparison to the
likelihood). Notice that the final expression in Equation 18
represents the kernel of the multivariate normal distribution

with mean equal to θ̂ and the dispersion matrix equal to V̂
−1

,
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the same as Equation 16. More rigorous justifications of pos-
terior normality have been given by many authors, including
Le Cam (1953) and Le Cam and Yang (2000).

The asymptotic normality of the posterior implies that the
method of ML can be regarded as a large-sample Bayesian
procedure. This, of course, requires a conceptual shift from
interpreting the parameters as fixed quantities to be uncov-
ered by an estimator such as ML to random variables that
might have posterior variance conditional on the data and
the model. From the multivariate normal approximation to
the posterior distribution of θ , the posterior predictive distri-
bution, the posterior distributions of test quantities, and the
Bayesian p values can be constructed. Because we sample
from a crude first-order approximation to the posterior, we
term ti procedure a poor person’s posterior predictive model
checking (PP-PPMC).

Implementation

To implement PP-PPMC, we first fit the hypothesized
model H to the observed data Yobs by minimizing the
MWL fit function, which yields the ML estimates of
the parameters θ̂ and the associated asymptotic covari-
ance matrix V̂. Second, L sets of plausible parameter
vectors

{
θ(1), θ(2), . . . , θ(L)

}
are simulated from the mul-

tivariate normal distribution with mean and covariance
matrix equal to θ̂ and V̂, respectively. Then for each
θ(�), a replicated data set Yrep, (�) is drawn from the sam-
pling distribution under the hypothesized model H; that is,
p
(
Y
∣∣θ(�), H

)
We now have L pairs of Yrep and θ samples;

that is,
{(

Yrep, (1), θ(1)
)

,
(
Yrep, (2), θ(2)

)
, . . . ,

(
Yrep, (L), θ(L)

)}
.

Using these L pairs of Yrep and θ samples, we can compute L
pairs of predictive and realized values for a given test quan-
tity T(Y , θ),i.e.

{
T
(
Yrep, (�), θ(�)

)
, T
(
Yobs,, θ(�)

)}
with � =

1, . . . , L. Using these predictive and realized test quantities,
we can create scatterplots and approximate Bayesian p val-
ues just as outlined for the original PPMC method. We term
these predictive p values PP-PPMC predictive p values:

PP-PPMC Predictive p value

≈ 1

L

L∑
�=1

1
{
T
(
Yrep, (�), θ(�)

) ≥ T
(
Yobs, θ(�)

)}
.

(19)

Aside from requiring the ability to simulate multivari-
ate normal deviates with given mean vector and covariance
matrix, it is clear that the PP-PPMC procedure only requires
by-products of the likelihood-based estimation, (i.e., θ̂ and
V̂), which are routinely available in output from standard
SEM software programs. The PP-PPMC method can offer
a computationally efficient alternative to the original PPMC
method, with no need for drawing samples from the full
posterior (likely with MCMC). The PP-PPMC can also
be an effective alternative to the classical likelihood-ratio

chi-square test, offering a way to explicitly account for
parameter estimation uncertainty.

A COUPLING EFFECT

In the PP-PPMC approach, the use of the normal posterior
approximation leads to an interesting coupling relation of the
classical p values and the PP-PPMC predictive p values. The
main result can be stated as follows. With the test quantity
chosen to be an omnibus overall goodness-of-fit test statis-
tic such as the MWL and GLS fit functions in Equations
4 and, 10 the PP-PPMC predictive p value can be further
approximated as

Approximate PP-PPMC predictive p value

= Pr
{
T(Yrep, θ) > T

(
Yobs,, θ

) ∣∣Yobs, H
}

≈ Pr
{
χ2

p∗ − χ2
d > NT

(
Yobs, θ̂

)}
,

(20)

where T
(

Yobs, θ̂
)

is the minimized value of the fit func-

tion based on observed data and χ2
p∗ and χ2

d represent
two independent chi-square random variables with p∗ = p +
p(p + 1)

/
2 and d degrees of freedom, respectively. A deriva-

tion of this result is shown in the Appendix.
Recall that the classical p values can be obtained by

classical p value = Pr{χ2
p∗−d>NT(Yobs, θ̂ )}. (21)

The result in Equation 20 essentially suggests that, when
the classical MWL or GLS fit functions are used as test
quantities, the PP-PPMC predictive p values can be further
approximated noniteratively. Importantly, the same classi-
cal model fit test statistics can be used, although a different
reference distribution is needed.

In other words, computing the approximate PP-PPMC
predictive p value requires only the minimum fit function
chi-square value and a random number generator that can
sample chi-square random variables. For example, given a
model with p = 9 manifest variables and d = 24 degrees-
of-freedom, if the freely available R programming language
is used, the PP-PPMC predictive p value associated with a
minimum fit function chi-square of 50 can be obtained in as
few as three lines of code:

T <- 50; p <- 9; d <- 24;
dist <- rchisq(10000,df = p∗(p+1)/2+p)-
rchisq(10000,df = d)
print(mean(ifelse(dist > T, 1, 0)),
digit = 3)

Equations 20 and 21, when taken together, shed light
on the relationship between PP-PPMC predictive p values
and classical p values. It is interesting to note that the
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same minimum fit function value is used for obtaining both
the predictive and classical p values. Notice that the dis-
tribution of the difference χ2

p∗ − χ2
d has the same mean of

p∗ − d as the distribution of χ2
p∗−d, but it has a larger

variance 2(p∗ + d) than that of a χ2
p∗−d distribution, being

2(p∗ − d). This implies that the PP-PPMC method, as a
result of accounting for parameter estimation uncertainty,
tends to yield less stringent evaluations regarding model
fit than the classical asymptotic-theory-based chi-square
test.

APPLICATION TO EMPIRICAL DATA

We use the well known Open-Book Closed-Book (OBCB)
data set in Mardia, Kent, and Bibby (1979). This data set
contains test scores from N = 88 examinees on p = 5 sub-
jects: mechanics, vectors, algebra, analysis, and statistics.
For this data set, it is well known that a two-factor corre-
lated traits confirmatory factor analysis (CFA) model fits the
data extraordinarily well (see, e.g., Cai & Lee, 2009). The
likelihood ratio chi-square test statistic is equal to 2.07 with
4 df and classical p value of .72.

We choose the test quantity to be the MWL discrepancy
function in Equation 4 for the purpose of the assessment of
overall model fit. This choice enables a direct comparison
between the PP-PPMC method and the classical likelihood
ratio chi-square test. Furthermore, the use of a chi-square
type discrepancy function offers opportunities to evaluate
the quality of approximation in Equation 20 in empirical
data analysis.

Under the PP-PPMC framework, we evaluate the global
fit of four hypothesized models including a two-factor CFA
model (H1), a congeneric test model (H2), an essentially tau-
equivalent model (H3), and a parallel test model (H4) to
the OBCB data set. Notice that each of the four models is
successively more restrictive than the preceding one.

Specifically, we first obtain the ML estimates of the model
parameters and the associated asymptotic covariance matri-
ces for each of the four hypothesized models. Then θ (�) and
Yrep,(�) are simulated from the multivariate normal approx-
imation to joint posterior distribution, with p(θ |Yobs, H)
replaced by Equation 16. Based on these simulated draws
of θ and Yrep, predictive and realized test quantities based on
Equation 4 and the associated PP-PPMC predictive p val-
ues are obtained. Finally, the PP-PPMC predictive p val-
ues are compared to Bayesian PPMC predictive p values
obtained from Mplus Version 7 (L. K. Muthén & Muthén,
1998–2012).

Figure 1a shows the scatterplot of the predictive ver-
sus realized test quantities measuring overall discrepancy
between the data and the two-factor CFA mode (H1) for both
the PP-PPMC and PPMC methods. The plus signs repre-
sent the PPMC test quantities and the squares the PP-PPMC
test quantities. It is clear that the distributions are largely
overlapping. The scattering of the predictive and realized

discrepancies is evenly divided along the 45-degree line,
yielding an estimated PP-PPMC predictive p value of .556.
The PPMC predictive p value is equal to .577, indicating
that the normal approximation in PP-PPMC resulted in a
very similar estimate. The other panels in Figure 1 pro-
vide the scatterplots comparing the predictive and realized
discrepancies for models H2, H3, and H4.

In Figure 1, it is worth noting that the magnitude of real-
ized discrepancies tends to increase, as successively more
restrictive (and increasingly misspecified) models are fitted
to data. The PP-PPMC predictive p values for the three mod-
els are .306, .245 and .000, respectively. Such a decrease in
the PP-PPMC predictive p values is entirely consistent with
our expectations.

Table 1 shows a summary of PP-PPMC, PPMC, and
classical model fit results for the four models. Because the
proposed PP-PPMC method employs standard ML estima-
tion, the likelihood-ratio test statistics NTMWL(Yobs, θ̂ ) and
the associated classical p values are readily available. The
last two columns show the PP-PPMC predictive p values and
the corresponding approximate PP-PPMC predictive p val-
ues, found using the coupling approximation in Equation 20.
From Table 1 we can conclude (a) the PP-PPMC predic-
tive p values are close to the Bayesian PPMC values, (b) the
PP-PPMC predictive p values decrease as expected for more
restrictive models, (c) the quality of coupling approximation
is promising, and (d) the PP-PPMC predictive p values tend
to be less extreme than the corresponding classical p values,
again as expected.

POOR PERSON’S PPMC FOR CASE
DIAGNOSTICS

The assessment of global model fit via PP-PPMC only
tells us the overall extent to which the model is compati-
ble with observed data. When the model fit is poor, more
detailed inspections are required to discover the sources
of misfit. In this section we illustrate the flexibility of the
PP-PPMC method using the diagnosis of influential cases
as an example. We wish to highlight the fact that other
user-defined fit indexas or altogether different aspects of
model fit assessment can be studied with the same general
approach.

The influential cases differ markedly from other cases
in the sample in the way they exert influence on model fit.
In the context of SEM, the development of cases-influence
diagnostics remains an open area of research. Some case-
influence diagnostic methods are based on case-level residual
estimates (Bollen & Arminger, 1991; Yuan & Hayashi, 2010;
Yuan & Zhong, 2008) and others are based on local influence
analysis (Lee & Wang, 1996). With PP-PPMC, we show that
the approach as outlined for global model fit assessment can
be adapted to automate the generation of p values and plots
useful for case-influence diagnosis for any appropriately
defined test quantity.
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FIGURE 1 Scatterplots of PP-PPMC and PPMC predictive discrepancies against realized discrepancies for the Open-Book Closed-Book data set and the
four fitted models H1, H2, H3, and H4. Note. PPMC = posterior predictive model checking; PP-PPMC = poor person’s posterior predictive model checking;
CFA = confirmatory factor analysis.

TABLE 1
Model Fit Summary for the Open-Book Closed-Book Data

p Values

Model
NTMWL

(Yobs, θ̂ ) df Classical Bayesian PP-PPMC
Approx.

PP-PPMC

H1 2.073 4 0.722 0.577 0.556 0.589
H2 8.978 5 0.110 0.283 0.306 0.308
H3 14.937 9 0.093 0.253 0.245 0.216
H4 79.339 13 0.000 0.000 0.000 0.000

Note. TMWL(Yobs, θ̂ ) represents the minimum fit-function value. PP-
PPMC = poor person’s posterior preductive model checking.

Test Quantities for Case-Influence Diagnosis

Classification of influential cases. In the context of
regression modeling, influential cases can be classified into
two categories. Specifically, cases with extreme predictor

values are referred to as leverage points, whereas cases with
large residuals (i.e., sitting far from the regression line)
regardless of predictor values are referred to as outliers.
When a leverage point has a large (or small) residual, the case
is called a bad (good) leverage point (Rousseeuw & Leroy,
1987) in the sense that it leads to decrease (increase) in
model fit. Notice that these definitions of outliers and lever-
age points depend on the model. An outlier in one regression
model might turn out to be a good leverage point in another
regression model.

In applications of regression models it is well known that
outliers and bad leverage points have disastrous effects on
parameter estimation and model fit testing, whereas good
leverage points lead to more accurate regression coefficient
estimates and improvement in fit. Diagnostic measures for
detecting outliers and leverage points are well developed and
routinely available in the output of commercial software for
regression analysis (Belsley, Kuh, & Welsch, 1980; Cook,
1986).
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In the context of factor analysis models, Yuan and Zhong
(2008) showed that similar classifications of influential cases
are possible when the factor analysis model is regarded as a
multivariate regression model with the factor scores playing
the role of the predictors and the observed variables play-
ing the role of responses. Outliers and leverage points can
then be defined using estimates of factor scores and resid-
uals. In other words, an observation can be referred to as a
leverage point when the associated factor score estimate is
far from the center of the majority of the factor score esti-
mates. An observation can be called an outlier when the
associated residual estimate is large, regardless of the value
of factor score estimate. A bad leverage point will have large
values both in factor score and residual estimates, whereas
a good leverage point will have a small value in the resid-
ual estimate. As in regression, the definitions of outliers and
leverage points are model-based, and thus the status of a case
as an outlier or a leverage point could change under two dif-
ferent factor analysis models. The extensions to general SEM
are examined in Yuan and Hayashi (2010).

In this paper, we adopt the same classifications of the
influential cases as defined and examined in Yuan and Zhong
(2008) and Yuan and Hayashi (2010). The Bartlett formula is
used for factor score estimation (see Yuan & Hayashi, 2010,
p. 337, for some desirable properties of the Bartlett factor
score estimates):

η̂i =(
�′�−1�

)−1
�′�−1

(
yobs

i − μ
)

. (22)

Test quantities are formulated so as to be sensitive to dis-
crepancies between observed and replicated cases in their
factor scores and residual estimates.

To check the influence of the ith case yobs
i on model fit, it is

natural to leave the observation in question out of the analysis
and examine the change in model fit based on the remaining
data points. This is a well-established method known as the
leave-one-out method in cross-validation. In this article, the
sample with the ith case deleted is denoted as Yobs

(i) Let θ̂ (i)

and V̂(i) denote the ML parameter estimates and the associ-
ated asymptotic covariance matrix, respectively, based on the
leave-one-out sample Yobs

(i) .
The central idea of the case-influence diagnostic method

based on PP-PPMC is to measure the divergence between
factor score or residual properties associated with the ith
observed case yobs

i and the potential replicated case yrep
i . Note

that the replicated case should be drawn from the posterior
predictive distribution formed with the leave-one-out sample
Yobs

(i) . In other words, the parameter posterior is p(θ |Yobs
(i) , H)

as opposed to p(θ |Yobs, H). In PP-PPMC, p(θ |Yobs
(i) , H) is fur-

ther approximated with a multivariate normal with mean
vector θ̂ (i) and covariance matrix V̂(i).

Test quantities. Now let us introduce some notation
useful for formulating and describing the test quantities to

be employed for the case-influence diagnostics. Using the
leave-one-out ML estimate θ̂ (i) we can produce factor scores
and residuals for the leave-one-out sample Yobs

(i) . Let the cen-
troid of the N − 1 factor scores for cases in Yobs

(i) be denoted
η̄(i) and that of the residuals be ε̄(i). Similarly, let the covari-
ance matrix of the N − 1 factor scores be �(i), and that of the
residuals 
(i).

Based on some parameter values in θ , we can compute
factor score and residual estimates for the ith case that was
left out, yobs

i . Let the factor score and residual estimates
for yobs

i be denoted as η̂
obs
i and ε̂

obs
i , respectively. For the

replicate observation yrep
i , let the factor score and residual

estimates for yrep
i be denoted as η̂

rep
i and ε̂

rep
i , respectively.

A natural choice of the leverage test quantity is the
Mahalanobis distance of the factor score estimate of the ith
(observed or replicate) case to the centroid of factor scores
for the rest of the sample, η̄(i). Specifically, the realized test
quantity is defined as

Tleverage
(
yobs

i , θ
) =

(
η̂

obs
i − η̄(i)

)′
�−1

(i)

(
η̂

obs
i − η̄(i)

)
. (23)

The predictive test quantity is

Tleverage
(
yrep

i , θ
) =(

η̂
rep
i − η̄(i)

)′
�−1

(i)

(
η̂

rep
i − η̄(i)

)
.

If the vast majority of the realized Mahalanobis distances are
larger than the corresponding predictive Mahalanobis dis-
tances, then the predictive p value for the ith case is close
to 0 and thus, yobs

i could be a potential leverage point.
The test quantity for identifying outliers can be defined

similarly. Specifically, the realized test quantity is defined as

Toutlier
(
yobs

i , θ
) =

(
ε̂

obs
i − ε̄(i)

)′

−1

(i)

(
ε̂

obs
i − ε̄(i)

)
. (24)

The predictive test quantity is

Toutlier
(
yrep

i , θ
) =(

ε̂
rep
i − ε̄(i)

)′

−1

(i)

(
ε̂

rep
i − ε̄(i)

)
.

Again, if the vast majority of the realized Mahalanobis
distances are larger than the corresponding predictive
Mahalanobis distances, then the predictive p value for the ith
case is close to 0 and thus, yobs

i could be a potential outlier.

Simulation Studies

In this section, we investigate the performance of the PP-
PPMC based case-influence diagnostics using simulated
data. Two synthetic data sets of size equal to 206 are gen-
erated from a CFA model with three correlated factors. Each
of the three factors has three indicators. The model has nine
indicator variables and 23 df . Following the method devel-
oped by Yuan and Zhong (2008), two outliers, two good
leverage points, and two bad leverage points are introduced,
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and the last six cases in the second data set are replaced by
those six influential cases. No replacement is made for the
first data set, and thus neither outliers nor leverage points are
expected to exist.

When the true generating model was fitted to each of the
two data sets, the asymptotic chi-square test statistics were
23.75 and 37.50, yielding the associated classical p values of
.43 and .03, respectively. These results are expected due to
the existence of outliers and bad leverage points in the second
data set. It is anticipated that those six influential cases in the
second data set and any such cases generated at chance levels
in either of the two data sets can be flagged by the proposed
PP-PPMC case-influence diagnostics.

To determine whether or not yobs
i is a leverage point

(or outlier), we compute the case-specific PP-PPMC predic-
tive p values, denoted by p(i)

pred, by comparing the realized
and predictive Mahalanobis distances of the factor score (or
residual) estimate for the ith case to the centroid of the factor
score (or residual) estimates with the ith case removed.

Figure 2a presents the results for the first data set wherein
no influential cases were intentionally included. Each point
in the plot represents a pair of the negative logarithms of
the case-specific PP-PPMC predictive p value for outliers
against the negative logarithm of the corresponding case-
specific PP-PPMC predictive p values for leverage points.
Due to the negative log transformation of the PP-PPMC
predictive p values, larger values on the horizontal (vertical)
axis are more likely to be associated with leverage points
(outliers). For ease of interpretation, dotted horizontal and
vertical reference lines are added to the scatterplot at the
value corresponding to the PP-PPMC predictive p value
equal to .001. Thus, any observations located above the
dotted horizontal (vertical) line can be flagged as potential
outliers (leverage points). As expected, none of the cases
were flagged as potential outliers or bad leverage points by

the proposed method. Interestingly, Case 174 is identified
as a potential good leverage point, and when it was deleted,
the model fit chi-square test statistic actually deteriorated
slightly.

Figure 2b presents the same information for the second
data set. As shown in the scatterplot, the proposed meth-
ods appear to have correctly identified most of the outliers
and leverage points. For example, Case 203 is identified as a
potential good leverage point, and when deleted, the model
fit chi-square statistic indeed deteriorated to 38.96 from
37.50. Case 205 is identified as a potential bad leverage
point, and when deleted, the model fit chi-square statistic
dropped significantly to 24.63 from 37.50. Other influential
cases are also correctly identified as good leverage points,
(e.g., Case 204) outliers, (e.g., Case 202), or bad leverage
points (e.g., Case 206). Interestingly, Case 201, added to this
data set as an outlier, is not flagged as a potential outlier.
Instead Cases 6 and 159 are flagged as potential outliers.

These results lend initial support to the proposed PP-
PPMC-based case-influence diagnostics. Considering that
there is more than one influential data point, and the pro-
posed method is based on the leave-one-out method, and that
standard ML estimation might not be robust in the presence
of multiple influential cases, the proposed PP-PPMC-based
method has exhibited surprisingly good performance.

Open-Book Closed-Book Data

In this section, we apply the proposed case-diagnostic
method to the detection of influential cases in the analysis
of the OBCB data. Although it is well known (and was seen
in the previous section) that the two-factor CFA model fits
well, it would be interesting to examine whether or not the
existence of any outliers or bad leverage points can influence
the misfit of the model. Recall that the definitions of out-
liers and leverage points are model-based, implying that the

0 2 4 6 8 10

0
2

4
6

8
10

Leverage Points

O
ut

lie
rs

104174

0 2 4 6 8 10

0
2

4
6

8
10

Leverage Points

O
ut

lie
rs

203
204

6

159

202 205206

FIGURE 2 Scatterplots of the negative logarithm of the case-specific PP-PPMC predictive p values for leverage points diagnostics versus the corresponding
negative logarithm of the case-specific PP-PPMC predictive p values for outliers diagnosis. Note. PP-PPMC = poor person’s posterior predictive model
checking.
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results of the case-influence diagnostics can differ under dif-
ferent models. Thus, it would also be interesting to examine
the case-influence diagnostics under alternative models such
as a single-factor CFA model, and compare the results with
those obtained from the two-factor CFA model.

Figure 3 presents similar scatterplots as those shown
in Figure 2. Figure 3a reveals that Case 81 is a potential
good leverage point under the two-factor CFA model, and
Figure 3b reveals that the same case is a potential outlier
under the single-factor CFA model. The response vector of
Case 81 is (3, 9, 51, 47, 40), where the first two test scores
are below the mean and the last three test scores are above
the mean. This pattern of responses is strongly supportive of
the two-factor hypothesis (the first two tests are open book)
and is correctly identified as a good leverage point under
the two-factor CFA model. For precisely the same reason,
Case 81 is correctly identified as an outlier under the single-
factor CFA model. When Case 81 is deleted, the overall
model fit chi-square statistics actually increased slightly to
2.40 from 2.07 under the two-factor CFA model, whereas
the chi-square statistic dropped significantly to 5.45 from
8.98 under the single-factor CFA model.

DISCUSSION

PPMC has emerged as a flexible framework for both
overall and targeted model–data fit assessment. When fully
Bayesian methods are used to fit highly parameterized
latent variable models, the output from posterior sampling
(with MCMC) makes it straightforward to conduct PPMC.
Recognizing the popularity of ML estimation in SEM, we
propose a hybrid approach.

We regard ML as a form of large-sample Bayesian
estimation procedure and rely on posterior normality (the

Bernstein–von-Mises phenomenon) to construct an approx-
imate posterior predictive distribution using by-products of
ML estimation. In this poor person’s posterior predictive
distribution, the exact parameter posterior is replaced by a
multivariate normal distribution with mean vector equal to
the ML estimate and covariance matrix equal to the inverse
of the information matrix.

We demonstrated the flexibility and computational effi-
ciency of the PP-PPMC method with both overall model fit
assessment and case-influence analysis as exemplary con-
texts. We have also studied the relationship between classical
p values of model fit test statistics, PPMC predictive p val-
ues, and the PP-PPMC predictive p values. Using the OBCB
data set, we provide an example of the similarity of pre-
dictive p value estimates using the Bayesian PPMC and the
proposed PP-PPMC methods. We establish a coupling rela-
tionship and use it to demonstrate that overall model fit
PP-PPMC predictive p values can be approximated easily.
It amounts to the adoption of a new reference distribution
for standard model tit test statistics that respect the degree of
uncertainty in estimating unknown model parameters.

There are a number of important limitations to this
research. First, the derivations are exclusively based on
normal theory linear SEM. As observed variables depart
from normality, the performance of the proposed PP-PPMC
method remains unknown. Although other distributions
could be considered for the choice of the likelihood, such as
a thicker-tailed t distribution, we chose the normal distribu-
tion for analytic simplicity and to keep in line with standard
SEM procedures. Second, the posterior normality is a large-
sample approximation that might or might not be appropriate
for all model–data combinations. For smaller N, the posterior
is less peaked and less ideally quadratic, again leading to
unknown and potential performance issues. Comprehensive
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FIGURE 3 Scatterplots of the negative logarithm of the case-specific PP-PPMC predictive p values for leverage points diagnostics versus the corresponding
negative logarithm of the case-specific PP-PPMC predictive p values for outliers diagnosis. Note. CFA = confirmatory factor analysis; PP-PPMC = poor
person’s posterior predictive model checking.
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comparisons with alternative posterior approximations, such
as fully Bayesian MCMC sampling or Rubin’s (1987) SIR
algorithm, should be performed in future research and unfor-
tunately remain out of scope for this article, which aims
at introducing PP-PPMC. Finally, we have only considered
overall fit and case-influence. There are other aspects of
model fit, (e.g., residual dependence) that we have glossed
over. We have not even discussed potentials of applying this
idea to other forms of model fit indexes, of which there
are many in SEM. Nevertheless, we believe the PP-PPMC
method to be a simple, noniterative, and flexible alternative
to both classical approaches as well as more modern fully
Bayesian methods. We hope the initial evidence gathered
here can prompt additional research.
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APPENDIX THEORETICAL DERIVATIONS OF
THE COUPLING EFFECT

To show the result in Equation 20 we use TGLS(Y, θ) presented in Equation
10 as the test quantity because it is easier to manipulate. Recall from
Equation 7, the large-sample distribution of srep (vector of replicate sample
first and second moments), conditional on θ and H is

√
N
[
srep − σ (θ)

] | θ , H
a∼Np∗

(
0, � [σ(θ)]−1

)
. (A.1)

By Cochran’s theorem (Cochran, 1934), the quadratic form
N [srep − σ (θ)]′ � [σ(θ)] [srep − σ (θ)] is approximately chi-square
distributed with p∗ degrees of freedom (see also Theorem 10.9 in Schott,
2005). To derive the desired result in Equation 20, we need the following
two propositions.

Proposition 1

Given θ and H, the quadratic form N [srep − σ (θ)]′ � [σ(θ)] [srep − σ (θ)]
can also be written as NTGLS(Yrep, θ) |θ , H, and thus we have

NTGLS
(
Yrep, θ

) |θ , H
a∼χ2

p∗ . (A.2)

Due to asymptotic posterior normality of θ , we have approximately

θ |Yobs, H
a∼Nd

(
θ̂ , V̂

)
.

Using continuous mapping and the multivariate delta method, an approxi-
mate posterior distribution of σ(θ) is
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σ(θ) |Yobs, H
a∼Np∗

(
σ
(
θ̂
)

, �
(
θ̂
)

V̂�
(
θ̂
)′)

(A.3)

where �
(
θ̂
)

is the Jacobian matrix in Equation 3 evaluated at θ̂ . It follows

that

(
σ(θ) − sobs

)
−
(
σ
(
θ̂
)

− sobs
)

|Yobs, H
a∼Np∗

(
0, �

(
θ̂
)

V̂�
(
θ̂
)′)

,

(A.4)

where sobs is the vector of observed sample first and second moments. From

Equation 9, the covariance matrix V̂ is equal to

[
�
(
θ̂
)′

N�
(
sobs

)
�
(
θ̂
)]−1

.

Consequently, the approximate distribution of the quadratic form

N
[(

σ(θ) − sobs
)−

(
σ
(
θ̂
)

− sobs
)]′

�
(
sobs

) [(
σ(θ) − sobs

)−
(
σ
(
θ̂
)

− sobs
)]

,

conditional on Yobs and H, is a central chi-square with d degrees of free-
dom. Using this result and after some algebra, we find the difference
between two quadratic forms N

(
σ (θ) − sobs

)′
�
(
sobs

)(
σ(θ) − sobs

)−
N
(
σ
(
θ̂
)

− sobs
)′

�
(
sobs

)(
σ
(
θ̂
)

− sobs
)

is distributed as central chi-square

random variable with d degrees of freedom, conditional on Yobs and H. But
notice that the difference in these two quadratic forms can be equivalently

expressed as NTGLS
(
Yobs, θ

)− TGLS

(
Yobs, θ̂

) ∣∣Yobs , H.

Proposition 2

Thus the following result holds:

NTGLS

(
Yobs, θ

)
− NTGLS

(
Yobs, θ̂

) ∣∣∣Yobs , H
a∼χ2

d . (A.5)

Coupling

Using the two propositions stated in Equation A.2 and A.5, we can show the
key result in Equation 20 as follows:

Pr
{
TGLS(Yrep, θ) > TGLS

(
Yobs, θ

) ∣∣Yobs , H
}

= Pr
{
NTGLS(Yrep, θ) > NTGLS

(
Yobs, θ

) ∣∣Yobs , H
}

=
∫

ε

∫
θ

1
{
NTGLS(Yrep, θ) > NTGLS

(
Yobs, θ

)}
p(Yrep |θ , H) p

(
θ
∣∣Yobs , H

)
dθdYrep

≈
∫

θ

Pr
{
χ2

p∗ > NTGLS
(
Yobs, θ

) |θ , H
}

p
(
θ
∣∣Yobs , H

)
dθ

=
∫

θ

Pr
{
χ2

p∗ > NTGLS

(
Yobs, θ̂

)
+ NTGLS

(
Yobs, θ

)− NTGLS

(
Yobs, θ̂

)
|θ , H

}

p
(
θ
∣∣Yobs , H

)
dθ

≈ Pr
{
χ2

p∗ − χ2
d > NTGLS

(
Yobs, θ̂

)}
. (A.6)


	Abstract
	POSTERIOR PREDICTIVE MODEL CHECKING
	Classical Estimation and Inference for SEM
	Basic Setup for PPMC
	Test Quantities and    p    Values
	Implementation

	POOR PERSON'S POSTERIOR PREDICTIVE MODEL CHECKING
	Some Theoretical Basis
	Implementation

	A COUPLING EFFECT
	APPLICATION TO EMPIRICAL DATA
	POOR PERSON'S PPMC FOR CASE DIAGNOSTICS
	Test Quantities for Case-Influence Diagnosis
	Simulation Studies
	Open-Book Closed-Book Data

	Discussion
	ACKNOWLEDGMENTS
	FUNDING
	REFERENCES
	APPENDIX THEORETICAL DERIVATIONS OF THE COUPLING EFFECT
	Proposition 1
	Proposition 2
	Coupling


